
AMIDST: a Java Toolbox for Scalable Probabilistic Machine

Learning

Andrés R. Masegosaa,∗, Ana M. Mart́ınezb,∗, Daŕıo Ramos-Lópeza,∗, Rafael Cabañasa,∗,
Antonio Salmeróna, Helge Langsethc, Thomas D. Nielsenb, Anders L. Madsend,b

aUniversity of Almeŕıa, ES-04120 Almeŕıa, Spain
bAalborg University, DK-9220 Aalborg, Denmark

cNorwegian University of Science and Technology, NO-7491 Trondheim, Norway
dHUGIN EXPERT A/S, DK-9000 Aalborg, Denmark

Abstract

The AMIDST Toolbox is an open source Java software for scalable probabilistic machine
learning with a special focus on (massive) streaming data. The toolbox supports a flex-
ible modelling language based on probabilistic graphical models with latent variables.
AMIDST provides parallel and distributed implementations of scalable algorithms for
doing probabilistic inference and Bayesian parameter learning in the specified models.
These algorithms are based on a flexible variational message passing scheme, which sup-
ports discrete and continuous variables from a wide range of probability distributions.

Keywords: Probabilistic Graphical Models, Scalable algorithms, Variational
methods, Latent variables

1. Introduction1

AMIDST1 is a toolbox for the analysis of large-scale data sets using probabilistic2

graphical models (PGMs). These are the so-called openbox models in the sense that3

PGMs can be easily interpreted by the users. PGMs consist of two parts: a qualitative4

component in the form of a graph encoding conditional independencies, and a quantita-5

tive component consisting of a collection of local probability distributions adhering to6

the independence properties specified in the graph. Collectively, the two components7

provide a compact representation of the joint probability distribution over the set of8

variables in the domain being modelled.9
10

AMIDST implements parallel and distributed algorithms for Bayesian inference and11

learning in PGMs with latent (or unobserved) variables. The key point of this software12

is the use of variational methods [6] for making approximate inference. This makes13

∗These four authors are considered as first authors and contributed equally to this work.
Email addresses: andresmasegosa@ual.es (Andrés R. Masegosa), ana@cs.aau.dk (Ana M.

Mart́ınez), dramoslopez@ual.es (Daŕıo Ramos-López), rcabanas@ual.es (Rafael Cabañas),
antonio.salmeron@ual.es (Antonio Salmerón), helgel@idi.ntnu.no (Helge Langseth),
tdn@cs.aau.dk (Thomas D. Nielsen), anders@hugin.dk (Anders L. Madsen)

1For brevity, we will refer to the AMIDST Toolbox as either AMIDST or the toolbox.

Preprint submitted to Name of journal September 5, 2018

AMIDST suitable for analysing streaming data because our models can efficiently be14

updated when new data is available. Numerous tools for graphical models have been15

published during the last three decades2. However, the vast majority of them do not16

support scalable inference and learning algorithms. To the best of our knowledge,17

there is no existing software for mining data streams based on PGMs (including latent18

variable models); most existing tools focus on stationary data sets [8]. A qualitative and19

quantitative comparison with related tools can be found in the online documentation.20

2. Background21

2.1. Probabilistic graphical models22

AMIDST supports the specification of Bayesian networks (BNs) [9, 2], which are23

widely used PGMs for reasoning under uncertainty. Formally, let X = {X1, . . . , XN}24

denote the set of random variables defining our problem domain. BNs can be repre-25

sented by a directed acyclic graph (DAG). Each node, labelled Xi, is associated with a26

factor or conditional probability p(Xi| pa(Xi)), where pa(Xi) ⊂ X \Xi represents the27

so-called parent variables of Xi, i.e., the variables corresponding to the parent nodes of28

Xi in the graph. A BN defines a joint distribution p(X) in the following form:29

p(X) =
N∏
i=1

p(Xi| pa(Xi)). (1)

For modelling problems where variables have continuous state spaces, the AMIDST30

Toolbox allows the specification of conditional linear Gaussian (CLG) Networks [4, 5].31

Furthermore, latent (i.e., hidden) variables are supported. These variables cannot be32

observed and are included in the model to capture correlation structure. The use of33

latent variables allows the representation of a large range of problems with complex34

probabilistic dependencies.35

2.2. Scalable inference with variational methods36

Inference (a.k.a. belief updating) in PGMs typically corresponds to calculating the37

posterior distribution p(XI = xI |XE = xE), where XE ⊂ X is the set of observed38

variables and XI is the set of variables of interest with XI ⊆X \XE.39
40

Variational inference is a deterministic approximate inference technique, where we41

seek to iteratively optimise a variational approximation to the posterior distribution of42

interest [1]. Let Q be the set of possible approximations; then the variational approxi-43

mation to a posterior distribution p(xI |XE = xE) is defined as44

q∗xE
(xI) = arg min

q∈Q
D(q(xI)||p(xI |XE = xE)),

where D(q||p) is the Kullback-Leibler divergence between q and p. In the AMIDST45

Toolbox, the variational inference scheme employs a so-called mean-field approxima-46

tion, which roughly assumes that the variables of interest are pairwise independent47

2See this link for an updated list http://www.cs.ubc.ca/~murphyk/Software/bnsoft.html.

2

http://www.cs.ubc.ca/~murphyk/Software/bnsoft.html

given the observed evidence; in turn this means that the posterior variational distri-48

bution factorises over the variables involved, i.e., q∗xE
(xI) =

∏
i∈I q

∗
xE

(xi). Optimising49

the variational approximation can be achieved by using either coordinate or gradient50

ascent (or a stochastic approximation thereof), which guarantees convergence towards51

a (local) optimum.52
53

Learning the parameters θ of a BN from a training data set D can be reduced to54

the inference task of computing p(θ|D). With this consideration, the AMIDST Tool-55

box implements a general architecture for supporting the variational message passing56

(VMP) algorithm [11] in PGMs. This algorithm can be easily scaled-up as messages57

are independent. In particular, two versions are provided; a parallel version exploiting58

multi-core architectures, powered by Java 8 Streams [7]; and a novel distributed version,59

named d-VMP [6], for large-scale data processing on computing clusters running either60

Apache Flink or Apache Spark.61

3. Software framework62

3.1. Functionalities63

The key functionalities of the toolbox are summarised as follows:64

• Openbox models: with the specification of PGMs, AMIDST’s approach to65

machine learning is based on the use of openbox models that can be inspected66

and which can incorporate prior information or knowledge about the domain, in67

contrast to other approaches which cannot be interpreted by the users.68

• Efficient belief updating: this toolbox implements, among others, approximate69

Bayesian inference algorithms based on variational methods (see Section 2.2).70

This allows for an efficient updating of the models which is suitable in cases71

where the whole data cannot be stored in memory.72

• Multi-core and distributed learning: AMIDST provides parallel and dis-73

tributed implementations of variational algorithms [11] that can be run on multi-74

core CPUs, using Java 8’s built-in functionalities, or in massive data sets by in-75

terfacing with Apache Flink and Apache Spark. Further details and experimental76

results about these methods can be found in [6, 7].77

3.2. Architecture78

AMIDST has been designed following a modular structure. This allows future ex-79

tensions to be made independently of the core design, thereby leaving the kernel small80

and robust. Another added value of the modularity is that it enables a more seamless81

interaction with external software. Currently, AMIDST interfaces with MOA, Weka,82

and HUGIN 3. The toolbox is distributed using Maven4. The use of this technology83

simplifies the installation making the interaction with external software transparent.84

3 MOA: http://moa.cms.waikato.ac.nz, Weka: http://www.cs.waikato.ac.nz/ml/weka/, and
HUGIN: http://www.hugin.com.

4https://maven.apache.org

3

http://moa.cms.waikato.ac.nz
http://www.cs.waikato.ac.nz/ml/weka/
http://www.hugin.com
https://maven.apache.org

4. Illustrative examples85

In this section we illustrate the use of AMIDST in multi-core and parallel architec-86

tures5. In particular, we consider the classification model proposed in [3] and a dataset87

used in genetics [10] (which contains about 500,000 instances and which has been split88

into files of 100,000 instances).89
90

The DataStream class in package eu.amidst.core.datastream is an interface for91

dealing with data streams in a single computer. The toolbox is designed to process the92

data sequentially without having to load all observations into main memory simultane-93

ously. The functionality for loading data is provided by class DataStreamLoader. The94

following code provides an example of reading data from a .arff file (Weka file format):95

96
97

1 DataStream data = DataStreamLoader.open(”codrnaNorm 100k 1.arff”);98

99100

When we have a massive data set which does not fit into a single computer, we101

can use a Big Data framework like Apache Flink to deal with data sets stored in102

a distributed computing cluster. For reading these data sets we can use the class103

eu.amidst.flink.data.DataFlink, as shown in the next code fragment:104

105
106

1 //Set−up Flink Session107

2 ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();108

3 // Load the distributed data109

4 DataFlink<DataInstance> data =110

5 DataFlinkLoader.open(env, ”hdfs://codrnaNorm 100k 1.arff”, false);111

112113

AMIDST contains a wide range of predefined models, most of them including latent114

variables (and custom models can also be defined by the user). These models are115

available in the latent-variable-models module. Learning is straightforward as shown in116

the next code fragment, which also illustrates the toolbox’s seamless handling of massive117

data sets during model learning/updating; the code is valid for both DataStream and118

DataFlink objects. Lines 4 to 8 show how the model can be updated in case new data119

sets become available.120

121
122

1 Model model = new LatentClassificationModel(data.getAttributes())123

2 .setClassName(”codrna Y”)124

3125

4 for(int i=1; i<=5; i++) {126

5 if (i > 1) data = DataStreamLoader.open(”codrnaNorm 100k ”+i+”.arff”);127

6 model.updateModel(data);128

7 System.out.println(model.getModel());129

8 }130

131132

5Visit https://github.com/amidst/example-project for downloading an easy to run project
with these examples.

4

https://github.com/amidst/example-project

AMIDST’s webpage (www.amidsttoolbox.com) contains a large class of code ex-133

amples covering all the functionalities of the toolbox.134

Acknowledgments135

This work was performed as part of the AMIDST project. AMIDST has received136

funding from the European Union’s Seventh Framework Programme for research, tech-137

nological development and demonstration under grant agreement no 619209. AM, DRL138

and AS thank the support from CDTIME. DRL thanks also to CEIMAR.139

[1] H. Attias. A variational Bayesian framework for graphical models. Advances in140

neural information processing systems, pages 209—215, 2000.141

[2] F.V. Jensen and T.D. Nielsen. Bayesian Networks and Decision Graphs. Springer142

Publishing Company, Incorporated, second edition, 2007.143

[3] H. Langseth and T.D. Nielsen. Latent classification models. Machine Learning,144

59(3):237–265, 2005.145

[4] S.L. Lauritzen. Propagation of probabilities, means, and variances in mixed146

graphical association models. Journal of the American Statistical Association,147

87(420):1098–1108, 1992.148

[5] S.L. Lauritzen. Graphical Models. Oxford University Press, 1996.149

[6] A.R. Masegosa, A. M. Mart́ınez, H. Langseth, T.D. Nielsen, A. Salmerón,150

D. Ramos-López, and A.L. Madsen. Scaling up Bayesian variational inference151

using distributed computing clusters. International Journal of Approximate Rea-152

soning, 88:435–451, 2017.153

[7] A.R. Masegosa, A.M Mart́ınez, and H. Borchani. Probabilistic graphical models154

on multi-core CPUs using Java 8. IEEE Computational Intelligence Magazine,155

11(2):41–54, 2016.156

[8] K.P. Murphy. Software for graphical models: A review. International Society for157

Bayesian Analysis Bulletin, 14(4):13–15, 2007.158

[9] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible159

Inference. Morgan Kaufmann Publishers, San Mateo, CA., 1988.160

[10] A.V. Uzilov, J.M. Keegan, and D.H. Mathews. Detection of non-coding RNAs161

on the basis of predicted secondary structure formation free energy change. BMC162

bioinformatics, 7(1):173, 2006.163

[11] J.M. Winn and C.M. Bishop. Variational message passing. Journal of Machine164

Learning Research, 6:661–694, 2005.165

5

www.amidsttoolbox.com

Required Metadata166

Current executable software version167

Nr. (executable) Software
metadata description

Please fill in this column

S1 Current software version 0.7.2
S2 Permanent link to executables

of this version
https://github.com/amidst/toolbox/releases/tag/v0.7.2

S3 Legal Software License Apache 2.0
S4 Computing platform/Operat-

ing System
Linux, OS X, Microsoft Windows

S5 Installation requirements &
dependencies

Maven, Java 8

S6 If available, link to user man-
ual - if formally published in-
clude a reference to the publi-
cation in the reference list

http://www.amidsttoolbox.com/documentation/

S7 Support email for questions contact@amidsttoolbox.com

Table 1: Software metadata

Current code version168

Nr. Code metadata descrip-
tion

Please fill in this column

C1 Current code version 0.7.2
C2 Permanent link to code/repos-

itory used of this code version
https://github.com/amidst/toolbox

C3 Legal Code License Apache 2.0
C4 Code versioning system used git
C5 Software code languages, tools,

and services used
Java 8

C6 Compilation requirements, op-
erating environments & depen-
dencies

Maven

C7 If available Link to developer
documentation/manual

http://www.amidsttoolbox.com/documentation/

C8 Support email for questions contact@amidsttoolbox.com

Table 2: Code metadata

6

	Introduction
	Background
	Probabilistic graphical models
	Scalable inference with variational methods

	Software framework
	Functionalities
	Architecture

	Illustrative examples

