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Although the full long-term method (FLM) is recognized as the appropriate way to identify the design stresses of
marine structures subjected to stochastic environmental loading, the FLM has not yet been adopted for the design
of wind excited long-span bridges. The results presented in this study show that the curent design practice,
through short-term extreme response analyses with deterministic turbulence parameters, may significantly un-
derestimate the long-term design stresses of long-span bridges. Both the variability of the turbulence parameters

and the uncertainty in the short-term extreme response are found to be important when estimating the design
stresses. In addition, the long-term extreme acceleration responses have been compared with the acceleration
responses measured in full scale at the Hardanger Bridge, showing considerable improvements to the current

design practice.

1. Introduction

Several full-scale measurement campaigns around the world have
identified large variability in the measured dynamic response of long-
span bridges subjected to wind loading [1-7]. By accounting for the
uncertainty in the turbulence field, it was found in [8,9] that the vari-
ability in the measured acceleration response of the Hardanger Bridge
could be predicted. They also showed that the design guidelines strongly
underpredicted the largest root-mean-square acceleration responses
measured in full scale at the Hardanger Bridge. The observations from
these studies indicate a need to revisit the design practice for long-span
bridges, especially as bridges become increasingly longer and more
sensitive to dynamic wind loading [10].

The characteristic load effect used in structural design calculations is
defined by a yearly exceedance probability, p. This probability can be
expressed through a statistical return period in years, p = 1/Ry. A
common simplification in design calculations for linear systems is to
define the return period of the load effect equal to the return period of
the load. This approach will, in general, not be correct for a cable-
supported bridge subjected to turbulent wind loading since the load
effect will be a stochastic process. However, in current bridge engi-
neering practice, this simplification is widely used, and the character-
istic load effect is calculated as the expected extreme response from a

short-term storm defined by a mean wind velocity with a return
period, Ry, and its corresponding deterministic turbulence parameters.
This approach introduces two important assumptions: 1) the variability
of the turbulence parameters can be neglected or treated in a simplified
manner, and 2) the uncertainty of the short-term extreme peak response
can be treated deterministically by its expected value.

In recent years, some studies have investigated the effect of these
assumptions. Lystad et al. [8] investigated the effect of uncertain tur-
bulence parameters on the buffeting response of the Hardanger Bridge
using the environmental contour method (ECM), identifying consider-
able effects on the prediction of the largest bridge response. Xu et al.
[11] found that due to the uncertainty of the short-term response, the
long-term extreme response would significantly exceed the expected
value of the short-term extreme buffeting response of a long-span sus-
pension bridge. This effect is well-known in the field of marine engi-
neering [12,13], and standards for the design of offshore structures
already recommend accounting for such effects [14]. These studies
indicate that the abovementioned simplifications may introduce signif-
icant inaccuracies in the current design practice.

Long-term extreme value methodology is recognized as the most
accurate way to estimate the extreme load effects from stochastic
environmental excitation of marine structures [15]. In such calculations,
the Ry, return period load effect is calculated directly, accounting for the
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uncertainty of the structural response. The important parameters
defining the load process are treated as stochastic variables and
described by a joint probability distribution.

Several formulations of the full long-term method (FLM) exist [16],
and they all need to integrate the short-term response statistics over all
relevant environmental combinations, making them very computation-
ally demanding. The long-term extreme value problem can also be
solved by simplified reliability methods such as the inverse first-order
reliability method (IFORM) [17,18] and the environmental contour
method (ECM) [19]. These methods are attractive because they are
relatively efficient from a computational perspective. The [FORM can be
used to estimate the Ry return period long-term extreme response
directly, where the short-term extreme response is included as a random
variable. The ECM is an inverse reliability method that can be used to
identify Ry, return period short-term load situations based on the joint
probability of several environmental variables. The environmental
contour method separates the variability of the environmental param-
eters and the uncertainty of the short-term extreme response itself.
Therefore, to estimate the long-term extreme load effect, the omission of
this variability needs to be corrected.

Probabilistic frameworks in wind engineering have been investi-
gated in the literature [20-29]. These frameworks focus mostly on un-
certainties in the load and the structural properties with methods to
estimate the reliability of the structure. With the FLM, the probability
distribution of the extreme response of a system subjected to stochastic
environmental loads is calculated. This process is valuable since the Ry
return period load effect can be drawn directly from this distribution to
be used in ordinary design calculations, but it can also provide valuable
information for possible structural reliability considerations.

In this paper, long-term extreme value methodology is used to
investigate the extreme design stresses in the Hardanger Bridge girder
due to turbulent wind loading. In Section 2, the theoretical basis is
outlined, and in Section 3, the buffeting analyses are described. In
Section 4, long-term extreme value predictions are presented for the
design stresses of the Hardanger Bridge girder, showing significant ef-
fects from extreme value- and turbulence uncertainty on the extreme
stresses. The FLM, IFORM and ECM are all used to estimate the long-
term extreme response. Furthermore, in Section 5, long-term extreme
acceleration response predictions are compared with full-scale mea-
surements, showing considerable improvements to the current design
practice.

2. Extreme response calculation methods

For the ultimate limit state design of structures subjected to sto-
chastic wind loads, three approaches can be used to estimate the design
load effects:

- The short-term design wind speed approach
- The short-term environmental contour method
- The long-term design approach.

In a short-term extreme value calculation, stationary and ergodic
extreme storm conditions with a statistical return period Ry, are defined
by a set of environmental variables given by the vector w. In the short-
term design wind speed approach, the environmental variables are
defined by the event of a mean wind velocity with a return period Ry,
and the corresponding turbulence parameters are chosen deterministi-
cally. In the short-term environmental contour method, the extreme
storm condition is defined by the environmental contour method, ac-
counting for the variability in the turbulence parameters as well as the
mean wind velocity.

When considering a short-term stochastic response time series from
the extreme storm condition defined by w, the largest response during

that time window is the short-term extreme response, R|W. However, for
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another stochastic response realization of the same environmental load
definition, w, the extreme peak might be different. Thus, the short-term
extreme peak response is uncertain. In current design practice for cable-
supported bridges, the expected value of this uncertain peak is used to

define the design load effects, E[ﬁ\W], based on the short-term design
wind speed approach.

In a long-term design approach, a long-term time window is defined
by a sequence of short-term time series. Then, the cumulative proba-
bility density function of the long-term extreme response is established,
Fp(r, 0 <t < T). This function is calculated based on the response sta-
tistics of each short-term condition, weighted by the probability of the
environmental parameters, fw(w). In this way, the extreme response
with a statistical return period can be calculated directly from Fg(r, 0 <t
<T)=1p= 1-1/Ryy,

The methodology presented in this paper relies on the assumption of
stationarity within each short-term event. Wind loads are often sepa-
rated into synoptic and non-synoptic winds [30], and non-synoptic
winds can dominate the extreme responses in some areas of the world.
Non-synoptic effects can be an important aspect when considering
extreme buffeting response [31], and proper investigations needs to be
carried out where these events are important. The methodology pre-
sented herein focus on the extreme response due to synoptic winds,
where the stationarity assumption is reasonable. The strong winds in
Norway, and at the Hardanger Bridge site, is dominated by synoptic
winds and extratropical cyclones [32] and is a suitable case for inves-
tigation of the proposed methodology.

2.1. Short-term extreme respoise

If the zero-mean response process can be assumed to be Gaussian,
ergodic and stationary within a short-term period, T, the short-term
extreme peak distribution of that process can be completely defined
by the mean upcrossing rate of a threshold, 7 [15]. The mean
F-upcrossing rate can be defined as:

v (Flw) = ! (O)exp{ - m} (1)
where

Loy b (ma(w)
v (0) ~ 27\ my(w) @

and w is the vector containing the environmental variables, v (0) is the
zero-upcrossing rate and ny; is the i moment of the response spectrum,

Sglw(w|w):

ms(w) = fo " oS- (wlw)do 3)

RW

and @ is the angular frequency. Then, the short-term extreme value
cumulative density function (CDF) can be defined as follows by intro-
ducing the assumption of independent peaks for reasonably large values
of 12

F (7w) = exp{ — ' (7|wﬁ'}

The expected value of the short-term extreme peak response can be

i C))]

~

= expy —

(=)
EY

estimated as follows, given that In(v' (Oﬁ”) is sufficiently large:

E[R] = kp+/mo(w) (5)
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k, ~ { 2Un(v+ (0)T) +”} 6)
2[n(v' (0)T)

and ¥ ~ 0.5772 is the Euler constant, E[ -] is the expectation operator

and k;, is the short-term peak factor.

2.2. The full long-term method (FLM)

The FLM is relatively simple to use but very computationally
demanding since, in principle, the short-term response statistics needs to
be calculated and integrated over all possible combinations of the
environmental variables, weighted by their probability of occurrence.

Different formulations of the full-long-term method can be found in
the literature, but under the appropriate assumptions, they are mathe-
matically equivalent [16].

2.2.1. Formulation based on the upcrossing rate of the short-term response

Naess [33] proposed a formulation that calculates the full long-term
extreme value CDF based on the r-upcrossing rate of each short-term
process. In the long-term period, T, the response process can no longer
be considered a stationary process, so Eq. (4) is generalized for a
nonstationary process by replacing the short-term upcrossing rate with
its mean value over the long-term period:

Fr(r) = exp{ - T%/: vi(r, r)a‘r} (7)

By describing the long-term period as a sequence of stationary short-
term periods, the following formulation is reached:

) = exp{ 7 [ G oo | ®)

where fyy(w) is the joint PDF of the environmental parameters defined in

the vectorw, T = Ny Tis the long-term period, and Nj is the number of
short-term conditions. This formulation is the full long-term formulation
with the least limiting assumptions [16], relying only on the ergodicity
assumption and that the high-level upcrossings follow a Poisson distri-
bution and will be used in the full long-term calculations in this paper.

2.2.2. Formulations based on all short-term extreme values

In a full long-term calculation, the long-term extreme response CDF
is calculated based on the response statistics of each short-term condi-
tion. Borgman [34] presented an expression for the long-term extreme
value CDF based on the short-term extreme values:

Fitr) = ] [ in{ s, o) o | ©

This formulation is valid under the assumption of statistically inde-
pendent short-term extreme values. The formulation proposed by
Borgman [34] is based on ergodic averaging. This is often referred to as
the exact formulation of the full long-term extreme value CDF, but it
should be noted that it is exact only under the many assumptions pre-
viously listed. An approximate formulation of this problem exists as
well. This formulation is based on the population mean and not the
ergodic average, hence the approximation. The formulation reads:

Felr) = [ F Gt a0

This formulation is often a good approximation, although it is strictly
unconservative as shown by Jensen’s inequality theorem, stating that
the expected value of a function is greater than or equal to the expected
value of the function after a concave transformation. In Eq. (9), the
natural logarithm is a concave function and the following will apply
[35]:
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Fr(r)<Fr(r) (an

and in effect, the Ry, return period response quantity estimated by the
approximate formulation will be less than or equal to the exact
formulation.

2.3. Reliability theory-based calculation methods

2.3.1. Expressing the approximate full long-term formulation as a reliability
problem

The approximate formulation for the full long-term extreme value
CDF shown in Eq. (10) can be reformulated as a reliability problem. An
interesting effect from this reformulation is that it can be solved in an
approximate manner using known structural reliability theory such as
the first-order reliability method (FORM).

The reliability problem can be written as [36]:

pr= Jx(x)dx (12)

G(x)<0

where pf is the failure probability, X is a vector of random variables
described by the joint probability density function (PDF) fx(x), and G(x)
is the limit state function in the real space. In the reliability problem, X
contains random variables describing the uncertain load and the un-
certain capacity, and then G(x) < 0 defines failure. The approximate
formulation of the long-term extreme value can be rewritten in a similar
form:

Felr) = [ ey Eoetwterdn = [ [ pe it ) (s

Now, if we define a vector X = {W: ﬁ} , we can construct a joint PDF

of the environmental variables and the short-term extreme response as:

Fe(x) = fo, (Fw)fw(w) (14)

R

and then Eq. (13) is rewritten to the same format as Eq. (12):

Fr(r)= [ fx(x)dxe=1- Sfelx)dx=1—py (15)

< Glx)<0
where G(x) =r-F.

2.3.2. Expressing the exact full long-term formulation as a reliability
problem

Giske et al. [35] proposed a method to formulate the exact full long-
term method shown in Eq. (9) as a reliability problem as well, avoiding
the strictly unconservative simplification that the approximate formu-

lation introduces. Since ln{FEw(ﬂw)}is not a CDF, they rewrote the

expression:
Fr(r) = exp{/ (1 +In Ff};‘w(ﬂw)} )fw(w)dw -1 } (16)
W

and then introduced a new random variable, Y, so a CDF-like function
could be defined as:

Fyw(ylw) = ma:x(l +ln{Faw(7|w)},0) 17)
Thus, the formulation reads:
Fr(r) =~ exp{/ Fyw(y[w)fw(w)dw — l} (18)
w
Similar to the definition in Eq. (15), the reliability problem becomes:

Fr(r) = Exp{ - fx(x)dx} =exp{ —pr} 19

Glx)<0
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where
Jfx(x) = Fyw(yw)fw(w) (20)

However, even though this method is based on the exact FLM
formulation, the IFORM solution in itself is an approximation.

2.3.3. Solving the long-term extreme value problem using the inverse first-
order reliability method (IFORM)

The FORM procedure can be used to calculate the probability of
exceedance, py, by transforming the random variables in X into the
standard normal space, U, and minimizing the distance to the limit state
function:

B = argmin|u|; constrained to g(u) =0 21
where g(u)=r—7(u) =0 is the limit state function in the standard

normal space. f# is the reliability index related to the return period as
follows:

@ l(l/l'R”’ ><365.2~5 x 24 ><60}

=
s T

) (22)
where @ is the standard normal CDF, Ry, is the statistical return period in
years, and T is the short-term duration in minutes.

In the FORM, the limit state function is approximated by a first-order
Taylor expansion through the design point identified in the standard
normal space [36].

The failure probability is related to the reliability index by the
relationship:

pr= Su(u)du = ®(—p) (23)
g(u)<0
However, in the inverse FORM procedure, the reliability index is
indirectly known through the given return period, and the response, r, is
sought. Thus, the solution to the long-term extreme value problem in Eq.
is found by maximizing the response under the following constraint:

r = argmaxr(u); constrained to |u| = f (24)

2.3.4. The environmental contour method (ECM)

Winterstein and Haver [19] presented a method based on the [FORM
to establish environmental contours for combinations of environmental
variables with a combined target statistical return period. The method is
also referred to as the IFORM with omission factors since it decouples
the variability of the environmental variables from the uncertainty of
the structural response itself. In this method, combinations of environ-
mental variables in a standard normal space with a given distance to the
origin, namely, the reliability index f, are transformed into the real
space based on a joint probability distribution of the environmental

=—— Env. contour
Y design IFORM
{ design ECM
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variables.

The extreme response is calculated by the short-term method, but it
was shown in [19] that the omission factors could be used to inflate the
contours to account for the neglected short-term extreme value uncer-
tainty. However, Kleiven and Haver [12] found that the best way to
correct for the neglected extreme response uncertainty was by multi-
plying the expected short-term extreme response by a correction factor
or by choosing a higher percentile of the short-term extreme response
CDF as the design value. The correction factor is defined as:

rir

Coorr = (25)

eem

where r;r is the long-term extreme response and gy is the expected
value of the short-term extreme response found by the ECM. The
percentile in the short-term extreme response distribution correspond-
ing to the long-term extreme response is defined by:

i:i E:; exp( - 2”:3 EW)) } (26)

wis the short-term extreme response CDF defined in Eq. (4).

Peorr = R\W(rl'r) = exp 75

where F~
R|

2.3.5. Finding the design point by the ECM and the IFORM

The design point on the environmental contour can be found by
manual iterations and engineering judgment, but it can also be found by
numerical optimization [8]. The ECM problem is similar to the IFORM
problem, but the number of random variables included is reduced by one
in the ECM since the variability of the short-term response itself is
excluded. For a system dominated by an environmental load described
by two random variables, the environmental contour will be a plane
circle in the standard normal space, but the random variables in the
IFORM problem will define a sphere in this space. Since the design point
solution of both methods needs to have the target distance to the origin,
f, the IFORM solution will always fall within the environmental contour
when plotted in the two-dimensional space, as illustrated in Fig. 1.
Transformation between the real and standard normal space can be
performed by different procedures such as the Rosenblatt trans-
formation or by a simple linear transformation [8,37].

The difference in the solution algorithm between the IFORM and the
ECM is that with the IFORM, the short-term extreme value r(z) is found
directly by transformation of the u-vector, but in the ECM, 7(u) is treated
as a deterministic value given the environmental variables defined by
the u-vector and is calculated as the short-term expected extreme value
defined in Eq. (5).

The iteration algorithm to solve the IFORM problem shown in Eq.
(15) and Eq. (19), as proposed by Li and Foschi [17] reads:

== Env. contour
& design IFORM
{ design ECM

Fig. 1. Illustration of the difference between ECM and IFORM and the effect of the added dimension due to the inclusion of the short-term extreme response un-

certainty shown in the standard normal space.
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Vi (@)

ukll :ﬂ
‘Wml(u*)

(27)

where n is the number of environmental variables and k indicates the
iteration. Since the short-term extreme value uncertainty is not included
as a variable in the ECM, the expression above reduces to:

Vr,(u
O (AC) o8
|7 ()|

This simple iteration scheme may fail to converge for some problems,
so in the present study, the iteration algorithm defined by Giske et al.
[35] was used. This is, in principle, the same algorithm as the one
defined by Li and Foschi [17], but a backtracking approach is introduced
to avoid diverging iterations. The convergence criterion was defined by
the following:

k|

o < Tolerance (29)
u

A tolerance = 10° was used in all IFORM and ECM solutions pre-
sented in this paper.

3. Buffeting analysis of the Hardanger Bridge
3.1. Probabilistic turbulence model

Fenerci and @iseth [38] established a site-specific probabilistic
model for the Hardanger Bridge (see Fig. 2) wind field representative of
the bridge girder elevation based on full-scale measurement data. The
model described 6 turbulence parameters as correlated lognormal sto-
chastic variables, conditional on the mean wind velocity and the two
dominating wind directions, East and West. The wind directions are
channeled by the surrounding terrain, especially for the strong winds
[39], so to assume the winds from East and West to be perpendicular to
the bridge is a reasonable approximation.

The turbulence spectral model used to define the probabilistic tur-
bulence parameters was a Kaimal-type spectra and a normalized cross-
spectra as described in [40,41]:

Sund ____Auik, P
one (L4 134,,£)° 77 U
(30)
— exp(_k. DX
Cu.w - exp( Ku‘w 7 )

where fis the frequency, z is the height above the ground, U is the mean
wind velocity, 6, are the standard deviations of the along wind- (u) and
the vertical (w) turbulence, Ay, are the nondimensional spectral pa-
rameters, K, are the decay coefficients and Ax is the separation dis-
tance along the bridge span. For a quantitative description of the model,
the readers are referred to [38].

The mean wind velocity is described using Weibull distributions
conditional on the main wind directions, east and west, established in
[8,39]. The Weibull PDF model is described in Eq. (31), and the fitted
parameters are shown in Table 1.

Table 1
Fitted Weibull distribution parameters [8].

Weibull distribution

A k
East 5.1941 1.7946
West 1.4063 0.8616
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f(u) :% (%)(k I)exp{ - G)k}  uz0 (31)

where k is the shape parameter and 1 is the scale parameter.

Based on this model, the vector describing the environmental vari-
ables in the long-term analyses will contain one or more of the variables
w = {U,6y,06w,Ay,Aw, Ky, K }.

3.2. Buffeting analysis

The buffeting analyses are performed in the frequency domain using
multimode theory [42-46]. The structural properties are described by a
detailed 3D finite element (FE) model in Abaqus [47] shown in Fig. 3,
and a structural damping ratio of £ = 0.5% was assigned to all vibration
modes. The shape and frequency of the most important modes are shown
in Table 2. All contributing modes below a cutoff frequency of 1 Hz were
included in the analyses. This cutoff frequency is expected to be high
enough to describe the stresses well. However, for the acceleration es-
timates, some contributions from higher frequencies may be excluded by
this cutoff frequency. Although this exclusion will result in an under-
estimation of the acceleration predictions, this choice is made to be
consistent with the filtering of the full-scale measurements for com-
parison reasons.

The girder is modelled with linear Timoshenko beam elements in the
FE model. Stiffened steel box girders can be prone to stiffness reductions
due to shear-lag effects in the areas of large shear forces, which will not
be properly represented with the beam element model used. It is possible
to account for this stiffness reduction by modelling the girder with shell
elements or by adjusting the beam element formulation [48,49]. For the
global buffeting response behavior considered in this paper, the shear
forces are modest, and the bending moments are smooth. Therefore, the
shear lag effects on the global stiffnesses is expected to be small in the
considered application.

The steady-state static coefficients and the aerodynamic derivatives
(ADs) for the bridge girder are based on wind tunnel experimental data
as described in [50]. The static coefficients are presented in Table 3, and
the aerodynamic admittance was neglected. Details on the fitted AD
models can be found in [8].

Only the bridge girder and the main cable were subjected to wind
loading in the calculations. The static coefficients for the main cables are
based on recommendations in Eurocode 1-4 [51] for a painted circular
cable and a Reynolds number of approximately 1.5e6, giving a drag
coefficient of 1.0. The drag coefficient of the downstream main cable
was reduced to 0.7 to account for possible shielding effects. The motion-
induced forces on the main cables are described using quasi-steady
theory [52].

3.3. Design stresses from stochastic section forces

Most modern suspension bridges today are constructed with a closed
box steel girder. These cross-sections are composed of stiffened thin steel
plates that can buckle when compressive stresses approach the capacity
in the ultimate limit state. Eurocode 3 [53] proposes methods to account
for this effect, where parts of the local steel plates under critical pressure
are assumed to buckle and be ineffective. These plate parts are removed
when the efficient cross-sectional properties are calculated. In addition
to local plate buckling, the Eurocode describes methods to account for
global buckling of stiffened plate fields. This global buckling is
accounted for by reducing the effective thickness of the plates in the
pressure zone when the efficient cross-sectional properties are calcu-
lated [54]. The Eurocode also states that the effect of plate buckling on
the cross-sectional stiffness in an elastic global analysis can be neglected
if the effective part of a plate is larger than half the total plate area. This
applies for the Hardanger Bridge girder, and the cross-sectional stiffness
is based on the full elastic cross section in the buffeting analyses.
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Fig. 2. The Hardanger Bridge seen from the northeast (picture by the authors).

Table 2

Frequency and shape of the most important natural modes of the Hardanger Bridge.
Lateral Vertical Torsional
Mode Freq. [Hz] Shape Mode Freq. [Hz] Shape Mode Freq. [Hz] Shape
1 0.050 Sym. 3 0.110 Asym. 15 0.359 Sym.
2 0.100 Asym. 4 0.141 Sym. 26 0.523 Asym.,
5 0.173 Sym. 6 0.197 Sym. 49 0.783 Sym.
13 0.302 Asym. 7 0.211 Asym. 58 1.006 Asym.
21 0.443 Sym. 12 0.272 Sym.
34 0.655 Asym. 14 0.329 Asym.

Table 3 where A s the effective area for pure compressive axial force (N,), Weg

Geometry and steady-state static coefficients used in the buffeting analyses (0-
degree angle of attack).

Bridge Width Depth Cp Cp (% Cur Cul’

member [m] [m]

Girder 18.3 3.33 1.050 —0.363 2.220 0.017 0.786

Main 0.6 0.6 1.0/ 0 0 1] 0
cables 0.7

Fig. 3. FEM model of the Hardanger Bridge.

The Eurocode based methodology for the stress calculations are
simplified, but suitable for practical applications.

The elastic design stresses for a steel cross-section considering plate
buckling can be expressed in a simplified manner according to Eurocode
3 [53] as follows, provided that elastic flexural buckling of the beam is
not present:

NI: Mv + Nxez
A W

M, + Nye,

W, (32)

Opg =
v

\Z

y is the effective section modulus for pure weak-axis bending (M) and
Wef - is the effective section modulus for pure strong-axis bending (M)
The eccentricities ey and e, describe the shift of the neutral axes under
pure compression of the cross-section. To estimate the stresses from a
buffeting analysis, the contribution from each section force response
process can be added according to Eq. (32). In a time-domain analysis,
the stress process can be calculated directly based on the section force
combination in each time step. In a frequency-domain analysis, the
extreme response statistics can be performed directly on the stress
process by utilizing the information available from the section force
response cross-spectral density matrix.

Each section force process will contribute to the stresses at a
considered point. To obtain the total stresses, the variance of a sum of
correlated Gaussian processes is needed. From Eq. (32) we get:

Mgy =Mz Mgy F Mgy + 200 g+ 2z, + 2y
2 b 2
Mi gy =@ MiN N, + 0 Mo, -+ Mg, +2abmy v, +2acm; yu, +2bemi o,

(33)
where
| e, ey B
210 = (G e ) = a0
1
72(1) = g My(1) = M (1) (34)
eff .y
1
Zi(1) = M, (1) = cM,(f
() = M) = M0

From the frequency-domain buffeting analysis, the full response
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spectral density matrix is established as:
Sy (@) Sy, (@) Sy (@)

SMJ,N,(“J) SMyM,.(ﬂ)) SM,MZ(CU) (35)
Sun, (@) Su, (@) Sum, (@)

S.(w) =

Then, the i™ moment of the response cross spectral density can be
calcularted as:

miy = f ﬁ)iS;(i(ﬂ))dﬂ) (36)
0

where i = 0 defines the covariance of the response, and i = 2 defines
response rate. In this way, the Oth and 2nd moments of the stress
response spectrum needed to define Eq. (1) can be estimated.

The Hardanger Bridge girder cross-section is shown in Fig. 4. The top
plate, including the top parts of the inclined webs, has a plate thickness
of 12 mm, whereas the bottom plate and the bottom parts of the webs are
8 mm thick. All stiffeners are made from 6-mm-thick steel plates welded
to the skin plates. The effective cross-sectional properties of the girder
under different pure section force configurations are shown in Table 4,
where a negative sign indicates compression, and the axis system is
indicated in Fig. 5. The effective plate thickness reduction due to
buckling of plate fields is calculated based on column-like behavior
according to Eurocode 3 [53].

Three stress points, which are indicated in Fig. 4, are investigated in
the following sections. The effective cross-sectional properties critical
for all three points are shown in Table 4, and the effective cross-sections
are shown in Fig. 5.

4. Long-term extreme stresses in the Hardanger Bridge girder
4.1. Quarter-span detailed investigations

Stress point 2 in the quarter span of the bridge girder was chosen for
detailed investigations of the long-term extreme stresses. Fig. 6 shows
that the quarter span is critical since all section forces considered are
relatively large. Stress point 2 is chosen because it is affected by all three
section force processes considered, although the strong-axis moment
dominates the total stresses.

4.1.1. Sectorial extreme stress investigations

The extreme stresses given the two defined wind directions, East and
West, are calculated using the five methods shown in Table 5. The table
outlines the theoretical basis and limitations of all methods in brief, and
further details are provided in Section 2.

In Figs. 7 and 8, the 100-year return period long-term extreme
response is investigated by considering two environmental variables at a
time, for easterly and westerly winds, respectively. Here, the mean wind
velocity together with one turbulence parameter at a time are described
as stochastic variables. The turbulence parameters that are treated
deterministically are chosen according to the point on the contour with
the case of maximum mean wind velocity, as shown in Table 6. For
illustration purposes, the turbulence parameters used in the design
calculations of the bridge are also shown in the table. The Design Basis
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Fig. 4. The Hardanger Bridge girder cross-section.
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mean wind velocity is significantly stronger than the full-scale mea-
surements at the bridge midspan. Lystad et al. [39] concluded that the
measuring mast used to establish the design basis for the Hardanger
Bridge would likely overpredict the wind speed at the bridge midspan
due to terrain wind speed-up effects at the mast position.

The 100-year return period environmental contour conditional on
wind direction is shown together with the design point found by the
IFORM and the ECM in Figs. 7 and 8. The design basis turbulence pa-
rameters are also indicated in the figures. In the background of the plots,
the normalized contribution to the integral in Eq. (8) for the 100-year
return period response is shown. The IFORM design point can be seen
often to be located close to the maximum contribution to the FLM. Iso-
response lines for the expected value of the short-term extreme stresses
at stress point 2, as defined by Eq. (5), are shown in the figures as solid
gray lines. The inclinations of these lines are indications of the stress
sensitivity to the turbulence parameters.

The design stresses calculated by all methods are shown for different
combinations of stochastically described turbulence parameters in Fig. 9
and Tables 7 and 8 for easterly and westerly winds, respectively. The
FLM calculations become very computationally demanding when the
number of dimensions becomes large, so these calculations are per-
formed only for up to three-dimensional combinations. The expected
value of the short-term extreme response from the ECM along with the
correction factor, Cop, and percentiles needed to correct the short-term
ECM solution, peom, corresponding to the different long-term extreme
response estimates are shown in Figs. 10 and 11 and Tables 7 and 8.

The stresses at stress point 2 are greatly affected by the along-wind
turbulence standard deviation o, so by describing this parameter and
the mean wind velocity as stochastic variables, the long-term extreme
stresses at stress point 2 can be estimated quite well. By also including
the vertical turbulence standard deviation, the accuracy of the predicted
long-term extreme response will improve even further.

Relatively small differences between the long-term extreme value
prediction methods can be found in Fig. 9 and Tables 7 and 8, although
the methods based on the approximate formulation in Eq. (10) are
slightly unconservative, as expected. However, larger deviations can be
seen between the methods for the westerly winds, especially for com-
binations including the along-wind turbulence standard deviation.

Kleiven and Haver [12] concluded that the relative effect of short-
term extreme response uncertainty was reduced when the number of
influential environmental parameters was increased. For the easterly
winds, a similar trend is seen for the Hardanger Bridge buffeting
response as well. When influential environmental parameters such as
the along-wind turbulence standard deviation are described as sto-
chastic variables, the difference between the expected short-term
extreme response predicted by the ECM and the long-term extreme re-
sponses is reduced, as reflected by the reduced correction factors and
percentiles in Figs. 10 and 11 and Tables 7 and 8. This is also the case for
westerly winds when using long-term methods based on the approxi-
mate formulation in Eq. (10). However, this effect is not clear for
westerly winds when using long-term methods based on exact formu-
lations. The westerly wind Weibull distribution used in the in-
vestigations herein, established in [8], has a low shape parameter, k,
indicating a long-tailed distribution. The contributions to the FLM
shown in the background of Fig. 8 are farther out in the tail of the joint
PDF than for the easterly winds. In this case, the IFORM design point is
farther away from the area contributing the most to the FLM extreme
response. These observations indicate that the accuracy of the approx-
imate methods is sensitive to the tail shape of the environmental
parameter joint PDF.

The long-term stresses in all three stress points are calculated using
the [IFORM Eq. (15) and are shown in Fig. 12. Large effects on the long-
term extreme stresses can be observed by describing different turbulence
parameters as stochastic variables. Stress point 1 does not receive sig-
nificant contributions from weak-axis bending, and as a result, only the
along-wind turbulence parameters significantly affect the long-term
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Table 4
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Effective cross-sectional properties of the Hardanger Bridge under pure section force configurations (NA-i refers to the neutral axis of the full cross-section, and NA_¢i

refers to the neutral axis of the effective cross-section).

A [m?] A [m?] I, [m*] Iy or [m*] I, [m*] I s [m?] NA-y [m] NA-z [m] NAgry [m] NAgrz [m] N My M,
0.565 0.372 0.969 0.629 15.193 9.016 0.000 0.000 —0.035 0.105 -1 0 0
0.565 0.489 0.969 0.722 15.193 13.413 0.000 0.000 0.005 0.249 0 -1 0
0.565 0.489 0.969 0.854 15.193 12,131 0.000 0.000 -0.821 0.011 0 0 -1
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Fig. 5. Effective cross-sections for (a) pure axial compression (N = —1), (b) pure weak-axis bending with compression in the bottom plate (M, = —1), and (c) pure
strong-axis bending with compression on the right-hand side of the figure (M, = —1). Effective thicknesses are indicated by the color bar, and the stiffener centroids

are shown as red dots in compression and blue dots in tension. (For interpretation of the references to color in this figure legend, the reader is refeired to the web

version of this article.)
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Table 5
Theoretical basis overview of considered extreme value methods.
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Full integration Reliability method

Extreme response uncertainty

Exact formulation Approx. formulation

FLM Eq. (8) Yes No Yes Yes No
FLM Eq. (10) Yes No Yes No Yes
I[FORM Eaq. (15) No Yes Yes No Yes
IFORM Egq. (19) No Yes Yes Yes No
ECM No Yes No No No
Table 6 where p; is the probability of the wind coming from sector 6;. In general,

Deterministic turbulence parameters at girder height corresponding to the event
of maximum mean wind velocity (contour tip and design basis values) [55].

Wind U [m/ oy [m/s] o6 [m/ Ay Ay Ky K
direction s] s]

East 23.76 2.84 1.10 25.8 2.01 6.92 5.98
West 33.79 3.66 1.36 47.1 3.32 8.21 8.65
Design Basis 36.6 0.136U 0.068U 40.8 3.3 8.8 6.3

stresses. Stress point 3, however, is dominated by weak axis-bending,
and the vertical turbulence parameters are more important to the esti-
mated long-term stresses.

4.1.2. Omnidirectional extreme stresses by the FLM

The sectorial extreme response has been investigated thus far with a
focus on methodology to estimate extreme stresses. However, the
sectorial extreme response does not correspond directly to the omnidi-
rectional extreme response.

The omnidirectional full long-term extreme response CDF can be
calculated as a weighted sum of the CDFs conditional on wind direction
[56]:

Fg(r) = ZP.‘FR\B('“W,‘) (37)

the response CDF conditional on the wind direction needs to include the
possible effects of skew winds. As mentioned in Section 3.1 and dis-
cussed in [8,39], the terrain surrounding the Hardanger Bridge channels
the strong winds, so the two defined wind directions, East and West, can
be considered to be perpendicular to the bridge.

In Table 9, the omnidirectional 100-year return period extreme
stresses at stress point 2 are presented.

Estimating the omnidirectional extreme stresses using the environ-
mental contour method and the IFORM, however, is not straightforward.
Winterstein [56] suggested a simplified way to estimate a lower bound
of the omnidirectional extreme response from sectorial subpopulations
using the [FORM. Another method suggested by [56] was to fit a func-
tion to the tail of the long-term extreme response CDF based on IFORM
extreme response estimates and use Eq. (37) to calculate the omnidi-
rectional extreme response. Further, [57] and [58] estimated environ-
mental contours by including the wind direction as a circular variable.

All these methods introduce some limitations and uncertainties, and
the appropriate choice will be problem-specific. Such methods have not
been investigated in the work presented here but to obtain omnidirec-
tional design stresses, the directionality of the wind must be considered.

As seen in Table 9, with one wind direction dominating the response,
the sectorial extreme response will be a conservative choice for the
omnidirectional extreme response and could be a reasonable design
value in some cases.
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Fig. 7. Long-term extreme girder stresses at the quarter span in stress point 2 from easterly winds. The normalized contribution to the 100-year return period
extreme value using the FLM is shown in the background, and the IFORM and the ECM design point are indicated.
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Fig. 8. Long-term extreme girder stresses at the quarter span in stress point 2 from westerly winds. The normalized contribution to the 100-year return period
extreme value using the FLM is shown in the background, and the IFORM and the ECM design point are indicated.
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Fig. 9. Extreme girder stresses in stress point 2 at the quarter span, considering different combinations of turbulence parameters described as random variables.

4.2. Along-span investigations

In the previous sections, detailed investigations of the girder quarter
span were presented. However, the bridge behavior can change along
the span. In the following, the design point for the girder stresses con-
ditional on the two wind directions is calculated along the span using the
IFORM Eq. (15) and the ECM.

In Fig. 13, the stresses in the three stress points under consideration
are plotted along the bridge span for easterly and westerly winds. In
these calculations, all turbulence parameters are treated as stochastic
variables. The 100-year return period long-term extreme stresses
calculated by the IFORM are shown together with the expected short-
term extreme response calculated by the ECM. The ECM correction
factor and the short-term extreme response distribution percentile cor-
responding to the IFORM long-term stresses are shown in Fig. 13. Some
variations in the correction factors and percentiles are seen along the

10

span and between the different stress points, although the variations are
relatively small.

In Figs. 14 and 15, the along-span variations in the turbulence pa-
rameters corresponding to the ECM design point are shown for the
easterly and westerly winds, respectively. In general, small variations in
the critical turbulence parameter combinations can be seen, below +
6%. However, for the most influential turbulence parameters, even less
variation is seen. Assuming that stress point 1 is affected only by the
along-wind turbulence parameters such as 6, A, and K, the variation in
the critical turbulence parameter combinations is typically under + 1%.
This case is also pertinent when considering stress point 3, which is
dominated by weak axis bending and thus sensitive to vertical turbu-
lence, with a slight exception for the A,, parameter.

Based on these observations, a reasonable estimate for the long-term
extreme response at all positions along the Hardanger Bridge girder
could be achieved by the following simplified approach:
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Fig. 10. Long-term correction factors (long-term/ECM) for the girder stresses in stress point 2 at quarter span, considering different combinations of turbulence
parameters described as random variables.
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Fig. 11. ECM short-term extreme value CDF percentile corresponding to the long-term extreme girder stresses in stress point 2 at quartel span, considering different
combinations of turbulence parameters described as random variables.

Table 7
Extreme stresses, correction factors and short-term percentiles for long-term correction of the ECM solution at quarter span in stress point 2 for easterly winds. Stresses
from different long-term methods and combinations of turbulence parameters described as random variables are presented.

Included variables, w {u} {U, 6, {U,6,} {U A} {U A} {UK,) {UK,) {Uos,s,} {Uo6,K,} {Uo&s, K, {All}
Extreme response [Mpa] FLM Eq. (8) 229 28.5 24.0 23.2 22.8 23.8 23.3 31.0 29.4 24.8 N/A
FLM Eq. (10) 22.8 27.8 23.9 23.2 22.8 23.8 23.2 30.0 28.6 24.6 N/A
IFORM Eq. (15) 23.0 27.7 23.6 23.4 23.0 23.8 23.2 29.8 28.5 24.1 30.6
IFORM Egq. (19) 23.0 29.5 23.8 23.9 23.5 24.5 23.7 30.9 30.4 24.2 31.8
ECM 19.4 25.6 21.1 19.7 19.4 20.4 19.8 27.2 25.8 21.4 28.0
Ceorr FLM Eq. (8) 1.18 1.11 1.14 1.18 1.17 1.17 1.18 1.11 1.11 1.13 N/A
Deorr [%6] FLM Eq. (8) 92 84 89 92 92 91 93 84 84 89 N/A
Table 8

Extreme stresses, correction factors and short-term percentiles for long-term correction of the ECM solution at quarter span in stress point 2 for westerly winds. Stresses
from different long-term methods and combinations of turbulence parameters described as random variables are presented.

Included variables, w {u} {U, o} {U, 6} {U, Ay} {U, Ay} {U, Ky} 1U, Ky} {U, 6, 6} iU, 6, K} {U, 6, K} {All}
Extreme response [Mpa] FLM Egq. (8) 35.6 55.6 38.9 35.5 35.5 36.4 35.8 60.3 56.6 39.4 N/A
FLM Eq. (10) 348 46.0 36.7 35.1 34.7 35.6 35.1 48.7 46.5 37.0 N/A
IFORM Egq. (15) 348 456 36.0 35.2 34.8 35.6 35.0 48.2 46.1 36.2 47.9
IFORM Egq. (19) 348 504 37.1 36.7 36.4 37.3 36.5 51.8 51.0 37.2 51.3
ECM 32,3 446 34.2 32.2 32.3 33.0 32.4 46.1 44.0 33.7 45.8
Ceorr FLM Eq. (8) 1.11 1.25 1.14 1.10 1.10 1.10 1.11 1.28 1.25 1.14 N/A
Peorr [9] FLM Eq. (8) 83 96 88 82 82 82 83 97 96 89 N/A

11



T.M. Lystad et al.

—&— Stress point 1
—A— Stress point 2

Engineering Structures 236 (2021) 112126

—%— Stress point 3

East West
70
40
60 |
o ©
%—30_ ESD
? 2 40 1
< 4
in 20 4 & 30 -
20
101 M W
— vt
= T ) T T T T T T S N ey
N A A AR e o S R A R AR i ks
XYY NN AN N N
S XY NS

Fig. 12. Long-term extreme girder stresses at quarter spa

Table 9

n in all considered stress points, identified by the IFORM EQ.

Omnidirectional 100-year return period extreme stresses at quarter span at stress point 2 for westerly winds. Combinations of stochastically described turbulence

parameters are pl'esented‘

Included variables, w {uU} {U, 6} {U, 6,,} {U, A} {U, A} {U, K} {U, K.} {U, 6y 64} {U, 6. Ky} {U, 6w, K\}
FLM East 229 28.4 24.0 23.2 22.8 23.8 23.3 31.0 29.4 24.8
FLM West 35.6 55.8 38.9 35.5 35.4 36.4 35.8 60.3 56.6 39.4
FLM Omni 33.5 49.4 36.1 33.6 33.4 34.2 33.7 53.4 50.1 36.6
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Fig. 13. Along-span stresses and correction factors and short-term extreme CDF

1. Calculate the critical environmental parameter combinations in a
representative section along the girder using the ECM.

2. Calculate the correction factor or the short-term extreme value dis-
tribution percentile corresponding to the long-term extreme value in
the section considered.

percentiles from the ECM and the IFORM. Left; easterly winds, right; westerly winds.

3. Calculate the short-term response in all sections along the girder
based on the critical turbulence parameter combination identified by
the ECM in 1.

4. Correct the short-term response along the span with the correction
identified in 2.
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Fig. 14. Percentage of along-span mean critical turbulence variable identified by the ECM design point for easterly winds. diff-w; = 100% * w;(x)/mean(ws).
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Fig. 15. Percentage of along-span mean critical turbulence variable identified by the ECM design point for westerly winds. diff-w; = 100% * w;(x)/mean(w;).

5. Comparison with full-scale acceleration peak response
measurements

Fenerci et al. [59] found that the buffeting acceleration response
measured at full scale at the Hardanger Bridge was very scattered when
plotted as function of the mean wind velocity. They concluded that most
of the scattered data could be explained by the uncertainty in the tur-
bulence field. In Fig. 16, the midspan peak acceleration measurements
from the Hardanger Bridge are shown for lateral, vertical and torsional
motions. The 10-minute maximum peaks are plotted, and the high-
frequency content above 1 Hz is removed by low-pass filtering of the
measurements. The measurement data are colored by the normalized
scatter density multiplied by the mean wind velocity squared. The
measurements are split into easterly and westerly wind directions, but
the measurements for the opposite direction are shown as gray scatter in

the background of the plot. The data from the full-scale measurement
program at the Hardanger Bridge site is available with open access
[60,61] and the measurement system is described in detail in [59].

To investigate the performance of the long-term extreme response
analyses, the long-term acceleration response at the midspan of the
Hardanger Bridge girder is calculated and compared with the full-scale
measurements. The acceleration response has a different behavior than
the design stresses which has been the focus in the previous parts of this
paper, but the acceleration response comparison can provide an indi-
cation of the performance of the overall methodology.

The 100-year return period extreme accelerations estimated by the
classical IFORM and the ECM, conditional on the mean wind velocity,
are also shown in Fig. 16. A simple modification to the iteration algo-
rithm shown in Eq. (27) is needed to solve the IFORM problem when the
mean wind velocity is given. The modification reads:

13
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P \/ﬂ ‘VF (")

e (38)
V()|
where u; is the standard normal variable corresponding to the given
mean wind velocity, n is the number of environmental variables and k
indicates the iteration number. Since the short-term extreme value un-
certainty is not included as a variable in the ECM, the expression above
reduces to:

Va1 (u*)

‘VFH l(uk)

(39)

As Fig. 16 shows, the extreme accelerations predicted by the [FORM
and the ECM correspond quite well with the upper bound of the full-
scale measurement data. The extreme responses are calculated based
on a 100-year return period, and the full-scale data are based on
approximately 4 years of measurements, so theoretically, the measure-
ments should all fall within the extreme response predicted with the
IFORM. For illustration purposes, the expected value of the short-term
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extreme response calculated using the design basis turbulence parame-
ters is also indicated in Fig. 16.

In general, uncertainties regarding static force coefficients for the
different bridge members and limitations in the turbulence model can
affect the comparison. For the lateral acceleration response, the calcu-
lations correspond quite well with the measurements, although some
events fall well outside the extreme predictions. Some of the most pro-
found uncertainties for the lateral response are the assumption of sta-
tionarity and the estimated static drag coefficients for the girder and the
other bridge members.

When considering the vertical response, a kink in the predicted
extreme response line can be observed at approximately 11 m/s. The
vertical response is strongly influenced by the aerodynamic derivatives.
The value of 11 n/s corresponds to the reduced velocity where the first
vertical frequency falls within the experimental test range of the AD, as
shown in [8]. Since the fitted model for the AD is not smooth in the
transition between the experimental data range and the extrapolated
area, this is reflected in the predicted extreme acceleration response.

When considering the torsional acceleration, the predicted extreme
responses seem to be farther out in the tail of the measured scatter than
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Fig. 16. Lateral- (a2), vertical- (a3) and torsional (arl) peak acceleration responses of the Hardanger Bridge midspan, established by full-scale measurements
(scattered data points colored by scatter density multiplied by the mean wind velocity squared, opposite wind direction indicated as gray data), the ECM and the
IFORM conditional on mean wind velocity, the design basis turbulence parameters and a 2nd-order polynomial fit to the measured data.
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the other acceleration components. The acceleration response is domi-
nated by higher frequencies than the lateral and vertical responses, so
neglecting aerodynamic admittance may significantly affect the
torsional response. The first torsional mode is outside the reduced ve-
locity experimental test range for all mean wind velocities below — 28
m/s, so almost all the predictions are based on aerodynamic damping
and stiffness in the extrapolated range.

In Fig. 17, the short-term peak factor is shown for the measured data,
plotted in the same way as in Fig. 16. The predicted peak factors from
the design basis analyses are also indicated, corresponding very well
with the polynomial fit to the full-scale data. However, the full-scale
measured peak factors are very scattered, which is an illustration of
the uncertainty in the short-term extreme peak response.

0. Conclusions

The long-term extreme response of the Hardanger Bridge considering
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uncertain turbulence parameters has been investigated. Considerable
effects on the predicted extreme values relevant for design purposes
were found, indicating a need to revisit the design methodology used for
long-span bridges subjected to turbulent wind loading. In brief, the
following conclusions are drawn:

- Extreme design stresses were predicted directly from the frequency-
domain buffeting analyses.

- The turbulence uncertainty has large effects on the predicted
extreme design stresses of the Hardanger Bridge. Treating the tur-
bulence parameters as deterministic variables may introduce sig-
nificant errors to the estimated extrene stresses.

- Uncertainty in the short-term extreme response should be considered
when predicting extreme stresses for design purposes.

- Reliability-based methods such as the inverse first-order reliability
method (IFORM) and the environmental contour method (ECM)
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Fig. 17. Lateral- (a2), vertical- (a3) and torsional (arl) short-term peak factors for the acceleration responses of the Hardanger Bridge midspan. The full-scale
measurements are shown (scattered data points colored by scatter density multiplied by the mean wind velocity squared, opposite wind direction indicated as
gray data) together with the peak factors estimated by the buffeting analyses using the design basis turbulence parameters. In addition, a 2nd-order polynomial fit to

the measured data is shown.
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become less effective than full long-term methods when many sec-
tions along a long-span bridge need to be assessed.

- With one wind direction dominating the response, the sectorial

extreme response could be a reasonable conservative choice for the
omnidirectional extreme response in some cases.

Relatively small variations in the critical turbulence parameter
combinations predicted by the ECM were found along the span of the
Hardanger Bridge.

The long-term methods IFORM and ECM were able to predict the
variability in the scattered extreme peak acceleration response
measured at full scale at the Hardanger Bridge, displaying significant
improvement compared with the methodology used for the design of
the bridge.
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