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Abstract. We introduce the category of power quandles, and study the forgetful functor Pq
from groups to power quandles together with its left adjoint Gr. We conjecture that if two

finite groups have isomorphic power quandles, then they are isomorphic as groups, and prove

several partial results in this direction. Several of these new results are formally verified in
the Lean theorem prover.
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1. Introduction

A quandle is a set Q with a binary operation B which is self-distributive, idempotent (by
which we mean a B a = a), and bijective when we fix the first argument. Quandles can come
from various sources, but importantly to us, they can come from group conjugation. That is,
take a group G, use its underlying set and define aB b = aba−1. One can verify that this satisfies
the axioms.

However, the quandle of a group is a rather weak invariant, in the sense that if G and H are
groups with isomorphic quandles, they are not necessarily isomorphic as groups. To see this,
consider abelian groups, where we get aB b = b, so the operation carries no information and we
are left with just a set. It is then clear that abelian groups of the same order have isomorphic
quandles.

Motivated by this, we introduce a better invariant of groups that we call power quandles,
which take the power maps x 7→ xn for n ∈ Z into account, as well as conjugation. Power
quandles form a category, and there is a forgetful functor Pq from groups to power quandles.
This functor has a left adjoint Gr.

Goal. The goal of this bachelor thesis is to explore power quandles, especially the question of
whether non-isomorphic groups can have isomorphic power quandles.

Results. We now list the main results of this thesis.

Theorem 1.1. If two finite groups G,H satisfy PqG ∼= PqH (isomorphism of power quandles),
then:

ZG ∼= ZH

Here ZG is the center of G, and the isomorphism is one of (abelian) groups.

Corollary 1.2. If two finite abelian groups G,H satisfy PqG ∼= PqH, then G ∼= H.

Theorem 1.3. (verified in Lean) If two groups G,H satisfy PqG ∼= PqH, then:

G/ZG ∼= H/ZH

The isomorphism is one of groups.

Corollary 1.4. If two centerless groups G,H satisfy PqG ∼= PqH, then G ∼= H.

Together, these two main theorems give the following additional corollaries:

Corollary 1.5. If two finite groups G,H satisfy PqG ∼= PqH, then G and H are both central
extensions of the same groups, i.e. we have short exact sequences

1→ A→ H → Q→ 1

and

1→ A→ G→ Q→ 1

Here, we have

A := ZG ∼= ZH

and

Q := G/ZG ∼= H/ZH

Note that this in itself is not enough to say G and H are isomorphic. Indeed the possibilities
are classified by the second group cohomology H2(Q;A). We see that when A or Q is trivial, the
groups are isomorphic, which corresponds to the centerless and the abelian cases.

Corollary 1.6. Given two finite simple groups G,H, if PqG ∼= PqH, then G ∼= H.
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Based on these results, it is natural to conjecture the following:

Conjecture 1.1. Main conjecture on power quandles. Given two finite groups G,H, if
PqG ∼= PqH, then G ∼= H as groups.

In order to gather further evidence for this conjecture, we have pursued two separate ap-
proaches. The first approach is simply a search for counterexamples. In order to carry out such
a search, we need tools allowing us to show that two power quandles are non-isomorphic. We
make use of two distinct such tools.

The first tool is the abelianization functor, that takes a power quandle and yields an abelian
power quandle, which is an abelian object in the category of power quandles. This carries the
information about conjugacy classes in the group, and the power maps on these conjugacy classes.
This is essential information about the group, often placed alongside the character table, as in
GAP.

The other tool is the functor Gr from power quandles to groups, which is the left adjoint
to the forgetful functor Pq taking a group to its power quandle. It essentially creates the free
group of the set of elements of the power quandle Q, but quotients out by [xB y] = [x]B [y] and
[xn] = [x]n. Here [g] is the generator of the free group coming from the element g in the power
quandle Q. This means that for given G and H, we can compute Gr PqG and Gr PqH and
if these two groups are not isomorphic, then PqG and PqH are clearly not isomorphic either.
This functor is analogous to the functor taking a quandle to its enveloping group. We also have
a computer program that can compute GrQ for finite Q, although as one might expect, it is very
slow for larger groups, say beyond 64 elements.

The second approach regarding the main conjecture is the investigation of a stronger conjec-
ture:

Definition 1.7. A group G is pq-like if there exists a power quandle Q such that G ∼= GrQ.

Conjecture 1.2. Every finite group is pq-like.

This is equivalent to Gr being essentially surjective (when we restrict the categories to finite
groups and finite power quandles.) The following theorem highlights why this conjecture is
stronger:

Theorem 1.8. If G and H are finite and pq-like, and PqG ∼= PqH, then G ∼= H.

These are our main results regarding pq-like groups, which can be seen as partial results
towards Conjecture 1.2.

Theorem 1.9. (verified in Lean) A group G is pq-like if and only if there exists a sub-power
quandle Q ⊂ PqG, such that GrQ ∼= G.

Theorem 1.10. A group is pq-like if and only if there exists a presentation of the group using,
in the relations, only conjugation and powers of the generators.

Theorem 1.11. All Coxeter groups are pq-like.

Note all symmetric groups are Coxeter groups.

Theorem 1.12. (verified in Lean) Let G and H be pq-like groups and let φ : H → Aut(G)
be a homomorphism. If φ(x) is in the “image” of Gr for all x, then G oφ H is pq-like. This
condition is always met if G is cyclic, or if φ is trivial.

We believe that in most practical cases, this condition is satisfied, as there is flexibility both
in which φ to pick, and the power quandles that G and H are pq-like with.

Theorem 1.13. Finite abelian groups are pq-like.
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Lean Verification. Note also that during the development of the mathematical theory, we have
made extensive use of the Lean theorem prover. The system is at [3], while an extensive library
within the system that we also used, is at [14]. Lean is a proof assistant, which provides an
interactive environment for writing strictly formal proofs, so that one can be sure the results are
correct. Not everything in this paper has been formalized in Lean, but several important proofs
have been. The code may be accessed at https://github.com/torstein-vik/power-quandle-lean.

SageMath Computation. For algebraic computation, we used SageMath, [11], and specifically
GAP [6]. The computational code may be accessed at https://github.com/torstein-vik/power-
quandle-computation.

Overview of Paper. We now give an overview of the sections. Section 2, is only about the
established theory of quandles which is necessary in this paper. It contains a definition of
quandles, and the adjoint pair between them and groups.

Section 3 is about defining the essentials of the theory of power quandles. It also contains the
disjoint union of power quandles, which becomes useful later. It contains examples to show that
the functor from groups to power quandles is neither essentially surjective, nor full.

Section 4 has a single goal, namely proving that PqG ∼= PqH implies ZG ∼= ZH for finite G
and H.

Section 5 has an analogous goal, namely proving that PqG ∼= PqH implies G/(ZG) ∼=
H/(ZH). Perhaps surprisingly, it has a completely different proof path. It also combines this
with the main theorem of Section 4, to give a theorem displaying G and H both as central
extensions of A by K, where A ∼= ZG ∼= ZH and K ∼= G/(ZG) ∼= H/(ZH) given that PqG ∼=
PqH. It also combines with Section 4 to give that two finite simple groups G,H with PqG ∼=
PqH implies G ∼= H.

Section 6 establishes the theory of abelian power quandles, which is not highly interconnected
with the rest of the theory, but provides a valuable tool to exclude the possibility that PqG ∼=
PqH when this is otherwise hard to do. We prove that in an abelian power quandle, we have
aB b = b. We also demonstrate how the abelian power quandle of a group contains information
about the conjugacy classes in the group, as well as the power maps between these.

Section 7 introduces the functor Gr, which is left adjoint to Pq and is the central object of
study for the remainder of the paper. We compute Gr Pq for several groups, and show that it is
not the identity functor. We prove that the kernel of the counit ε : Gr PqG→ G is in the center
of Gr PqG, meaning it is an abelian group. We also prove that Gr(Q1 ]Q2) ∼= GrQ1 ×GrQ2.
Finally, we create a tool for determining whether a power quandle morphism is also a group
homomorphism.

Section 8 introduces the property that a group may be pq-like, meaning that for G there exists
Q such that G ∼= GrQ. We prove that G pq-like implies Gr PqG ∼= A × G for some abelian
group A, and use this to prove that if G and H are pq-like and finite, and PqG ∼= PqH, then
G ∼= H. We finally provide a lot of tools for proving that groups are pq-like. This includes
restricting the search-space for possible Q’s to just the sub-power quandles of PqG, and that
G is pq-like is equivalent to the existence of a certain presentation of G using only conjugation
and powers. We also prove pq-likeness for direct products, cyclic groups, finite abelian groups,
semidirect products GoφH (under the condition specified in Theorem 1.12 above), and Coxeter
groups, including the symmetric groups.

Prerequisites. We assume familiarity with basic group theory and category theory.

Notation. Cn is the cyclic group of n elements. Dn is the dihedral group with 2n elements. An

is the alternating group acting on n elements. Sn is the symmetric group acting on n elements.

https://github.com/torstein-vik/power-quandle-lean
https://github.com/torstein-vik/power-quandle-computation
https://github.com/torstein-vik/power-quandle-computation
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Q8 is the quaternion group. Z is the integers. ZG is the center of G. FR is the free object
generated by the set R, in some category specified by context.

Acknowledgements. Finally, we acknowledge those who were essential in the process of cre-
ating this bachelor thesis. First and foremost, Markus Szymik served as supervisor, and was
indispensable in both the development of the mathematical ideas, and in the preparation of the
paper. Also, Andreas Holmstrom provided many pointers along the way. Finally, I would like to
thank my friends and family for their support.
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2. Quandles

Quandles are well-established algebraic structures, which are heavily used in knot theory.
They have a self-distributive operation B that is in a sense idempotent and invertible. Every
group induces a conjugation quandle, which are the quandles we concern ourselves with in this
paper. Adjointly to the conjugation quandle, quandles induce an enveloping group. This induced
group is often hard to work with, and a finite group sent through the comonad of conjugation
quandle then enveloping group never yields a finite group. For a more thorough introduction
to quandles, see [8] or [9] as original sources. [2] and [5] are also good sources. For a more
categorical approach, see [12]. For textbooks, see [4] and [10]. This section is based on these
sources.

Definition 2.1. A quandle is a set together with a binary operation B subject to the following
axioms:

aB (bB c) = (aB b)B (aB c)

aB a = a

Finally, we require that the map b 7→ a B b is bijective for all a. Indeed, it is an automorphism
of the quandle structure due to the first axiom. This means:

aB b = aB c⇒ a = c

and that, for all a, c there exists b such that:

aB b = c

Remark 2.2. We may use an alternate definition that circumvents the existential quantifier. This
introduces a second operation C such that:

(aB b)C a = b

aB (bC a) = b

aC a = a

This is indeed equivalent. However, this second operation can be a nuisance to carry around,
but can be useful when an existential qualifier is undesirable. For power quandles, it does not
matter as we can define bC a = a−1 B b.

Definition 2.3. The conjugation quandle of a group Conj(G) is a quandle defined by the same
set and the operation aB b = aba−1 (and bC a = a−1ba.)

Definition 2.4. The enveloping group of a quandle Env(Q) is defined as the group:

〈[x] for x ∈ Q | ∀x, y ∈ Q, [x][y][x]−1 = [xB y]〉
This is left-adjoint to the functor taking a group to its conjugation quandle.

Remark 2.5. Quandles are not a very good tool for faithfully describing groups, because every
element in the center is structurally the same. This means they do very poorly describing abelian
groups. In particular, the conjugation quandle of abelian groups are isomorphic when the groups
have the same order. Also, the enveloping group tends to be large and unwieldy. On the other
hand, the power quandle analogue of the enveloping group is often not very much larger than
the input quandle.

Example 2.6. The groups C4 and C2×C2 have the same conjugation quandle. Both are four
elements with aB b = b for all a, b.



POWER QUANDLES 7

3. Power Quandles

In this section we define power quandles and their basic properties. We also show how groups
are power quandles.

Definition 3.1. A power quandle is a quandle Q with an additional family of unary operations
πn : Q→ Q where n ∈ Z with notation an := πn(a), subject to the following axioms:

a1 = a(3.1)

(an)m = an·m(3.2)

aB (b0) = b0(3.3)

(aB b)n = aB (bn)(3.4)

(a0)B b = b(3.5)

an B (am B b) = an+m B b(3.6)

Remark 3.2. We clearly get a category of power quandles, called PowQdl. Morphisms are maps
that preserve B and powers. It is clear they then also preserve C.

Remark 3.3. The first two equations say that the power operations π forms an action of the
abelian monoid (Z,×) on Q. If we define La : b 7→ aBb then we see that this is an automorphism
of the power quandle structure. Finally, noting that:

Lan = (La)n

gives the last two axioms. One might also interpret the map a→ La as being a homomorphism
of power quandles, where Aut(Q) is interpreted as a power quandle via f B g = fgf−1 and
fn is repeated composition. The third axiom says that elements like a0 are fixed by all the Lb
automorphisms.

Remark 3.4. Quandles only include one of the possible binary operations in a group, but power
quandles also capture all the unary operations possible in a group. This is because n-ary oper-
ations in a group can be defined as elements in the free group with n elements, as they are all
the ways to combine n many different elements. The free group generated by one element is the
infinite cyclic group, Z, which is exactly the power maps.

Remark 3.5. If one is concerned about the operation C that quandles are sometimes defined
using, then consider the following equations:

aB (a−1 B b) = a0 B b = b

a−1 B (aB b) = a0 B b = b

It is clear that the map b 7→ a−1 B b is the inverse map to b 7→ aB b. However, C is defined by
b 7→ bC a being the inverse of that. So, since the inverse map is unique, we get that:

bC a = a−1 B b

Hence the operation C is completely determined by the other operations.

Remark 3.6. One might note symmetrically that aB b = bC (a−1). This is because:

bC (a−1) = (a−1)−1 B b = a(−1)·(−1) B b = a1 B b = aB b
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Remark 3.7. Here we list the C variants of the axioms involving B:

(b0)C a = b0(3.7)

(bC a)n = (bn)C a(3.8)

bC (a0) = b(3.9)

(bC (am))C (an) = bC (an+m)(3.10)

The proofs are all straightforward.

Theorem 3.8. (verified in Lean) We have:

an B am = am

Proof. We begin with the following special case:

aB (an) = an

This is easily proven by:
aB (an) = (aB a)n = an

Second we prove the following special case:

a−1 B a = a

Since conjugation by an element is bijective, it is sufficient to show:

aB (a−1 B a) = aB a

The left hand side simplifies like this:

aB (a−1 B a) = a1+−1 B a = a0 B a = a

And the right hand side simplifies axiomatically to a, which is the same. Hence a−1 B a = a.
Now the following is easy:

a−1 B (an) = an

It follows analogously to the first statement:

a−1 B (an) = (a−1 B a)n = an

To prove an B am = am notice first how:

an+1 B am = an B (aB am) = an B am

an−1 B am = an B (a−1 B am) = an B am

These are inductive steps, in both directions. What remains is the base case:

a0 B am = am

Which follows axiomatically. �

Example 3.9. Given a group G, we may define a power quandle PqG by a B b = aba−1, and
an as group power (that is, inductively by an+1 = an · a and a0 = 1 and a−n = (an)−1). The
quandle axioms are inherited from the conjugation quandle of a group, and the power quandle
axioms are mostly trivial. We showcase one:

(aba−1)n = a(bn)a−1

This follows because the a’s cancel in repeated multiplication. One can use a variant of induction
to prove it formally.

Definition 3.10. We define Pq as the “forgetful” functor Pq : Grp → PowQdl taking G 7→
PqG, as defined above. If f : G → H is a group homomorphism then f : PqG → PqH (same
map as the underlying sets are the same) is clearly a power quandle morphism.
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Remark 3.11. It is clear that the categorical product of power quandles is the Cartesian product
with pointwise operations. Indeed, as we will see later, Pq is a right-adjoint so group products
and power quandle products are compatible. Also, we get from this that Pq 1 is the terminal
power quandle. This is the singleton set with all operations defined the only possible way.

Remark 3.12. The initial power quandle is the empty set ∅ with operations defined the only
possible way. It is clear that this is categorically initial.

Definition 3.13. (verified in Lean) Now, we define the (disjoint) union of power quandles
Q1 ] Q2. It is defined as having the underlying set of the disjoint union, where we label the
elements as a tuple, either (a, 0) where a ∈ Q1 or (a, 1) where a ∈ Q2. We define the operations
as:

(a, 0)n = (an, 0)

(a, 1)n = (an, 1)

(a, 0)B (b, 0) = (aB b, 0)

(a, 1)B (b, 1) = (aB b, 1)

(a, 0)B (b, 1) = (b, 1)

(a, 1)B (b, 0) = (b, 0)

bC a = a−1 B b

To verify the axioms here the strategy is to split into all possible cases and verify them, and all
of those cases are decided either by axioms for Q1 and Q2 or trivially as the operation aB b = b
always satisfies all the axioms. We will not write these down here, as there are many cases to
do.

Example 3.14. This gives rise to power quandles that do not come from groups, meaning the
functor Pq is not essentially surjective. A very simple example is (Pq C1) ] (Pq C2). This is a
power quandle of order (cardinality) 3, so if it arises from a group that group would have to
be C3, as it is the only group of order 3. This is not right, as the power structure is different.
Another way to see this is to notice that a0 can be two different values depending on whether a
is from C1 or C2, in a sense there are two “identity” elements. For any group, a0 is always equal
to the unique element 1. Concerning the different power structures, we create the following table
for π2 in Pq C3:

x 1 g g2

x2 1 g2 g

And now in (Pq C1) ] (Pq C2):

x 1 ∈ C1 1 ∈ C2 g ∈ C2

x2 1 ∈ C1 1 ∈ C2 1 ∈ C2

Example 3.15. Not all power quandle morphisms are group homomorphism when seen on the
same set. This means the functor Pq is not full. An example can be found for C2×C4. The
concrete map, call it f , is the one swapping (1, 1) and (1, 3). Note the notation may be a bit
confusing, as (1, 1)3 will be (1, 3), it is repeated addition, not multiplication. To show this is
a power quandle homomorphism, we may ignore the conjugation operation as it is inert in an
abelian group. Hence the powers are sufficient (from 0 to 3 as the group has elements of order
at most 4):

f((a, b)0) = f(1) = 1 = f(a, b)0
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f((a, b)1) = f(a, b) = f(a, b)1

f((a, b)2) = f(0, b2) = f(0, b)2

The last step here is because f does nothing to (0, b). Finally:

f((a, b)3) = f(a, b3)

In the case that a = 0 this is again trivial, so we may assume a = 1. Now there are four cases:

f(1, 03) = (1, 0) = f(1, 0)3

f(1, 13) = f(1, 3) = (1, 1) = (1, 3)3 = f(1, 1)3

f(1, 23) = f(1, 2) = (1, 2) = (1, 2)3 = f(1, 2)3

f(1, 33) = f(1, 1) = (1, 3) = (1, 1)3 = f(1, 3)3

Hence we see that f is a power quandle homomorphism. It has also been verified by computer,
iterating all elements and powers. However, the computer has also verified it is not a group
homomorphism. To see this with human eyes, pick:

f((1, 3) · (1, 0)) = f(0, 3) = (0, 3)

f(1, 3) · f(1, 0) = (1, 1) · (1, 0) = (0, 1)

We see they disagree, and hence f is not a group homomorphism. In this group, there are indeed
several other such morphisms.

Remark 3.16. Even though Pq is neither full nor essentially surjective, it is still a very useful
invariant. It is obviously faithful. The missing piece is what we call essentially injective. The
definition of this is that PqG ∼= PqH implies G ∼= H. We make much progress on this question.
One might confuse essentially injective with conservative, but they are not the same. Essentially
injective says that if there exists a power quandle isomorphism between PqG and PqH, then
there exists a group isomorphism between G and H. Conservative says that if Pq(f) is an
isomorphism, then so is f . It is obvious that Pq is conservative, but it is not at all obvious that
it is essentially injective.

Remark 3.17. A power quandle of the form PqG comes with an element 1 such that a0 = 1 for
all a. There are power quandles without such an element, for example ∅ or PqG ] PqH. A
closely related observation is that it is not always true that a0 = b0, as in PqG ] PqH, where
a ∈ G and b ∈ H don’t satisfy this. One might define a pointed power quandle as a power
quandle with a specified element 1 such that a0 = 1 for all a, but we don’t use this.
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4. Centers

In this section we prove that given PqG ∼= PqH, then ZG ∼= ZH, given that G and H are
finite, which we assume for the rest of the section. First we need a theorem which is folklore, but
which we provide an original proof for. The theorem is that for finite abelian groups, a power-
preserving bijection implies isomorphism between the two groups. We will state the theorem
properly when we are ready, first we need some tools.

Definition 4.1. Let G be a group. We define:

fG(n) := #{x ∈ G | xn = 1}
That is, the number of elements in the group that become 1 when raised to the n-th power.
Equivalently, it is the number of elements whose order divides n. Note we could define this in a
power quandle, as #{x ∈ G | xn = x0}, but we make no use of this.

It is clear that when G,H are isomorphic, then fG = fH . The current goal is the converse (for
finite abelian groups), i.e. to show that fG(n) = fH(n) for all n where G,H are finite abelian
groups, implies G ∼= H. Note “finite” here is indispensable, as fC∞ = fC∞×C∞ , as both of these
are always 1, just the identity element. The strategy is to use the classification theorem for finite
abelian groups. For this we need a few lemmas first, regarding how this definition interacts with
cyclic groups and product groups:

Lemma 4.2. We specify the function for the cyclic groups:

fCk
(n) = gcd(k, n)

Proof. Let g be the generator of Ck. We see that:

fCk
(n) = #{x ∈ Ck | xn = 1} = #{0 < j ≤ k | (gj)n = 1}

= #{0 < j ≤ k | j · n = 0 mod k} = #{0 < j ≤ k | k|j · n}
Let j′ = k/ gcd(k, n). Put this into the relation, and we get n · k/ gcd(k, n) = lcm(k, n), and it
is clear that k| lcm(k, n). In fact, lcm(k, n) is the smallest number which k divides and that has
n as a factor. Hence, j′ is the smallest value that satisfies this condition. Notice that j = l · j′
for some l is equivalent to k|j · n. Hence:

= #{0 < j ≤ k | k|j · n} = #{l|0 < j′ · l ≤ k}
Since k|j′ we may write:

= #{l|0 < l ≤ k/j′} = k/j′ = k/(k/ gcd(k, n)) = gcd(k, n)

Which is what was to be shown. �

Lemma 4.3. Now we specify the interaction of the function with group product:

fG×H(n) = fG(n) · fH(n)

Proof.

fG×H(n) = #{x ∈ G×H | xn = 1}
= #{(x, y) ∈ G×H | (x, y)n = 1}

= #{x ∈ G, y ∈ H | xn = 1 ∧ yn = 1}
= #({x ∈ G | xn = 1} × {y ∈ H | yn = 1})
= #{x ∈ G | xn = 1} ·#{y ∈ H | yn = 1}

= fG(n) · gH(n)

�
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Lemma 4.4. Let G,H be finite abelian groups. Suppose fG(n) = fH(n) for all n. Then G ∼= H.

Proof. We assume G,H are both non-trivial. If one of them is trivial, then fG(n) = fH(n) = 1,
and they clearly both are, as if there was another element in one of them it would make this
value not 1 for at least one value of n. So they are in that case both trivial, and the statement
holds. Hence, going forward we may assume G,H non-trivial.

Use the classification theorem for finite abelian groups, and write G ∼= G′ = Ca0 ×Ca1 × . . .×
Cak with ai|ai+1 and ai > 1. Do the same for H, and get data bi with 0 ≤ i ≤ k′ and bi|bi+1

and bi > 1. Notice fG′(n) = fH′(n). Also notice we can compute these:

fG′(n) =
∏
i

gcd(ai, n)

fH′(n) =
∏
i

gcd(bi, n)

This yields: ∏
i

gcd(ai, n) =
∏
i

gcd(bi, n)

It is now sufficient to prove ai = bi and k = k′ as that would yield G′ = H ′ which again yields
the goal, G ∼= H. We begin with k = k′. Assume not, and without loss of generality assume
k < k′. We need to find a contradiction. Insert n = b0. We get:∏

i

gcd(ai, b0) =
∏
i

gcd(bi, b0)

Since bi|bi+1 we get by transitivity that b0|bi, yielding gcd(bi, b0) = b0. So we get:∏
i

gcd(ai, b0) = bk
′

0

However, notice also that the gcd on the left-hand side can at most be b0, so:∏
i

gcd(ai, b0) ≤
∏
i

b0 = bk0

However, notice that b0 > 1 and k < k′, so we get:∏
i

gcd(ai, b0) <
∏
i

gcd(bi, b0)

This is a contradiction. This gives us k′ = k, so we write k instead of k′ from now on. Now, to
prove that ai = bi. We do the same, set n = a0. Again, we get:∏

i

gcd(ai, b0) = bk0

Notice that since gcd(ai, b0) ≤ b0, in order to reach bk0 , every ai must have a gcd of b0 with b0.
So,

gcd(ai, b0) = b0

Pick i = 0 and get gcd(a0, b0) = b0. Now, repeat the analogous argument with a0 instead of b0.
Everything is the same, so we get gcd(a0, b0) = a0. Combined with the earlier conclusion, we
get a0 = b0. Now, cancel both these factors on both sides of the main equation, and apply a
suitable induction principle for lists. The base case is that of the empty list, which are trivially
equal. This is all we need to prove G ∼= H.

�
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Proposition 4.5. Let f be a bijection between two finite abelian groups G and H, that is not
necessarily a homomorphism. However, it satisfies f(xn) = f(x)n for all x in G and integers n.
Then G ∼= H as groups, even though f may not be an isomorphism.

Proof. We use the previous lemma. What remains to prove is fG(n) = fH(n) for all n. We prove
this the following way:

fG(n) = #{x ∈ G | xn = 1}
= #{x ∈ G | (f−1(f(x)))n = 1}

= #{x ∈ H | (f−1(x))n = 1}
= #{x ∈ H | f−1(xn) = 1}

= #{x ∈ H | xn = 1}
= fH(n)

The second to last step follows because f(x) = 1 iff x = 1. This is because f is a bijection, and
that f(1) = f(x0) = f(x)0 = 1. �

Definition 4.6. We define the center of a quandle Q, notated as ZQ, as the sub-quandle defined
by the following criteria:

ZQ := {x ∈ Q | ∀y, y B x = x}
We need to show this is closed under the quandle operation. Suppose a, b ∈ ZQ, this means
yBa = a and yBb = b for all y. Now, we see aBb ∈ ZQ because yB(aBb) = (yBa)B(yBb) = aBb.
If one is worried about C (whether the quandle operation is still bijective when the first argument
is fixed), then note y B (aC b) = (y B a)C (y B b) because, taking Cy of each side we get:

(y B (aC b))C y = aC b

((y B a)C (y B b))C y = ((y B a)C y)C ((y B b)C y) = aC b

We define the center of a power quandle Q as the center of the underlying quandle, and show
that the power operations are closed. Suppose a ∈ ZQ, i.e. y B a = a for all y. Then an ∈ ZQ
because y B an = (y B a)n = an.

Theorem 4.7. The centers of groups and power quandles coincide, i.e. Pq(ZG) ∼= Z(PqG).

Proof. We need to prove that x ∈ ZG is equivalent to x ∈ Z(PqG), and the rest follows trivially.
This is because y B x = x is clearly equivalent to xy = yx. �

Theorem 4.8. Given finite groups G, H and PqG ∼= PqH, then ZG ∼= ZH

Proof. Notice that f : PqG ∼= PqH clearly implies f : Z(PqG) ∼= Z(PqH) (not because Z
is a functor, because it is not, but because the property of an element x ∈ Z(PqG) is clearly
transferable by isomorphism giving f(x) ∈ Z(PqH), although one might say Z is a functor with
respect to isomorphisms). Further, we use the previous theorem to give f ′ : Pq(ZG) ∼= Pq(ZH).
Now notice that ZG and ZH are finite abelian groups with a bijection with the property f(xn) =
f(x)n, so it follows that ZG ∼= ZH as groups. �

Corollary 4.9. Given two finite abelian groups G,H satisfying PqG ∼= PqH, then G ∼= H, i.e.
G and H are isomorphic as groups.

Proof. This follows from G ∼= Z(G) for finite abelian groups. �

The conclusion here is that the center is reconstructible, in the sense that power-quandle-
isomorphic groups have isomorphic centers.
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5. Center Quotients

In this section we prove that if PqG ∼= PqH, then G/Z(G) ∼= H/Z(H). We also combine
this with the previous section in order to relate G and H even further.

Definition 5.1. For the rest of the section, take f : PqG→ PqH a power quandle isomorphism.
Then we can construct a map f : G→ H/Z(H) in the following manner: First, take f ′ : G→ H
directly from f as G and PqG are the same set. Then, compose with the projection H →
H/Z(H).

Lemma 5.2. If a, b ∈ G satisfy aB x = bB x for all x, then a = cb where c ∈ ZG.

Proof. We clearly see that c = ab−1 works, we just have to prove that c ∈ ZG. We do this by
noticing c ∈ ZG if c B y = y for all y, because this equation is cyc−1 = y, clearly equivalent to
cy = yc, which is clearly equivalent to c ∈ ZG. We get:

cB y = (ab−1)B y = aB (b−1 B y)

Now we may use aB x = bB x with x = b−1 B y, and get:

= bB (b−1 B y) = b0 B y = y

Which is what was to be shown. �

Lemma 5.3. We have that for all a, b ∈ G there exists c ∈ H, such that f(ab) = cf(a)f(b) with
c ∈ Z(H).

Proof. First notice that x B (y B z) = x(yzy−1)x−1 = (xy)z(xy)−1 = (xy) B z. Using this, we
see that for all x, we have f(a)B (f(b)B x) = (f(a)f(b))B x. Since f is bijective, we may write
x = f(y) in a unique way. We now may write f(a B (b B y)) = f((ab) B y). As f is a power
quandle homomorphism, we get f(a) B (f(b) B x) = f(ab) B x. Again, the left hand side may
be rewritten, giving (f(a)f(b))B x = f(ab)B x. Now we may use the previous lemma, giving us
f(ab) = cf(a)f(b) with c ∈ Z(H), which is what was to be obtained. �

Lemma 5.4. f is a group homomorphism.

Proof. Since f is just f composed with quotienting out by Z(H), we get from the previous
theorem:

f(ab) = cf(a)f(b) mod Z(H)

Since c ∈ Z(H), we clearly get:

f(ab) = f(a)f(b)

Which is what was to be shown. �

Theorem 5.5. (verified in Lean)

G/Z(G) ∼= H/Z(H)

Proof. We use the first isomorphism theorem on f . We get:

G/ ker f ∼= im f

Since f was bijective, and was composed with a surjective map, it is clear that f is surjective.
We may write:

G/ ker f ∼= H/Z(H)

What remains to prove is that ker f ∼= Z(G). Since they are both subgroups of G, it is sufficient
to prove that for all x ∈ G, then

x ∈ ker f ⇔ x ∈ Z(G)
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Unfolding both sides, we get:

f(x) = 1⇔ ∀y, xy = yx

Notice that f(x) = 1 if and only if f(x) ∈ Z(H). So we need to prove:

∀y ∈ H, f(x)y = yf(x)⇔ ∀y ∈ G, xy = yx

We rewrite algebraically on both sides:

∀y ∈ H, f(x)B y = y ⇔ ∀y ∈ G, xB y = y

Now notice that since f is a bijection, and a power quandle homomorphism, we may rewrite the
left hand side as follows:

∀y ∈ H, f(x)B y = y

⇔ ∀y ∈ G, f(x)B f(y) = f(y)

⇔ ∀y ∈ G, f(xB y) = f(y)

⇔ ∀y ∈ G, xB y = y

And this was the goal. Hence, ker f ∼= Z(G), and hence:

G/Z(G) ∼= H/Z(H)

�

Corollary 5.6. Given two centerless groups G,H satisfying PqG ∼= PqH, then G ∼= H, i.e. G
and H are isomorphic as groups.

Proof. This follows from that G ∼= G/(ZG), because ZG ∼= 1, for centerless groups. �

The conclusion here is that the center quotient is reconstructible, in the sense that power-
quandle-isomorphic groups have isomorphic center quotients.

Theorem 5.7. Given finite groups G and H with PqG ∼= PqH, then H is isomorphic to a
central extension of Z(G) by G/Z(G).

Proof. Since Z(G) ∼= Z(H) and G/Z(G) ∼= H/Z(H) it is sufficient to prove H is a central
extension of Z(H) by H/Z(H). This is trivial, as any group is an extension of a subgroup and
its quotient. The extension is central because the subgroup is the center, and thus clearly a
(non-proper) subgroup of the center. �

Remark 5.8. Symmetrically, G is isomorphic to a central extension of Z(H) by H/Z(H) by
exchanging G and H.

Corollary 5.9. The candidates for H are classified by the second group cohomology:

H2(G/Z(G), Z(G))

Proof. It is well known that the second group cohomology H2(G,A) classifies the central exten-
sions of A by G. We know that H is a central extension of Z(G) by G/Z(G). �

Theorem 5.10. Given two finite simple groups G,H with PqG ∼= PqH, then G ∼= H.

Proof. All finite simple groups are either abelian or centerless. In the case that both are abelian,
or both are centerless, we already know this. In the mixed case, we may assume without loss of
generality that G is abelian and H is centerless. Then we get:

G ∼= ZG ∼= ZH ∼= 1

H ∼= H/ZH ∼= G/ZG ∼= 1
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The first steps are because they are abelian (resp. centerless), the second follows from PqG ∼=
PqH, and the final step is because the other group is centerless (resp. abelian). Hence we get:

G ∼= 1 ∼= H

as desired. However, this also tells us that the only case in which PqG ∼= PqH and G is abelian
and H centerless, is when they are both trivial. �
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6. Abelian Power Quandles

It is often a good idea to study the “abelian” or commutative part of a theory. Applying this
to power quandles, we could define an abelian power quandle in many different ways. A good
definition should have that a B b = b, as abelian groups yield this. In this paper we define an
abelian power quandle as an abelian group object in the category of power quandles, and as we
will see it indeed follows that a B b = b. The main advantage of defining it this way is that
we automatically get an abelianization functor from power quandles to abelian power quandles,
which is left-adjoint to a forgetful functor. This abelianization functor is a powerful invariant,
which we can use to exclude isomorphism of power quandles. This section takes many ideas
from [13], including the definition of abelian group objects in a category and the abelianization
functor. See [1] as an original source for abelian group objects.

Definition 6.1. Given a category (with finite products) C, we can form another category of
abelian group objects in the given category, Ab(C). An abelian group object in the category C is
an object X ∈ Ob(C) together with morphisms [1]:

(1) e : {∗} → X
(2) i : X → X
(3) a : X ×X → X

With the following notation:

(1) 0 := e()
(2) −x := i(x)
(3) x+ y := a(x, y)

Subject to the following axioms:

(1) (a+ b) + c = a+ (b+ c)
(2) 0 + a = a
(3) a+ b = b+ a
(4) −a+ a = 0

Remark 6.2. The above definition uses elements for the axioms and notation, which only makes
sense for a concrete category, but all the axioms can be defined equivalently using only compo-
sition.

Definition 6.3. Abelian power quandles are abelian group objects in the category of power
quandles.

Theorem 6.4. (verified in Lean) In all abelian power quandles, we have:

aB b = b

Proof. First, since addition is a power quandle morphism, we get that:

(a+ b)B (c+ d) = (aB c) + (bB d)

Now, we see the following:

aB b = (a+ 0)B (0 + b) = (aB 0) + (0B b)

Now define:

ε(x) = xB 0

α(x) = 0B x

We get

aB b = ε(a) + α(b)
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We now prove that 00 = 0. First, since addition is a power quandle morphism, we get that:

(a+ b)n = an + bn

Now, note that:
00 = (0 + 0)0 = 00 + 00

00 − 00 = 00 + 00 − 00

0 = 00 + 0 = 00

Now we see:
ε(a) = aB 0 = aB 00 = 00 = 0

α(b) = 0B b = 00 B b = b

Hence we get:
aB b = 0 + b = b

Which is what was to be proven. �

Definition 6.5. The abelianization functor Ω is the left adjoint of the forgetful functor from
abelian objects in C to C. It can be realized using the following recipe [13]:

(1) Take an object X in C.
(2) Write it as a coequalizer of free objects FG and FR. This is essentially a presentation

with G the set of generators and R the set of relations. The two morphisms FR → FG
are the left hand side and the right hand side of the relations. This of course only works
in categories where every object is isomorphic to a coequalizer of free objects.

FR ⇒ FG → X

(3) The free objects FS must map to the free objects in Ab(C) generated by the same set.
The coequalizer must also map through as it is a colimit. The arrows are induced.

(4) Obtain ΩX as the cokernel of the difference of the morphisms:

Ω(FR)→ Ω(FG)→ Ω(X)

Theorem 6.6. Every quandle has an associated set set of “orbits”: the equivalence classes of
the equivalence relation x B y ∼ y (y is equivalent to y′ if and only if y′ = x B y for some x.)
The abelianization functor then takes a power quandle Q to the free abelian group generated by
this set of orbits, with trivial B, and power maps induced by Q.

Proof. Start with a power quandle Q. Pick the coequalizer:

FQ×Q∪Q×Z ⇒ FQ → Q

We now specify the morphisms. On the left part of the union, the top morphism takes (a, b)
to [a] B [b] and the bottom takes it to [a B b]. On the right part, the top takes (a, n) to [a]n

and the bottom morphism takes it to [an]. It is clear then that the coequalizer is FQ modulo
[a] B [b] = [a B b] and [a]n = [an]. It is clear this is isomorphic to Q. Now, we apply Ω. The
top morphism now takes (a, b) to [a] B [b] = [b] and the bottom takes it to [a B b]. The power
part is unchanged. Hence, Ω(Q) is the free abelian power quandle generated by the elements of
Q modulo [aB b] = [b] and [an] = [a]n. Hence it is Q modulo aB b = b and with addition, and
all the axioms of abelian power quandles. �

Corollary 6.7. The abelianization of the power quandle of a group G, i.e. Ω(PqG), is the free
abelian (additive) group generated by the conjugacy classes of G with the additional structure
of a quandle operation B which is always a B b = b (one might say we may as well just ignore
it), and power operations that takes the conjugacy class [a] to [an], which is well defined because
aB (bn) = (aB b)n in any group. Also, we have the interaction that (a+ b)n = an + bn, as well
as all the axioms of a abelian power quandle.
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Proof. The orbits are the conjugacy classes, conjugation is hence trivial, and the power operations
are as usual. �

Remark 6.8. The abelianization functor can be a very useful invariant. Consider what informa-
tion Ω(PqG) contains. It contains all the conjugacy classes, and their power maps between each
other. This is information about a group that is very important, it is often placed alongside the
character table of the group, as in GAP [6].
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7. The Functor Gr

Recall from Section 2 that given a group G, we may form the conjugation quandle Conj(G)
by defining the operation aBb = aba−1 and forgetting multiplication. We also recall this functor
has a left adjoint, the enveloping group Env(Q), which is defined as:

〈[x] for x ∈ Q | ∀x, y ∈ Q, [x][y][x]−1 = [xB y]〉

Completely analogously, given a group G we may form the power quandle PqG, by defining
a B b = aba−1 and πn(x) = xn, and forgetting multiplication. Now we claim that for formal
reasons this has a left adjoint Gr, and that left adjoint can be defined completely analogously as:

〈[x] for x ∈ Q | ∀x, y ∈ Q, [x][y][x]−1 = [xB y] and ∀x ∈ Q,n ∈ Z, [x]n = [xn]〉

Proof. (verified in Lean) We prove this using universal morphisms. We show that Gr is left
adjoint to Pq. We need to show that for every group G then we have Pq(G) and a morphism
εG : Gr(Pq(G)) → G such that for every power quandle Q and every morphism f : Gr(Q) → G
there exists a unique morphism g : Q→ Pq(G) such that εG ◦Gr(g) = f .

Assume we are given G and Q and f . We need to construct εG and g. The first is easy, this
is just the surjection that takes [x] to x and maps products homomorphically.

We take g to be the morphism given by g(x) = f([x]), since G and Pq(G) have the same
elements this is well-defined. We need to prove the composition εG ◦ Gr(g) = f . We see that
Gr(g) : Gr(Q) → Gr(Pq(G)) is given by taking Gr(g)([x]) = [g(x)] = [f([x])] and Gr(g)(xy) =
Gr(g)(x) Gr(g)(y). It is sufficient to show for all generators [x], and then we get:

εG(Gr(g)([x])) = εG([f([x])]) = f([x])

Which is what was to be shown. �

Remark 7.1. Gr Pq is a comonad on the category of groups. We call the counit ε, and note that
it is surjective. This is clear to see, as ε([x]) = x.

Remark 7.2. As a way to exclude power quandle isomorphism, one may compute GrQ1 and
GrQ2, and if they are not isomorphic as groups, then Q1 and Q2 can not be isomorphic as power
quandles either.

Remark 7.3. We have a computer program that can compute Gr PqG using GAP [6] in SageMath
[11]. The algorithm can be described as follows:

(1) Take a suitable computer representation of a group G (we need a comprehensive list of
unique elements and a way to multiply and invert elements, using indices of the elements).
Say there are N elements.

(2) Create an empty list of relators, that we will later append to. Concretely, this is a list
of lists of elements in G, represented as indices.

(3) Loop through all the elements a of the group and do the following:
(a) Loop through all the numbers n from 0 to N , and append the relator:

[a, . . . n instances of a . . . , a, (an)−1]

If an = a and n > 1, then break, as we have reached the order of the element.
(b) Loop through all the elements b in the group and compute aba−1 and add

[a, b, a−1, (aba−1)−1]

to the list of relators.
(4) Generate the free group of N elements.
(5) Compute the free group modulo the relations, and simplify it.
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(6) One now has a computer representation of the group. If this is in GAP for instance,
one can use the “StructureDescription” function to compute a text representation of the
group.

Note this could be adapted to any power quandle instead of just PqG, by using a suitable
computer representation of the power quandle for generating the relations.

Example 7.4. From the SageMath program we get:

G Gr Pq(G)
C2 C2

C3 C3

C10 C10

C2×C2 C2×C2×C2

C3×C3 C3×C3×C3×C3

C4×C2 C4×C2×C2×C2

C3
2 C7

2

C4
2 C15

2

S3 S3

S4 C2×S4

A4 C2×A4

A5 C2×A5

S3×S3 C2×S3×S3

S5 C2×S5

A6 C2×A6

Q8 C2×Q8

D4 C2×D4

D5 D5

D6 C2×D6

D7 D7

D8 C2×D8

D9 D9

D10 C2×D10

D11 D11

D12 C2×D12

D13 D13

D14 C2×D14

D15 D15

D16 C2×D16

D17 D17

D18 C2×D18

D19 D19

D20 C2×D20

Note that we have changed some of the outputs to isomorphic groups that reflect in a better
manner that the right hand side is built from the left. Also, these are perhaps not “proofs” in
the traditional sense, so we follow up by proving some of the patterns.

Example 7.5. (verified in Lean)

Gr Pq Cn ∼= Cn
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Proof. Gr Pq Cn has presentation:

〈[x], x ∈ Cn | ∀xy ∈ Cn, [x][y] = [y][x] and [xk] = [x]k〉
Now note that for every x ∈ Cn we can write x = gk where g is the generator of Cn. Now the
second condition gives us [x] = [gk] = [g]k, meaning every generator can be expressed using the
single generator [g]. This means Gr Pq Cn has a single generator, and is hence isomorphic to Cl
where l is the order of the generator [g]. Note that [g]n = [gn] = [g0] = [g]0 = 1. Note that this
is the smallest such number, so l = n and we have shown what was to be shown. �

Example 7.6. (verified in Lean)

Gr Pq(C2
2) ∼= C3

2

Proof. Gr Pq Cn has presentation:

〈[(0, 0)], [(1, 0)], [(0, 1)], [(1, 1)] | ∀abcd ∈ C2, [(a, b)][(c, d)] = [(c, d)][(a, b)] and [(a, b)k] = [(a, b)]k〉
The first condition means nothing more than Gr Pq Cn being abelian. The second condition only
needs to be repeated for k either 0 or 1 or 2 due to all elements having order 2. For k = 0 it is just
[(a, b)0] = [(a, b)]0 meaning nothing more than [(0, 0)] = 1. For k = 1 it is just [(a, b)] = [(a, b)]
containing no information. For k = 2 we get [(a, b)2] = [(a, b)]2 giving us [(a, b)]2 = [(0, 0)] = 1,
meaning each element has order two. So a comprehensive list about the information we have
about Gr Pq C2

2 is that:

(1) It has three generators, since the generator [(0, 0)] = 1 and is hence trivial.
(2) Every element has order 2.
(3) It is abelian.

This uniquely determines that Gr Pq(C2
2) ∼= C3

2 �

Remark 7.7. This example shows that in general, Gr PqG is not always isomorphic to G.

Example 7.8. For odd n,
Gr Pq Dn

∼= Dn

Proof. We see that Gr Pq Dn has the following presentation:

〈[x] for x ∈ Dn | ∀x, y ∈ Dn, [x][y][x]−1 = [xB y] and ∀x ∈ Q, k ∈ Z, [x]k = [xk]〉
We write:

Dn
∼= 〈a, b | an = b2 = 1, ab = ba−1〉

From this we see that every element x ∈ Dn can be written x = aibj where 0 ≤ i < n and
0 ≤ j < 2. We see the following rules emerge:

bjai = a(−1)
jibj

(aibj)(albk) = aia(−1)
j lbjbk = ai+(−1)j lbj+k

(aibj)(albk)(aibj)−1 = (ai+(−1)j lbj+k)(b−ja−i)

= ai+(−1)j lbka−i = ai+(−1)j l+−i(−1)kbk

Hence we get, and get only, that:

[aibj ][albk][aibj ]−1 = [ai+(−1)j l+−i(−1)kbk]

Now, doing the four cases for (j, k), we get the following:

[ai][al][ai]−1 = [al]

[aib][al][aib]−1 = [a−l]

[ai][alb][ai]−1 = [a2i+lb]
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[aib][alb][aib]−1 = [a2i−lb]

Note we also get power relations:
[ak]j = [akj ]

[akb]j =

{
[akb] if j is odd
1 otherwise

Now we get:
[ak] = [a]k

Making [ak] redundant as generators for except for k = 1. Next, notice:

[akb] = [ak/2][b][ak/2]−1

Here k/2 is computed modulo n, which is possible since n is odd. Hence all [akb] are redundant
as generators except for k = 0, that is [b]. Hence we are only left with generators [a] and [b],
subject to [a]n = [b]2 = 1 and [b][a] = [b][a][b]−1[b] = [a]−1[b]. Hence the presentation of LRDn

must be a subgroup of Dn since the presentation is subject to at least the same strictness of
generation. Notice that since the counit is surjective, Gr Pq Dn must be isomorphic to Dn, which
is what was to be shown. �

Example 7.9. For even n,
Gr Pq Dn

∼= C2×Dn

Proof. We first repeat that which is the same as the previous proof for the odd case, and get:

[ai][al][ai]−1 = [al]

[aib][al][aib]−1 = [a−l]

[ai][alb][ai]−1 = [a2i+lb]

[aib][alb][aib]−1 = [a2i−lb]

[ak]j = [akj ]

[akb]j =

{
[akb] if j is odd
1 otherwise

Again, [ak] is made redundant as a generator because [ak] = [a]k. Next, we again notice:

[akb] = [ak/2][b][ak/2]−1

Now however, since n is even, k/2 only makes sense when k is even. This makes [a2kb] redundant
as a generator. Now we need to show [ab] is not redundant given just [ak] and [a2kb]. For it to
be redundant, it needs to equal either a conjugation or a power of something else. For powers,
[ak] will not yield this, and as we saw [a2kb] has order 2. Now, suppose it is equal to some
conjugation. The following two are the candidates:

[ai][alb][ai]−1 = [a2i+lb]

[aib][alb][aib]−1 = [a2i−lb]

In the first equation we see that we need l to be even, meaning 2i+ l is also even, so it can not
be 1. In the second equation both l and i need to be even, again meaning 2i− l is even and thus
not 1. Hence [ab] is a generator alongside [a] and [b]. There are no more generators, as:

[ak][ab][ak]−1 = [a2k+1b]

Now we need to find a new presentation of Gr PqG using these generators. We rename g = [a],
h = [b], k = [ab] We inquire the relations between all of them:

gn = 1

h2 = i2 = 1
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gh = hg−1

gk = kg−1

hk = g−2kh

And converting all these to relators instead of relations:

gn

h2

k2

(gh)2

(gk)2

(hk)2g2

This gives us the presentation:

Gr Pq Dn
∼= 〈g, h, k | gn, h2, k2, (gh)2, (gk)2, (hk)2g2〉

The final step is to show this is isomorphism to C2×Dn. To do so we use the canonical presen-
tation of C2×Dn:

C2×Dn
∼= 〈a, b, c | an, b2, c2, (ab)2, caca−1, cbcb−1〉

Now we need to construct an explicit isomorphism between these. We begin with defining:

f : Gr Pq Dn → C2×Dn

g 7→ a

h 7→ b

k 7→ abc

Now to verify that it is a homomorphism, we need to verify that it maps the relators to the
identity:

f(gn) = an = 1

f(h2) = b2 = 1

f(k2) = (abc)2 = abcabc = (ab)2c2 = 1

f((gh)2) = (ab)2 = 1

f((gk)2) = (aabc)2 = aabcaabc = (aabaab)c2 = a2a−2b2c2 = 1

f((hk)2g2) = (babc)2a2 = (bba−1)2c2a2 = a−2a2 = 1

Now we have verified that f is a homomorphism. We now construct its inverse:

f ′ : C2×Dn → Gr Pq Dn

a 7→ g

b 7→ h

c 7→ ghk

We now verify that it is a homomorphism by checking that it maps relators to the identity:

f ′(an) = gn = 1

f ′(b2) = h2 = 1

f ′(c2) = k2 = 1

f ′((ab)2) = (gh)2 = 1

f ′(caca−1) = ghkgghkg−1 = ghkggg−2khg−1 = ghkkhg−1 = ghhg−1 = gg−1 = 1

f ′(cbcb−1) = ghkhghkh = gg−1hkhhkh = hkkh = hh = 1
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So, f ′ too is a homomorphism. We now check that they are inverses of each other, and it is
sufficient to check generators:

f ′(f(g)) = f ′(a) = g

f ′(f(h)) = f ′(b) = h

f ′(f(k)) = f ′(abc) = ghghk = (gh)2k = k

And the other direction:
f(f ′(a)) = f(g) = a

f(f ′(b)) = f(h) = b

f(f ′(c)) = f(ghk) = ababc = (ab)2c = c

This proves f is a isomorphism between the two groups. �

Remark 7.10. Example 7.6 is a special case of Example 7.9 when n = 2, as D2
∼= C2

2

Theorem 7.11. Let G be a finite abelian group. Then Gr PqG is the free abelian group generated
by [x] for x ∈ G quotiented out by [xn] = [x]n.

Proof. Gr PqG is the free group generated by [x] for x ∈ G quotiented out by [xn] = [x]n and
[x B y] = [x] B [y]. Since G is abelian this is equivalent to [y] = [x] B [y] which is equivalent
to [x][y] = [y][x] meaning the entire condition is equivalent to Gr PqG being abelian. Hence
Gr PqG is the free abelian group generated by [x] for x ∈ G quotiented out by [xn] = [x]n. �

Example 7.12. We have Gr Pq(Cn2 ) ∼= Ck2 , where k = 2n − 1.

Proof. All the non-identity elements of Cn2 are unrelated via powers. Hence each one of them is a
generator in Gr Pq(Cn2 ), and each has order 2. There are k = 2n − 1 such non-identity elements,

hence we get Ck2 . �

Lemma 7.13. (verified in Lean) In Gr PqG, we have:

aB b = [ε(a)]B b

Here ε is the counit of the comonad Gr Pq.

Proof. This equality can be shown as the equality of two morphisms f, g : Gr PqG→ Inn(Gr PqG).
For the first:

f(a)(b) = aB b

The second is the composition:
g = g′ ◦ ε

g′(x)(b) = [x]B b

We need to prove that g′ is a morphism, which we save for later. Now, since Gr and Pq are
adjoint, we have Hom(Gr PqG, Inn(Gr PqG)) ∼= HomPowQdl(PqG,Pq Inn(Gr PqG)), so it is
sufficient to prove that f ′ and g′ are equal after having been translated through this. This
translation is realised as pre-composing with x 7→ [x]. So we get that it is sufficient to prove:

[a]B b = [ε([a])]B b

But it is trivial that ε([a]) = a, so we are done.
Except of course, we have to show that g′ is a group homomorphism. This is just proving

that:
[xy]B b = ([x][y])B b

We do free-group induction on b:

(1) Case 1:
That b = 1. In this case the equality is trivial, as both are just 1.
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(2) Case 2:
That b = [c]. In this case we see:

([x][y])B [c] = [x]B ([y]B [c])

Note that [a1]B [a2] = [a1 B a2] by the definition of Gr PqG, so we can rewrite:

[xy]B [c] = [xy B c] = [xB (y B c)]

Also,

[x]B ([y]B [c]) = [x]B [y B c] = [xB (y B c)]

Hence they are equal.
(3) Case 3:

We have b1, b2 ∈ Gr PqG and we know that:

[xy]B b1 = ([x][y])B b1

[xy]B b2 = ([x][y])B b2

And we wish to show:

[xy]B (b1b2) = ([x][y])B (b1b2)

Note that aB (bc) = abca−1 = aba−1aca−1 = (aB b)(aB c). We apply this:

([xy]B b1)([xy]B b2) = ([x][y]B b1)([x][y]B b2)

Now with the inductive hypothesis this is trivial.
(4) Case 4:

We have b′ ∈ Gr PqG and know that:

[xy]B b′ = ([x][y])B b′

And we wish to show:

[xy]B b′−1 = ([x][y])B b′−1

Since aB b−1 = (aB b)−1, this follows trivially from the inductive hypothesis.

Those are all the cases, and we have shown that g′ is a homomorphism. This concludes the
proof. �

Theorem 7.14. (verified in Lean) The kernel of the counit is in the center.

Proof. Let a be in the kernel of the counit. Then:

aB b = [ε(a)]B b = [1]B b = 1B b = b

Hence aba−1 = b, or equivalently ab = ba for all b, which is the definition of a being in the
center. �

Corollary 7.15. The kernel is abelian, and Gr PqG is a central extension of ker εG by G.

Example 7.16. We may ask what the kernel is for common groups. We reuse the table from
Example 7.4, now with just the kernel:
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G Gr Pq(G)
C2 1
C3 1
C10 1
C2×C2 C2

C3×C3 C3×C3

C4×C2 C2×C2

C3
2 C4

2

C4
2 C11

2

S3 1
S4 C2

A4 C2

A5 C2

S3×S3 C2

S5 C2

A6 C2

Q8 C2

D4 C2

D5 1
D6 C2

D7 1
D8 C2

D9 1
D10 C2

D11 1
D12 C2

D13 1
D14 C2

D15 1
D16 C2

D17 1
D18 C2

D19 1
D20 C2

We see the cyclic group of order 2 appears quite a bit, but not exclusively.

Theorem 7.17. (verified in Lean) We have:

Gr(Q1 ]Q2) ∼= GrQ1 ×GrQ2

Proof. We construct a group homomorphism:

f : Gr(Q1 ]Q2)→ GrQ1 ×GrQ2

By apply the adjointness of Gr to the power quandle morphism:

f ′ : Q1 ]Q2 → Pq(GrQ1 ×GrQ2)

Which is defined by:

f ′(x) =

{
([x], 1) if x ∈ Q1

(1, [x]) if x ∈ Q2
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This is a power quandle morphism because:

([x], 1)B ([y], 1) = ([xB y], 1)

([x], 1)n = ([xn], 1)

And likewise symmetrically. Also,

([x], 1)B (1, [y]) = ([x][x]−1, [y]) = (1, [y]) = f ′(y) = f ′(xB y)

Because of the definition of B in the disjoint union. Now we construct a group homomorphism:

g : GrQ1 ×GrQ2 → Gr(Q1 ]Q2)

By g((x, y)) = g1(x)g2(y) where:

gi = Gr(g′i)

Where g′i : Qi → Q1 ] Q2 and is the obvious map including the power quandle into its union
with the other power quandle. We need to show the product g1(x)g2(y) is a homomorphism,
which follows from g1(x)g2(y) = g2(y)g1(x). A suitable induction principle lets us reduce this to
x = [q1] and y = [q2] using the fact that (ab)c = c(ab) follows from bc = cb and ac = ca, which
serve as the inductive hypotheses. In the base case, we get g1([q1])g2([q2]) = g2([q2])g1([q1])
which is equivalent to:

[q1][q2] = [q2][q1]

⇔ [q1][q2][q1]−1 = [q2]

⇔ [q1]B [q2] = [q2]

⇔ [q1 B q2] = [q2]

Which follows from q1 and q2 coming from different power quandles. Now all that remains is
showing that these two are inverses of each other. We first prove f ◦ g = id. Since they are both
homomorphisms, it is sufficient to show for generators:

f(g([x], [y])) = f([x][y]) = f([x])f([y]) = ([x], 1)(1, [y]) = ([x], [y])

And now for g ◦ f = id:

g(f([x])) = g([x], 1) = [x][1] = [x]

g(f([y])) = g(1, [y]) = [1][y] = [y]

This proves that f is an isomorphism. �

Theorem 7.18. (verified in Lean) Let f : PqG→ PqH. Then f is a group homomorphism
(formally defined as there existing f ′ : G→ H such that Pq(f ′) = f) if and only if the following
square commutes:

Pq Gr PqG Pq Gr PqH

PqG PqH

PqGr(f)

Pq(ε) Pq(ε)

f

Proof. We prove both directions separately. First we assume the diagram commutes, and prove
f is a homomorphism. We need to show:

f(xy) = f(x)f(y)

Put [x][y] into the top left of the diagram. We get the equation:

f(ε([x][y])) = ε(Pq Gr(f)([x][y]))

We simplify:

f(xy) = ε([f(x)][f(y)]) = f(x)f(y)
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This is exactly what we wanted. Now for the other direction, assume f is a homomorphism and
we need to show the diagram commutes. It is now sufficient to prove the commutativity of the
diagram:

Gr PqG Gr PqH

G H

GrPq(f)

ε ε

f

This follows from abstract reasons, but for a concrete proof consider that it clearly holds for [x],
and if it holds for x and y then it clearly holds for xy because all arrows are group homomor-
phisms. It clearly also holds for x−1 and 1 for the same reason. These are all the induction cases,
so we have proved that it holds. �

Lemma 7.19. (verified in Lean) For x1, . . . , xn ∈ G we have (the following equation lives in
Gr PqG):

[x1][x2] · · · [xn] = [x1 · x2 · · ·xn]

if and only (the following equation lives in Gr Pq Gr PqG):

[[x1]][[x2]] · · · [[xn]] = [[x1][x2] · · · [xn]]

Proof. We begin the forward implication, assume:

[x1][x2] · · · [xn] = [x1 · x2 · · ·xn]

Now take Gr(η) of both sides of the equation:

Gr(η)([x1][x2] · · · [xn]) = Gr(η)([x1 · x2 · · ·xn])

Gr(η)([x1]) Gr(η)([x2]) · · ·Gr(η)([xn]) = Gr(η)([x1 · x2 · · ·xn])

[[x1]][[x2]] · · · [[xn]] = [[x1 · x2 · · ·xn]]

On the right hand side, rewrite by the assumption, and we are done. Now for the other direction.
Assume:

[[x1]][[x2]] · · · [[xn]] = [[x1][x2] · · · [xn]]

Take Gr(ε) of both sides:

Gr(ε)([[x1]][[x2]] · · · [[xn]]) = Gr(ε)([[x1][x2] · · · [xn]])

Gr(ε)([[x1]]) Gr(ε)([[x2]]) · · ·Gr(ε)([[xn]]) = Gr(ε)([[x1][x2] · · · [xn]])

[ε[x1]][ε[x2]] · · · [ε[xn]] = [ε([x1][x2] · · · [xn])]

[x1][x2] · · · [xn] = [x1 · x2 · · ·xn]

Which was the intended goal. �

Theorem 7.20. (verified in Lean) For x ∈ Gr PqG, we have that ∃y ∈ G, x = [y] is equivalent
to [x] = Gr(η)(x).

Proof. Write x = [x1] · · · [xn]. Note that ∃y ∈ G, x = [y] is equivalent to x = [x1 · · ·xn]. The
backward direction is obvious, the forward direction we get that [x1] · · · [xn] = [y], we take ε of
both sides and get x1 · · ·xn = y, which we reinsert and get x = [x1 · · ·xn] as required. Now,
we see the left hand side of the equivalence is just [x1] · · · [xn] = [x1 · · ·xn]. We know this is
equivalent to [[x1]] · · · [[xn]] = [[x1] · · · [xn]], so what remains is to show that this is equivalent to
[x] = Gr(η)(x). Insert our rewriting of x to get:

[[x1] · · · [xn]] = Gr(η)([x1] · · · [xn])

= Gr(η)([x1]) · · ·Gr(η)([xn]) = [[x1]] · · · [[xn]]

which is exactly the desired equation. �
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Remark 7.21. Note that there is a forgetful functor taking a power quandle to its underlying
quandle. This of course has a left adjoint from quandles to power quandles, which takes a quandle
Q to the free power quandle but with the conjugation of Q. Of course, this commutes with Gr
and the enveloping group.
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8. Power Quandle-Like Groups

In this section we define power quandle-like groups, abbreviated pq-like. The point of this
definition is that if G,H are pq-like (and finite), and PqG ∼= PqH, then G ∼= H.

Definition 8.1. A group G is pq-like if there exists a power quandle Q such that GrQ ∼= G.

Remark 8.2. Every group being pq-like is equivalent to the functor Gr being essentially surjective.
We are not aware of any group that is not pq-like.

Theorem 8.3. (verified in Lean) If G is pq-like then the exact sequence:

1→ ker εG → Gr PqG→ G→ 1

Is left-split. This means Gr PqG ∼= G× ker εG.

Proof. We first prove it is right-split. We rewrite as:

1→ ker εG → Gr Pq GrQ→ GrQ→ 1

Note that η : Q → Pq GrQ taking q 7→ [q] is a power-quandle morphism, so Gr(η) is a group
morphism. Because of category theory, ε ◦Gr(η) = id, so the sequence is right-split. A sequence
which is right-split is also left-split if the image of the left-split morphism is normal. We prove
this. We need to show there exists z such that:

xBGr(η)(y) = Gr(η)(z)

We do this by showing:

xB y = Gr(η)(ε(x))B y

We simplify by noting that xB y = [ε(x)]B y so it is sufficient to show:

[x]B y = Gr(η)(x)B y

We use the same identity on the right side giving:

Gr(η)(x)B y = [ε(Gr(η)(x)]B y = [x]B y

Because ε ◦Gr(η) = id. Now let z = ε(x)B y, and we see:

Gr(η)(z) = Gr(η)(ε(x)B y) = Gr(η(ε(x)))BGr(η(y))

Making the following sufficient:

Gr(η)(ε(x))B y = xB y

Which is what we just proved. �

Theorem 8.4. If G,H are finite and pq-like, and PqG ∼= PqH, then G ∼= H.

Proof. We make heavy use of the cancellation of direct products for finite groups, for which we
refer to [7]. We clearly get:

Gr PqG ∼= Gr PqH

Since both are pq-like we get:

G× ker εG ∼= H × ker εH

We take the center of both sides of the isomorphism:

Z(G× ker εG) ∼= Z(H × ker εH)

Z(G)× Z(ker εG) ∼= Z(H)× Z(ker εH)

We also know that since G,H are finite then:

Z(G) ∼= Z(H)
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We combine these to get:

Z(G)× Z(ker εG) ∼= Z(G)× Z(ker εH)

Now we may cancel Z(G) on both sides of the isomorphism:

Z(ker εG) ∼= Z(ker εH)

Next, note that since ker εG is abelian, the center is just itself:

ker εG ∼= ker εH

Now recall we had:

G× ker εG ∼= H × ker εH

Again we can use the isomorphism we have obtained:

G× ker εG ∼= H × ker εG

Now we again use the cancellation of Cartesian product and obtain the desired result:

G ∼= H

�

We now have a very good reason to prove groups are pq-like, so we establish some tools for
this.

Proposition 8.5. The following are always pq-like:

(1) Any cyclic group is pq-like.
(2) The direct product of two pq-like groups is again pq-like.
(3) All finite abelian groups are pq-like.

Proof. We prove them one by one, with dependencies downward:

(1) For Cn, just use Pq Cn and we get Gr Pq Cn ∼= Cn, proving Cn is pq-like.
(2) We wish to prove GrQ1×GrQ2 is pq-like. We use Theorem 7.17, so we pick Q := Q1]Q2

and get GrQ ∼= GrQ1 ×GrQ2.
(3) Any finite abelian group can inductively be written as the direct product of two finite

abelian groups, or as a cyclic group. All cases are pq-like.

�

Theorem 8.6. (verified in Lean) If G is pq-like, then (and only then) is it isomorphic to, for
some S, Gr PqS G, where S is a subset of the elements of G that generates the entire group, and
PqS G is the sub-power-quandle of PqG generated by the elements of S. Note that even though
S generates the entire G as a group, that does not mean it generates the entire power quandle
PqG.

Proof. Set G ∼= GrQ. Pick S ⊂ GrQ to be every element of the form [q] for some q ∈ Q. This
clearly generates GrQ by the very definition of GrQ.

Before moving forward, we wish to prove that the power quandle generated by S is indeed
just S. We see this from [a]B [b] = [aB b] and [a]n = [an].

All that remains to prove is that Gr PqS GrQ ∼= GrQ. We begin with constructing a group
homomorphism:

f : Gr PqS GrQ→ GrQ

By adjointness of Gr and Pq, this is equivalent to a power quandle morphism:

PqS GrQ→ Pq GrQ
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Here we pick the natural inclusion, as PqS GrQ is a sub-power quandle of Pq GrQ. In the other
direction, we need to provide a group homomorphism:

g : GrQ→ Gr PqS GrQ

Again, by adjointness, this is equivalent to providing a power quandle morphism:

Q→ Pq Gr PqS GrQ

We send q to [[q]], but for this we need to prove that [q] is in PqS GrQ. This follows by definition.
Now all that remains is to prove that these two morphisms compose to the identity in both

directions. Since they are group homomorphisms it is sufficient to prove it for the generators,
i.e. [q] for all q. We begin with:

f(g([q])) = f([[q]]) = [q]

Now let [q] ∈ Gr PqS GrQ. Since q ∈ PqS GrQ we have q = [q′]. This gives us:

g(f([[q′]])) = g([q′]) = [[q′]]

Hence all compositions are the identity. �

Remark 8.7. For a finite group G, this would allow us to iterate over all possible S to determine
whether G is pq-like deterministically. For a computer program it would be more efficient to
loop over all possible sub-power-quandles of PqG, where the elements would generate G as a
group, as to not have so much redundancy. A good first guess is any minimal generating set, as
the goal should be seen as the smallest possible power quandle that still generates the group.

Remark 8.8. Recall Theorem 7.20, that x = [y] if and only if [x] = Gr(η)(x) in Gr PqG. This is
not the same as GrQ, but we can use it as inspiration to find candidate sub-power quandles of
PqG. Recall the desired sub-power quandle of PqG is the one consisting of [q] for some q ∈ Q,
where G ∼= GrQ. Hence, this sub-power quandle is just the equalizer Eq(η,Pq Gr(η)) in the
category of power quandles. This is the sub-power quandle of PqG such that [x] = Pq Gr(η)(x).
Of course, one does not know Gr(η), but here one can guess candidate homomorphisms G →
Gr PqG. Of course, if Gr PqG ∼= G×A (and if not, then it is definitely not pq-like), then there
is at least one morphism for each homomorphism G → A. The zero homomorphism would not
be a bad guess.

Theorem 8.9. (verified in Lean) Let G and H be pq-like groups and let φ : H → Aut(G) be
a homomorphism. Since G,H are pq-like, let Q1 and Q2 be power quandles such that we have
isomorphisms G ∼= GrQ1 and H ∼= GrQ2. Use these isomorphisms to obtain φ′ : GrQ2 →
Aut(GrQ1). If for all x ∈ Q2 and y ∈ Q1 there exists z ∈ Q1 such that φ′([x])([y]) = [z], then
GoφH is pq-like. This condition is automatically met if the automorphism φ′(x) is in the image
of Gr. It is always met if G is cyclic, or if φ is trivial.

Proof. We first create a subset of GrQ1 oφ GrQ2, as all the elements ([a], 1) and (1, [b]). Then
we create a sub-power-quandle generated by these elements, and call it Q. This is the power
quandle with which the group is pq-like, so we need to prove GrQ1 oφ GrQ2

∼= GrQ. We begin
with the inverse morphism, which using adjointness comes from the power quandle morphism:

Q→ Pq(GrQ1 oφ GrQ2)

This is just the inclusion morphism. Call the adjoint morphism h. The other direction is
more complicated. Here we use a property of semidirect products in that given two morphisms
f : GrQ1 → GrQ and g : GrQ2 → GrQ, then one can construct a homomorphism fg :
GrQ1 oφ GrQ2 → GrQ given that:

f(a)g(b)f(a)−1 = g(φ(a)(b))
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We set f to be the morphism sending [a] to ([a], 1) and g sends [b] to (1, [b]). Now we need to
prove the property:

f(a)g(b)f(a)−1 = g(φ(a)(b))

We prove this inductively:

(1) For the case of multiplication in a, given:

∀b, f(a1)g(b)f(a1)−1 = g(φ(a1)(b))

∀b, f(a2)g(b)f(a2)−1 = g(φ(a2)(b))

Prove that:

f(a1a2)g(b)f(a1a2)−1 = g(φ(a1a2)(b))

We simplify first:

f(a1)f(a2)g(b)f(a2)−1f(a1)−1 = g(φ(a1)(φ(a2)(b)))

Now we use the second inductive hypothesis (with b set to b) to get:

f(a1)g(φ(a2)(b))f(a1)−1 = g(φ(a1)(φ(a2)(b)))

Now we use the first inductive hypothesis (with b set to φ(a2)(b)), to finish the goal.
(2) For the case of multiplication in b, given:

f(a)g(b1)f(a)−1 = g(φ(a)(b1))

f(a)g(b2)f(a)−1 = g(φ(a)(b2))

Then prove:

f(a)g(b1b2)f(a)−1 = g(φ(a)(b1b2))

This is clear, because both sides are homomorphisms in b (for the left hand side, note
that abca−1 = aba−1aca−1).

(3) For the case of a = 1, and for the case of b = 1, those are trivial.
(4) For the case of inversions, those are not necessary in GrQ′, as every element [a] can be

inverted as [a−1] and a multiplication can be inverted as (ab)−1 = b−1a−1.
(5) Finally, the case of [a] and [b]:

f([a])g([b])f([a])−1 = g(φ([a])([b]))

Note that we took as a hypothesis that φ([a])([b]) = [c] for some c, so we use this, as well
as the definitions of f and g to get:

([a], 1)(1, [b])([a], 1)−1 = (1, [c])

Now we again use the definition of c to get the following goal:

([a], 1)(1, [b])([a], 1)−1 = (1, φ([a])([b])])

Which follows by definition in a semidirect product.

Now we have morphisms in both directions, we just need to show that both compositions are id.
It is sufficient to test using the generators of the groups, as they are group homomorphisms. We
show:

h(fg(([x], [y]))) = h(f([x])g([y])) = h(f([x]))h(g([y])) = h(([x], 1))h((1, [y]))

= ([x], 1)(1, [y]) = ([x], [y])

fg(h([x], 1)) = fg([x], 1) = f([x])g(1) = ([x], 1)

fg(h(1, [y])) = fg(1, [y]) = f(1)g([y]) = (1, [y])

Those are all the cases, and we have proven that a semidirect product with the stated property,
is pq-like. �
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Remark 8.10. Since a group can be pq-like by many different power quandles, and many different
variants of φ can yield the same semidirect product, there is much flexibility in terms of finding
a situation which satisfies the condition. Hence we believe a broad class of semidirect products
satisfy this.

Lemma 8.11. (verified in Lean) Let FpqS be the free power quandle generated by the set S.
This is just all possible combinations of power and conjugation of the generators, modulo the
power quandle axioms. Then:

Gr(FpqS ) ∼= FS

It follows that free groups are pq-like.

Proof. This follows from free power quandle (and free groups) being left adjoint to the forgetful
functors to Set. Since the underlying set of PqG is the same as G, the forgetful functors
commute. Hence the left adjoints must commute, and we get the desired isomorphism. �

Theorem 8.12. The group G being pq-like is equivalent to there existing some presentation of
G using only conjugations and powers in the relations.

Proof. We begin with the forward direction. Assume G ∼= GrQ, now display Q as a coequalizer
of free power quandles:

FpqR ⇒ FpqG → Q

This is always possible using G = Q and R every relation that holds in Q. Sometimes, a more
lean presentation can be found as well. Now, take Gr of this coequalizer. As Gr is a left adjoint,
this is still a coequalizer in groups:

Gr(FpqR )⇒ Gr(FpqG )→ Gr(Q)

Now we simplify a bit:

FR ⇒ FG → G

A coequalizer of free groups is precisely a presentation, where the two arrows are the left- and
right-hand side of the relations. Note that these arrows come from free power quandles, which is
equivalent to them being expressed using only powers and conjugation. For the other direction,
just reverse everything: The presentation of G is a coequalizer, the two arrows of which are in
the image of Gr, and then Q is the coequalizer of the free power quandles with those arrows. �

Example 8.13. The group:

〈x, y, z | x3 = y6 = z6 = 1, xyx−1 = y−1, xzx−1 = z, yzy−1 = z〉

is clearly pq-like, because it only uses powers and conjugation. Also, the same group can be
written

〈x, y, z | x3 = y6 = z6 = 1, yxy = x, xz = zx, yz = zy〉
And this is still pq-like because this presentation can be rewritten to something that only uses
conjugation and powers.

Remark 8.14. This also demonstrates why finite abelian groups are pq-like: they can be presented
using only relations of the form an = 1 and aba−1 = b.

Theorem 8.15. All Coxeter groups are pq-like. Since the symmetric groups are Coxeter, this
implies the symmetric groups are pq-like. Recall a Coxeter group is a group with presentation:

〈r1, r2, . . . , rn | (rirj)mij 〉

Where mii = 1 and mij ≥ 2 for i 6= j.
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Proof. All Coxeter groups have presentation:

〈r1, r2, . . . , rn | (rirj)mij 〉
Where mii = 1 and mij ≥ 2 for i 6= j. This means every generator ri has order two. The other
relations are of the form:

rirjri . . . rj = 1

This can be rewritten:
rirj . . . ri . . . r

−1
j r−1i = rj

Hence they are conjugations, and when i = j they are powers. �
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