
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Mats Engstad

The Intersection of Open Source and
Digital Platforms

Master’s thesis in Computer Science
Supervisor: Eric Monteiro
January 2022

M
as

te
r’s

 th
es

is

Mats Engstad

The Intersection of Open Source and
Digital Platforms

Master’s thesis in Computer Science
Supervisor: Eric Monteiro
January 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract
The use of open source software has increased in recent years, and is continuing to
affect the rest of the software world to a larger degree every year. Open source code
exists in every parts of the software world, from small niche projects to mainstream
applications used by millions. The open source movement’s influence on the tech-
nology of our world is vast whichmakes it an important topic for IT researchers. A lot
of research has been done in the open source space, however research on the com-
bination of open source and digital platforms is lacking. This thesis contributes to
filling in this research gap by conducting a case study of the open source platform
Npm (Node Package Manager) in order to better understand open source software
ecosystems. This is done by qualitatively analysing important episodes in the his-
tory of Npm. Three themes emerge from the empirical data; complex dependencies,
opensource security, andplatformgovernance. Inaworldwheremost successful dig-
ital platforms use a very centralized governance structure, Npm’s decentralized way
of controlling the platform influenced by its open source aspects, brings hope for the
future of platform diversity.

i

Sammendrag
Bruk av åpen kildekode (open source) har økt de siste årene, og fortsetter å påvirke
resten av programvareverdenen. Programvare med åpen kildekode eksisterer i alle
deler av programvareverdenen, fra små nisjeprosjekter til mainstream applikasjoner
brukt avmillioner avmennesker. Bevegelsen innenfor åpen kildekode utøver en stor
innflytelse på den teknologiske verdenen vi har i dag, derfor er dette et viktig tema
for forskere innenfor IT.Mye forskning har allerede vært gjennomført angående åpen
kildekode,men forskningpåkombinasjonenavåpenkildekodeogdigitaleplattformer
ernoemangelfull. Denneoppgavenbidrar til å fylle inndettehullet i akademisk litter-
atur, ved å gjennomføre en casestudie avNpm(NodePackageManager), enplattform
for og av åpen kildekode. Dette gjøres ved en kvalitativ analyse av viktige episoder i
Npms historie. Tre hovedtemaer oppstod fra de empiriske dataene; komplekse
avhengigheter, sikkerhet i åpen kildekode, og styring av plattformer. I en verden hvor
stort sett alle populære digitale plattformer styres av en sentralisert plattformeier, gir
Npmhåp for fremtidigedesentraliserteplattformer styrt gjennomtankesettet til åpen
kildekode.

ii

Contents

1 Introduction 1
1.1 Thesis Structure . 6

2 Literature Study 9
2.1 Open Source Software . 9
2.2 Software Security . 10

2.2.1 Vulnerabilities . 10
2.3 Platform governance . 14

3 Method 19
3.1 Research Approach . 19
3.2 Data Collection . 20
3.3 Data Analysis . 21
3.4 Choosing a Case . 23

4 Case 27
4.1 Case Background . 28
4.2 Episodes . 30

4.2.1 Introducing package-lock.json . 30
4.2.2 ESLint-scope hacked . 32
4.2.3 CVE-Reporting . 34
4.2.4 Npm Public Roadmap . 36
4.2.5 Two-Factor Authentication . 37

5 Discussion 41
5.1 Dependencies . 42
5.2 Security . 45
5.3 PlatformGovernance . 49

6 Conclusion 55
6.1 Limitations . 56
6.2 Further Work . 56

iii

iv

List of Figures

2.1 Sliders showing how decision rights can be divided between the plat-
form owners and app developers. 15

4.1 Weekly downloads of packages on theNpmplatform from2013 to 2018
[1] . 30

5.1 Dependency tree of the color package. 42
5.2 Dependency graph of the waterline package. Package names in white

indicate a direct dependency of the waterline package, while names in
gray indicate a dependency of a dependency. 43

5.3 Decision rights partitioningof strategic platformdecisions on theNpm
platform. 51

v

vi

List of Tables

3.1 Themes derived from the empirical data 23

4.1 Npm timeline . 29

5.1 Themes in the Npm project . 41

vii

Chapter 1

Introduction

The use of open source software in the technology of our world has seen a huge in-
crease over the last years. Today, codewritten by communities of software developers
working voluntarily exists for the world to use free of charge. Technology today cer-
tainly takes advantage of this offer of free and open code, for example in the area of
web development where 97% of surveyed developers from 2018 reported relying on
open source software in some way [2], or for companies using enterprise technology
where 90 % of IT leaders in 2021 across 13 countries use enterprise open source soft-
ware [3]. It is fair to say that open source software is widely used and has become
mainstream in today’s technology society. This was not always the case, open source
software has undergone a transformation from its early stages of unorganized devel-
opment done by a single developer or a small team, towards mainstream and com-
mercially viable software with more predominant planning and design phases and
business strategies [4].

The product of open source development, namely the software, spread to products
and serviceswhere traditionally proprietary softwaredominated. In additionand just
as importantly, the developmentmodel of open source software has also affected the
commercial world of proprietary software development. Open source development
methodologiesmake it easier to reduce conflicts andmanagement overhead, even in
ahighly geographically distributedproject [5]. As software corporations growandbe-
come worldwide organizations, being able to continue development in a distributed
setting is advantageous, and by adopting tools and coordination mechanisms from
theopensourcecommunity thisworkbecomeseasier. Smaller softwaredevelopment
endeavourshavealsobenefited fromtheopensourcemovement, i.ebyadoptingagile
developmentmethodologieswhich focusonflexibility in thedevelopmentprocess. It
is fair to say that both software as a product, and the developmentmodels surround-
ing it today are influenced by the open sourcemovement.

1

2 CHAPTER 1. INTRODUCTION

Organizing commercial marketplaces as digital platforms has been a viable way for
organizations to leverage network effects to gain a competitive advantage. The use of
digital platforms is fairly ingrained in our society, from healthcare to entertainment,
most of us interact regularly with some sort of digital platform. To understand the
popularity of platforms in our day to day lives, one can look to platform leaders in the
mobile app industry such as the Apple App Store, or the entertainment industry such
as YouTube. Organizing products and services as digital platforms can be an impor-
tant tool to scale the business to such a level seen in technology giants such as Apple
or Google.

Digital platformsalsoexist in theworldof opensource software, popular examples in-
clude the operating systemLinux and the JavaScript packagemanagement toolNpm.
Some open source platforms grow large enough to create software ecosystems sur-
rounding them, which generate interesting opportunities for researchers to fill in a
gap in the literature on the combination of open source software and digital plat-
form ecosystems [6], [7]. A lot of research has been done on both open source soft-
ware and digital platforms individually, but rarely on the combination of the two.
Research on open source often focuses on developers’ motivations to participate in
open source projects, or corporations’ incentives and business models when adopt-
ing open source initiatives [8]. Central parts of the literature on digital platforms in-
clude a platform’s pricing structure and its actors. The nature of open source being
free software makes the existing pricing models fit poorly or not at all with what can
beobservedonopensourceplatforms. Inaddition, anopen source community intro-
duces actors different fromwhat has previously been observed on traditional propri-
etary platforms. All this combinedwith the fact that empirical data fromopen source
projects are readily available for researchers to dig through, makes open source plat-
forms good candidates for conducting case studies in this field.

When looking at successful platforms today, one key attribute almost all platforms
share is the presence of a dominant platform owner controlling the platform’s evolu-
tion, often to achieve their business goals. On the App Store, Apple asserts its domi-
nance throughpolicieswith a strict vettingprocess andanunforgivingpricingmodel.
App developers often have very little say in howApple should run their platform, and
where they should take the platform in the future. This creates a one-sided relation-
ship between the platform owners and the app developers, where app developers
have to interact with the platform at Apple’s discretion. In extreme cases this can lead
to law suits as seen in the 2020 case of Apple v. Epic Games [9], where Apple was sued
for its unfavourable restrictions of the apps on its App Store, as well as its pricing pol-
icy of taking a 30% cut of app revenue. Similarly, platforms such as YouTube often

3

receives complaints from its content providers for treating them unfairly. The one-
sided relationship between YouTube as a company and its users is described by some
of its content providers as YouTube controlling the platform to such an extent that
content providers feel overrun:

The reason YouTube treats its content creators so poorly is because they can, and they
know you (or any other creator for thatmatter) won’t do anything about it except gripe.
-YouTube content provider [10]

Maybe the existence of a controlling actor such as a platform owner is necessary for
a platform to be able to grow and evolve successfully without falling into chaos. This
would not be an unreasonable conclusion to come towhen looking at popular digital
platforms today. Without a platform owner responsible for taking charge and steer-
ing the evolution of the platform, who else would do it? How else should important
decisions be made? Maybe all platform decisions should be decided by user voting,
but even in democracies we elect governments because ultimately someone needs
to be held responsible and handle the practical side of things. This line of thinking
can be extended to howwe view open source projects. Just likewith digital platforms,
open source projects must be governed in a way to sustain its development and en-
sure long-termevolution. The twoare also alike in theway that they connect different
actors together in a collaborative environment. On theAppStore, appdevelopers col-
laborate with Apple, users and advertisers. On YouTube, content providers collabo-
rate with Google, advertisers and content consumers. While in open source projects,
project owners such as private firms or software foundations collaborate with devel-
opers, users and other contributors.

However, unlike digital platforms, open source projects are often governed in a way
that lets its developers and users take a greater part in the decision making process.
For example, open source developers generally have a lot of freedom to choose what
they want to work on, and if they have an idea for some new functionality, they can
take the initiative to make it and add it to the project. Open source contributors to
a specific project are often described as a project’s community. A community forms
around a project because the focus on collaboration is so strong, as opposed to a cen-
tralized power structure seen in traditional proprietary software firms. The nature of
open source also allows for developers to start their own new version of the project
and reuse anything theywant from the original project, often called forking a project.
This can happen if a part of the community is dissatisfied with the project’s evolu-
tionary direction or its governance model. An example of a project fork happened
in 2014 when a group of developers in the open source project node.js, a popular

4 CHAPTER 1. INTRODUCTION

JavaScript runtime environment, decided to fork the project and start their own ver-
sion called io.js [11]. Their decision to abandon node.js and create io.js was based on
being dissatisfiedwith the control the owners of node.js asserted in the governance of
theproject. The luxuryofbeingable tobranchoutanewversionofaprojectwhenever
developers or users want is something normal digital platforms lack. Take YouTube
for example, if content providers are dissatisfied with how the platform owners gov-
ern the platform, they have limited power to influence the decision making process
and are thus left with either accepting the terms of YouTube or leaving the platform.

What happens in the intersection between the open sourcemindset and digital plat-
forms? Is it possible for a community of open source contributors to create and gov-
ern a digital platform without relying on an all-controlling platform owner? Given
the increase in popularity of using open source as a development process and dig-
ital platforms for their economic and strategic advantages, the combination of the
two is likely to occurmore frequently in the future. Understanding how the nature of
open source affects aspects of digital platform ecosystems, i.e. platform governance
or ecosystem security, is an important part of the academic knowledge of both open
source and digital platforms, and is therefore a highly relevant research topic. Given
that the majority of digital platforms today have a very centralized structure, litera-
ture on decentralized digital platforms is lacking. By studying the exception to the
rule, namely decentralized open source platforms, general conclusions about soft-
ware ecosystems can be drawn and thus this thesis is contributing to the academic
literature on digital platforms. On the basis of the background outlined in this chap-
ter, this thesis will investigate the following research question:

How do open source specific aspects affect the evolution of software ecosystems?

This thesis performs a case study of Npm (Node Package Manager), an open source
platform for JavaScript libraries (packages). Npm has seen huge growth in recent
years, and was in 2018 experiencing over 4 billion package downloads per week on
their platform. Because Npm is a platform mainly used for other open source pack-
ages, its community of open source contributors extends what would normally be a
community only working on the platform core itself. For example, developers work-
ing on the platform core inmany cases maintain their own open source packages on
the platform as well. This introduces an opportunity to study how the open source
community createsnewactor types, andwhat thatmeans for theplatformecosystem.
Being a platform embracing the open source culturemeans that traditional platform
governance strategies are ineffective to ensure the desired evolution and longevity of
the platform. Understanding how the open source mindset forms these governance

5

strategies canhelp us understand traditional platformgovernance better. This thesis’
empirical data consists of episodes from the Npm project. An episode is an event of
interest to the research question, i.e. the hacking of an important library on the plat-
form. Through a qualitative data analysis of the selected episodes, this thesis aims to
understand how the nature of open source affects platform ecosystem aspects.

6 CHAPTER 1. INTRODUCTION

1.1 Thesis Structure
The structure of this thesis follows a standard approach of dividing it into introduc-
tion, literature study, method, case study, discussion, and conclusion.

• Chapter 1, Introduction
Introduces the main theme of the thesis; open source and digital platforms. A
lot of research canbe foundon the two themes separately, but previous research
combining both themes is somewhat lacking. This gap in the academic knowl-
edge in combination with the increase in open source development worldwide
are themainmotivations behind the thesis’s topic.

• Chapter 2, Literature Study
Presents previous research on the main theme and explains the state of the art
of work related to open source, software security and digital platforms. Open
source started out as a niche development phenomenon. It has since become
mainstream and its worldwide reach covers both software products and devel-
opmentmethodologies. Software security discussions in the open sourceworld
revolve around bugs / vulnerabilities, and if its more secure to let the world go
through your code with a fine-toothed comb or try to hide it as best as possi-
ble. The literature on platform governancemainly concern itself with platforms
with a centralized all-controlling platform owner. This model does not always
fit well when applying it to open source platforms.

• Chapter 3, Method
In this section, arguments for and against different research methods are dis-
cussed,which leads to thedecisionofperformingacase studyof theNpmproject.
This specific case is chosen based on a set of case criteria, where open source,
no dominant actor and platform ecosystem are important deciders. Data col-
lection is done by selecting a set of episodes from the case, i.e. the introduction
of a new functionality or the hacking of a package. Data analysis is done in a
qualitative manner, where patterns and relationships in the data are analysed.
Data analysis is done in stages, switching between working inductively and de-
ductively.

1.1. THESIS STRUCTURE 7

• Chapter 4, Case Study
Introduces the Npm platform and explains what parts it is made up of; registry,
website, and command line interface. Gives a background of what problems
Npm tries to solve in the JavaScript world, and shows how successful the tool
has been over the years. Four episodes from the case is presented, where each
episodeconsistsofdiscussionsbydevelopers, platformowners, andusers about
an important happening in the ecosystem.

• Chapter 5, Discussion
Basedon the themes aggregated from thedata analysis part, the discussion tries
to understand the themes in the context of both previous literature and the case
itself. Some discrepancies between the state of the art research and the empiri-
cal data collected in this thesis is found, especially in the are of platform gover-
nance.

• Chapter 6, Conclusion
Summarizes the main arguments presented in the discussion and extracts the
general conclusions we can make on the topic of open source software ecosys-
tems. The open sourcemovement is influencing software development all over
the world, and perhaps its next big are of influence is digital platforms.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Literature Study

2.1 Open Source Software

The term open source software refers to software that is open on the internet, free for
everybody touse,modify, or distribute, it belongs to thepublic domain. Someofopen
source software’s early popularity comes from the successful open source projects
LinuxandApache,whichcausedan increased interest inopen source around the year
2000 [12]. Today, the use of open source software is widespread, and every user of the
internet relies in one way or another on open source software.

In earlier years, open source software was characterized by what Fitzgerald calls Free
Open Source Software (FOSS) [4]. This differs from what we know as Open source
software today by lacking strategic planning and sophisticated business models sur-
rounding open source projects. Fitzgerald argues that Open source has transformed
from the FOSS-style development towards what he calls Open source software 2.0.
Here more sophisticated business strategies emerge and some developers are even
paid towork on open source projects. The development process of Open source soft-
ware 2.0 includes strategic planning to a greater extent, and more deliberate analy-
sis and design phases are common. Every open source software project relies on an
open source community to develop andmaintain it. The open source community are
developers and users working to enhance the product, without the expectation to re-
ceive any form of payment for it. The sense of community and the positive effects of
contributing to it can in part explain themotivation behind open source developers,
but does not explain why it has seen such a rapid growth in recent years according to
Kogut [13]. Kogut argues that this growth indicates that traditional software develop-
ment is less efficient than open source development, caused by the work needed to
enforce intellectual property rights in closed proprietary software. In addition to this,
open source development can leverage distributed innovation to increase efficiency

9

10 CHAPTER 2. LITERATURE STUDY

and quality.

2.2 Software Security
Many aspects of software security is similar in open source projects compared to pro-
prietary software. For example, traditional securitymethods such as user authentica-
tion, fire walls, and encryption are widespread in both open source and other types
of software. Because open source is open for everyone to see, including hackers, the
debate around bugs and vulnerabilities is especially interesting when it comes to se-
curity in open source projects.

2.2.1 Vulnerabilities
Security is abigpartof thediscussionsaroundopensource software inacademic liter-
ature. Openingup source code for theworld to seemight intuitively sound less secure
than keeping it hidden and away from potential hackers, but the debate goes much
deeper than that, and includes notions of how to measure security, what motivates
hackers, and how to fix security holes in the software. This section will investigate
open source security in the academic literature, open source security here is not con-
fined to security tools as open source products, but rather the security level of open
source software in general.

The main arguments in open source security discussions boil down to "Is keeping
source code hidden and secretmore secure than keeping it open for the world to see,
use and maintain?". This is not a trivial question to answer, because how do you de-
fine some software as more secure than other? That is the question Schryen et al. try
to tackle in their paper about measuring software security [14]. They find that tra-
ditional security measurements often rely on the amount of bugs or the amount of
vulnerabilities discovered in the software during its lifetime. This is not a bad starting
point towardsmeasuring security, because the existence of bugs in the code certainly
introducesmore opportunities for hackers to find vulnerabilities to exploit. However,
Schryen et al. are skeptical of relying toomuch on the amount of bugs alone, because
of two important implications; bugs are not all alike, and the assumption of software
having a finite amount of bugs to find is wrong.

Bugs exist in all software, and range from harmless to software breaking. This means
that some bugs do not introduce a security vulnerability, while others introducemul-
tiple ways for hackers to exploit the software. Simply relying on the amount of bugs

2.2. SOFTWARE SECURITY 11

in the code to assess its security is therefore too shallow, and Schryen et al. suggest
a model where the severity of the vulnerabilities are taken into account when mea-
suring the security of the software. This is a good start to get a more granular view of
quantifying security, and by combining this with the amount of time a vulnerability
has been accessible will result in a better model of software security measurement
shryen et al. argue. The amount of time a vulnerability exists in the code is an impor-
tantmeasurement, a very severe vulnerability could cause a lot of harm even if it was
only accessible to hackers for a short period of time. Schryen et al. highlight the lack
of goodmodels formeasuring security in software, specifically for closed versus open
source. They believe that the lack of good security data is one of the reasons for this,
but also that a lot of data available focus on operating systems, which is not always
useful when analyzing other types of software.

One important assumption the notion around measuring security by the amount of
vulnerabilities discovered during a software’s lifetime relies on, is that the software
has a finite amount of vulnerabilities to be found. Schryen et al. argue that this is not
really the case. When a bug is found to cause a security vulnerability, a patch is made
to fix it, be it closed or open source. But patches themselves can introduce new bugs
into the code, sometimes creatingmore vulnerabilities than they fix. Given this, soft-
ware never really becomes "complete" in the sense that it is bug free given enough
time, so ameasurement of howmany bugs have been found and fixed, does not nec-
essarily tell the whole story whether or not a certain software is secure.

Even though security in software is hard to measure, the debate around open source
versus closed proprietary software in a security perspective can be productive. This
debatemainly revolvesaroundsecurity through transparencyversus security through
obscurity. Proponents of open source base their main arguments around the notion
of the peer review process in order to discover and fix bugs, and they believe that all
bugs are shallow, given enough eyeballs as Eric Raymond famously said in his paper
about open source development methods [15]. Intuitively this argument does make
sense, because if you open source your code and let the whole world go through it
with a fine comb, one would think that a lot more bugs would be discovered com-
pared to a teamof in-house developers working on closed proprietary software. Both
Schryenet al. andPayne [16] disagreewith this argument, citing that thequality of the
eyes looking at the code is much more important than the quantity. When it comes
to open source projects, they recruit a wide variety of both experienced and inexperi-
enced contributors, and it is not a given that any of the contributors have the security
expertise required to understand that a certain bug could cause a security vulnera-
bility. This is because software security knowledge often involves more than just un-

12 CHAPTER 2. LITERATURE STUDY

derstanding the programming language itself of a given project, other areas such as
network protocols or cryptography also play a big part. In addition to this, Li et al.
found that 70% of security vulnerabilities found in their open source case projects
were caused by semantic bugs that are hard to prevent if the programmers do not
have a thorough understanding of the whole system [17]. This indicates that simply
having a lot of eyes on the code does not prevent security vulnerabilities to occur, but
experienced programmers with security-specific knowledge and a thorough under-
standing of the software project is needed.

When it comes to software security, a back door is usually one of themore severe vul-
nerabilities software can have. This gives hackers potentially undetectable access to
the program that they should not have. Schryen et al. point out that there is a lack in
academic articles discussing back doors in open source software, which is especially
interesting todiscussbecausehackers canposeasnormal contributors and introduce
back doors into the code. Payne argues that it is virtually impossible for hackers to in-
troducebackdoors into open source software because of the code reviewprocess and
the many eyes on the code. While only a single rogue programmer could introduce
a back door into closed proprietary software, the code review process would catch
such an attack in an open source project he argues. Payne cites two examples to build
on this argument; first, an open source "TCPWrapper" software that got a back door
introduced in its code which was discovered and patched only a day later. Second,
an example from the "Interbase" database software that had a back door existing in
its code for 9 years while being closed source, and when the code was published to
theworld as open source, the back doorwas discovered right away. Payne’s argument
that it would be virtually impossible to introduce back doors into open source code,
assumes that the codewould go through an open source review process before being
accepted. That is however not always the case, and hackers have come up with other
ways of creating back doors in open source code. Since a lot of software today rely on
each other and are connected, a malicious piece of code could be introduced in one
open source project and affect others. For example if the back door exists in an inter-
preter running the open source code, it would not be possible to detect it by simply
reviewing the source code itself. Hackers canevencircumvent theopen source review
process entirely andpublish their code directly to a code basewithout the approval of
other contributors, as seen in the hacking of the popular Npmpackage ESLint-scope
from 2018.

Another argument in favour of open source mentioned in the literature is the flex-
ibility around releasing a new security patch. As mentioned earlier, when it comes
to security in software, time is of the essence. The longer a vulnerability is open for

2.2. SOFTWARE SECURITY 13

hackers touse, themoreharmcanbedone. Proponents of open source security argue
that open source projects are more flexible than closed proprietary software when
a bug is found and should be fixed. Sometimes, the person responsible for finding
the bug can simply write a patch and submit it to the open source code base directly.
Closed proprietary software on the other hand often have to take business processes
into consideration, and they can be halted by strict release schedules or even mar-
keting purposes. For example, a corporationmight want to wait to publish a security
patch because of the implications this would have on its reputation, or corporations
sometimes might want to inform only their biggest clients of a specific vulnerability
before letting the rest of their clients know. These are some factors that could cause
open source security patches to be implemented faster compared to closed propri-
etary software.

Closed proprietary software hides its source code in order tomake it harder for hack-
ers to find vulnerabilities to exploit. However, hackers still find ways to break into
this typeof software systems regularly, therefore securitybyobscuritydoesnot always
work. This is because hackers can use a system’s binary code to look for vulnerabili-
tieswhich is impossible tohidewhen the software is deployed. Although this is harder
than using source code Schryen et al. argue that it is still a viable way for hackers to
gain the insight they need in order to break into the system. Hiding code from the rest
of the world could therefore be counter productive if hackers still find ways to break
into it, because the softwarewill not get the benefit of an open source review process.

14 CHAPTER 2. LITERATURE STUDY

2.3 Platform governance

Platformgovernance is defined by Tiwana et al. simply aswho decideswhat in a digi-
tal multisided software platform [18]. The governance strategy of a digital platform
has important implications of its evolution and its participants’ actions [19]. The
governance mechanisms used by platform owners are well established in the liter-
ature, however the implications of their practical implementations are not very well
researched [20] [21].

A central challenge of platformgovernance is to be able to enforce enough control for
platform owners to maintain the integrity of the platform, while giving away enough
control such that content developers can provide content and innovate. Tiwana et
al. [18] give three perspectives of platform governance; decision rights partitioning,
control, and proprietary versus shared ownership. These categories describemecha-
nisms used by platform owners to govern the digital platform. Decision rights parti-
tioning describes how the right tomake important decisions are divided between the
platformowners and the content developers. Schreieck et al. [20] describe this aspect
of platform governance as its structure, and discuss how decision rights and owner-
ship can be used by platform owners to achieve a certain outcome, i.e. facilitate user
growth or reduce administrative work for platform owners. Schreieck et al. also in-
clude how the platform is owned in its governance structure, i.e. owned by a single
firm or by a larger organization. This aspect is what Tiwana et al. call proprietary ver-
sus shared ownership. Decision rights partitioning, or a platform’s governance struc-
ture, boils down towhohas thepower and responsibility tomake importantdecisions
for the platform.

Figure2.1 is fromTiwana’sbookaboutplatformgovernance [22]. Heproposesamodel
where decision rights can be categorized as either strategic or implementational, and
the power to control these lie on a spectrum from the platform owners to the app de-
veloperson theplatform. Heargues thatdecision rights arenot completely controlled
by only the platform owners, or only the app developers, but both actors have some
degree of decision rights. By adjusting the sliders in Figure 2.1, the platform owners
can decide to what degree different types of decision rights should be centralized or
decentralized.

BothTiwanaet al. andSchreieck et al. include thenotionof control inplatformgover-

2.3. PLATFORMGOVERNANCE 15

Figure 2.1: Sliders showing how decision rights can be divided between the platform
owners and app developers.

nance. Controlling the platform is done through informal and formal controlmecha-
nismsused toguidedevelopers’ actions toalignwith theplatformowners’ vision. For-
mal controlmechanisms include input andoutput control, aswell as process control.
Input control, or platform accessibility, lets platform owners decide who can partici-
pate on the platform. A high degree of developer restriction leads to higher quality in
the products offered on the platform, but reduces user growth. It is not unusual that
governance mechanisms come with tradeoffs between different outcomes, which is
one of the main arguments of Schreieck et al. There is no one governance strategy
that fits every platform, instead platform owners must choose how they implement
mechanisms based onwhich tradeoffs they see as desirable. However, controlmech-
anisms do not necessarily have to be a divergent zero sum relationship between plat-
form owners and developers. In some instances their interests can both align with a
given control mechanism.

Generativity iswhatWarehamet al. [23] describe as an ecosystem’s ability to generate
new content, or its output, without the need of platform owners’ input. They look at
platform governance as away to find a balance between control and a desired level of
generativity. Reaching the highest level of generativity possible and letting third par-
ties in an ecosystem produce content uncontrollably is not desired as it could hurt
the ecosystem in the long run by i.e. resulting in low quality of content and bad plat-
form reputation. That is why some level of control must be achieved by the platform
owners, they need to limit the behaviour of its content providers while simultane-
ously foster enough creative output to attract users. This creates a paradox where an
ecosystemmust be both stable and able to evolve. Without stability, complementors
will not want to invest time and money into generating content for the ecosystem.
Without evolvability the ecosystem will not be able to adapt to changes in the mar-
ket, its users’ needs or new technology.

16 CHAPTER 2. LITERATURE STUDY

Wareham et al. found three areas where the tension between stability and evolvabil-
ity manifests itself in an ecosystem; output, actors, and identifications. An ecosys-
tem’s output is the content created by complementors and consumed by its users,
and is the same as what Tiwana et al. and Schreieck et al. also call output. Control-
ling the tension between stability and evolvability in an ecosystem’s output can be
achieved through varying the output’s variance. A high degree of variance leads to
more unique products and increases variety in the products and services on the plat-
form, while a low degree of variance results in a higher standard and homogeneity
across the products and services. Through their case study, Wareham et al. found
that commonmechanisms used to reduce variance in output revolve around techni-
cal standards and processes that complementors must abide by. This ensures a high
degree of compatibility in the ecosystem, because third party applications interface
with the platform core in the same way and can potentially interface with each other
as well. Because of this, the products on the platformwill have a shared evolutionary
trajectory and a similar level of quality. To increase the variance in output, platform
owners can allow complementors to customize their products to fulfil different func-
tional requirements, or foster specialization in different niche markets. From their
case study, Wareham et al. found that this was done by having core platform func-
tionality asopensource software, lettingcomplementorsuseandcustomize the func-
tionality to their specific needs. Wareham et al. argue that the mechanisms used to
adjust the tension between standardization and variety complement each other to
enable creative freedom in the implementation of products while also ensuring that
technical standards are followed.

The second area of tensionhighlighted byWarehamet al. is the tension between con-
trol and autonomy for the actors participating in the platform. Platform owners can
control their actors by enforcing rules on how they are allowed to behave on the plat-
form. Thebehaviourcanbestrictly controlledorallowed tobemoreautonomous, let-
ting actors have a greater influence on processes when interacting with the platform.
Warehametal. lookathowcontentgeneratingactors submit theirproducts tobecon-
trolled by process and output control mechanisms as a market transaction between
actors andplatformowners. In this transaction, actors forfeit liberty andautonomy in
exchange for theperceived value theplatformcanoffer. In the case study ofWareham
et al., actors choose their desired level of control by adjusting their partner level with
the platform. For example, actors can get platform certifications, dedicated platform
personnel, or subscription fees. There are five levels of partnership, ranging from just
a simple entry level where the only requirement of the complementor is registering
their product on the platform, to the highest partner level that requires certifications,
fees, good customer references, participation in customer surveys, etc. Each part-

2.3. PLATFORMGOVERNANCE 17

ner level has its own requirements that the actor must fulfil, and comes with its own
set of increased values for the actor and the platform core. By choosing their desired
partner level, actors have a greater autonomy in how they interact with the platform
in regards to processes and control mechanisms, and to what value they seek to get
from the platform.

The third tension exists in what Wareham et al. call identifications, and span from
individual to collective. To ensure a more cohesive ecosystem, the platform owners
must transform a set of individual, specialized and heterogeneous content into a co-
hesive set of functionality that promotes compatibility and reusability. If theplatform
achieves this, self-interested individual identificationswill instead become collective
identifications with a sense of community. Mechanisms to promote collectiveness
involve reducing the undesirable variance found in the ecosystem, and include com-
munal technical utilities, socialization, training opportunities and multipartner col-
laboration. Wareham et al. found that an importantmechanism to increase commu-
nity contribution is through the use of status in the ecosystem. If actors can achieve
a greater legitimacy and status by participating in collective endeavours, it will serve
as an incentive to contribute to community projects. Desirable variance can be pro-
moted by promoting autonomy for actors which leads to individual identifications
by i.e. using common standards to measure the quality in individual heterogeneous
products. This means that actors are free to specialize and implement individual
functionality while participating in the ecosystem.

Earlier research on platform governance tend to view platform governance from an
authoritarian perspective, where a platform’s structure is centralized and platform
owners control most of the important decisions. After analyzing 30 research papers
on platform governance, Manner et al. [21] found that authority-based governance
is the predominant governancemechanism. Even though Schreieck et al., Manner et
al. and Tiwana acknowledge that platforms with a decentralized governance struc-
ture exist, their models rely on dimensions such as pricing, market mechanisms and
business models to analyze platform governance. These dimensions are not always
useful when looking at platforms from an open source perspective, especially when
both the platform core and services and products produced on the platform are open
source. When a platform exists only of open source products it would be ineffective
to use pricing as a control mechanism as Tiwana’s model suggests. Other limitations
with this sort of view on platform governance is that it focuses too heavily onmecha-
nisms used to control actors on a platform, and omits the dynamics of collaboration
between platform owners and other actors [24]. Martin et al. [24] analyze the demo-
cratic governance structure of a digital platform for sharing economy, and found im-

18 CHAPTER 2. LITERATURE STUDY

portantmeasuresplatformownerscan take to implementademocraticmodelofplat-
formgovernance. Oneofwhich includesdistinguishingdifferent typesof users on the
platform, i.e. users thathave the right toparticipate indecisionmakingprocesses ver-
sus users that do not. Martin et al. call these users owner-members to demonstrate
that their role on the platformextends the normal user role. Even though their frame-
work for democratic platform governance is based on platforms used in the sharing
economy, someof their arguments canbe generalized for digital platforms in general.

Chapter 3

Method

To gain more knowledge about open source platforms and to answer the research
questions, a case studyof anopensourceecosystemwaschosenas thebest approach.
Qualitative data analysis was used on important episodes from the open source plat-
form Npm. This specific case was chosen on the grounds of being particularly inter-
esting given that it is a platform for open source libraries, as well as having its core
platform functionality developed and maintained as an open source project. In ad-
dition, the project was deemed large enough and sufficiently documented.

3.1 Research Approach
The main choice of research approach is between using a quantitative or qualita-
tive approach to data collection and analysis. Both directions have their places in
academia, and one is not necessarily considered better than the other. Instead, it
all depends on the context of the research to decide whether or not a quantitative
or qualitative approach is the best fit.

A quantitative research approach fits well with research that deal with numerical val-
ues in large quantities. Because statistical analyses are used to uncover new relation-
ships and gain knowledge from the data, it is important that the amount of data is
large enough to increase the validity of the statistical analyses. This approach fitswell
with research that try to answer "What"-, "Howmuch"-, or "Howmany"-typeof ques-
tions, where the researchers can use data expressed with numbers and values to an-
swer their research questions.

On the other hand, when trying to answer questions that deal with howorwhy some-
thing happens or exists, a qualitative research approach fits best. When trying to
gather knowledge about phenomena that can not be expressed with numbers or val-

19

20 CHAPTER 3. METHOD

ues, researchers can not rely on statistical analyses andmust instead uncover themes
and characteristics in the data that enables a qualitative analysis. The data’s charac-
teristics can be used to label an otherwise unstructured set of data, which helps re-
searchers to connect themes that emerge.

For this thesis, a qualitative approach was deemed as the best approach to take. The
research question is a "How"-type question which requires a qualitative analysis to
answer. This thesis aims to gain a deeper understanding of the combination of open
source and platform ecosystems in software projects. This is not easily measured
with statistical analyses and must instead be answered through an investigation of
selected episodes in a case study. In addition to the case study, a review of relevant
literature was conducted. This was done in combination with both bottom-up and
top-down data collection.

3.2 Data Collection
Empirical data was collected through a case study of the Npm project, which has ex-
tensive data openly for the world to view onGitHub [25]. The data consists of discus-
sions about important topics among developers, users, platform owners, and pack-
age maintainers. Some of the discussions happen in forum threads found in GitHub
Issues where both implementational details and sometimes broader platform strate-
gic decisions are discussed. Other conversations happen in forums specificallymade
for open discussions with Npm’s open source community, such as the Feedback Dis-
cussions and RFC (Request For Comments) forums. FeedbackDiscussions is a forum
used for general feedback and discussions, where users often initiate the conversa-
tion. RFC is a process where new functionality gets discussed and refined thoroughly
before being implemented, the platform owners and key developers play an impor-
tant part in this process.

Given thehugeamountofdataavailable ina largeopensourceproject thathasexisted
for years, limiting the search fordata is crucial. Exactlyhowtoaccomplish limiting the
search while still using a bottom-up approach can be challenging. Because bottom-
up approaches rely on finding emerging themes and relationships in the data, and
letting the data speak for itself, limiting the search is not a trivial task. Initially, dig-
ging through the huge open source project that Npm is, was both time consuming
and challenging. To better guide the search for interesting episodes, looking for in-
creased spikes in activity was used in the data collection process. For example, an
interesting discussion requires a certain number of comments and input by differ-

3.3. DATA ANALYSIS 21

ent actor types. Another very useful method was to look for episodes that had been
mentioned in media outside of the Npm community, i.e. news articles. The episode
concerning thehackingof theESLint-scopepackagewascoveredbynewsarticles and
blogposts, which shed light on this particular episode as an interesting startingpoint.
The data collection in this thesis is also affected by top-down impulses. That is to say,
data collection and the literature review were carried out in parallel. For example,
when the theme of platform governance started to emerge as an interesting theme
in the data, the literature review’s focus shifted towards gaining more knowledge on
this topic, while at the same time collecting more data on platform governance dis-
cussions from the case. Cycling between working inductively and deductively made
it possible tofindemerging themes in thedatawhile still being able to limit the search
to fit in the scope of this thesis.

3.3 Data Analysis
Data analysis is an important step in any thesis conducting a case study,whichmeans
it is important to get this process right. This thesis used a qualitative approach to data
analysis, where themes, relationships, and patterns in the textual data from the case
were examined in order to answer the research questions. This process was done in
a series of stages defined by their inductive or deductive character. Because the data
was documented in the open source project, ready to be more extensively examined
and collected, the data collection and analysis could be done somewhat simultane-
ously. This means that as new interesting themes emerged from the inductive data
analysis, more data collection was done in a top-down manner with a focus on the
emerging themes. As mentioned in the data collection part, this was an important
tool to help limit the search in a huge open source project, but it also helped guide the
data analysis process. In the process of collectingmore data about previously discov-
ered themes, other interesting themes connectedwith the old ones started to emerge.

Thefirst stageofdata analysiswasdone inan inductiveway,where the initial datawas
examined and categorized according towhich themes emerged. These initial themes
lead to aphaseof reviewing relevant literature on these topics, before thenext stageof
data analysis began. The second stage was characterized by working deductively. In
this stage the theory from the literature reviewwas applied to the data to understand
how the findings relate to prior research. Gaps in the literature on certain aspects of
the themeswere of particular interest, but also existing theoreticalmodels that could
help make sense of the findings. Given that empirical data rarely fits previous the-
oretical models one-to-one, the process of structuring the data in the context of the

22 CHAPTER 3. METHOD

state-of-the-art research also included inductive impulses.

The process of working inductively in one stage, and then deductively in the next re-
peated itself until a final version of the themes was established. Expanding the liter-
ature review, refining the research question and collectingmore data were done con-
tinuously throughout the data analysis process. Table 3.1 outlines the process of de-
riving themes from the empirical data collected in the case study. The data excerpts
areexamplecomments fromtheepisodes, highlighting theessenceof each label. Tex-
tual data was categorized using a set of labels constructed from both the literature
review and from the data itself. From these categories, three central themes were de-
rived which form the basis for the thesis’ discussion.

3.4. CHOOSING A CASE 23

Table 3.1: Themes derived from the empirical data

Data Excerpt Label Theme
It’s not clear yet if the ESLint-scope infection
was a result of a further upstream infection.
There’s nothing to say that the pastebin
code from this incident is the same as
what would be infected in other packages
of authors with their credentials
compromised [26]

Package
Dependencies

Complex
DependenciesThis should be a way higher priority to

fix. yarn has shown that people need
lockfiles, and npm’s lockfile system
(shrinkwrap) is obviously broken [27]

Ecosystem
Consideration

In a worst case scenario, this leads
to even worse security practices;
in best case, it catches some
vulnerabilities at the cost of
ongoingmaintenance work [28]

Open Source
Security

SecurityMalicious maintainer has more direct
opportunities for embeddingmalware
in their package [29]

Vulnerabilities

It will take a long time for the majority
of package maintainers to reach this
level of security awareness, but it’s a
project that must be started [26]

New Actor
Groups

Platform
Governance

These investments include the
requirement of two-factor authentication
(2FA) during authentication for
maintainers and admins of popular
packages on Npm [30]

Rule
Enforcement

Our roadmap is heavily influenced by
discussions with our community that
take place in our public feedback [31]
repository

Decision
Rights

3.4 Choosing a Case

The empirical data used in the discussion was collected by conducting a case study
of an open source software project. Choosing a suitable candidate for the project was
an important decision which wasmade based on a set of criteria. These criteria were
important to determine because studying any arbitrary open source project would
not necessarily make it possible to answer the research question. Instead, by using
the case criteria, a list of potential case candidates was constructed from which the
chosen case was picked.

24 CHAPTER 3. METHOD

Knowing which criteria to use was not trivial, and a number of revisions for the case
criteriawas usedbefore landing on thefinal version. For example, criteria 2 regarding
dominant actors was not considered before realizing that a lot of earlier research on
digital platforms included dominant actors, which was found during the literature
review. Other non trivial challenges that arose revolved around criteria 3 regarding
ecosystems, because how do you define a platform ecosystem? How do you know if
an open source project falls under your definition or not? The final version of case
criteria is given below:

• Criteria 1, Open source
Being an open source project is the first and most important criteria. This en-
tails that an open source community exists around the project to maintain it,
including developers and users.

• Criteria 2, No Dominant Actor
The project should be as open as possible, without the existence of a dominant
actor with strict control over the project. That being said, every open source
project need central actors to control the direction of the project, facilitate the
development, or simply pay server costs. Often this role is taken by a software
foundation or a private firm, which are regarded as owners of the open source
projects. It is important for this thesis that theseownersdonotcontrol theproject
too strictly, which could lead to sidelining the open source community.

• Criteria 3, Platform Ecosystem
The project must have ecosystem aspects such as different actor types partici-
pating in the ecosystem, and a governancemodel.

• Criteria 4, Project Size
The size of the project must be large enough to involve a decent amount of de-
velopers and users in order to study open source aspects. Collaboration be-
tween different actors in the project becomes more important as the project
grows in size.

• Criteria 5, Well Documented
Tobeable tocollect empiricaldata, theprojectmustbewelldocumented through-

3.4. CHOOSING A CASE 25

out itsdevelopment life. Thisentails that importantdiscussionsabout theprojects
evolution are documented and open freely for researchers to use.

The case criteria filtered out a set of potential candidates including Npm and Pip.
Npm and Pip are two similar case candidates, both being open source packageman-
agement tools. The large sizeof theNpmecosystemcompared toPipmeans thatNpm
has a slight advantage for the case study of this thesis. Other cases considered were
the .Net and Android ecosystems. Both of these would be interesting cases to look
at were it not for Microsoft and Google being too large and controlling actors in the
ecosystems.

The case chosen for this case study was the Npm ecosystem. Npm is a packageman-
agement tool for open source JavaScript packages (libraries) mainly used in web de-
velopment. In addition to hosting open source packages, the tool itself is developed
and maintained as an open source project. This creates an interesting ecosystem
heavily focused around the open source mindset, and offers unique aspects that can
be studied in order to answer the research questions. It was also very clear early on
that the contributors of Npm are very aware that they are actors in both the Npm
ecosystem and the larger JavaScript ecosystem.

TheNpmproject isownedbyaprivatefirm,NpmInc., however their role in theecosys-
tem is not as dominant compared to Microsoft or Google in .Net and Android re-
spectively. Npm heavily relies on its open source community to contribute to both
important decision making regarding its ecosystem as well as development of third-
party andcore functionality. As an importantpart of theNode.js ecosystem,Npmalso
falls under the umbrella of the Node Foundation created in part to better facilitate an
open source community. Npm Inc.’s views on developing the platform in collabora-
tion with an open source community is summed up by a quote from the creator of
Npm, Isaac Z. Schlueter.

There is tremendous risk if the Node.js Foundation does not decisively expand its com-
munity of open source contributors. The Node.js ecosystem is larger than ever. Its con-
tinuedgrowthdependson technical innovation, and innovation requires ahealthy cul-
ture. Any project will suffer without contributions from a broad selection of its mem-
bers, and any project will lose relevance if its leaders do not actively promote inclusive
conduct. -Isaac Z. Schlueter

The platform that Npm has created to upload and share open source packages fits

26 CHAPTER 3. METHOD

well with criteria 3, regarding platform ecosystems. All these factors combined with
the fact that theNpmproject is a large andmature open source project with an abun-
dance of documentation throughout its development life, makes Npm a good choice
for a case study in this thesis.

Chapter 4

Case

This thesis uses a case study for its main source of empirical data. The chosen case is
the Npm (Node PackageManager) project, an open source platform and tool used to
distribute open source software (packages) used in the JavaScript runtime environ-
ment Node.js. The Npm ecosystem consists of threemain parts:

• The Registry
A public database of JavaScript packages. This is the world’s largest database of
software [32], and is used by open source developers to upload and share their
projects with the world. The database contains the actual software used for the
JavaScript packages and also metadata about them. The registry also contains
private packages, but the focus in this thesis will be on its larger open source
part.

• TheWebsite
Awebsite used to discover andmanage the packages hosted in the registry. The
developers of open source packages can use thewebsite to configure their Npm
developer experience, i.e. creating users and organizations, or managing ac-
cess to their packages. Users of Npm use the website to search for and discover
packages. Each package has its own page on the website where useful informa-
tion about it is displayed such as number of weekly downloads and the project’s
homepage or documentation. The pages often provide guides on how to in-
stall and use the packages as well as information about how to contribute to the
project.

27

28 CHAPTER 4. CASE

• The Command Line Interface (CLI)
A tool run in the terminal used by developers to interact with the Npm registry,
i.e. installing or updating packages. This is the main way developers interact
with the Npm ecosystem, and is an important part of being a developer in the
Node.js environment. For example, after developers have browsed the website
and found a package to download, they use the CLI to run the command npm
install <package name> inside of their project to install the package.

4.1 Case Background
Npmwas created in 2009 and had its first official release in 2010. The project was ini-
tially created as an open source project, free to use and contribute to by anyone. Even
though the company Npm Inc. was founded in 2014 and later bought by GitHub in
2020, the project is still being developed in collaboration with an open source com-
munity. Table 4.1 outlines a few important events in Npm’s lifespan. Because Npm is
the default package manager for Node.js, they are two tightly coupled projects. That
is why certain events in the Node.js project impact Npm.

4.1. CASE BACKGROUND 29

Table 4.1: Npm timeline

2009 • Npm created.

2010 • Initial release of Npm.

2011 • Npm reaches version 1.0.

• Node.js becomesmoremainstream
as larger companies such as
LinkedIn and Uber start utilizing it.

2014 • Npm Inc. founded.

• Node Advisory Board was created
and aims to establish amore open
and inclusive governancemodel of
the Node ecosystem and its open
source projects.

• Node Foundation founded.

2016 • Yarn PackageManager was released,
a direct competitor to Npm.

• The left-pad incident occurs.

2017 • Npm version 5.0 is released fixing
old bugs and promising amore
robust system.

2018 • Npm version 6.0 is released with a
stronger focus on security.

2020 • GitHub acquires Npm Inc.

The problemNpm tackles is that of sharing packaged JavaScript modules among de-
velopers, for front-end web apps, mobile apps, and the Node.js environment, which
is the focus of this thesis. The problem of distributing software packages is not a triv-
ial problem to solve, as resolving dependencies amongpackages canbe a challenging
task for a package management tool. However, the popularity of Npm has increased
drastically since its beginning. Figure 4.1 shows the rapid growth of package down-
loads on the Npm platform from 2013 to 2018, peaking at over four billion weekly
downloads in 2018. These numbers are immense and highlight the platform’s impor-
tance in the JavaScript ecosystem and the internet as a whole.

30 CHAPTER 4. CASE

Figure 4.1: Weekly downloads of packages on theNpmplatform from2013 to 2018 [1]

4.2 Episodes
This section describes episodes chosen from the case that stood out as having poten-
tial to help analyze the research topic of this thesis. The episodes consist mostly of
comments from different types of developers, platform owners, and users found on
Npm’s discussion forums and GitHub Issues page.

4.2.1 Introducing package-lock.json
To keep track of a project’s dependencies, Npm uses files such as package.json and
package-lock.json. These files definewhichNpmpackages a project needs, their ver-
sions and rules about handling updating to newer versions. Package-lock.json was
not introduced to Npm until version 5.0, in 2017. Before that, Npm used what they
call shrinkwrap, which enables developers to lock the versions of a project’s depen-
dencies just as the package-lock.json file does. In 2012 discussions about resolving
dependency problems not covered by shrinkwrap emerged [27].

4.2. EPISODES 31

Some projects might want different dependencies and versions, depending on fac-
tors such as operating systemor being in a development or production environment.
Npm had at this time functionality for both locking dependencies with shrinkwrap,
and for defining optional dependencies, however a problem became apparent when
projects tried to do both at the same time.

We have to shrinkwrap, since some of our dependencies are loose, and that’s no good
for production. Still, some of the dependencies are optional, depending on the OS. If
we include a shrinkwrap file, then npm doesn’t even try to install optional dependen-
cies. And if we shrinkwrap after the optional has been installed, it’s no longer optional.
-package maintainer

Exactly, in current form npm-shrinkwrap is not optimal as using it installs dev de-
pendencies when building deployment package what is far from optimal, also when
hosting on azure or heroku shrinkwrapped dev deps are also being installed -package
maintainer

This problem persisted up until 2016, years after first being discovered, and lead to
developers being forced to work around the bug or stop using the shrinkwrap func-
tionality altogether.

Theworkaround I’ve beendoing is: Remove the entry of your optional dependency from
your npm-shrinkwrap.json tree. Add it as an optionaDependencies entry in the pack-
age.json of your shrinkwrapped project. Not ideal, but easy-ish to automate, and not
too difficult to manage. -package maintainer

We just ran into this problem. It loads dev dependencies in production which do not
work.."precommit-hook" module for instance looks for the .git directory which doesn’t
exist and the whole thing fails. We’ve had to stop using shrinkwrap altogether. The
different dependency groups should be separated in the shrinkwrap file so we can still
install in productionmode. -package maintainer

Other problems with shrinkwrap were also discussed around the same time, which
ultimately lead to Npm looking at other ways to implement its dependency system.
With the release of Npmversion 5.0 in 2017 a newway of handling dependencies was
introduced with the file package-lock.json, which replaced the old shrinkwrap sys-
tem.

32 CHAPTER 4. CASE

In 2016Yarnwas released. Yarn is also apackagemanagement tool for JavaScript soft-
ware, and is a direct competitor to Npm. Discussions regarding the aforementioned
problem of optional dependencies continued to emerge in the Npm ecosystem, also
after Yarn had been released. Developers in the Npm ecosystem are very aware of
what is happening in competing tools such as Yarn.

This should be a way higher priority to fix. yarn has shown that people need lockfiles,
and npm’s lockfile system (shrinkwrap) is obviously broken -package maintainer

FWIW, yarn has also had issues with optional dependencies -package maintainer

Thenewsystemforhandlingdependencies introducedwithpackage-lock.jsonsolved
thebugwithoptionaldependencies, butmore importantly itwasaway tomakecross-
package-manager compatibility easier because of its standardised format and usage
in other package management tools, i.e. Yarn. The release notes of Npm 5 presents
package-lock.json as a way to improve corss-platform compatibility [33].

A new, standardised lockfile feature meant for cross-package-manager compatibility
(package-lock.json) -Npm 5 release notes

Prior to the release of Npm 5.0 and package-lock.json, a discussion of how to handle
havingboth shrinkwrap andpackage-lock.jsonwas initiatedbyNpmdevelopers [34].

Here ismyproposal for how shrinkwrap innpm@5will work. Wewill also be introduc-
ing a newfile, package-lock.json that will fill the same role as npm-shrinkwrap.json in
projects that don’t otherwise have a shrinkwrap. -Npm developer

WithNpm5, twowaysof lockingdependenciesexist; shrinkwrapandpackage-lock.json.
OlderNpmversionsonlyworkwith shrinkwrap, so itwas important for theNpmteam
to keep this functionality in the Npm ecosystem to ensure backwards compatibility
between old Npm versions and new packages.

4.2.2 ESLint-scope hacked
In July2018apopularpackageon theNpmplatformnamedESLint-scopewashacked.
The hackers gained access to the Npm account of one of the developers of the pack-
age, and used this access to upload a malicious version of the package to the Npm
platform. The open source communities from both Npm and ESLint quickly opened
issues discussing the hacking incident regarding what went wrong and how it could

4.2. EPISODES 33

be prevented in the future [26], [35], [36]. An incident report [37] and a postmortem
[38] of the event was published by the Npm and ESLint team after the episode.

The malicious version of ESLint ran a piece of code upon installation stored on a re-
mote server which stole the user’s login credentials such as access tokens and sent
them to the hackers. Because the ESLint package is a very popular package with over
400 other dependent packages and millions of weekly downloads, the virus had the
potential to spread quickly across the Npm ecosystem. The initial hacked Npm ac-
count that made this attack possible was compromised because the owner did not
use two-factor authentication on the account.

ThemainconcernofNpmdevelopers is the threatof thevirus spreading rapidlyacross
the ecosystem and infecting other large packages. Securing the ecosystem is a recur-
ring theme in these discussions. The developers remember what happened in 2016
with the left-pad incident, wheremajor parts of the internet was taken down due to a
small seemingly insignificant package was taken down from the Npm platform. The
ripple effect of cascading errors this small package caused in the Npm ecosystem is
similar to what could happen during this episode of the ESLint hack.

This could theoretically be a self-replicating virus affecting all packages of all authors
whose credentialswere compromised, and thenallpackages thatdependon thosepack-
ages, and so on. The virus could also then change its behavior to do more than leak
credentials... Just because that’s "all" it did here and just because the pastebin has been
removed, that doesn’t mean that’s what it would do to downstream affected packages.
-ESLint developer

This attack was successful because the hackers could upload the malicious package
directly to the Npm platform without going through a GitHub review process. Some
of the developers note that requiring a public review process before publishing to the
Npmplatformwould reduce thechancesof anattack like thishappening in the future.

As a matter of fact, there is no release tag for 3.7.2 on GitHub, so I think it would be
great to consider double checking with GitHub repository before publishing any code.
This would at least limit the possibility of uploading the malicious code to Npmwith-
out having GitHub credentials to tag the release/version. -Npm developer

Other suggestions on security measures include enforcing stricter security rules for
large and popular packages, that would affect the whole Npm ecosystem in the event
of an attack. These rules could be forcing developers of large packages to use two-

34 CHAPTER 4. CASE

factor authentication or having manual audits of the code. One discussion from this
episode suggests promoting packages that are made by developers using two-factor
authentication. The idea being that developers will be encouraged to think more
carefully about their security and enable two-factor authentication if the Npm plat-
form rewards this in some way. In fact, two-factor authentication on accounts is the
mostmentionedmeasure from this episode that theNpmecosystem can take to pro-
tect itself from hackers.

The maintainer whose account was compromised had reused their npm password on
several other sites and did not have two-factor authentication enabled on their npm
account. We, the ESLint team, are sorry for allowing this to happen. We hope that
other package maintainers can learn from our mistakes and improve the security of
the whole npm ecosystem -ESLint team

TheNpm teamunpublished the infected version of the ESLint package from the plat-
form to prevent further damage. In addition to this, they revoked all access tokens on
the entire platform issued before the attack, ensuring that any stolen access tokens
would be useless. In the aftermath of this episode, the Npm team also made it pos-
sible for package owners to enforce two-factor authentication on any account that
has write access to the package. FollowingGitHub’s acquisition of Npm, new security
measures are being implemented in 2022. These include forcing popular packages to
enable two-factor authentication.

4.2.3 CVE-Reporting
Common Vulnerabilities and Exposures, or CVE, is a publicly available list of known
security vulnerabilities in software systems. CVE reporting in the Npm ecosystem is
an important tool developers use to assess the security levels of open source pack-
ages they might want to use. This includes both normal developers looking to use
Npm packages in their projects, as well as package maintainers wanting to use Npm
packages in their own Npm-package. The episode from 2020 regarding CVE report-
ing revolves around the level of transparency the ecosystem should have about these
security threats [28], [29]. When a new CVE report finds that an Npm-package has
a vulnerability, the users of this package get notified. This in itself is not a bad idea,
however, the CVE reporting system is not perfect and makes the process in the Npm
ecosystem flawed. That is because some of the reported vulnerabilities are actually
false positives, which over time generates a tension between the end users and the
packagemaintainers. Package maintainers want the ability to hide these security re-
ports about their packages, if they are false positives. If a user sees that a new security

4.2. EPISODES 35

vulnerability is discovered in one of the packages they use, they can be left with the
choice of trusting the package maintainer’s word that this is in fact a false positive.
This problem can be solved by letting packagemaintainers, the people closest to the
code, have the control over which CVE reports make it through to the end users on
the platform.

I didn’t come up with a concrete proposal; I’ve just had multiple conversations where
I wanted, as a maintainer, to be able to say "CVE (Common Vulnerabilities and Expo-
sures) XXX does not apply to my package", and then ensure that "my package" is never
the reason a user sees a warning about that CVE. -Npm package maintainer

The idea of giving the package maintainers all the control is not met without resis-
tance. Other Npm users in the discussion are quick to point out the potential attack
vector for hackers to just lie about the severity of a CVE and hide it from users.

There’s also a potential for ’lying’ ormistakes if amaintainer provides this information
for their package (though unlikely, I see that as a particularly attractive entry point for
an attacker if it existed) -Npm developer

Although the majority of package maintainers have good intentions, it only takes a
single infected package to potentially spread a virus to other packages. That is why
this threat is taken very seriously.

Malicious maintainer has more direct opportunities for embedding malware in their
package, IMO. -Npm developer and security expert

Howwould you stop amaliciousmaintainer fromhiding aCVE report for the purposes
of leaving users vulnerable? -Npm developer

Theproblemof hidingCVE-reports is a discussion around security for the ecosystem,
trust in the open source developers, and convenience for package maintainers. The
problemisnotonly contained tomaliciouspackagemaintainers, becauseevendevel-
opers with good intentionsmight not have the required software security knowledge
needed to knowwhether a reported CVE introduces a security threat in their package
or not.

36 CHAPTER 4. CASE

4.2.4 NpmPublic Roadmap

In 2020 theNpmteam introduced theNpmPublicRoadmapaswell as anew feedback
process for its users. The roadmap ismeant to communicate to the users what is cur-
rently beingworked onby theNpm teamaswell aswhat is scheduled to beworked on
in the future. In their blog post about the release of the new public roadmap reposi-
tory, the Npm team highlight how they welcome transparency and cooperation with
the community [39].

We know that maintaining open lines of communication and bringing transparency
to our decisions is integral for the future of npm and JavaScript. -Npm developer

Transparency alone is not the same as involving the community in important deci-
sion making processes. That is why the public roadmap is based on discussions the
community have about new functionality, and suggestions from users or other open
source developers are taken seriously and formally discussed in the Npm ecosystem
[31].

Our roadmap is heavily influenced by discussions with our community that take place
in our public feedback repository. -Npm developer

An example from the case study showcasing how community discussions influence
Npm’s public road map is found in the issue of displaying package downloads dis-
tributed over different versions. This discussion started on Twitter in October 2020,
where a user wanted to know if there was a way to see a package’s downloads for spe-
cific versions of that package. At that time, users could easily see package downloads
over different time periods on a package’s home page, but this was an aggregation of
all downloads across every version of a package. The Twitter conversation resulted in
a formal issue being opened on Npm’s GitHub in its section for giving feedback.

Show package usage by version. Currently the download statistics allow to see overall
adoption of library. But this is not good enoughwhen it comes to understanding adop-
tionofdifferentpackageversions. Theuse cases range fromgetting someunderstanding
of how your beta is performing, tomaking decisions about shipping a security fix on an
older release. Also, having a graph of version mapping and downloads between mod-
ules would be massive for better understanding of ecosystem relationships. -Package
maintainer

Other package maintainers liked this idea and agreed that it would be useful infor-

4.2. EPISODES 37

mation about a package to display to users. About a month later, in November 2020
this functionality was added to the public roadmap and scheduled to be worked on
in Q1 2021. This is just one example of how the open source community of Npm in-
fluences the strategic decisions on the platform, and thus its evolutionary trajectory.

4.2.5 Two-Factor Authentication
The use of two-factor authentication on user accounts is an important security mea-
sure any system can take. Two-factor authentication is also used to protect accounts
on the Npm platform. However, this was not always possible, and certainly not al-
ways required. Npm introduces two-factor authentication in 2017, but as an optional
security measure. A year later, in 2018 multiple discussions around the enforcement
of two-factor authentication emerged [40], [41]. The precursor for both of these ex-
amples was the incident regarding the hacking of the ESLint-scope package, caused
by the lack of two-factor authentication on one of its developer’s account.

Today’s eslint fiasco shows that 2FA can be a powerful tool for stopping unauthorized
package publishes. When a package author choose to not use 2FA and gets compro-
mised as a result, the impact don’t just affect the author, it impacts everyone depending
on that package. -Package maintainer

In light of the growing compromises of NPM packages and malicious actors trying to
mass compromise, I’ve drafted a proposal to enforce 2FA on attempted publish of a
package. -Npm user

Users of Npmwant changes to how two-factor authentication is handled on the plat-
form. Somewant it to be requiredby all developers, otherswant tobe able to know if a
package they use is protected by two-factor authentication or not. TheNpmplatform
could be more transparent about individual packages’ security levels by for example
showcasing two-factor authentication status on apackage’s page on theNpmregistry
website.

Include prominently on the npmwebsite whether a package is published by an author
using 2FA and create a repo badge to advertise this. -Package maintainer

Another way to increase security without strictly forcing the use of two-factor au-
thentication is to let users control a setting to only allow packages protected by two-
factor authentication tobedownloaded into theirproject. If thisbecomeswidespread
amongNpmusers, packagemaintainers would be highly incentivized to enable two-

38 CHAPTER 4. CASE

factor authentication.

Allow me to specify “Only trust 2FA enabled packages” within my package.json . If a
non-2FA dependency is encountered barf loudly so I can hound them and/or remove
the dependency. -Npm user

Requiring all package maintainers and Npm developers to use two-factor authenti-
cation would certainly drastically increase ecosystem security, but at the same time
it is a very controlling enforcement that would affect thousands of individuals. Ev-
eryone agrees that increased security is a good thing, however often in the software
world one can not get something for free without giving up something else. In the
case of two-factor authentication, some users are worried about its implications on
automated build and deploy systems that are set upmake the process of adding new
functionality to packages and deploying them easier.

There are some reasonable cons that could be present, if implemented: 1) Deployment
over CI/CDMay need to be altered to use one-time pass codes, it would require amaster
token, a child token. 2) The time to deploy could be increased by aminute or two, how-
ever, this doubles as a pro, because the time it takes is merely having you verify a 2FA
token to publish. -Npm user

The middle ground approach discussed is to only force the most popular packages
to use two-factor authentication. Packages withmillions of downloads every week or
with a high number of other dependent packages have a huge impact on the ecosys-
tem. Thus, it would be reasonable to suspect that they are larger targets for hackers.

Require packageswith enoughdownloads (I’mnot familiar enoughwith the ecosystem
to say what an appropriate amount would be) to use 2FA to further publish packages.
-Package maintainer

Themiddlegroundapproach is in factwhat tookplace threeyears later, in2021. GitHub
acquired Npm in 2020, and has been working to increase the security in the Npm
ecosystem. GitHub has decided that a selection of popular packages must use two-
factor authentication on their developer accounts, starting in 2022 [30]. This decision
follows a time of periodical attacks on Npm package maintainers’ accounts with the
goal of injectingmalicious code into public packages.

We periodically see incidents on the registry where npm accounts are compromised by
maliciousactors and thenused to insertmalicious code intopopularpackages towhich

4.2. EPISODES 39

these accounts have access. -Chief Security Officer at GitHub

Publishing malicious code to the Npm registry directly from their own accounts is a
valid tactic hackers can use, however the impact of such an attackwould not be as se-
vere as anaccount takeover of adeveloper accountwithpublishing rights to apopular
package. That is because accounts of popular packages canpotentially reachmillions
of users, even users of other packages that depend on the originally infected package.

Even though high-impact account takeovers are relatively infrequent, when compared
todirectmalwarepublished fromattackersusing their ownaccounts, account takeovers
can be wide reaching when targeted at maintainers of popular packages. -Chief Secu-
rity Officer at GitHub

To combat account takeovers, accounts with publishing rights to popular packages
on the Npm platform will be forced to enable two-factor authentication starting in
2022.

wewill begin to require two-factorauthentication (2FA)duringauthentication formain-
tainers andadmins of popularpackages onnpm, startingwitha cohort of toppackages
in the first quarter of 2022. -Chief Security Officer at GitHub

40 CHAPTER 4. CASE

Chapter 5

Discussion

The thesis’ discussion revolves around three themes emerging from the empirical
data collected in the case study. Table 5.1 shows which episodes or phenomena that
belong to each theme. Some themes are overlapping, meaning that certain episodes
belong to two themes, i.e. CVE reporting and Two-factor authentication.

Table 5.1: Themes in the Npm project

Dependencies •

• package.json

• package-lock.json

Security •

• Two-factor authentication

• Vulnerabilities

• ESLint-scope hacked

• CVE reporting

PlatformGovernance •

• Npmpublic roadmap

• Enforcing security measurements

• Top packages forced to use 2FA

• CVE reporting

41

42 CHAPTER 5. DISCUSSION

5.1 Dependencies
The Npm ecosystem is an intertwined network of open source libraries, developers,
maintainers, and users. The open source libraries published on the platform, called
packages, oftenmakeuseofotheropensource librariesaround theweb, or fromwithin
the Npm ecosystem itself. Take for instance a simple package such as the library
named color, made to handle coloring in CSS easier. To use this package, the user
has to install two other packages named color-convert and color-name, each ofwhich
have their own dependencies that also need installing and so on. This is often called
a package’s dependency tree, which is illustrated for the package color in Figure 5.1.
Calling it a dependency tree can sometimes be misleading, as it can imply a reason-
ably simple structure of linear dependencies.

Figure 5.1: Dependency tree of the color package.

For packages withmore complex dependency relationships, the structure represent-
ing its dependencies areoftenbetter describedwith a graph. This is because as the list
of dependencies grows, it is more common to see that packages in the dependency
tree share some of their dependencies. Figure 5.2 shows a graph where the nodes
are packages and the vertices indicate a dependency from one package to another
[42]. This is the dependency graph of an arbitrary package called waterline, and is
included here to highlight how the complexity of the package relationships quickly
becomes overwhelming as the number of nodes in a dependency graph increases.
The graph also displays the specific version of each package to indicate that packages
exist as different versions of themselves. Sometimes other packages might need spe-
cific versions of its dependent packages to work properly, i.e. a package might not

5.1. DEPENDENCIES 43

work with the newest release of one of its dependent packages, but instead needs an
earlier version. When looking at a dependency graph, it becomes easier to grasp how
a small change in one package can propagate through the network and cause unfore-
seen changes in other packages, sometimesmany levels up the dependency tree.

Figure 5.2: Dependency graph of the waterline package. Package names in white in-
dicate a direct dependency of the waterline package, while names in gray indicate a
dependency of a dependency.

One challenge Npm tries to tackle is the complexity of dealing with interdependent
packages, and one way of dealing with this is through the package files package.json
and package-lock.json. These files keep track of a project’s dependencies, their ver-
sions, and rules for updating them. Package.json was used from the very start of the
Npmproject, and lists all dependencies a project has. A projectmight usemanyother
open source libraries and thus have many dependencies, resulting in too much data
to be reasonably published to and downloaded from a source control tool. That is
why package.json exists, by only publishing a list of a project’s dependencies, oth-
ers can use this list to download the packages they are missing locally in order to run
the project. If a developer adds functionality to the project that relies on a new open
source library, they just add the name of that library to the list in package.json and
publish it to the source control, instead of publishing the whole new library with its
source code. Thisobviously increasesperformanceandusability of the tool, but at the
same time it introducesaproblemrelating topackageversioning. Because if youwant
the same project to run on different machines, the names of the dependent pack-
ages is not enough for the project to run consistently across different environments,
especially across a long time frame. That is because the open source packages are

44 CHAPTER 5. DISCUSSION

constantly worked on and improved upon on, and new releases are published fixing
bugs or introducing new backwards incompatible functionality. Thus, if you install a
package on one machine, and some time later install the same package on a differ-
entmachine, theymight produce different results when usedwith your project. Npm
solves this by including rules for package versions in the package.json file, i.e. a listed
dependency might be paired with a versioning field looking like ˆ2.0.2. This tells the
system that for this specific dependency, version 2.0.2 should be used, and indicated
by the ˆ symbol, the system can install any new versions of this package as long as
it is a 2.0.x version. This uses semantic versioning where developers have rules for
what constitutes a new version based on the new functionality that is added, i.e. in
the Npm ecosystem keeping a package version on the form 2.0.x ensures that only
backward compatible bug fixes are added to the package.

The way of handling package versioning with a package.json file as described above
was used by the Npm tool from the very start in 2010, and is in fact the standard way
in the JavaScript ecosystembeing used by other popular packagemanagement tools,
i.e. Yarn. However, this solution only addresses parts of the versioning problem and
does for instance not guarantee consistency of dependencies across environments
since it allows different versions of dependency packages to exist in a project in dif-
ferent environments. This is why lock files are generally used by packagemanagers in
the JavaScript ecosystem today, lockfiles canbe viewedas a snapshot of a projects de-
pendencies and their exact versions. Npm introduced its now widely used package-
lock.json file in 2017, but discussions regarding locking dependencies emerged al-
ready in 2011 on the Npm GitHub. The need to lock dependencies is and was not
unique to theNpmtool, andeven in 2011 thedevelopers atNpm looked toother open
source projects for inspiration on how to solve this issue. External impulses like this
is common to see in the discussions Npm developers are having throughout the de-
velopment of the Npm tool.

An example of external impulses influencing the Npm developers is in the release
of Npm 5 which in many ways is regarded as an answer to the competing package
manager Yarn. In Npm 5 locking dependencies is done through a package-lock.json
file, very similar to how its done in Yarn with its yarn.lock file. Even though Npm al-
ready had functionality to lock dependencies through something called shrinkwrap,
theydecided tomirror this functionality in thenewpackage-lock.json,with reasoning
such as making it easier for new developers to understand its intended functionality
and not having to support later versions of Npm with the old shrinkwrap. The argu-
mentofmaking it easier fornewdevelopers is an interestingone, because it oftencites
familiarity of other tools external toNpm. For instance, just the simple choiceofnam-

5.2. SECURITY 45

ing the file package-lock.json was up for debate numerous times in its development,
wheredevelopers arguing for anamecloser to that of Yarn’s yarn.lock inorder tomake
it clearer what this file is actually for. Just by including the word lock in the filename
it becomes easier to see that this file has something to dowith locking dependencies,
instead of a more ambiguous name such as shrinkwrap. This familiarity principle is
also usedbyNpmdeveloperswhen giving reasons formirroring the shrinkwrap func-
tionality to the new package-lock.json in the first place. When developers new to the
Npm ecosystem see the lock file they instantly recognize it from other packageman-
agement tools such as Yarn or Composer, which lets them easier understand its role
in the code base, and ultimatelymakes the onboarding experience for newcomers to
the tool better.

5.2 Security
Security in software development is to some degree always a relevant point of discus-
sion. This is also the case for the Npm project, where security is a reoccurring theme
among developers. As seen in the literature review, security in open source software
projects is awidelydebated topic inacademicarticles. However, a lotof researchdone
focuses on operating systems or server technologies, and a lack of research on open
source projects facilitating its own platform ecosystem such as Npm exists.

For Npm, security does not only mean ensuring that no vulnerabilities exist in the
code for theNpm tool, but also that nomalicious code exists in its ecosystemof open
source packages. The former is a theme that does not often come up in the Npm
project. Code reviews are done rigorously and often with experienced developers
that have worked on the project for a long time. In addition, when having discus-
sions about how to implement certain functionality, key developers that are familiar
with that part of the code base are included for guidance. This is possibly one of the
reasonswhy the notion ofmaking theNpm tool specific code secure rarely comes up,
it is almost a given that this will be the case. Given that this is exactly one of the argu-
ments presented by Li et al. [17] in order to make open source software less likely to
contain security vulnerabilities, it stands to reason to think that the Npm tool itself is
secure enough for its purpose.

The discussion in the Npm project regarding security often revolves around how to
make theNpmecosystemsecure. This is anecosystemofopensourcepackageswhere
a vulnerability in one package can spread across the network of dependent packages,
like a computer virus jumping frommachine to machine, causing a cascading effect

46 CHAPTER 5. DISCUSSION

of insecure packages. A potential attack vector for hackers to use against open source
communities is to pose as a normal contributor and inject malicious code into an
open source project. This risk exists in the Npm ecosystem just as it does in other
open source projects, however, for hackers to gain the most they usually have to tar-
get popular open source projects with lots of users. Big projects like these often have
a better code review process before new code ismerged into the code base, making it
less likely for hackers to be able to sneak their malicious code in. In the Npm ecosys-
tem, the situation is a bit different. Since packages use each other, hackers can find a
popular package that is widely used and thus probably has a large open source com-
munity. But instead of targeting that specific package, they can target its dependen-
cies, thatmight be smaller projects focusing on niche functionality and probably has
a much smaller community maintaining it. If none of its dependencies are poten-
tial candidates for hacking, they can go after its dependencies’ dependencies, and so
on. Take for instance the waterline package from Figure 5.2, this project has an open
source community of about 100 contributors but one of its dependencies, the par-
ley package, only has 6. It could be way easier for a potential hacker to bypass the
smaller project’s code review process. Changing the parley package could result in a
bug in the waterline package that introduces a vulnerability for the hacker to exploit.
Another implication of the way the Npm ecosystem works is that hackers can target
newly made packages, which according to maillart et al. have more easily discover-
able bugs [43].

...as theprogramages (and therefore, theprobabilityoffindingavulnerabilitydecreases),
switch to newer “easier” programs. -Maillart et al. [43]

Even though the Npm platform lets users download open source packages, the code
is only open sourceonexternal platforms, i.e. GitHub, no code is exposedon theNpm
platform itself. This introduces another attack vector for hackers; bypassing the ver-
sioncontrol toolingand injectingmalicious code straight into theNpmregistrywhich
is the source where users download packages from. This is a good example of how
the Npm project showcases that open source security is more nuanced than Payne’s
[16] argument about introducing back doors into open source software being virtu-
ally impossible makes it out to be. This type of attack works because there is no way
of knowing if the code a user downloads from Npm is in fact the same code that is
open sourced in the project’s GitHub repository. If a hacker gains access to the Npm
account of a package maintainer, they can potentially upload their own code to the
Npm registry infecting that package’s users. This would not be a problem if users just
checked with a project’s source control before downloading a new version of a pack-
age, verifying that the new version that was published to the Npm registry does in

5.2. SECURITY 47

fact exist as a new version onGitHub as well. In practice though, very few if any users
wouldmanually go throughall their packages every time they run theNpmcommand
that automatically updates all their packages according to the rules set in the pack-
age.jsonmentioned earlier. And since their packages combined often have lots of de-
pendencies, they would have to check all of those as well in order to be completely
sure that the code they download is code that exists as open source on i.e. GitHub.
This seems as a vulnerability of the Npm platformwith high potential to cause prob-
lems, thereforemeasures suchas two factor authentication and taggingNpmreleases
withGitHubreleasesweredone inorder topreventanattack like this fromhappening.
This proved not to be enough however, as only a couple of months later the package
ESLint-scope was hacked.

WhenESLint-scopewashacked in 2018, attackers gainedaccess to adeveloper’sNpm
account and used it to publish their ownmalicious version of the package directly to
the Npm registry. The malicious code would steal login credentials of every user of
the package, which was seen as a huge breach given that ESLint-scope had around
2,5millionweekly downloads at the time. In addition, the package had 17 other Npm
packages that depended on it, introducing the possibility for the hackers’ code to
spread to other packages and propagate through the Npm ecosystem.

it’s not clear yet if the eslint-scope infection was a result of a further upstream infec-
tion. The virus could have modified itself (or have been manually modified, or use a
different version entirely) so as to be unrecognizable from the original. There’s nothing
to say that the pastebin code from this incident is the same as what would be infected
in other packages of authors with their credentials compromised. -Npm developer

Another way this hack could spread across Npm is caused by the fact that package
maintainers are very likely also users of Npm. This means that if any package main-
tainers used ESLint-scope, they could have their login credentials to Npm stolen and
the hackers would then have a new package totally unrelated to ESLint to override
with malicious code. An attack like this, with different ways of spreading across the
ecosystem that would be very hard to track, could pose a huge threat to the integrity
of Npm. This is why many solutions proposed to fix this incident include measures
that involve the whole Npm ecosystem, not just the infected packages.

The key is revoking all npmrc tokens globally before the attacker takes action. -Npm
user

It seems like the reasonable thing to do would be: Temporarily halt all package publi-

48 CHAPTER 5. DISCUSSION

cations. Search the entire registry for references to this virus andunpublish any infected
packages. Globally revoke all authentication tokens. -Npm package maintainer

A larger focus on security had been starting to emerge in the Npm project prior to
this event, two-factor authentication onNpmaccountswas for instance introduced a
year earlier in 2017. And inApril 2018Npmversion 6was released, promising a bigger
emphasis on security. For the ESLint incident, the cause of the hack can be viewed as
a user error, given that the compromised account did not use two factor authentica-
tion. On theotherhand, theNpmtool lets anyonepublishdirectly to theNpmregistry
from their local machine, if this was not the case and instead code was forced to go
through anopen source platform such asGitHubbefore entering theNpmregistry an
attack like this would not be possible in the first place. The question of how to imple-
ment security then becomes a question of how Npm want to govern their platform,
and the ESLint incident sparked discussions about forcing security measures upon
the Npm developers, i.e. requiring two factor authentication or making it harder to
publish their code to the Npm registry. It is hard to argue against increasing security
in a product, but increased security always comeswith a cost. This could for instance
be an increase in complexity for automated systems such as continuous integration,
which is a concern from package maintainers in the Npm project in the discussions
revolving around enforcement of security measures.

Asdescribed in the literature review,measuringsecurity in softwarecanbehard. How-
ever, theNpmproject tries to present userswith a securitymeasurement using its au-
diting feature. This feature scans a project for known vulnerabilities and generates a
report that shows each vulnerability a project has paired with a score of how severe
a vulnerability is. The scores are simply four categories ranging from low to critical,
and the report does not contain any more information regarding the type of vulner-
ability or other measurements. The audit feature of Npm does somewhat align with
the security measurement model described by Schryen et al. [14] in that it includes
the severity of each vulnerability in its report. However, one interesting topic of dis-
cussion appearing in Npm regarding security measurement is the desire to hide or
ignore vulnerabilities given a low severity score. Given that Npm’s security measure-
ment allows for a vulnerability to be classified as low severity, many developers want
to hide these from their users. This is especially true for package maintainers, that
report being overwhelmed with the amount of security warnings for their projects.

Today a small group of maintainers get bombarded with issues and dependency up-
date PRs when a new CVE is reported on popular libraries. Many, if not most, of these
are false positives from a vulnerability perspective. This level of noise creates distrust

5.3. PLATFORMGOVERNANCE 49

between security companies/researchers, maintainers, and end users. It also frustrates
users and maintainers due to the shear volume of work it creates for them. In a worst
case scenario, this leads to even worse security practices; in best case, it catches some
vulnerabilities at the cost of ongoingmaintenance work. -Npm package maintainer

This highlights one problemwithmeasuring software security, specifically the label-
ing of vulnerabilities, becausewhodecideswhich severity level a reported vulnerabil-
ity should have? A suggestion from theNpmdiscussions is to let the people closest to
the package in question decide whether or not a vulnerability is severe or not, which
makes sense because they know the code best. However, a problem with this logic
arises if we recall the arguments from Li et al. [17] and Payne [16] which highlight the
importance of security specific knowledge in order to assess software security.

Security flaws are not like ordinary bugs. They are subtle and complex, and often re-
quire specialized or in-depth knowledge to identify. -Payne [16]

Package maintainers do not necessarily have the expertise required to make a good
assessment of a discovered vulnerability, and thus it could be labeled as having a
low severity when in reality it should have been labeled critical. This only becomes
more complex and difficult for package maintainers when considering a vulnerabil-
ity warning for a package could potentially be traced back several levels in its depen-
dency tree. Nonetheless, it is still interesting to note the push from some package
maintainers to receivemore autonomy and decision power over themeasurement of
security in their own packages.

5.3 PlatformGovernance
The Npm platform is governed by its owners, the private firm Npm Inc. They hold
most of the strategic and some implementational decision rights related to the evo-
lution of the platform, or what Tiwana calls Platform decisions. It is not uncommon
that theplatformowners are responsible formajority of platformdecisions rights, but
where the Npm platform differs frommany other platforms is in its open source de-
velopment of the platform core. This shifts a lot of implementational decision rights
towards the community and away from theplatformowners, even though they them-
selveshave the last say inwhat gets implementedornot. Npmasplatformowners rely
on its open source community to improve upon and contribute to the platform core,
but must also ensure the longevity and stability of their platform at the same time.
Relying on the work of open source developers means that Npm Inc. must share the

50 CHAPTER 5. DISCUSSION

strategic platform decision rights with its community in order to facilitate its open
source development. The literature often focuses on using platform governance to
control content providers in order to facilitate creative output and innovation. For ex-
ample, Tiwana et al. view platform governancemechanisms as tools to control mod-
ule developers in a way that fosters innovation in the development of their modules,
or third-party apps.

A central governance challenge is that a platform owner must retain sufficient control
to ensure the integrity of the platformwhile relinquish ing enough control to encourage
innovation by the platform’s module developers. -Tiwana et al. [18]

This way of looking at platform governance is only partly aligned with what we see
on the Npm platform. The platform owners of Npm certainly must facilitate innova-
tion of the platform’s creative output, however the creative output is not only limited
to third party apps but includes the development of the core platform functionalities.
NpmInc. must govern itsplatform inaway that facilitates anopensourcecommunity
workingon these core functionalities. This addsanextra layerofplatformgovernance
that is not discussedmuch in the digital platform literature.

One explicit way Npm includes its open source community in decision making is
through the Npm public roadmap. This is a list of features for the npm core platform
that is being worked on or scheduled to be implemented in the future. The roadmap
is organized into quarterly slots, each with their assigned issues to be worked on in
the given time frame. The public roadmap is not only a way for the platform own-
ers to be transparent about the future direction of the platform, but is also heavily
influenced by the discussions in the Npm community. This means that some of the
strategic platformdecisions ofNpm is heavily influencedby its community. Recalling
Tiwana’s way of looking at decision rights partitioning in Figure 2.1, we can see that
there are no sliders for a platform’s community, instead decision rights exist only on
a line and is limited to platform owners and app developers. This way of looking at
decision rights partitioning does not fit very well with what we see on the Npm plat-
form. Figure 5.3 expands on Tiwana’s sliders by introducing a third dimension where
the slider can go; a platform’s community. The figure shows how strategic platform
decisions are divided between the platformowners, packagemaintainers (app devel-
opers), and the open source community surrounding Npm. Even though Npm Inc.
bases its public road map on community discussions, they as platform owners ulti-
mately have the final say in deciding what future direction to take the platform in.
That is why the "slider" is moved closer towards platform owners in Figure 5.3.

5.3. PLATFORMGOVERNANCE 51

Figure 5.3: Decision rights partitioning of strategic platform decisions on the Npm
platform.

Wareham et al. found that opening up a platform’s source code was a way to increase
desired variability in a platform’s output [23]. They argue thatwhen the platform core
is open source, third party developers can customize it to fit their functional require-
ments better, leading to more specialization and variety in the products on the plat-
form. This is somewhat the case for the Npm platform as well, seeing as its core is
also open source. However, much of the actual code for new functionality is done by
Npm staff or open source contributors focusing on the Npmplatform core instead of
package development. Instead, packagemaintainers influence the core functionality
more by taking part in discussions and reporting bugs, which in it self can be classi-
fied as customizing the core functionality. It does happen that new core functionality
is implemented by packagemaintainers, but not to the same degree thatWareham et
al. found in their case study, and often this is done by package maintainers that also
frequently contribute to the core functionality as well. The type of actors that have
this dual role of not only producing packages for the platformbut also developing the
core is anactor groupwithoutmuchcover in the academic literature. Actorswithdual
roles have previously been discussed, i.e. the case of the owner-members found on
popular sharing economy platforms byMartin et al. [24].

It might be helpful to draw a distinction between: users with a passing or limited in-
terest in the platform – who do not have rights to participate in democratic decision-
making processes; and the more engaged owner-members of the platform - who have

52 CHAPTER 5. DISCUSSION

rights to participate in democratic decision-making processes. -Martin et al. [24]

This is certainly a good example of collaboration of between platform owners and
users, but not on the same level as in the Npm ecosystem. Given the existence of the
public roadmap where every Npm user can influence the decision making process,
the description from Martin et al. would classify every Npm user as an owner-user,
whichmakes the distinction obsolete. In addition, Npm users have the rights to par-
ticipate in the implementationof newcoreplatform functionalities andmaintenance
of existing ones. This raises the collaboration between platformowners and other ac-
tors to a level not seen in any of the case studies from the literature.

The tension between control and autonomy for platform actors introduced byWare-
ham et al. has manifested itself on the Npm platform in recent discussions regard-
ing enforcement of security measurements for its actors. Specifically in discussions
around CVE (Common Vulnerabilities and Exposures) reporting and enforcing two-
factor authentication. User authentication has been an important topic in the Npm
ecosystem ever since the hacking of ESLint-scope in 2018 up until today, and other
attacks exploiting the lack of two-factor authentication has been done in the mean
time. For example, in November 2021 a report from a bug bounty program found a
way to publish content to an Npm package using an account without the proper au-
thorization, which is very reminiscent of the attack on ESLint-scope a couple of years
earlier. The situation in the Npm ecosystem has lead to the decision that popular
packages with a high number of downloads or dependent packages will be forced to
use two-factor authentication on their developer accounts. This decision should not
come as a shock to the Npm ecosystem, as many discussions revolving around two-
factor authentication emerged around 2018, after the ESLint-scope incident.

I’d like toflagallmypackages as requiring 2FA inorder topublish them. Basically, don’t
make it a user setting but rather a package setting. If a personwith publish rights to the
package does not have 2FA set up and tries to publish; disallow the publish. Would that
be possible? -Package maintainer

FeatureRequest: Allowmeto specify “Only trust 2FAenabledpackages”withinmypack-
age.json . If a non-2FA dependency is encountered barf loudly so I can hound them
and/or remove the dependency. -Npm user

Forcing only popular packages to use two-factor authentication could be seen as a
first step to introduce partner levels on theNpmplatform. Wareham et al. found that
partner levels between the platform owner and third party developers comewith dif-

5.3. PLATFORMGOVERNANCE 53

ferent setsof requirements thedevelopersmust fulfil, oneofwhichcouldbe to require
strict authentication of the developers. In return, a higher level of partnership should
result in more value created for the developers.

To obtain higher certification status, partners must typically demonstrate a variety of
achievements (to obtainpoints) orwillingly submit to greater levels of control over their
processes and outputs. -Wareham et al. [23]

In the case of the packagemaintainers being forced to use two-factor authentication,
the value comes mostly in the form of increased validity by being recognized by the
platform owners as more secure. A big difference in what Wareham et al. found and
Npm, is that actors inNpmcan not choose a desired partner level as they could freely
do in the case from Wareham et al. This distinction shifts the tension more towards
control instead of autonomy in the particular example of two-factor authentication.
Wareham et al. describes an actor’s choice of partner level as a market transaction
with the platformowners, where they give up control in exchange for some perceived
value. Since the top Npm packages have no choice but to use two-factor authenti-
cation, it feels more like an enforcement of a standard they must abide by. Another
area where we can see a similar tension between autonomy and control in regards
to security measurements is the discussions of CVE reports and the implications of
giving too much actor autonomy has on ecosystem security. As discussed earlier, it
is not a trivial task to decide how to enforce rules about ecosystem security, but in-
terestinglymany Npmusers and packagemaintainers favour control over autonomy
and are willing to submit to a higher level of control over their processes to achieve
the common goal of increased ecosystem security.

54 CHAPTER 5. DISCUSSION

Chapter 6

Conclusion

Through studying the Npm project, wider conclusions about both open source and
software ecosystems in general can be drawn. The thesis started out by asking the fol-
lowing research question:

How do open source specific aspects affect the evolution of software ecosystems?

The intersection of the two themes offers interesting knowledge that can be applied
to both themes individually, andhighlights how researchers canunderstand software
ecosystems through open source aspects. As the open source movement continues
to expand, applying knowledge learned from studying open source projects in order
to understand other areas of research can becomemore useful in the future.

Open source software has shifted frombeing a distant andobscure development pro-
cess towards becomingmainstream and commercially viable software that supports
the whole world. In this shift, open source projects and communities have become
more interconnected, and instead of existing as individual projects focusing inwards,
they cooperate among themselves to a greater degree. The academic debate around
open source often takes on the question of what it is, and how it distinguishes itself
from traditional proprietary software. This line between open source and everything
else is becoming harder to define, as the open source movement continues to influ-
ence the rest of the software development world. For example, the matter of gover-
nance in open source projects have similarities also seen in traditional software de-
velopment, especially regarding digital platforms. In addition, a lot of the software in
today’sworld, proprietary or not, relies onopen source in somewayor form. This fur-
ther obfuscates the boundary between what is and is not open source software. Take
for example proprietary software that ultimately need open source libraries in order
to function. Those projects themselves are not open source because developers can
not freely use and contribute to them, however, in the end they still rely on the work

55

56 CHAPTER 6. CONCLUSION

of open source communities.

Open source projects are becomingmore interconnected, i.e. libraries depending on
eachother, which starts to bear a resemblance tohowmodules in traditional software
projects interact with each other. The challenges seen in open source projects today,
are similar to challenges that complex proprietary software projects also face. Secu-
rity for instance, is a major concern in the open source world. The threat of a virus
spreading across an ecosystem of open source projects is similar to how a security
vulnerability could spread across other software ecosystems.

The majority of successful digital platforms today are dominated by a governance
structure defined by a centralized all-controlling platform owner. This thesis’ case
study of a digital platform embracing the culture of open source, and the decentral-
ized governance model this entails, shows that the all-controlling platform owner
mightnot be a strict necessity for aplatform’s success. Becauseof the limited research
ondecentralised digital platforms, this thesis contributes to the academic knowledge
on digital platforms and software ecosystems. In a world which is becoming increas-
ingly aware of the benefits of decentralization,maybe the trend for future digital plat-
forms will shift towards embracing openness and community governance instead of
an all-controlling platform owner. Maybe this is the next area where the open source
movement will influence the rest of the software world.

6.1 Limitations
This thesis has explored the topic of open source platforms, but is notwithout its lim-
itations. Oneweakpoint of the thesis is the lack of interviewswith developers or users
of theNpmplatform,whichcouldhave improved theempirical basisused in theanal-
ysis. Because theNpmproject is ahugeopensourceprojectwithhundredsof contrib-
utors and thousands of comments and discussion threads, only a very small subset of
the total empirical dataavailablewascollected. This is expectedgiven the scopeof the
thesis and the nature of conducting case studies, but is nonetheless a valid limitation
tomention.

6.2 FurtherWork
As the popularity of open source and digital platforms grows, it is likely that the com-
bination of the two will continue to be a relevant topic for future researchers. To in-
crease the validity of the findings of this thesis, similar case studies could be con-

6.2. FURTHERWORK 57

ducted on other open source platforms. Another interesting area to study would be
to look at how the ownership structure of open source projects affects their evolution.
Some open source projects have big private corporations backing them, while others
employ amore democratic ownership structure. It could be interesting to study these
organizational differences.

58 CHAPTER 6. CONCLUSION

Bibliography

[1] “Blog post, npm weekly 133.” https://medium.com/npm-inc/npm-weekly-133-billions-of-
packages-downloaded-621a5196593, 2018.

[2] “Attitudes to security in the javascript community.” https://medium.com/npm-inc/
security-in-the-js-community-4bac032e553b, 2018. Accessed on 26.05.2021.

[3] R. Hat, “The state of enterprise open source,” 2021.

[4] B. Fitzgerald, “The transformation of open source software,”MIS quarterly, pp. 587–598, 2006.

[5] V.K.Gurbani, A.Garvert, and J.D.Herbsleb, “Acase studyof acorporateopensourcedevelopment
model,” in Proceedings of the 28th international conference on Software engineering, pp. 472–481,
2006.

[6] O. Franco-Bedoya, D. Ameller, D. Costal, and X. Franch, “Open source software ecosystems: A
systematic mapping,” Information and software technology, vol. 91, pp. 160–185, 2017.

[7] M. De Reuver, C. Sørensen, and R. C. Basole, “The digital platform: a research agenda,” Journal of
Information Technology, vol. 33, no. 2, pp. 124–135, 2018.

[8] N. Economides and E. Katsamakas, “Two-sided competition of proprietary vs. open source tech-
nology platforms and the implications for the software industry,” Management science, vol. 52,
no. 7, pp. 1057–1071, 2006.

[9] “Epic games v. apple.” https://en.wikipedia.org/wiki/Epic_Games_v._Apple, 2020.

[10] “Why does youtube treat it’s content creators so poorly?.” https://www.quora.com/
Why-does-YouTube-treat-its-content-creators-so-poorly, 2016.

[11] P. Krill, “Qa: Why io.js decided to fork node.js.” https://www.infoworld.com/article/2855057/
why-iojs-decided-to-fork-nodejs.html, 2014.

[12] A. Fuggetta, “Open source software—-an evaluation,” Journal of Systems and software, vol. 66,
no. 1, pp. 77–90, 2003.

[13] B. Kogut and A.Metiu, “Open-source software development and distributed innovation,”Oxford
review of economic policy, vol. 17, no. 2, pp. 248–264, 2001.

[14] G. Schryen andR. Kadura, “Open source vs. closed source software: towardsmeasuring security,”
in Proceedings of the 2009 ACM symposium on Applied Computing, pp. 2016–2023, 2009.

[15] E. Raymond, “The cathedral and the bazaar,” Knowledge, Technology & Policy, vol. 12, no. 3,
pp. 23–49, 1999.

[16] C. Payne, “On the security of open source software,” Information systems journal, vol. 12, no. 1,
pp. 61–78, 2002.

59

https://medium.com/npm-inc/security-in-the-js-community-4bac032e553b
https://medium.com/npm-inc/security-in-the-js-community-4bac032e553b
https://en.wikipedia.org/wiki/Epic_Games_v._Apple
https://www.quora.com/Why-does-YouTube-treat-its-content-creators-so-poorly
https://www.quora.com/Why-does-YouTube-treat-its-content-creators-so-poorly
https://www.infoworld.com/article/2855057/why-iojs-decided-to-fork-nodejs.html
https://www.infoworld.com/article/2855057/why-iojs-decided-to-fork-nodejs.html

60 BIBLIOGRAPHY

[17] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai, “Have things changed now? an empirical study
of bug characteristics in modern open source software,” in Proceedings of the 1st workshop on
Architectural and system support for improving software dependability, pp. 25–33, 2006.

[18] A. Tiwana, B. Konsynski, and A. A. Bush, “Research commentary—platform evolution: Coevolu-
tion of platform architecture, governance, and environmental dynamics,” Information systems
research, vol. 21, no. 4, pp. 675–687, 2010.

[19] P. Song, L. Xue, A. Rai, and C. Zhang, “The ecosystemof software platform: A study of asymmetric
cross-side network effects and platform governance,”Mis Quarterly, vol. 42, no. 1, pp. 121–142,
2018.

[20] M. Schreieck, A. Hein, M. Wiesche, and H. Krcmar, “The challenge of governing digital platform
ecosystems,”Digital marketplaces unleashed, pp. 527–538, 2018.

[21] J.Manner,D.Nienaber,M.Schermann, andH.Krcmar, “Governance formobile serviceplatforms:
a literature review and research agenda.,” in ICMB, p. 14, 2012.

[22] A. Tiwana, Platform ecosystems: Aligning architecture, governance, and strategy. Newnes, 2013.

[23] J. Wareham, P. B. Fox, and J. L. Cano Giner, “Technology ecosystem governance,” Organization
science, vol. 25, no. 4, pp. 1195–1215, 2014.

[24] C. J.Martin, P. Upham, andR. Klapper, “Democratising platform governance in the sharing econ-
omy: An analytical framework and initial empirical insights,” Journal of Cleaner Production,
vol. 166, pp. 1395–1406, 2017.

[25] “Node packagemanager (npm) github page.” https://github.com/npm, 2021.

[26] “Eslint-scope 3.7.2 has been hacked 21202.” https://github.com/npm/npm/issues/21202, 2018.
Accessed on 04.05.2021.

[27] “shrinkwrap and optionaldependencies 2679.” https://github.com/npm/npm/issues/2679,
2012.

[28] “Reduce the noise, work, and frustration from cve reporting 62.” https://github.com/npm/
feedback/discussions/62, 2020. Accessed on 04.05.2021.

[29] “Suggest ignoring a vulnerability by the packagemaintainer 386.” https://github.com/nodejs/
package-maintenance/issues/386, 2020. Accessed on 04.05.2021.

[30] M. Hanley, “Github’s commitment to npm ecosystem security.” https://github.blog/
2021-11-15-githubs-commitment-to-npm-ecosystem-security/, 2021.

[31] “npm public roadmap.” https://github.com/npm/roadmap, 2020.

[32] “About node packagemanager.” https://docs.npmjs.com/about-npm, 2021.

[33] “Npm release notes, v5.0.0.” https://blog.npmjs.org/post/161081169345/v500, 2017.

[34] “spec: Describe npm-shrinkwrap.json andpackage-lock.json 16441.” https://github.com/npm/
npm/pull/16441, 2017.

[35] “Virus in eslint-scope? 39.” https://github.com/eslint/eslint-scope/issues/39, 2018.

[36] “eslint-scope attack.” https://gist.github.com/hzoo/51cb84afdc50b14bffa6c6dc49826b3e,
2018.

[37] “Postmortem for malicious packages published on july 12th, 2018.” https://eslint.org/blog/
2018/07/postmortem-for-malicious-package-publishes, 2018.

https://github.com/npm
https://github.com/npm/npm/issues/21202
https://github.com/npm/npm/issues/2679
https://github.com/npm/feedback/discussions/62
https://github.com/npm/feedback/discussions/62
https://github.com/nodejs/package-maintenance/issues/386
https://github.com/nodejs/package-maintenance/issues/386
https://github.blog/2021-11-15-githubs-commitment-to-npm-ecosystem-security/
https://github.blog/2021-11-15-githubs-commitment-to-npm-ecosystem-security/
https://github.com/npm/roadmap
https://docs.npmjs.com/about-npm
https://blog.npmjs.org/post/161081169345/v500
https://github.com/npm/npm/pull/16441
https://github.com/npm/npm/pull/16441
https://github.com/eslint/eslint-scope/issues/39
https://gist.github.com/hzoo/51cb84afdc50b14bffa6c6dc49826b3e
https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes
https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes

BIBLIOGRAPHY 61

[38] “Compromised version of eslint-scope published.” https://status.npmjs.org/incidents/
dn7c1fgrr7ng, 2018.

[39] M.Borins, “Introducing thenpmpublic roadmapandanew feedbackprocess.”https://github.
blog/2020-10-22-introducing-the-npm-public-roadmap-and-a-new-feedback-process/,
2020.

[40] “Require or at least broadcast package 2fa.” https://npm.community/t/
require-or-at-least-broadcast-package-2fa/458, 2018.

[41] “Enforce 2fa on publish.” https://github.com/npm/npm/issues/21207, 2018.

[42] “Visualization of npm dependencies.” http://npm.anvaka.com/#/view/2d/waterline/0.14.
0-5, 2021. Accessed on 04.10.2021.

[43] T. Maillart, M. Zhao, J. Grossklags, and J. Chuang, “Given enough eyeballs, all bugs are shallow?,”
inWorkshop on the Economics of Information Security, 2016.

https://status.npmjs.org/incidents/dn7c1fgrr7ng
https://status.npmjs.org/incidents/dn7c1fgrr7ng
https://github.blog/2020-10-22-introducing-the-npm-public-roadmap-and-a-new-feedback-process/
https://github.blog/2020-10-22-introducing-the-npm-public-roadmap-and-a-new-feedback-process/
https://npm.community/t/require-or-at-least-broadcast-package-2fa/458
https://npm.community/t/require-or-at-least-broadcast-package-2fa/458
https://github.com/npm/npm/issues/21207
http://npm.anvaka.com/#/view/2d/waterline/0.14.0-5
http://npm.anvaka.com/#/view/2d/waterline/0.14.0-5

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Mats Engstad

The Intersection of Open Source and
Digital Platforms

Master’s thesis in Computer Science
Supervisor: Eric Monteiro
January 2022

M
as

te
r’s

 th
es

is

	Introduction
	Thesis Structure

	Literature Study
	Open Source Software
	Software Security
	Vulnerabilities

	Platform governance

	Method
	Research Approach
	Data Collection
	Data Analysis
	Choosing a Case

	Case
	Case Background
	Episodes
	Introducing package-lock.json
	ESLint-scope hacked
	CVE-Reporting
	Npm Public Roadmap
	Two-Factor Authentication

	Discussion
	Dependencies
	Security
	Platform Governance

	Conclusion
	Limitations
	Further Work

