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Introduction

In 1847 the French mathematician Gabriel Lamé proposed a proof of Fermat’s Last Theo-
rem to the Paris Academy. However the theorem was not established until recently by Wiles
et.al. So Lamé was wrong. His blunder was to assume that the cyclotomic integers Z[ζp]
had unique factorization for all primes p, something Kummer had proven was not true even
before Lamé proposed his proof.

The ring Z[ζp] is the ring of integers of the cyclotomic extension Q(ζp) of Q. To any num-
ber field K, which we will very soon define, we can associate a ring of integers OK which
mimics how Z lies in Q. The failure of unique factorization in such rings is measured by
what is called the ideal class group. Towards the end of this thesis we will give a formula
for calculating the class number - the order of the ideal class group. Although such a ring of
integers may lack unique factorization, they have the amazing property that every non-zero
ideal factorize uniquely into prime ideals. At the heart of this thesis is the study of OK .

The organization of this thesis is roughly as follows:

� In chapter 1 we introduce number fields and their rings of integers and prove some
basic properties about them.

� In chapter 2 we widen our focus and prove that every Dedekind domain has the property
of non-zero ideals factorizing uniquely into prime ideals, before specializing toOK again
as a specific example of a Dedekind domain.

� In chapter 3 we introduce some geometric methods, especially lattice theory, to prove
that the ideal class group is finite as well as study the structure of the group of units
of OK . Finally we use the geometric methods introduced to describe how ideals in OK
are distributed with respect to their ideal norm.

� In chapter 4 we introduce Dedekind’s zeta function ζK , the generalization of Riemann’s
zeta function to a number field K. We prove the class number formula, which relates
the residue of ζK at s = 1 to various invariants of a number field, one of them being the
class number. With the theory of Dedekind zeta functions we give a proof of the non-
vanishing of L(1, χ) for a non-trivial Dirichlet character χ and thus deduce Dirichlet’s
theorem on primes in arithmetic progressions.

I want to thank my advisor Petter Andreas Bergh for suggesting the topic of this thesis,
which I have grown to appreciate a lot. I also want to thank him for the weekly meetings
we have had over the past year. They have given me good advices, not only in the work
for this thesis, but also for the mathematical journey after finishing my bachelor degree. I
finally want to thank Wojtek Wawrów for proof reading the entire thesis.
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Chapter 1

Number fields and rings of integers

In this chapter we introduce number fields, K, and related concepts such as the norm, trace
and discriminant. Then we introduce the ring of integers of K, OK , which consists of all
elements in K that satisfy a monic polynomial with integer coefficients. OK will be of key
interest throughout this whole thesis. One can say that the study of the arithmetic of OK
is the heart of algebraic number theory.

1.1 Number fields

Definition 1.1.1. A number field K ⊆ C is a finite (and hence algebraic) field extension of
Q.

The elements in K that we will be most interested in are those satisfying a monic polynomial
with integer coefficients. We will study those in more detail in chapter 1.2, and for the time
being just define algebraic integers as we will need that notion for this section.

Definition 1.1.2. Let α ∈ C. Then α is said to be an algebraic number if ∃p(x) ∈ Q[x],
non-zero, such that p(α) = 0. α is said to be an algebraic integer if ∃p(x) ∈ Z[x] which is
monic so that p(α) = 0. The set of all algebraic integers will be denoted by A.

Let n = [K : Q]. The primitive element theorem [4, Theorem 16.5.2] tells us that there
exists some α ∈ K so that

K = Q(α) =
{
a0 + a1α + · · ·+ an−1α

n−1 : ai ∈ Q
}
.

In other words, {1, α, . . . , αn−1}, is a Q-basis for K. Throughout this thesis we will be
interested in the embeddings of K into C in various settings. Hence we start by studying
those embeddings.

Theorem 1.1.3. Let K = Q(α) be a number field, and let p(x) be the minimal polynomial
of α over Q with roots α1 = α, α2, . . . , αn. Then there are n embeddings σi of K into C,
each defined by σi(α) = αi.

5



6 CHAPTER 1. NUMBER FIELDS AND RINGS OF INTEGERS

Proof. Since p(x) is the minimal polynomial of α over Q, p(x) has distinct roots. An em-
bedding of K into C must fix Q, and will hence send roots of p(x) to roots of p(x). Hence
there are at most n possibilites for where α can be sent by such an embedding. Conversely,
as α, αj are roots of the same irreducible polynomial we have

Q(α) ∼= Q[x]/(p(x)) ∼= Q(αj)

where this isomorphism is simply given by α 7! αj. Hence there are exactly n embeddings
of K into C.

Now that we know how the embeddings of Q(α) into C behave, we introduce three important
concepts that is defined via those embeddings.

Definition 1.1.4. Let K be a number field with [K : Q] = n, and let σ1, . . . , σn be all the
embeddings of K into C. Then for any element β ∈ K we define the norm as

N(β) = σ1(β) · · ·σn(β),

and the trace as

T (α) = σ1(β) + · · ·+ σn(β).

For any n-tuple (β1, . . . , βn) ∈ Kn the discriminant is defined as

disc(β1, . . . , βn) = det


σ1(β1) σ1(β2) · · · σ1(βn)
σ2(β1) σ2(β2) · · · σ2(βn)

...
...

. . .
...

σn(β1) σn(β2) · · · σn(βn)


2

= |σi(βj)|2

Since interchanging columns only alter the sign of the determinant, the discriminant is well
defined. The last equality in the definition of the discriminant is the notation we will use. It
follows readily from the definition that T (α+β) = T (α)+T (β) and N(αβ) = N(α)N(β) for
α, β ∈ K. We continue by examining some of the properties of the norm and trace, before
we turn to the discriminant. We first need some lemmata about polynomials. Recall the
definition of a primitive polynomial f ∈ Z[x]: f is primitive if the gcd of its coefficient is 1.

Lemma 1.1.5. (Gauss’ lemma) If f, g ∈ Z[x] are primitive, so is their product fg.

A proof of this can be found in [4, Lemma 11.4.2].

Lemma 1.1.6. Let f(x) ∈ Z[x] be monic. Suppose there are monic polynomials f1, . . . , fn ∈
Q[x] so that

∏n
i=1 fi(x) = f(x). Then fi(x) ∈ Z[x] for all 1 ≤ i ≤ n.
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Proof. We first claim that there is a ci ∈ N such that cifi ∈ Z[x] is primitive. Write
fi(x) = a0

b0
+ a1

b1
x+ · · ·+ xk. There is clearly a least ci ∈ N>0 so that cifi ∈ Z[x], so suppose

this least ci does not make cifi primitive. Then there is d > 1 so that d | ci ajbj for all 1 ≤ j ≤ k

so we find mj ∈ N>0 such that dmj = ci
aj
bj

. Then

cifi = ci
dm0

ci
+ ci

dm1

ci
x+ · · ·+ dmkx

k

= d
(
m0 +m1x+ · · ·+mkx

k
)

Since fi is monic d | ci. Since d > 1, ci
d
< ci, so this contradicts the minimality of ci.

Hence cifi is primitive for all i, and we thus get by Gauss’ lemma that c1f1c2f2 · · · cnfn =
(c1c2 · · · cn)(f1 · · · fn) is primitive. This forces c1c2 · · · cn = ±1, so ci = ±1, so fi is primitive.

Lemma 1.1.7. An algebraic number α is an algebraic integer if and only if its minimal
polynomial over Q has coefficients in Z.

Proof. Let p(x) be the minimal polynomial of α over Q. Then it is irreducible over Q and
is monic. If it has coefficients in Z it is by definition an algebraic integer. Conversely, if α
is an algebraic integer, there is a monic polynomial f(x) ∈ Z[x] such that f(α) = 0. By
minimality of p(x), we have in Q[x] that p(x) | f(x), and as both f(x), p(x) are monic,
there must be monic k(x) ∈ Q[x] such that p(x)k(x) = f(x). Lemma 1.1.6, then gives that
p(x) ∈ Z[x], as we wanted to show.

The following lemma, paired up with Galois theory, is very useful when trying to prove that
some polynomial has rational coefficients.

Lemma 1.1.8. Let f ∈ C[x] be a polynomial such that f(q) ∈ Q ∀q ∈ Q. Then f(x) ∈ Q[x].

Proof. Let f have degree n. We construct a polynomial g(x) ∈ Q[x] of degree n that agrees
with f in n + 1 points. Then it follows that f − g, a polynomial of degree n, has n + 1
roots, and hence has to be 0. Moreover, in this case f = g. Now g(x) is simply the Lagrange
interpolation of f in the n+ 1 points, (0, f(0)), (1, f(1)), . . . , (n, f(n)):

g(x) =
n∑
j=0

(
f(j)

∏
0≤m≤n,m 6=j

x−m
j −m

)

By assumption, g(x) ∈ Q[x], which proves the statement.

Theorem 1.1.9. Let K be a number field and α ∈ K. Then N(α), T (α) ∈ Q. Furthermore
if α is an algebraic integer then N(α), T (α) ∈ Z.

Proof. We will prove the first statement using Galois theory. To that end, let K = Q(θ)
with p(x) the minimal polynomial of θ. Furthermore, let L be the splitting field of p(x), so
that L/Q is a Galois extension. We introduce the auxiliary polynomial fα defined as
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fα(x) = (x− σ1(α)) · · · (x− σn(α))

Observe that the constant term in fα(x) is (−1)jN(α) and the coefficient in front of xn−1 is
−T (α) for some integer j. Hence, if we are able to prove that fα(x) ∈ Q[x], the first claim
will follow. As α ∈ K = Q(θ), there is a polynomial r(x) ∈ Q[x] so that α = r(θ). By
Theorem 1.1.3 it follows that σi(α) = σi(r(θ)) = r(σi(θ)) = r(θi) where θi = σi(θ) as in
Theorem 1.1.3. Now let τ ∈ Gal(L/Q). Then if x ∈ Q we have

τ(fα(x)) = τ

(
n∏
i=1

(x− r(θi))

)
=

n∏
i=1

(x− τ(r(θi))) =
n∏
i=1

(x− r(τ(θi)))

Now τ will send a root of p(x) to a root of p(x) and as it is injective it will actually permute
those. As the product runs over all the roots of p(x), this implies that τ(fα(x)) = fα(x) and
as τ was arbitrary in Gal(L/Q) it follows by the fundamental theorem of Galois theory that
fα(x) ∈ Q[x]. To prove the second claim, we first show that fα(t) = (pα(t))k, where k ∈ N
and pα is the minimal polynomial of α over Q. Since one of the embeddings of K into C is
identity on K, fα(α) = 0. Hence pα | fα, and we can write (pα)sh = fα where h ∈ Q[x] is
relatively prime to pα. Suppose h is not constant. Then there must be some σi(α) so that
h(σi(α)) = 0. Now α = r(θ) for some r(x) ∈ Q[x] so that h(σi(α)) = h(r(θi)). That is θi is a
root of h(r(x)). Let pθ be the minimal polynomial of θ - then it is also the minimal polynomial
of θi and so pθ(x) | h(r(x)). Hence h(r(θ)) = 0 as well, and so h(α) = h(r(θ)) = 0, but then
h and pα shares a root, which contradicts that they are relatively prime. Since fα is monic,
h = 1. For the final step: let α be an algebraic integer. Then its mimimal polynomial pα over
Q has coefficients Z, so fα must also have integer coefficients. This finishes the proof.

Example 1.1.10. In the field Q(i), the norm and trace is given by

N(α + βi) = (α + βi)(α− βi) = α2 + β2 T (α + βi) = 2α

We introduce some notation for the sake of space: [aij] will denote the matrix having aij in
the ith row, jth column. In the same spirit |aij| will denote the determinant of the same
matrix. Discriminant and trace have a close relation.

Theorem 1.1.11. Let K be a number field, α1, . . . , αn ∈ K. Then

disc(α1, . . . , αn) = |T (αiαj)|

Proof. Firstly [σi(αj)]
T [σi(αj)] = [σ1(αi)σ1(αj) + · · ·+ σn(αi)σn(αj)] = [T (αiαj)]. For a

square matrix, we have det(AT ) = det(A), and so |T (αiαj)| = |σi(αj)|2 = disc(α1, . . . , αn).

Corollary 1.1.12. With the notation above, disc(α1, . . . , αn) ∈ Q, and if α1, . . . , αn ∈ A,
then disc(α1, . . . , αn) ∈ Z.



1.1. NUMBER FIELDS 9

Proof. By Theorem 1.1.9, T (αiαj) ∈ Q, so |T (αiαj)| ∈ Q. As we will see in Lemma 1.2.4,
A is a ring, thus products and sums of algebraic integers are still algebraic integers. If all
α1, . . . , αn ∈ A, then T (αiαj) ∈ Z for all i, j by Theorem 1.1.9 and so |T (αiαj)| ∈ Z in that
case as well. By Theorem 1.1.11 this is enough.

We end this section with determining when the discriminant is zero. Before proving this we
need a lemma from linear algebra, on the Vandermonde determinant.

Lemma 1.1.13. Let R be a commutative ring and a1, . . . , an ∈ R. Then∣∣∣∣∣∣∣∣∣
1 a1 · · · an−1

1

1 a2 · · · an−1
2

...
...

. . .
...

1 an · · · an−1
n

∣∣∣∣∣∣∣∣∣ =
∏

1≤r<s≤n

(as − ar)

Proof. The proof is by induction. The base case n = 2 is trivial, so assume the statement
holds for n = k. Let f ∈ R[x] be any monic polynomial of degree k. Since elementary
column operations do not change the value of the determinant we have∣∣∣∣∣∣∣∣∣

1 a1 · · · ak1
1 a2 · · · ak2
...

...
. . .

...
1 ak+1 · · · akk+1

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
1 a1 · · · f(a1)
1 a2 · · · f(a2)
...

...
. . .

...
1 ak+1 · · · f(ak+1)

∣∣∣∣∣∣∣∣∣
Now we choose f(x) = (x − a1)(x − a2) · · · (x − ak) which is indeed a monic polynomial in
R[x]. This yields∣∣∣∣∣∣∣∣∣

1 a1 · · · ak1
1 a2 · · · ak2
...

...
. . .

...
1 ak+1 · · · akk+1

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
1 a1 · · · 0
1 a2 · · · 0
...

...
. . .

...
1 ak+1 · · · f(ak+1)

∣∣∣∣∣∣∣∣∣ = (−1)2k+2f(ak+1)
∏

1≤r<s≤n

(as − ar)

Theorem 1.1.14. Let K be a number field and (α1, . . . , αn) ∈ Kn. Then disc(α1, . . . , αn) =
0 if and only if {α1, . . . , αn} is a linearly dependent set over Q.

Proof. Assume first that {α1, . . . , αn} is a linearly dependent set over Q. Then there exists
a1, . . . , an ∈ Q, not all zero, such that a1α1 + · · ·+ anαn = 0, and hence for any i = 1, . . . , n
we have a1σi(α1) + · · ·+ anσi(αn) = 0. Thus

a1

σ1(α1)
...

σn(α1)

+ · · ·+ an

σ1(αn)
...

σn(αn)

 = 0
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so the columns of the matrix [σi(αj)] are linearly dependent, and hence the determinant is
zero. We prove the converse contrapositively. Let K = Q(θ) - then {1, θ, . . . , θn−1} is a
basis for K over Q. Another basis is {α1, . . . , αn}. Hence there is an invertible matrix [cij]
such that αi =

∑n−1
j=0 cijθ

j and hence [σi(αj)] = [σi(θ
j)][cij]

T . Taking determinants on both

sides and remembering |cij| = |cji| yields disc(α1, . . . , αn) = |cij|2disc(1, θ, . . . , θn−1). Hence
it is enough to prove that disc(1, θ, . . . , θn−1) 6= 0. But this is the square of a Vandermonde
determinant and hence if we denote θi = σi(θ), then

disc(1, θ, . . . , θn−1) =

( ∏
1≤i<j≤n

(θj − θi)

)2

Clearly this product is 0 if and only if θj = θi for i 6= j, but K is a seperable extension of Q
and hence any minimal polynomial has no double roots.

Remark: Let {α1, . . . , αn} and {β1, . . . , βn} be two bases for K over Q. Furthermore
let αi =

∑n
j=1 cijβi. Then a part of the argument over is easily generalized to show that

disc(α1, . . . , αn) = |cij|2disc(β1, . . . , βn). We will use this relation later.

1.2 Ring of integers of K

Central to this chapter will be the notion of free abelian groups.

Definition 1.2.1. A free abelian group is a free Z-module.

Lemma 1.2.2. Let G be a free abelian group of rank n, and let H be a subgroup of G. Then
H is free abelian of rank ≤ n.

Proof. The proof is by induction. If G is of rank n = 1, then G ∼= Z. A subgroup of Z is of
the form nZ, which is also free abelian. Hence any subgroup H of G is free abelian of rank
at most one. Now assume the result holds for n− 1. Let G ∼= Z× · · · × Z (n times). Define
the homomorphism

π : Z× · · · × Z! Z (x1, . . . , xn) 7! x1

Then ker(π) = Zn−1. Let H be a subgroup of G (viewed as a subgroup of Zn). Then
H ∩ ker(π) is a subgroup of Zn−1 and hence by the induction hypothesis is free abelian of
rank ≤ n−1. Now the image of H, π(H), is a subgroup of Z, and hence either infinite cyclic
or {0}. If π(H) = {0}, then H ⊆ ker(π), and hence H = H ∩ ker(π), and hence H is free
abelian of rank ≤ n − 1. For the other case, fix some h ∈ H so that π(h) generates π(H).
We want to prove that H = Zh ⊕ (H ∩ kerπ). Let x ∈ H, then π(x) = kπ(h) = π(kh) for
some k ∈ Z. Then clearly π(x − kh) = π(x) − π(kh) = 0, so x − kh ∈ H ∩ ker(π). Hence
for any x ∈ H, x = kh + (x − kh) ∈ Zh + (H ∩ ker(π)). If y ∈ Zh ∩ (H ∩ ker(π)) then
y = kh ∈ ker(π), that is 0 = π(y) = π(kh) = kπ(h) and hence k = 0 so y = 0. As Zh and
(H ∩ ker(π)) clearly are subgroups of H, this shows that H = Zh ⊕ (H ∩ kerπ) - a direct
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sum of two free abelian groups, one of rank 1, the other of rank ≤ n − 1. Hence H is free
abelian of rank ≤ n.

The next thing we want to establish is that the algebraic integers A actually form a ring!
We start by finding an equivalent definition of algebraic integers, that will be easier to work
with.

Lemma 1.2.3. An element α ∈ C is an algebraic integer if and only if Γα = (1, α, α2, . . . )
is a finitely generated abelian group.

Proof. If Γα is finitely generated, then there exists some n ∈ N such that αn = a0 + a1α +
· · ·+ an−1α

n−1 for ai ∈ Z, but this is exactly saying that α satisfies some monic polynomial
with integer coefficients. Conversely, suppose α ∈ C is an algebraic integer. Then for some
n ∈ N we have αn = a0 + a1α+ · · ·+ an−1α

n−1 where ai ∈ Z. We claim that (1, α, . . . , αn−1)
genereates Γα, and want to show this by induction. The base case m = 0 is clear. Assume
αn+m−1 = b0 + b1α + · · ·+ bn−1α

n−1, bi ∈ Z. Then

αn+m = ααn+m−1

= α(b0 + b1α + · · ·+ bn−1α
n−1) = b0α + b1α

2 + · · ·+ bn−1α
n

= b0α + b1α
2 + · · ·+ bn−1(a0 + a1α + · · ·+ an−1α

n−1)

= bn−1a0 + (b0 + bn−1a1)α + · · ·+ bn−1an−1α
n−1 ∈ (1, α, . . . , αn−1)

Which finishes the proof by induction.

We are now just one lemma away from a very important definition in this thesis.

Lemma 1.2.4. The algebraic integers, A, form a subring of C.

Proof. A is non-empty as 1 ∈ A. What is left to show is that ∀α, β ∈ A, α − β ∈ A and
αβ ∈ A. By Lemma 1.2.3 it is enough to show Γα−β and Γαβ are finitely generated. Since
α, β are algebraic integers, we know Γα,Γβ is finitely generated, say by {1, α, . . . , αm} and
{1, β, . . . , βk} respectively. Then {αiβj}0≤i≤m,0≤j≤k generates a (finitely generated) abelian
group where both Γα−β and Γαβ are contained. Since a subgroup of a finitely generated
abelian group is finitely generated1, we are done.

As an immediate consequence of the lemma, A ∩K becomes a ring for any number field K.

Definition 1.2.5. The ring of integers of (a number field) K is defined as A ∩ K, and is
denoted by OK . In other words, OK consists of every element in K that satifies a monic
polynomial with integer coefficients.

OK has a very nice structure. Most importantly is perhaps the fact that every proper non-
zero ideal in OK factors into prime ideals uniquely, so that ideals in OK behave almost like
ordinary numbers. This fact isn’t just specific to OK - domains where this fact hold are

1A proof of this fact can be obtained by a similar argument as in Lemma 1.2.2. For details see [9,
Proposition 3.18]
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known as Dedekind domains, and we will define those more specifically and study them in
more detail in the next section. In the last part of this section we prove three central facts
about OK , which we will see in the next section is the very definition of a Dedekind domain.
The first fact we are going to prove is that OK is Noetherian. We start with two lemmata.

Lemma 1.2.6. Let α be an algebraic number. Then there exists 0 6= m ∈ Z such that mα
is an algebraic integer.

Proof. As α is an algebraic number, let f(x) = a0
b0

+ · · · + an−1

bn−1
xn−1 + xn be its minimal

polynomial over Q, where without loss of generality, gcd(ai, bi) = 1 for each i. Set m =
bnn−1b

n
n−2 · · · bn0 . Then

0 = m · 0 = (bnn−1b
n
n−2 · · · bn0 )

(
a0

b0

+ · · ·+ an−1

bn−1

αn−1 + αn
)

= a0b
n−1
0 bn1 · · · bnn−1 + a1b

n−1
0 bn−2

1 · · · bn−1
n−1(b0b1 · · · bn−1α) + · · ·+ (b0b1 · · · bn−1α)n

= a0b
n−1
0 bn1 · · · bnn−1 + a1b

n−1
0 bn−2

1 · · · bn−1
n−1(mα) + · · ·+ (mα)n

Hence mα is an algebraic integer.

Lemma 1.2.7. Let K be a number field with [K : Q] = n. Then there exists a basis
{α1, . . . , αn} consisting entirely of algebraic integers for K over Q.

Proof. Pick a basis for K over Q, say {β1, . . . , βn}. By Lemma 1.2.6 we find non-zero integers
m1, . . . ,mn such that αi = miβi is an algebraic integer. Now, for any x ∈ K:

x = a1β1 + · · ·+ anβn =
a1

m1

α1 + · · ·+ an
mn

αn

so {α1, . . . , αn} spans K over Q. Furthermore if a1α1 + · · ·+ anαn = 0, then a1m1β1 + · · ·+
anmnβn = 0, and as {β1, . . . , βn} is a basis, this implies that a1m1 = · · · = anmn = 0, hence
a1 = · · · = an = 0 as mi 6= 0.

Theorem 1.2.8. OK viewed as an additive group is free abelian of rank n.

Proof. The proof is by contradiction - suppose OK is not free abelian of rank n. This is
the same as saying that OK does not possess any integral basis. Let {ω1, . . . , ωn} be a basis
of algebraic integers for K over Q (which exists by Lemma 1.2.7) that makes the absolute
value of the discriminant minimal. Since this cannot be an integral basis there exists some
γ ∈ OK such that γ = a1ω1 + · · ·+ anωn where not all ai ∈ Z. Let us choose the numbering
such that a1 6∈ Z. Then a1 = a+r where a ∈ Z, 0 < r < 1. Let ψ1 = γ−aω1 and ψi = ωi for
i = 2, . . . , n. Since OK is a ring, ψ1, . . . , ψn are all in OK . In fact, we claim that {ψ1, . . . , ψn}
is another basis for K over Q. To this end, assume b1ψ1 + · · ·+ bnψn = 0. This is the same
as

0 = b1(γ − aω1) + b2ω2 + · · ·+ bnωn = b1(a1 − a)ω1 + (b2 + b1a2)ω2 + · · ·+ (bn + b1an)ωn
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Since {ω1, . . . , ωn} is a basis, b1(a1 − a) = 0. We cannot have a1 = a, because then r = 0.
Hence b1 = 0, but then we must have b2 = · · · = bn = 0 as well. Thus {ψ1, . . . , ψn} is a basis
for K over Q. By the remark after Theorem 1.1.14 we get the following equality:

|disc(ψ1, . . . , ψn)| =

∣∣∣∣∣∣∣∣∣∣∣
det


a1 − a a2 a3 · · · an

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


2∣∣∣∣∣∣∣∣∣∣∣
|disc(ω1, . . . , ωn)|

but then as 0 < r2 < 1:

|disc(ψ1, . . . , ψn)| = (a1 − a)2|disc(ω1, . . . , ωn)| = r2|disc(ω1, . . . , ωn)| < |disc(ω1, . . . , ωn)|

which contradicts the minimality of {ω1, . . . , ωn}.

Corollary 1.2.9. OK is Noetherian.

Proof. Let I be any ideal of OK . Then I is an additive subgroup of OK viewed as an additive
group. But by theorem 1.2.6, OK is free abelian of rank n, and by Lemma 1.2.2 I must also
be free abelian of rank ≤ n and hence finitely generated.

If {γ1, · · · , γn} and {ω1, . . . , ωn} are two integral bases for OK , then the change of basis ma-
trix between them consists of integers. It is a well known fact that an invertible matrix with
integer entries has determinant ±1. Hence it follows by the remark following Theorem 1.1.14
that the discriminant of those two bases are equal. This justifies the following definition.

Definition 1.2.10. Let K be a number field. We define disc(OK) to be the discriminant of
some integral basis for OK . We can generalize the remark after Theorem 1.1.14 to a non-zero
ideal I as well, because I is free abelian of rank ≤ n and we can restrict the embeddings of
K into C to I. Thus we also define for non-zero ideal I, disc(I) to be the discriminant of
some integral basis for I (which is well-defined by the paragraph above).

Lemma 1.2.11. A finite integral domain D is a field.

Proof. Take a 6= 0 in D. Since D is finite, the list 1, a, a2, a3, . . . repeats itself at some point
where an = am, n < m, whence an(1− am−n) = 0 and as a 6= 0 and D is an integral domain
1 = am−n = aam−n−1 so a has an inverse.

Theorem 1.2.12. OK has Krull dimension 1 - that is every non-zero prime ideal of OK is
maximal.
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Proof. Let p be a non-zero prime ideal of OK . Let 0 6= α ∈ p. Then we have N(α) =
ασ2(α) · · · σn(αn), where σ1(α) = α if σ1 is the identity embeddings of K into C. Hence,
let us write N(α) = αβ with β = σ2(α) · · ·σn(α). By Theorem 1.1.9, N(α) ∈ Z, and since
α 6= 0, N(α) 6= 0. Since σ sends an algebraic integer to an algebraic integer β ∈ A. We also

have β = N(α)
α
∈ K so β ∈ OK . Since p is an ideal, N(α) = αβ ∈ p, so (N(α)) ⊆ p. From

the third isomorphism theorem it follows that

OK/(N(α))

p/(N(α))
∼= OK/p

Now as OK ∼= Zn, (N(α)) = kZn for some k and hence |OK/(N(α))| = |Zn/kZn| = kn. This
shows that the left hand side of the isomorphism above is finite, and so OK/p is also finite.
But p is a prime ideal, so OK/p is a finite integral domain which we know are all fields.
Finally, OK/p can be a field iff p is maximal, which finishes the proof.

Theorem 1.2.13. Suppose α ∈ C satisfy a monic polynomial with coefficients in A. Then
α ∈ A.

Proof. Let ai ∈ A, not all zero, such that

a0 + a1α + · · ·+ αn = 0

We aim to prove that Z[a0, . . . , an−1](1, α, α2, . . . ) is finitely generated abelian. Clearly Γα =
(1, α, α2, . . . ) is a subgroup of this group, and as a subgroup of a finitely generated abelian
group is finitely generated this is enough by Lemma 1.2.3. Because the ai’s are algebraic
integers, the Γai ’s are finitely generated and hence Z[a0, . . . , an−1] is finitely generated. Now
we have that

αn+1 = ααn

= α(−a0 − a1α− · · · − αn−1) = −a0α− a1α
2 − · · · − αn

= −a0α− a1α
2 − · · · − an−2α

n−1 − (a0 + a1α + · · ·+ an−1α
n−1)

= −a0 − (a0 + a1)α− (a1 + a2)α2 − · · · − (an−2 + an−1)αn−1

∈ Z[a0, . . . , an−1](1, α, . . . , αn−1)

By induction it follows that αn+m ∈ Z[a0, . . . , an−1](1, α, . . . , αn−1) for m ∈ N. This finishes
the proof, by the remarks in the beginning of the proof.



Chapter 2

Dedekind domains

In this chapter we prove that every non-zero ideal in a Dedekind domain factorizes uniquely
into prime ideals. Afterwards we prove some other nice properties of Dedekind domains.
First that a Dedekind domain is a PID if and only if it is a UFD. Secondly that ideals are
generated by at most two elements. As we will see, the ideal theory of Dedekind domains is
very nice: the ideals here behave somewhat like numbers.

2.1 Unique factorization in Dedekind domains

Definition 2.1.1. Let R be an integral domain. Then R is called a Dedekind domain if
(DD1) R is Noetherian.
(DD2) R has Krull dimension 1, that is every non-zero prime ideal is maximal.

(DD3) R is integrally closed in its field of fractions K =
{
α
β

: α, β ∈ R, β 6= 0
}

- that is if
α
β

is a root of a monic polynomial with coefficients in K, then α
β
∈ R.

Corollary 1.2.9, Theorem 1.2.12 and Theorem 1.2.13 show that the ring of integers of any
number field is a Dedekind domain. However this is not the only class of Dedekind domains,
another one comes from algebraic geometry: if X is a non-singular affine curve over a field
k, the coordinate ring Γ(X/k) is a Dedekind domain. Our first goal will be to prove that
every non-zero ideal in a Dedekind domain factorizes uniquely into prime ideals. For this
we need a few lemmata. Throughout the rest of the chapter, R is always assumed to be a
Dedekind domain with field of fractions K.

Lemma 2.1.2. Let I be a non-zero ideal in R. Then I contains a product of non-zero prime
ideals of R.

Proof. Assume there is a non-zero ideal I that does not contain a product of prime ideals.
Then the set

P = {I ⊆ R : I ideal, @P1, . . . , Pt non-zero prime ideals such that P1 · · ·Pt ⊆ I}

15
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is non-empty. Since R is Noetherian, P contains a maximal element, call it M . Since M ∈ P ,
M cannot be prime. Hence we can find rs ∈M such that r, s 6∈M . The ideals M + (r) and
M + (s) are strict supersets of M , and hence by maximality of M cannot be in P . Thus
we can find non-zero prime ideals P1, . . . , Pt, Q1, . . . , Q` such that P1 · · ·Pt ⊆ M + (r) and
Q1 · · ·Q` ⊆M + (s). But as M is an ideal and (rs) ⊆M we get

P1 · · ·PtQ1 · · ·Q` ⊆ (M + (r))(M + (s)) ⊆M2 +M(s) +M(r) + (rs) ⊆M

which contradicts that M ∈ P .

Lemma 2.1.3. Let A be a proper ideal of R. Then there is an element γ ∈ K\R such that
γA ⊆ R.

Proof. Let a ∈ A be non-zero. By Lemma 2.1.2, P1 · · ·Pt ⊆ (a) for some non-zero prime
ideals P1, . . . , Pt in R. Choose t such that it is minimal. Every proper ideal is contained in a
maximal ideal (this follows from Zorn’s lemma, see [3, Corollary 1.4]). So fix a maximal ideal
P (and hence prime ideal) such that (a) ⊆ P . Hence P contains the product P1 · · ·Pt, and
because it is a prime ideal P ⊇ Pi for some i, say i = 1. However, R is a Dedekind domain
so DD2 implies that P1 is a maximal ideal as well, and hence P = P1. Since t was minimal
∃b ∈ P2 · · ·Pt\(a). Now let γ = b/a. Then γ 6∈ R, because if it was then b = b

a
· a ∈ (a).

Now take c ∈ A. Since c ∈ A ⊆ P = P1, cb ∈ P1 · · ·Pt ⊆ (a). Hence cb = ar for some r ∈ R.
That is γc = b

a
c = r ∈ R.

Now we are ready to prove a central theorem: a non-zero ideal is just a multiplication away
with some other ideal from being principal. From this theorem the prime factorization of
ideals will follow.

Theorem 2.1.4. Let I be a non-zero ideal in R. Then there exists a non-zero ideal J such
that IJ = (α) for some non-zero α ∈ I.

Proof. We show that J = {β ∈ R : βI ⊆ (α)} works for any non-zero α ∈ I. First of all we
have to show that J is a non-zero ideal. To that end let x, y ∈ J, r ∈ R. Since xI ⊆ (α) and
yI ⊆ (α) we get (x − y)I ⊆ (α). Furthermore (rx)I = r(xI) ⊆ r(α) ⊆ (α). Hence J is an
ideal, and non-zero since α ∈ J . If now z ∈ I, w ∈ J , then zw ∈ (α), so IJ ⊆ (α). We now
proceed to show that this actually is an equality. To this end, define A = 1

α
IJ . Since IJ is

an ideal, and IJ ⊆ (α), it follows that A is an ideal. If A = R then (α) = IJ , in which case
we are done. We now complete the proof by showing that A being a proper ideal yields a
contradiction. If A is a proper ideal, then by Lemma 2.1.3, there exists γ ∈ K\R such that
γA ⊆ R. Since α ∈ I, the ideal J is contained in A. It follows that γJ ⊆ γA ⊆ R. Now
(γJ)I = γJI = γαA = α(γA) ⊆ αR = (α), so by definition of J we have γJ ⊆ J . By DD1
we can find a generating set α1, . . . , αm for J , and so γαi = ai1α1 + · · ·+ aimαm for aim ∈ R.



2.1. UNIQUE FACTORIZATION IN DEDEKIND DOMAINS 17

This gives us the following system of linear equations:

γ

α1
...
αm

 =

a11 · · · a1m
...

. . .
...

am1 · · · amm


α1

...
αm


Let us call the matrix in the system of equations above for M . Since not all αi can be zero,
the above shows that (M − γIm)x = 0 not only has the trivial solution. We then know from
linear algebra that det(M − γIm) = 0. Expanding this gives a monic polynomial in R[x]
where γ is a root. By DD3, γ ∈ R which is a contradiction as γ ∈ K\R.

From this we get three important corollaries: two of them says that (non-zero) ideals in
Dedekind domains have the cancellation property and that divisibility of ideals and inclusion
is equivalent. The last tells ut that the ideal classes of a Dedekind domain form an abelian
group (!). This group is called the ideal class group and we will study it more in the next
chapter. As we will see, in some sense the order of the ideal class group, called the class
number, measures how far away a Dedekind domain is from being a unique factorization
domain. The ideal class group will be our main focus after this chapter and throughout the
thesis. In fact we will establish a formula for calculating the class number, via the theory of
Dedekind zeta functions. We postpone this third corollary to the next chapter.

Corollary 2.1.5. Let A,B,C be non-zero ideals in R. Then AB = AC implies B = C.

Proof. By Theorem 2.1.4 we find an ideal J such that AJ = (α), α 6= 0. Multiplying
AB = AC with J gives us (α)B = (α)C, so for any b ∈ B, there is a c ∈ C and an r ∈ R we
have αb = rαc, so b = rc ∈ C, that is B ⊆ C. That C ⊆ B is proven analogously.

Corollary 2.1.6. Let A,B be non-zero ideals in R. Then A | B ⇐⇒ A ⊇ B.

Proof. If A | B, there exists a non-zero ideal C in R such that A ⊇ AC = B. Conversely,
we can find an ideal J and a non-zero element α such that AJ = (α) (Theorem 2.1.4). Now
if C = 1

α
JB then

AC = A
1

α
JB =

1

α
(α)B = B

What is left to prove is that C is an ideal in R. If we are able to prove 1
α
JB ⊆ R this will

follow since JB is an ideal. Now 1
α
JB ⊆ 1

α
JA = 1

α
(α) = R.

Now we are finally ready to prove on of the big theorems of this chapter:

Theorem 2.1.7. Every proper non-zero ideal in a Dedekind domain R factorizes uniquely
into prime ideals.

Proof. We first show existence. Suppose for a contradiction that

P = {I non-zero proper ideal in R : I does not factorize into prime ideals} 6= ∅
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By DD1, P has a maximal element M . Again as in Lemma 2.1.3, we can fix a maximal (and
hence prime) ideal P of R such that M ⊆ P . By Corollary 2.1.6 there is an ideal C such
that PC = M . Now C strictly contains M , because if C = M then PM = PC = M = RM ,
which by Corollary 2.1.5 would imply P = R. That the inclusion is strict implies that
C = P1 · · ·Pt for prime ideals Pi, but then M = PC = PP1 · · ·Pt, which contradicts that
M ∈ P . This shows existence. For the uniqueness part, let I be any non-zero ideal in R,
and suppose

I = P1 · · ·Pt = Q1 · · ·Q`

for prime ideals Pi, Qj say with t ≥ `. Then P1 | Q1 · · ·Q` so P1 ⊇ Q1 · · ·Q` by Corollary
2.1.6. Since P1 is prime, it contains some Qi. After rearrangement, say Q1 ⊆ P1. Since Q1

is prime and non-zero, DD2 gives that Q1 is maximal and hence Q1 = P1. By Corollary
2.1.5 it follows that P2 · · ·Pt = Q2 · · ·Q`. If t = ` we get the uniqueness and we are done. If
t > ` we have P`+1 · · ·Pt = R, so P`+1 | R, that is P`+1 ⊇ R, which contradicts P`+1 being
prime.

Theorem 2.1.4 told us that for every non-zero ideal I, there exists an ideal J such that IJ
is a non-zero principal ideal. Another way to interpret this is that a Dedekind domain R
is not too far away from being principal. We can strengthen this even more: every ideal
in a Dedekind domain is generated by at most two elements. To prove this we start by
generalizing gcd and lcm from Z to R. Remember in Z that gcd is the greatest common
divisor of two integers, so the greatest common divisor of two ideals should be the greatest
ideal that divides both. From Corollary 2.1.6 we know A | B ⇐⇒ A ⊇ B. So if D is the
greatest common divisor of I and J we have D ⊇ I and D ⊇ J . Furthermore if C | I, C | J
as well, then C | D and so C ⊇ D. From this we see that the greatest common divisor of I
and J should be the smallest ideal that contains both.

Definition 2.1.8. Let I, J be non-zero ideals of R. We then define

gcd(I, J) = I + J lcm(I, J) = I ∩ J

Lemma 2.1.9. If I, J are ideals in a Dedekind domain R such that 1 ∈ I + J , then 1 ∈
Im + Jn for all m,n.

Proof. Since 1 ∈ I + J , write 1 = α + β, α ∈ I, β ∈ J . By the binomial theorem

1 = (α + β)m+n =
m+n∑
i=0

(
m+ n

i

)
αiβm+n−i

= βn
m∑
i=0

(
m+ n

i

)
αiβm−i + αm

m+n∑
i=m+1

(
m+ n

i

)
αi−mβm+n−i

Because βn ∈ Jn and αm ∈ Im, the absorbance property of ideals finishes the proof.

Theorem 2.1.10. Let I be any non-zero ideal in a Dedekind domain R, and let α be any
non-zero element of I. Then there exists an element β ∈ I such that I = (α, β).
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Proof. Suppose that we find a β ∈ R such that I = gcd((α), (β)). Then I = (α)+(β) = (α, β)
by the definition above. In that case I = (α, β) ⊇ (β) and so β ∈ I, which is what we want.
With this strategy in mind, start by factorizing I into primes:

I = P n1
1 · · ·P nt

t

such that all the Pi are distinct. Since (α) ⊆ I, P n1
1 · · ·P nt

t = I | (α) and so (α) is divisible
by all the P ni

i . There may be more divisors: denote those by Q1, . . . , Q`. We must construct
a β such that none of these Qi divides (β) and such that P ni

i is the exact power of Pi that
divides (β). In other words we want to find β such that

β ∈
t⋂
i=1

(P ni
i \P

ni+1
i ) ∩

⋂̀
j=1

(R\Qj)

We now show such β exist, which would finish the proof. By unique factorization we can fix
non-zero elements βi ∈ P ni

i \P
ni+1
i . Consider the congruences

x ≡ βi (mod P ni+1
i ) i = 1, . . . , t

x ≡ 1 (mod Qj) j = 1, . . . , `

The ideals P n1
1 , . . . , P nt

t , Q1, · · · , Q` are all pairwise relatively prime by Lemma 2.1.9 and thus
the Chinese Remainder Theorem gives a solution x to the congruences over. This solution
satisfy x ∈ P ni

i but since βi is non-zero x 6∈ P ni+1
i . Also such a solution will by definition

satisfy x 6∈ Qj. This solution x is exactly the β we are seeking.

Recall that every PID is a UFD, but the converse is not in general true. However, for
Dedekind domains the converse is true.

Theorem 2.1.11. A Dedekind domain R is a UFD if and only if it is a PID.

Proof. Assume R is a UFD. Let I be a non-zero ideal of R. By Theorem 2.1.4 we find an
ideal J such that IJ = (α), α 6= 0. Hence I | (α). Since R is a UFD, α factorizes into prime
elements in R. Any such prime divisor p will generate a prime ideal (p). Hence I divides
a product of principal ideals whom are all prime. It follows that I itself is a product of
principal prime ideals, and hence a principal ideal.

2.2 The Ideal Norm

We now go back to the special case where our Dedekind domain R is the ring of integers
OK for a number field K. There is also a notion of norm for ideals, defined as ‖I‖ = |R/I|.
While this can be defined in any Dedekind domain (or any ring whatsoever), we get some
very nice properties of the ideal norm when restricting to OK .

Theorem 2.2.1. Let I, J be non-zero ideals in OK. Then ‖I‖ <∞ and ‖IJ‖ = ‖I‖‖J‖.
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Proof. The finiteness of the norm follows from the exact same argument as in the proof of
Theorem 1.2.12. For multiplicativeness, we first prove that ‖Pm‖ = ‖P‖m for P a prime
ideal. Since OK ⊇ P ⊇ P 2 ⊇ · · · we get by the third isomorphism theorem that

(OK/Pm)/(Pm−1/Pm) ∼= OK/Pm−1

(OK/Pm−1)/(Pm−2/Pm−1) ∼= OK/Pm−2

...

(OK/P 2)/(P 1/P 2) ∼= OK/P 1

Considering orders we get

‖Pm‖ = |Pm−1/Pm|‖Pm−1‖
= |Pm−1/Pm||Pm−2/Pm−1|‖Pm−2‖
= · · · = |Pm−1/Pm| · · · |P 0/P 1|

Hence to prove ‖Pm‖ = ‖P‖m it is enough to show that |P k/P k+1| = ‖P‖ for all k =
0, . . . ,m− 1. Here P 0 = OK .

Let α ∈ P k\P k+1 (that such an α exists follows from unique factorization). Let us now
consider those ideals as additive groups. We get a canonical isomorphism R/P ! αR/αP .
Since α ∈ P k we get an inclusion αR ↪! P k. This induces a homomorphism to the quotient
ψ : αR ! P k/P k+1. Clearly ker(ψ) = P k+1 ∩ αR and Im(ψ) = (αR + P k+1)/P k+1. Now
αR + P k+1 = gcd(αR,P k+1). Since αR ⊆ P k it follows that P k | αR. However as α ∈
P k\P k+1 we also have αR 6⊆ P k+1 so it follows that gcd(αR,P k+1) = P k. Now we continue
with working out P k+1 ∩ αR. First observe that P k+1 ∩ αR ⊆ P k ∩ αP ⊆ αP because
αP ⊆ P k. Conversely if x ∈ αP ⊆ αR then α ∈ P k+1 because α ∈ P k. We conclude that
P k+1 ∩ αR = αP . Piecing all this together and using the first isomorphism theorem we get
an isomorphism αR/αP ! P k/P k+1, so we have our desired isomorphism R/P ! P k/P k+1.
This proves ‖Pm‖ = ‖P‖m.

Now let T be any non-zero ideal and P a non-zero prime ideal such that P does not divide
T . Then Pm and T are relatively prime for any exponent m by Lemma 2.1.9, because P
and T are relatively prime. The Chinese Remainder Theorem then gives us an isomorphism
R/Pm × R/T ! R/PmT from which by taking norms, and using what we proved earlier
yield ‖P‖m‖T‖ = ‖Pm‖‖T‖ = ‖PmT‖. Using the last equation repeatedly finishes the proof,
because I = P e1

1 · · ·P et
t , J = Qr1

1 · · ·Qrs
s for some primes Pi and Qj.

In the case where our ideal is principal the norm is easily calculated. To see this we first
need a few more results. We first state a theorem that we will need.

Theorem 2.2.2. Let G be a free abelian group with finite rank n and H a non-zero subgroup.
Then there exists a basis {β1, . . . , βn} of G, an integer r ≥ 1 and positive integers d1 | · · · | dr
such that {d1β1, . . . , drβr} is a basis for H.

For a proof see [5, Theorem II.1.6]. If I is a non-zero ideal of OK we know that ‖I‖ < ∞,
that is |OK/I| <∞. As I is also free abelian of rank ≤ n, it follows from |OK/I| <∞ that
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I needs to be free abelian of rank n. The discriminant of I (see Definition 1.2.10) is closely
related to disc(OK):

Theorem 2.2.3. Let I be a non-zero ideal of OK where [K : Q] = n. Then I is free abelian
of rank n and disc(I) = |OK/I|2disc(OK).

Proof. We have already proven the first claim. By Theorem 2.2.2, fix a basis {ω1, . . . , ωn}
for OK such that {d1ω1, . . . , dnωn} is a basis for I for some positive integers d1, . . . , dn. As
mentioned in Definition 1.2.10, the remark after Theorem 1.1.14 can be used in this case as
well. Now every basis element is just multiplied by a positive integer. The determinant in
that formula then becomes (d1 · · · dk)2. Now look at the homomorphism

ϕ : OK ! Z/d1Z× · · · × Z/dkZ a1ω1 + · · ·+ anωn 7! (a1, . . . , an)

which is clearly surjective and has kernel I. Hence |G/I| = d1 · · · dk by the first isomorphism
theorem, which finishes the proof.

Corollary 2.2.4. Let a ∈ OK be non-zero. Then ‖(a)‖ = |N(a)|.

Proof. A basis for (a) is {aω1, . . . , aωn} where {ω1, . . . , ωn} is a basis for OK . Hence
disc(aω1, . . . , aωn) = ‖(a)‖2disc(ω1, . . . , ωn) from Theorem 2.2.3. From basic determinant
rules we get that

disc(aω1, . . . , aωn) = |N(a)|2disc(ω1, . . . , ωn)

The proof follows by combining this with the previous formula.

There are some relations between prime numbers and prime ideals via the norm as well.

Theorem 2.2.5. Let I be a non-zero ideal of OK. Then ‖I‖ ∈ I. Furthermore if ‖I‖
is prime, I is also prime. Conversely, if I is prime, then ‖I‖ = pm for some exponent
m ≤ [K : Q]. Finally, given a positive integer t, there are at most finitely many non-zero
ideals I, satisfying ‖I‖ = t.

Proof. Consider OK as an additive group. For any x ∈ OK , x‖I‖ is zero in OK/I by
definition of ‖I‖. That is x‖I‖ ∈ I. Now let x = 1.

For the next statement, start by uniquely factorizing: I = P e1
1 · · ·P et

t . Taking norms we
obtain ‖I‖ = ‖P1‖e1 · · · ‖Pt‖et . Since ‖I‖ is prime then necessarily all but one ei are 0, and
for this non-zero ei, ei = 1. Hence we have I = Pi. Now assume I is prime. Since ‖I‖ is an
integer we have some unique factorization ‖I‖ = pm1

1 · · · pmtt . By the first statement of the
theorem, I | (‖I‖) = (p1)m1 · · · (pt)mt . It follows that I | (pi)mi for at least one i. Since I is
prime, we get that I | (pi). If there was another (pj)

mj such that I | (pj)mj , then again since
I is prime I | (pj). Since (pi), (pj) are coprime, we can find a, b ∈ Z such that api + bpj = 1,
thus (pi) + (pj) = OK . Then as I | (pi) ⇐⇒ I ⊇ (pi), we get OK = (pi) + (pj) ⊆ I, so
I = OK , but I is prime and cannot be the whole ring. Hence we have a contradiction, and
so I | (pi) for exactly one i. Taking norms we get ‖I‖ = ‖(pi)‖ = |N(pi)|. pi being a prime in
Z is fixed by all embeddings of K into C, and hence |N(pi)| = pni . It follows that ‖I‖ = pmi
for m ≤ n.
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For the last part of the theorem, consider such a positive integer t. By unique factorization,
(t) has finitely many divisors, or equivalently: (t) belongs to only a finite number of ideals
OK , and hence t only belongs to a finite number of ideals of OK (if t is belongs to some
ideal, then necessarily (t) also must belong there). Let I be an ideal such that ‖I‖ = t. By
the first statement of this theorem, t = ‖I‖ ∈ I. From what we just proved, there can be at
most finitely many I where t belongs. In other words, there are at most finitely many ideals
I satisfying ‖I‖ = t.



Chapter 3

Geometry of numbers

In this chapter we interpret number fields geometrically via lattices. More specifically we
will use the embeddings of a number field K into C, to map OK onto a lattice Rn for some n.
We also introduce two groups: the ideal class group and the unit group. Roughly speaking,
the ideal class group measures how much unique factorization of elements fail in OK . We will
show that this group is finite and give a nice bound on its order. The unit group consists of
the units of OK . We will give a explicit description of it. Finally we will use these geometric
ideas to study the distribution of ideals in OK . This will be important in the next chapter
where we (finally!) introduce Dedekind Zeta functions.

3.1 The ideal class group

Given any Dedekind domain R, we have an equivalence relation ∼ defined for non-zero ideals
of R:

I ∼ J ⇐⇒ αI = βJ for some non-zero α, β ∈ R

Definition 3.1.1. The ideal class group consists of the (non-zero) ideal classes of R with
respect to the equivalence relation above, with ideal multiplication as the operation.

Lemma 3.1.2. The ideal class group is indeed a group (with multiplication of ideals).

Proof. Let C1, C2 be two equivalence classes of ideals and choose representatives I, I ′ ∈
C1, J, J

′ ∈ C2. We want to show that IJ ∼ I ′J ′ so that the multiplication in this group
is well-defined. Since I ∼ I ′ we have αI = βI ′ and since J ∼ J ′ we have γJ = δJ ′ where
α, β, γ, δ are non-zero. Combining this we get αγIJ = βδI ′J ′, so IJ ∼ I ′J ′. Associativity is
clear, and the identity is the class of R. What we need to show is that every ideal class has
an inverse. To this end let C be an ideal class and pick a representative I. From Theorem
2.1.4 there is some ideal J such that 1(IJ) = IJ = (α) = αR for some non-zero α ∈ I. That
is IJ ∼ R.

Let (α), (β) be any two non-zero principal ideals of a Dedekind domain R. Then β(α) = α(β)
so (α) ∼ β. That is, any two non-zero principal ideals are equivalent. Suppose now that all

23
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non-zero ideal of R are equivalent and let I be some non-zero ideals of R. Then we have
αI = βR for some α, β ∈ R. Then there is some η ∈ I such that αη = β, so β

α
= η ∈ I ⊆ R

and hence I = β
α
R is principal. This argument shows that the class group of R is trivial if

and only if R is a PID. From Theorem 2.1.11 we then get

Theorem 3.1.3. A Dedekind domain R is a UFD if and only if its class group is trivial.

Proof. This follows from Theorem 2.1.11 and the paragraph above.

This justifies the idea that the ideal class group measures how far a Dedekind domain is
from having unique factorization. Our next goal is to prove that in the case R = OK , the
ideal class group is indeed finite. The idea of the proof is to find a common element α of
any non-zero ideal I of OK with a certain bound on its norm. This will give us finiteness
of the ideal class group. The proof we will give is by no means the easiest, but one of its
strengths is that it gives a better bound on the order than more elementary methods. For a
more elementary proof see [8, Theorem 35 & Corollary 2].

To get us started, fix a number field K with degree n over Q. Any embedding of K into C
is either purely real (that is its image is contained in R) or has purely imaginary elements
in its image as well. In the latter case, such an embedding τ has a conjugate τ which also is
an embedding of K into C. We thus list up our embeddings as

σ1, . . . , σr, τ1, τ1, . . . , τs, τs

where σ1, . . . , σr are the ones whose image is contained in R. Theorem 1.1.3 tells us that
r + 2s = n.

Definition 3.1.4. Let K be a number field with [K : Q] = n and with the notation above,
so that r + 2s = n. Then we define the following mapping K ! Rn:

LatK : K ! Rn α 7! (σ1(α), . . . , σr(α),Re(τ1(α)), Im(τ1(α)), . . . ,Re(τs(α)), Im(τs(α))

where Re and Im denote real part and imaginary part respectively.

The name of the function LatK comes from the fact that it maps OK onto a lattice in Rn.

Definition 3.1.5. A lattice Λ in Rn is a subgroup of the additive group Rn, so that Λ has
a Z-basis which spans an additive group isomorphic to Rr for some 0 ≤ r ≤ n. If r = n we
say Λ has full rank. A fundamental parallellotope for Λ is a set of the form{

r∑
i=1

aivi : ai ∈ [0, 1)

}
where {v1, . . . , vr} is any Z-basis for Λ.

Before we continue we need to agree on precisely what we mean by an n-dimensional volume.

Definition 3.1.6. For any Lebesgue-measureable subsetX ⊆ Rn we define the n-dimensional
volume of X, vol(X), to be the Lebesgue measure of X.
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The Lebesgue measure coincides with any reasonable intuitive way of thinking of n-
dimensional volume. This is rather vague, but we will not explain this any further. From
linear algebra we know that the n-dimensional volume of a parallellotope as described above
is the absolute value of the determinant whose rows are v1, . . . , vn. Since any change of basis
matrix between two Z-bases has determinant ±1, it follows that the volume is well-defined.

Definition 3.1.7. Let Λ be a lattice of full rank in Rn. By vol(Rn/Λ) we mean the volume
of a fundamental parallellotope of Λ as defined above.

Theorem 3.1.8. Let K be a number field with [K : Q] = n = r + 2s. Denote the image
LatK(OK) by ΛOK . Then ΛOK is an n-dimensional lattice in Rn with

vol(Rn/ΛOK ) =
1

2s

√
|disc(OK)|

Proof. If we view LatK as an additive homomorphism K+ ! Rn then it follows from the defi-
nition of LatK that ker(LatK) is trivial. Hence LatK is an embedding of K+ into Rn. Now, let
us fix an integral basis {α1, . . . , αn} for OK . Then {LatK(α1), . . . ,LatK(αn)} generates ΛOK
over Rn. It will follow that ΛOK is a n-dimensional lattice in Rn if {LatK(α1), . . . ,LatK(αn)}
is linearly independent over R. To this end assume

a1LatK(α1) + · · ·+ anLatK(αn) = 0

for ai ∈ R. From this we get a system of equations:

0 = a1σ1(α1) + · · ·+ anσ1(αn)

...

0 = a1σr(α1) + · · ·+ anσr(αn)

0 = a1Re(τ1(α1)) + · · ·+ anRe(τ1(αn))

0 = a1Im(τ1(α1)) + · · ·+ anIm(τ1(αn))

...

0 = a1Re(τs(α1)) + · · ·+ anRe(τs(αn))

0 = a1Im(τs(α1)) + · · ·+ anIm(τs(αn))

Thus it will follow that a1 = a2 = · · · = an = 0 if the determinant of the following matrix is
non-zero: 

σ1(α1) · · · σ1(αn)
...

. . .
...

σr(α1) · · · σr(αn)
Re(τ1(α1)) · · · Re(τ1(αn))
Im(τ1(α1)) · · · Im(τ1(αn))

...
. . .

...
Re(τs(α1)) · · · Re(τs(αn))
Im(τs(α1)) · · · Im(τs(αn))


=



σ1(α1) · · · σ1(αn)
...

. . .
...

σr(α1) · · · σr(αn)
τ1(α1)+τ1(α1)

2
· · · τ1(αn)+τ1(αn)

2
τ1(α1)−τ1(α1)

2
· · · τ1(αn)−τ1(αn)

2
...

. . .
...

τs(α1)+τs(α1)
2

· · · τs(αn)+τs(αn)
2

τs(α1)−τs(α1)
2

· · · τs(αn)−τs(αn)
2


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Elementary row operations on this matrix shows that the determinant of the matrix is

1

(−2i)s

√
|disc(OK)|

From Theorem 1.1.14 we know that disc(OK) is non-zero so we indeed get a1 = · · · = an = 0.
The last claim of the theorem also follows since the absolute value of the determinant we
calculated is indeed the volume of a fundamental parallellotope of ΛOK .

Now that we know that OK corresponds to a certain lattice ΛOK , we want to also establish
a link between non-zero ideals of OK and n-dimensional sublattices of ΛOK .

Corollary 3.1.9. A non-zero ideal I of OK corresponds to an n-dimensional lattice ΛI of
ΛOK with

vol(Rn/ΛI) =
1

2s

√
|disc(OK)|‖I‖

Proof. Following the proof of Theorem 3.1.8, we see that I is a n-dimensional sublattice ΛI

of ΛOK as I is also free abelian of rank n (Theorem 2.2.3). Because ΛOK is free abelian of
rank n, let us by Theorem 2.2.2 fix a basis {λ1, . . . , λn} of ΛOK such that for positive integers
d1, . . . , dn, {d1λ1, . . . , dnλn} is a basis for ΛI . The homomorphism

ϕ : ΛOK ! Z/d1Z× · · · × Z/dnZ

has kernel ΛI . Hence |ΛOK/ΛI | = d1 · · · dk. We also have

vol(Rn/ΛI) = | det(d1λ1, . . . , dnλn)| = d1 · · · dk| det(λ1, . . . , λn)| = |ΛOK/ΛI |vol(Rn/ΛOK )

We must have |OK/I| = |ΛOK/ΛI | and hence by the formula from the previous theorem we
get

vol(Rn/ΛI) = |OK/I|
1

2s

√
|disc(OK)| = 1

2s

√
|disc(OK)|‖I‖

Now we transfer the norm we have defined on K to a norm on Rn. Let us denote the
usual norm on K as defined earlier as NK . As usual [K : Q] = n = r + 2s. For a vector
(x1, . . . , xn) ∈ Rn we define the norm as

N(x) = x1 · · ·xr(x2
r+1 + x2

r+2) · · · (x2
n−1 + x2

n)

If α ∈ K then

NK(α) = σ1(α) · · ·σr(α)τ1(α)τ1(α) · · · τ1(α)τ1(α)

= σ1(α) · · ·σn(α)((Re(τ1(α)))2 + Im(τ1(α))2) · · · ((Re(τs(α)))2 + (Im(τs(α)))2)

so N |K = NK . This justifies the notation N for this special norm. Our goal is to show that
any n-dimensional lattice in Rn has some non-zero point x with a certain bound, from which
the finiteness of the class group will follow. Interestingly, but perhaps not so surprising by
now, it will also give us a lower bound for the discriminant. The existence of such a point
will follow from a classical result due to Minkowski. Before we proceed we remark the three
following properties of the Lebesgue measure, and hence our notion of volume in this specific
setting.
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1. The Lebesgue measure is countably additive: if E1, E2, . . . are pairwise disjoint
Lebesgue-measureable sets then

vol

(
∞⋃
i=1

Ei

)
=
∞∑
i=1

vol(Ei)

2. The Lebesgue measure is translation-invariant: if E ⊆ Rn is Lebesgue-measureable
then for any x ∈ Rn we have vol(E + x) = vol(E).

3. If A,B ⊆ Rn are Lebesgue measureable and A ⊆ B then vol(A) ≤ vol(B).

We also need two definitons.

Definition 3.1.10. Let E be some subset of Rn.

1. E is said to be convex if for any x, y ∈ E the line segment joining x, y is contained in
E.

2. E is said to be centrally symmetric if x ∈ E implies −x ∈ E.

Theorem 3.1.11. (Minkowski’s theorem)
Let Λ be a n-dimensional lattice in Rn and suppose that E is a convex, Lebesgue-measureable,
centrally symmetric subset of Rn such that

vol(E) > 2nvol(Rn/Λ)

Then there is some non-zero x such that x ∈ E ∩ Λ. If E is compact, then the inequality
assumption can be weakened to vol(E) ≥ 2nvol(Rn/Λ)

Proof. Let F be a fundamental parallellotope of Λ. By definition, Rn is a disjoint union of
translations of F : x+F , x ∈ Λ. More specifically, any subset of Rn is contained in a disjoint
union of translations of F . Hence we get

1

2
E =

⊔
x∈Λ

((
1

2
E

)
∩ (x+ F)

)
where tE = {te : e ∈ E} with t ∈ R and where t denotes disjoint union. By assumption we
get

vol(F) <
1

2n
vol(E) = vol

(
1

2
E

)
where the latter equality follows from the fact that E is a subset of Rn, so scaling it down
by a half scales it volume by 1

2n
. By countable additivity and translation invariance of the

Lebesgue measure we get that

vol

(⊔
x∈Λ

((
1

2
E

)
∩ (x+ F)

))
=
∑
x∈Λ

vol

((
1

2
E

)
∩ (x+ F)

)
=
∑
x∈Λ

vol

(((
1

2
E

)
− x
)
∩ F

)
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and hence

vol(F) <
∑
x∈Λ

vol

(((
1

2
E

)
− x
)
∩ F

)
This strict inequality shows that not all sets

((
1
2
E
)
− x
)
∩F can be disjoint, because if they

were the latter volume sum would be bounded above by vol(F), which is absurd. Hence we
may fix distinct x, y ∈ Λ such that((

1

2
E

)
− x
)
∩
((

1

2
E

)
− y
)
6= ∅

Then x− y 6= 0 and 1
2
e− x = 1

2
e′− y for some e, e′ ∈ E, that is x− y = 1

2
e− 1

2
e′. Since E is

centrally symmetric, −e′ ∈ E. Since E is convex, the line segment between e and −e′ is in
E, that is (1− t)e− te′ ∈ E for 0 ≤ t ≤ 1. Hence with t = 1

2
we see that 1

2
e− 1

2
e′ ∈ E. This

finishes the proof in the case that E is not necessarily compact. Now suppose E is compact
and that the inequality is weakened to ≥. It is a classical result in general topology that
compact is equivalent to closed and bounded for subsets of Rn. We have

vol

((
1 +

1

m

)
E

)
=

(
1 +

1

m

)n
vol(E) > vol(E) ≥ 2nvol(Rn/Λ)

for m = 1, 2, · · · , so the part we proved earlier implies there is a non-zero

xm ∈
((

1 +
1

m

)
E

)
∩ Λ

Now we consider the sequence {xm}m∈Z≥1
made of such xm. Since E is bounded, 2E is also

bounded, and {xm}m ⊆ 2E so the sequence {xm}m is bounded. Since all xm ∈ Λ and {xm}m
is bounded, there cannot be more than finitely many distinct elements xm in the sequence
(The intersection of a ball with finite radius and a lattice is a finite set. For a proof of this see
[10, Theorem 6.1]). Hence we may fix an element x∗ ∈ {xm}m so that x∗ is in

(
1 + 1

m

)
E for

infinitely many m. Hence x∗ ∈ E, but E is closed so E = E, and x∗ ∈ E, so x∗ ∈ E ∩Λ.

Now we only need one more lemma before the main theorem of this section. Before this
lemma we state a well-known inequality in mathematics, the so called Arithmetic Mean-
Geometric Mean inequality (often abbreviated AM-GM).

Theorem 3.1.12. (The AM-GM Inequality)
Let x1, . . . , xn be non-negative real numbers. Then

x1 + · · ·+ xn
n

≥ n
√
x1 · · ·xn

Proof. This elegant proof is due to Pólya. Let f(x) = ex−1 − x. Then f ′′(x) = ex−1 > 0 so
f is convex and hence x ≥ ex−1. Let A = x1+···+xn

n
. Then the inequality gives

A−nx1 · · · xn =
x1

A
· · · xn

A
≥ ex1/A−1 · · · exn/A−1 = e

x1+···+xn
A

−n = en−n = 1

Rearranging we get the desired inequality.
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Lemma 3.1.13. There is a compact, convex, centrally symmetric set A ⊆ Rn, n = r + 2s,
with vol(A) = nn

n!
2r
(
π
2

)s
and such that a ∈ A =⇒ |N(a)| ≤ 1.

Proof. We will prove that the following A work:

A =

{
(x1, . . . , xn) ∈ Rn : |x1|+ · · ·+ |xr|+ 2

(√
x2
r+1 + x2

r+2 + · · ·+
√
x2
n−1 + x2

n

)
≤ n

}
Suppose a = (x1, . . . , xn) ∈ A. Then by Theorem 3.1.12

|N(a)|1/n =
n

√
|x1| · · · |xr|

√
x2
r+1 + x2

r+2

√
x2
r+1 + x2

r+2 · · ·
√
x2
n−1 + x2

n

√
x2
n−1 + x2

n

≤
|x1|+ · · ·+ |xr|+

√
x2
r+1 + x2

r+2 +
√
x2
r+1 + x2

r+2 + . . .
√
x2
n−1 + x2

n +
√
x2
n−1 + x2

n

n

≤ n

n
= 1

so N(a) ≤ 1. If a ∈ A, then we easily see that also −a ∈ A. A is clearly bounded. That the
inequality in the definition of A is non-strict shows A is closed. Hence A is compact.

Now we show that A is convex. Suppose x, y ∈ A, x = (x1, . . . , xn), y = (y1, . . . , yn). Then
we first claim x+y

2
∈ A. By the normal triangle inequality:∣∣∣∣x1 + y1

2

∣∣∣∣+ · · ·+
∣∣∣∣xr + yr

2

∣∣∣∣ ≤ 1

2
(|x1|+ · · ·+ |xr|+ |y1|+ · · ·+ |yr|)

By the triangle inequality in R2:

2

√(xr+1 + yr+1

2

)2

+

(
xr+2 + yr+2

2

)2

+ · · ·+

√(
xn−1 + yn−1

2

)2

+

(
xn + yn

2

)2


≤ 2

(√
x2
r+1

22
+
x2
r+2

22
+

√
y2
r+1

22
+
y2
r+2

22
+ · · ·+

√
x2
n−1

22
+
x2
n

22
+

√
y2
n−1

22
+
y2
n

22

)
=
√
x2
r+1 + x2

r+2 + · · ·+
√
x2
n−1 + x2

n +
√
y2
r+1 + y2

r+2 + · · ·+
√
y2
n−1 + y2

n

Combining those two inequalities and using that x, y ∈ A we get that x+y
2
∈ A. Let x, y ∈ A.

Since A is closed under taking midpoints, the set Lx,y = {(1 − t)x + ty : 0 ≤ t ≤ 1} has a
dense subset M that is contained in A. Since A is closed it follows that A must contain the
closure of M , which is indeed Lx,y. Hence A is convex.

What is left to prove is that vol(A) = nn

n!
2r
(
π
2

)s
. To show this we integrate over A to get

the volume. By Vr,s(t) we mean the volume of the subset of Rn, n = r + 2s, defined by

|x1|+ · · ·+ |xr|+ 2

(√
x2
r+1 + x2

r+2 + · · ·+
√
x2
n−1 + x2

n

)
≤ t

Since we are dealing with n-dimensional volumes we have Vr,s(t) = tnVr,s(1). Thus we only
have to calculate Vr,s(1). If r = 0, then s > 0 and we only have to calculate V0,s(1). Either
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way it actually reduces down to this (but not neccesarily with s > 0). To see this, suppose
r > 0. Then

Vr,s(1) = 2

∫ 1

0

Vr−1,s(1− x) dx = 2Vr−1,s(1)

∫ 1

0

(1− x)r−1+2s dx =
2

r + 2s
Vr−1,s(1)

If we use this repeatedly we can reduce Vr,s(1) to

Vr,s(1) =
2r

(r + 2s)(r + 2s− 1) · · · (2s+ 1)
V0,s(1)

where V0,0(1) = 1. So it is enough to calculate V0,s(1) for s > 0 as claimed. We start similarly
as for the reduction procedure from Vr,s(1) to Vr−1,s(1):

V0,s(1) =

∫∫
x2+y2≤ 1

4

V0,s−1(1− 2
√
x2 + y2) dxdy

Then changing to polar coordinates gives

V0,s(1) =

∫ 2π

0

∫ 1/2

0

V0,s−1(1− 2ρ)ρdρ dθ = 2πV0,s−1(1)

∫ 1/2

0

(1− 2ρ)2(s−1)ρ dρ

The last integral is easily calculated by a subsitution u = 1− 2ρ and we finally get

V0,s(1) = V0,s−1(1)
π

2

1

2s(2s− 1)

Using this repeatedly we get a similar formula as above, namely

V0,s(1) =
(π

2

)s 1

(2s)!

and piecing everything together we get

Vr,s(1) =
2r

(r + 2s)(r + 2s− 1) · · · (2s+ 1)
V0,s(1) =

(π
2

)s 2r

(r + 2s)!

and thus finally we get

vol(A) = (r + 2s)r+2sVr,s(1) =
nn

n!
2r
(π

2

)s
which finishes the proof.

Theorem 3.1.14. Every n-dimensional lattice Λ in Rn, where n = r + 2s, contains some
non-zero point x with

|N(x)| ≤ n!

nn

(
8

π

)s
vol(Rn/Λ)
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Proof. By Lemma 3.1.13, there is some subset A of Rn that is compact, convex and centrally
symmetric with vol(A) = nn

n!
2r
(
π
2

)s
and the property a ∈ A =⇒ |N(a)| ≤ 1. Let

t = n

√
2n

vol(A)
vol(Rn/Λ)

Then tA is convex, centrally symmetric and compact. Furthermore

vol(tA) = tnvol(A) =
2n

vol(A)
vol(Rn/Λ)vol(A) = 2nvol(Rn/Λ)

It follows from Minkowski’s theorem that there is a non-zero x ∈ tA ∩ Λ. Hence x = ta for
some a ∈ A and because |N(a)| ≤ 1:

|N(x)| = |N(ta)| ≤ tn|N(a)| ≤ tn =
2n

vol(A)
vol(Rn/Λ)

Inserting the value of vol(A) gives

|N(x)| ≤ n!2s2n

2rnnπs
vol(Rn/Λ) =

n!

nn

(
8

π

)s
vol(Rn/Λ)

Corollary 3.1.15. Let K be a number field with [K : Q] = n = r+2s. Then every non-zero
ideal I of OK has a non-zero element α such that

|N(α)| ≤ n!

nn

(
4

π

)s√
|disc(OK)|‖I‖

Furthermore, every ideal class of OK (under the equivalence relation described in the start
of this section) contains an ideal J such that

‖J‖ ≤ n!

nn

(
4

π

)s√
|disc(OK)|

As a consequence, the ideal class group of OK is finite.

Proof. From Theorem 3.1.14, the lattice ΛI has a non-zero point x satisfying the bound in
the referenced theorem. Then x = N(α), 0 6= α ∈ I. Using the bound given from the
theorem and also Theorem 3.1.8 we get the bound

|N(α)| ≤ n!

nn

(
4

π

)s√
|disc(OK)|‖I‖

Take any ideal class C in the ideal class group. Since the ideal class group is indeed a group,
there is an inverse class C−1. Let I ∈ C−1. We know from Theorem 2.1.4 that for any
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non-zero α ∈ I, there is a non-zero ideal J such that IJ = (α). Then IJ ∼ OK , so J ∈ C.
Take α ∈ I to be the same as the α in the first part of this proof. It then follows that

‖J‖ =
‖(α)‖
‖I‖

=
1

‖I‖
|N(α)| ≤ n!

nn

(
4

π

)s√
|disc(OK)| =: λ

For the last part of the statement, let λ∗ be the least positive integer such that λ∗ ≥ λ. For
each i = 1, 2, . . . , λ∗, there are at most finitely many ideals J satisfying ‖J‖ ≤ i by Theorem
2.2.5. Hence there can be at most finitely many ideals satisfying ‖J‖ ≤ λ. But every ideal
class has an ideal that is equivalent to some ideal with norm ≤ λ. Thus there cannot be
more than finitely many ideal classes. This proves the finiteness of the ideal class group.

3.2 The unit group

The goal of this section is to prove the unit theorem due to Dirichlet. The geometric ideas
from the previous section give us a quite explicit description of the group of units of OK .
Again we use our embedding of K into a lattice and Minkowski’s theorem to get the existence
of certain algebraic numbers satisfying specific inequalities. This time however we introduce
another space as well: the logarithmic space.

Definition 3.2.1. Let K be a number field with degree n = r+2s over Q. For (x1, . . . , xn) ∈
ΛOK\{0}, define log : ΛOK\{0}! Rr+s by

(x1, . . . , xn) 7! (log |x1|, . . . , log |xr|, log(x2
r+1 + x2

r+2), . . . , log(x2
n−1 + x2

n))

Here the log in the coordinates is just the normal (natural) logarithm. This is well-defined:
first we show that |x1|, . . . , |xr| are all strictly positive. Recalling the definition of LatK we see
that if one of these are zero, then all x1, . . . , xr are zero and also all x2

r+1+x2
r+2, . . . , x

2
n−1+x2

n.
This is because all the embeddings in LatK have trivial kernels. Similarly if one of the
x2
t+1 + x2

t+2 are zero, then this can happen if and only if xt+1 = xt+2 = 0, which again
implies that all of x1, . . . , xn, x

2
r+1 + x2

r+2, . . . , x
2
n−1 + x2

n are zero. Hence the log function is
well-defined. If U is the group of units of OK we have the following sequence:

U ↪−! OK\{0}
LatK−! ΛOK\{0}

log
−! Rr+s

From now on we will denote the composition log ◦LatK by log and Rr+s as the logarithmic
space. Given this slight redefinition of log we prove some nice properties.

Lemma 3.2.2. Let K be a number field with degree n = r + 2s over Q. Let U be the group
of units of OK. Then log is a group homomorphism U ! Rr+s. Furthermore, its image is
contained in a hyperplane H ⊂ Rr+s defined by y1 + · · ·+ yr+s = 0. Finally, any bounded set
in Rr+s has a finite preimage (by log) in U .

Proof. If σi is a purely real embedding then

log |σi(ab)| = log |σi(a)σi(b)| = log |σi(a)|+ log |σi(b)|
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If τi is an embedding that is not purely real then observe that (Re(τi(ab)))
2 + (Im(τi(ab))

2 =
|τi(ab)|2 and hence

log((Re(τi(ab)))
2 + (Im(τi(ab)))

2)

= log((Re(τi(a)))2 + (Im(τi(a)))2) + (Re(τi(b)))
2 + (Im(τi(b)))

2

These two equalities show that log is a group homomorphism as we get log(αβ) = log(α) +
log(β) for α, β ∈ OK\{0}. Now suppose α ∈ U . Then there is some β ∈ U such that αβ = 1.
We then have N(α)N(β) = N(αβ) = N(1) = 1. Since α, β are algebraic integers, the norm
is a non-zero integer (see Theorem 1.1.9), hence N(α) = ±1. Let LatK(α) = (x1, . . . , xr).
Using that log(ab) = log(a) + log(b) for a, b ∈ R+ we get

log |x1|+ · · ·+ log |xr|+ log(x2
r+1 + x2

r+2) + · · ·+ log(x2
n−1 + x2

n) = log |N(α)| = 0

which proves the second claim. Let M be any bounded subset of Rr+s. Then we can find a
polydisc ∆n(x; ξ) = {(x1, . . . , xr+s) : |x1| < ξ, . . . , |xr+s| < ξ} which contains M . Let us first
consider log |x| : R\{0}! R, and moreover the preimage of B1(ξ) = {x ∈ R : |x| < ξ}:

log−1 |B1(ξ)| = {x ∈ R : log |x| < ξ} = {x ∈ R : |x| < eξ} = B1(eξ)

Next let us consider the logarithm of the form log(x2
t+1 +x2

t+2), which we for simplicity name
%. Then we have

%−1(B1(ξ)) = {x ∈ R2 : log(x2
t+1 + x2

t+2) < ξ} = {x ∈ R2 : x2
t+1 + x2

t+2 < eξ} = B2(eξ/2)

where B2(ξ) is the 2-dimensional ball with radius ξ. It follows that the preimage of the
logarithm in our lattice (that is we don’t consider the composition log LatK but only log) is
such that

log−1(M) ⊆ log−1(∆n(x; ξ)) ⊆ B1(eξ)× · · · × B1(eξ)× B2(eξ/2)× · · · × B2(eξ/2)

which shows the preimage of M is also bounded. However a bounded set in a lattice can
clearly only contain finitely many points, and so the preimage of M in the lattice is finite.
As LatK is injective it follows that the preimage of M by the composition log LatK is finite.
This proves the last claim.

Observe that the third point in the lemma actually implies that any bounded subset of
log(U) is finite: for let M be a bounded subset of log(U) and suppose that M is not finite.
Then since log is surjective onto log(U) and M ⊆ log(U), this forces the preimage log−1(M)
to be infinite, but this is a contradiction to the lemma we just proved. This is an important
observation because it acutally implies that log(U) is a lattice:

Lemma 3.2.3. Let G be a subgroup of Rm such that every bounded subset of G is finite.
Then G is a lattice.

Proof. G contains a lattice {0}, so there exists a (not necessarily unique) lattice Λ of maximal
dimension, say d, contained in G. Let {v1, . . . , vd} be a Z-basis for Λ. Let v ∈ G. Then
{v, v1, . . . , vd} must be a linearly dependent set in Rm since otherwise this would contradict
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the maximality of Λ. Hence G is contained in the subspace of Rm generated by Λ. Now
we claim that G/Λ is finite. To see this fix a fundamental parallellotope F for Λ. Let
v+ Λ, v ∈ G be a a coset. Since G is contained in the subspace of Rm generated by G, there
are ai ∈ R such that

g = a1v1 + · · ·+ advd

For each ai let us write ai = ni + ri where ni ∈ Z and 0 ≤ ri < 1. Then r1v1 + · · ·+ rdvd ∈
(v+Λ)∩F . This shows that every coset has a representative in F . Now F ∩G is a bounded
subset of G and hence is finite. As F ∩ G contains a representative from each coset v + Λ,
this shows G/Λ is finite. From this it is easy to see that |G/Λ|G ⊆ Λ, because if we pick any
g ∈ G, then |G/Λ|g ≡ 0 (mod Λ), that is |G/Λ|g ∈ Λ. Let us write r = |G/Λ|. By Lemma
1.2.2 we get that rG is a free abelian group of rank ≤ d. From this we can conclude G is
actually free abelian of rank d. Fix a basis {rw1, . . . , rwk} for rG. Then {w1, . . . , wk} is a
basis for G, so G is free abelian of rank ≤ d. However Λ ⊆ G, so the rank has to be d. We
now have all the ingredients to show that G is a lattice. Namely, fix a Z-basis {w1, . . . , wd}
for G. This must be R-independent because G contains a basis for Λ of cardinality d which
is R-independent. Hence G is a lattice and we are done.

Before we prove the unit theorem we need two lemmata.

Lemma 3.2.4. Let K be a number field with group of units U , and [K : Q] = n = r + 2s.
Let k be an integer such that 1 ≤ k ≤ r + s. Then there is some µ ∈ U with the property
that if log(µ) = (y1, . . . , yr+s), then yi < 0 for all i 6= k.

Proof. We first prove that for any non-zero α ∈ OK there is some β ∈ OK such that

|N(β)| ≤
(

2

π

)s√
|disc(OK)|

and such that if log(α) = (a1, . . . , ar+s), log(β) = (b1, . . . , br+s), then bi < ai for all i 6= k.
We achieve this by Minkowski’s theorem. Let

E = {(x1, . . . , xr+s) ∈ Rr+s : |x1| ≤ c1, . . . |xr| ≤ cr, x
2
r+1 +x2

r+2 ≤ cr+1, . . . , x
2
n−1 +x2

n ≤ cr+s}

where 0 < ci < eai for all i 6= k and

c1 · · · cr+s =

(
2

π

)s√
|disc(OK)|

Since ck is not bounded we can meet this equality requirement. We need to check that E
satisfies the assumptions of Minkowski’s theorem. It is clear that E is centrally symmetric.
For the convexity: observe that E is a cartesian product of convex sets (intervals and discs).
That the inequalities are non-strict implies that E is closed (E is a cartesian product of
closed lines and discs), and E is clearly bounded. The volume is easily calculated:

vol(E) = (2c1) · · · (2cr)(πcr+1) · · · (πcr+s) = 2r+s
√
|disc(OK)| = 2nvol(Rn/ΛOK )
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where the last equality is due to Theorem 3.1.8. Then Minkowski’s theorem gives us a
non-zero β ∈ OK such that

|N(β)| ≤ c1 · · · cr+s =

(
2

π

)s√
|disc(OK)|

Furthermore if LatK(β) = (w1, . . . , wr+s), then for i = 1, . . . , r, i 6= k we have |wi| ≤ ci < eai

and for i = r + 1, . . . , r + s− 1, i 6= k, we have w2
i + w2

i+1 ≤ ci < eai . Taking log gives

log |wi| < ai log(w2
i + w2

i+1) < ai

so if log(β) = (b1, . . . , br+s) we get bi < ai for all i 6= k, as desired. Now we can prove the
statement in the lemma. If we start with any non-zero α1, we can use what we just proved
to get a sequence α1, α2, α3, · · · ∈ OK such that for each i 6= k, and for each j ≥ 1, the ith
coordinate of log(αj) is larger than the ith coordinate of log(αj+1). Furthemore each αj is
such that

‖(αj)‖ = |N(αj)| ≤
(

2

π

)s√
|disc(OK)|

The quantity on the right is finite, and hence, just like the proof in Theorem 3.1.15, this
implies that there can be at most finitely many such ideals (αj). Hence fix some `, t such
that (α`) = (αt) with t > `. Then we have µ, ν ∈ OK such that α` = ναt, αt = µα`. Hence
α` = ναt = µνα`, so µν = 1 since OK is an integral domain. Hence µ is a unit: µ ∈ U and

µ =
αt
α`

. It makes sense to talk about the composition log ◦LatK for all of K\{0} as well

(log is still well-defined), and log(αβ) = log(α) + log(β) still. Taking logs we obtain

log(µ) = log

(
αt
α`

)
= log(αt) + log

(
1

α`

)
= log(αt)− log(α`)

It follows that log(µ) = (y1, . . . , yr+s) is such that yi < 0 for all i 6= k because t > `.

The next lemma is pure linear algebra

Lemma 3.2.5. Let M = (mij) be an `×`-matrix with entries in R, such that the diagonal is
positive: mii > 0 for all i, and everything else is negative: mij < 0 for all i 6= j. Furthermore
suppose each row sums to 0. Then the rank of M is `− 1.

Proof. Let the first `− 1 columns of M be v1, . . . , v`−1 and suppose t1v1 + · · ·+ t`−1v`−1 = 0,
tj ∈ R. Suppose not all tj are zero. Divide the expression by the largest tk. Then we can
without loss of generality assume tk = 1 and all other tj ≤ 1. Now we calculate:

0 =
`−1∑
j=1

tjmkj = mkk +
`−1∑

j=1,j 6=k

tjmkj ≥
`−1∑
j=1

mkj >
∑̀
j=1

mkj = 0

The first inequality comes from the fact that all mkj, k 6= j, are negative, the last inequality
comes from the fact that they are strictly negative. The inequality 0 < 0 gives a contra-
diction, so all tj are zero. This shows that the rank(M) ≥ ` − 1. By assumption we have
0 = mi1 + · · ·+mi` so mi` = −mi1 + · · ·+mi(`−1) from which it follows v` = −v1−· · ·− v`−1.
Thus rank(M) 6= ` which finishes the proof.
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We are now ready to prove the unit theorem.

Theorem 3.2.6. (Dirichlet’s Unit Theorem)
Let K be a number field with degree n over Q and n = r + 2s. Let U be the group of units
of OK. Then U ∼= W × V where W is a finite cyclic group that consists of the roots of unity
of K, and V is a free abelian group of rank r + s− 1.

Proof. By Lemma 3.2.2, the preimage of {0} by log in U is finite. That is, the kernel of
log is finite and hence every element ζ in the kernel has finite order: ζt = 1. Hence the
kernel consist of roots of unity. Conversely, if ζ is a root of unity in K, say ζ` = 1, then
0 = log(ζ`) = ` log(ζ) and hence log(ζ) = 0 so ζ ∈ ker log. It is a classical result from field
theory that all finite subgroups of F ∗ for any field F are cyclic. The roots of unity in K is as
shown above a finite subgroup of K∗, and hence cyclic. Continuing, the remark leading up
to Lemma 3.2.3, as well as the lemma itself, implies that log(U) is a lattice. We also know
from Lemma 3.2.2 that it is contained in a hyperplane H ⊆ Rr+s, and hence the rank of
log(U) is at most r+s−1. As we have just seen, log(U) is free abelian of rank d ≤ r+s−1,
so fix u1, . . . , ud ∈ U , such that log(u1), . . . , log(ud) is a Z-basis for log(U). Now we claim
that the V in the theorem is the subgroup of U generated multiplicatively by u1, . . . , ud. We
first prove that u1, . . . , ud generate V freely. To that end, assume uk11 · · ·u

kd
d = 1. Taking log

we get
k1 log(u1) + · · ·+ kd log(ud) = 0

which implies k1 = · · · = kd = 0 as {log(u1), . . . , log(ud)} constitutes a Z-basis of log(U).
This shows V is free abelian of rank d. Now we claim that indeed U ∼= W × V . To show
this, we first show W ∩ V = {1}. Let x = uk11 · · ·u

kd
d ∈ V ∩W . Then there is some non-zero

integer ` such that x` = 1. Taking log we obtain

`k1 log(u1) + · · ·+ `kd log(ud) = 0

which by linear independence in log(U), implies `k1 = · · · = `kd = 0, and hence k1 = · · · =
kd = 0. It follows that x = 1. Now let x ∈ U . Then log(x) = a1 log(u1) + · · ·+ ad log(ud) =
log(ua11 · · ·u

ad
d ), which goes to show that

log(xu−a11 · · ·u−add ) = 1 =⇒ xu−a11 · · ·u−add ∈ ker log

so there is some z ∈ ker log = W such that x = zua11 · · ·u
ad
d ∈ WV . Conversely VW ⊆ U ,

as both V and W are multiplicative subgroups of U . Now define ϕ : W × V ! WV by
(ζ, ua11 · · ·u

ad
d ) 7! ζua11 · · ·u

ad
d . Since u1, . . . , ud generate V freely this is well-defined. Since

any x ∈ U can be written as a product in WV it follows that ϕ is surjective. Suppose
ζua11 · · ·u

ad
d = 1. Then ζua11 · · ·u

ad
d ∈ W ∩ V . Multiplying, it follows that ζ ∈ V and

ua11 · · ·u
ad
d ∈ W . This implies ζ = ua11 · · ·u

ad
d = 1. Hence we have a trivial kernel, and ϕ is

injective, and hence furthermore an isomorphism: U = WV ∼= W × V . The only thing that
is left to prove is that d = r+s−1. We do this the completely obvious way: produce r+s−1
elements in U whose images in log(U) are linearly independent. Lemma 3.2.4 gives us the
existence of µ1, . . . , µr+s such that all coordinates of log(uj) are negative excect the jth row.
Since log(uj) is contained in a hyperplane H defined by y1 + · · · + yr+s = 0, this forces the
jth coordinate to be positive. If we now form the (r + s) × (r + s)-matrix M with log(µj)
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as its jth row, we get a matrix where the diagonal is strictly positive, and strictly negative
elsewhere. Furthermore each row sums to zero since log(U) is contained in the hyperplane
H. By Lemma 3.2.5 we see that M has rank r + s− 1. Hence {log(µ1), . . . , log(µr+s)} has
r + s− 1 linearly independent vectors. This finishes the proof.

3.3 Distribution of ideals in OK
We now give a rather explicit description of the distribution of ideals in OK with respect to
their ideal norm. From this distribution the class number formula will follow without too
much work. For each real number t ≥ 0 we define

i(t) = #{I|I ideal in OK , ‖I‖ ≤ t}

i.e. the number of ideals in OK with norm at most t. Given some ideal class C we define

iC(t) = #{I|I ideal in OK , I ∈ C, ‖I‖ ≤ t}

i.e. the number of ideals in C with norm at most t. Summing over all ideal classes we get

i(t) =
∑
C

iC(t)

Since the ideal class group is finite (Corollary 3.1.15) this sum is finite. We will show that

iC(t) = κt + O
(
t1−

1
n

)
for any ideal class C, where n = [K : Q] and κ is some constant

independent of C. Since the sum is finite, it will then follow that

i(t) = hκt+O
(
t1−

1
n

)
where h is the class number (the order of the ideal class group). We will also determine the
constant κ. It turns out that this constant κ encodes many invariants of a number field:

κ =
2r+sπsreg(OK)

w
√
|disc(OK)|

where as before r is the number of real embeddings of K into C and s is half the number
of non-real embeddings K in C. Furthermore w is the number of roots of unity in K and
finally reg(OK) is the regulator of OK . We will come more back to this, but say for now
that it, loosely speaking, measures the density of the units: a small regulator means many
units. We will need two lemmata for the distribution theorem.

Lemma 3.3.1. Let f : G ! G′ be a homomorphism of abelian groups and let S be a
subgroup of G which is sent isomorphically to a subgroup S ′ of G′ by f . If D′ is a set of
coset representatives for S ′ in G′, then D = f−1(D′) is a set of coset representatives for S
in G.
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Proof. First take x, y ∈ D such that x 6= y and assume x ≡ y (mod S). Then x− y ∈ S so
f(x − y) ∈ S ′, in other words f(x) ≡ f(y) (mod S ′). Since f |S is an isomorphism we have
f(x) − f(y) = f(x − y) 6= 0 since x 6= y. But f(x), f(y) ∈ D′, so they cannot be not equal
while congruent modulo S ′ since D′ is a set of coset representative of S ′ in G′. This shows
that the elements in D represent different cosets of S in G. To see that we hit all, let z be
a coset represenative in G/S. Then f(z) ≡ w (mod S ′) for some w ∈ D′. Since f |S is an
isomorphism, there is w̃ ∈ S such that f(w̃) = f(z)−w so w = f(z− w̃). Hence z− w̃ ∈ D.
Since w̃ ∈ S, z − w̃ ≡ z (mod S) this gives us the desired coset representative.

For the next lemma we need a definition.

Definition 3.3.2. A bounded set B ⊆ Rn is said to have (n− 1)-Lipschitz parameterizable
boundary if its boundary ∂B is contained in the union of the images of finitely many Lipschitz
functions f : [0, 1]n−1 ! Rn. That f is Lipschitz in this case means that there is a constant
C such that ∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ≤ C x, y ∈ [0, 1]n−1

Lemma 3.3.3. Let Λ be any n-dimensional lattice in Rn and B any bounded subset of Rn.
If B is (n− 1)-Lipschitz parameterizable then

|Λ ∩ aB| = vol(B)

vol(Rn/Λ)
an +O(an−1)

A proof of Lemma 3.3.3 can be found in [8, Lemma 6.2]. The idea is to first reducing the
problem to Zn and then consider translates of n-cubes [0, 1]n.

Theorem 3.3.4. Let K be a number field, n = [K : Q]. For any ideal class C,

iC(t) = κt+O
(
t1−

1
n

)
where κ is the aforementioned constant.

Proof. This proof is rather long. We start by summarizing what we are going to do, to try
to avoid getting completely lost in the details. Start by fixing an ideal J ∈ C−1 (the inverse
ideal class). Then we claim there is a bijection

{ideals I ∈ C with ‖I‖ ≤ t} ! {principal ideals (α) ⊆ J with ‖(α)‖ ≤ t‖J‖}
I 7−! IJ

This reduces the counting of ideals with norm at most t to counting principal ideals in J
with certain bounded norm. Now counting principal ideals is almost like counting elements
apart from the fact that α is determined from (α) up to a unit factor. It would be nice if we
could ignore this problem. To do this we construct a subset of OK in which no two elements
differ by a unit factor and every non-zero element of OK has a unit multiple. After we
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have passed to this set, we can simply count elements of J there. This set is exactly a set
of coset representatives for the unit group in the multiplicative semigroup OK\{0}. Then
we pass to a lattice via the log-mapping and show that the problem reduces to calculating
the volume of a certain domain in Rn. Then we count another way and compare to get a
formula for iC(t). How this is done more specifically will get more clear later in the proof.

Let us get going: first we show that the map above is well-defined. Since IJ ∼ OK there
are non-zero γ, δ ∈ OK such that γIJ = δOK . Hence there is non-zero η ∈ IJ such that

γη = δ. Thus δ
γ

= η ∈ IJ ⊆ OK . Hence IJ =
(
δ
γ

)
is a principal ideal and is contained in J

as IJ ⊆ J . Finally
∥∥∥( δγ)∥∥∥ = ‖IJ‖ ≤ t‖J‖. This shows well-definedness. If IJ = I ′J then

I = I ′ by Corollary 2.1.5, so the map is injective. Finally let (x) ⊆ J . Then by Corollary
2.1.6, J | (x), that is there is an ideal I so that IJ = (x). Since (x) ∼ OK , I ∈ C and finally
‖I‖‖J‖ = ‖IJ‖ = ‖(x)‖ ≤ t‖J‖ so ‖I‖ ≤ t. This shows surjectivity, proving the bijection.

Now we move on to constructing the set of coset representatives mentioned above. Actually
it will be sufficient to construct a set of coset representatives for a free abelian subgroup
V ⊆ U of rank r + s− 1. Such a V exists by Dirichlet’s Unit Theorem: recall U ∼= V ×W
where W is the group of roots of unity in K. Such a V is not unique so let us fix one such V .
We will see why this is sufficient soon: it comes down to the fact that we can easily account
for the roots of unity. We have the following sequence of maps:

V ↪−! U ↪−! OK\{0}
log
−! Rr+s

where we by log really mean log ◦LatK as mentioned earlier. In the proof of Dirichlet’s Unit
Theorem we saw that log(U) is a lattice, which we from now on denote ΛU . From the same
proof we also saw that W is the kernel of the log-map. Since U ∼= V ×W it thus follows
that the restriction of

U ↪−! OK\{0}
log
−! Rr+s

to V is an isomorphism onto ΛU . Let us now change our perspective slightly. Before we
viewed ΛOK as a subset of Rr+2s - now we instead think of ΛOK as a subset of (R)r × (C)s

and hence ΛOK\{0} as a subset of (R∗)r × (C∗)s. This requires a slight redefinition of the
log-map as well where we identify R2 with C:

z = a+ bi 7! log(a2 + b2) = log(|z|2) = 2 log(|z|)

so in other words we now have the map

(x1, . . . , xr, z1, . . . , zs)
log
7−! (log |x1|, . . . , log |xr|, 2 log |z1|, . . . , 2 log |zs|)

and the map LatK is now

α 7! (σ1(α), . . . , σr(α), τ1(α), . . . , τs(α))

where the σi are the real embeddings, and τi, τi are the non-real embeddings with their
complex conjugates as usual. The restriction of LatK to OK\{0} defines a multiplicative
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embedding, and so V maps isomorphically onto a subgroup V ′ of (R∗)r×(C∗)s. Thus we can
obtain a set of coset representatives for V in OK\{0} from a set of coset representatives for
V ′ in (R∗)r × (C∗)s. This is called a fundamental domain for V ′. Since LatK takes ideals in
OK to sublattices ΛI of ΛOK , counting members of the ideal J in the desired subset of coset
representatives of V is the same as counting elements of ΛJ in the fundamental domain for
V ′. Let us translate the norm criterion ‖(α)‖ ≤ t‖J‖ to this setting: recall that we had a
norm on Rn, namely NK , that was the same as N when restricted to the image of K. Now
with our change from Rr+2s to Rr × Cs this norm is defined by

N(x1, . . . , xr, z1, . . . , zs) = x1 · · ·xr|z1|2 · · · |zs|2

By Lemma 2.2.4 we get

‖(α)‖ = |N(α)| = |σ1(α) · · ·σr(α) τ1(α)τ1(α)︸ ︷︷ ︸
|τ1(α)|2

· · · τs(α)τs(α)︸ ︷︷ ︸
|τs(α)|2

| = |N(LatK(α))|

Hence if we let x denote the image of α in (R∗)r × (C∗)s then ‖(α)‖ ≤ t‖J‖ is equivalent to
|N(x)| ≤ t‖J‖. Thus what we have to do is find a set D of coset representatives for V ′ in
(R∗)r × (C∗)s and count elements x ∈ ΛJ ∩D with |N(x)| ≤ t‖J‖. The number of such x is
almost the number of principal ideals (α) ⊆ J with ‖(α)‖ ≤ t‖J‖, but remember that we
are counting inside a set of coset representatives for V - not for the whole of U . Thus each
ideal (α) is counted |W | times. From the bijection in the very beginning it follows that the
number of x ∈ ΛJ ∩ D with |N(x)| ≤ t‖J‖ is |W |iC(t). With the help of Lemma 3.3.3 we
will count the number of x ∈ ΛJ ∩ D another way and from that deduce a value of iC(t).
However there is an unknown volume in that expression that we need to calculate.

First however, let us construct the set D of coset represenatives for V ′ in (R∗)r×(C∗)s. To do
so we instead construct a set D′ of coset representatives for ΛU in Rr+s, then apply Lemma
3.3.1 to the homomorphism log : (R∗)r × (C∗)s ! Rr+s remembering that log(V ′) ∼= ΛU .
From now on, fix a fundamental parallellotope F for the lattice ΛU . Recall that ΛU lies
inside a hyperplane H defined by y1 + · · · + yr+s = 0 (Lemma 3.2.2). By Dirichlet’s Unit
Theorem, ΛU is a full lattice in H. We define its volume by using volume on H induced
by the inner product. Let L be any line through the origin, but not contained in H. Then
F ⊕ L is a set of coset representatives for ΛU in Rr+s, and hence we let D′ = F ⊕ L. We
want to choose a “good” L. Another way to describe D′ is by fixing a vector v ∈ Rr+s\H
and then let D′ = F ⊕ Rv. Then by Lemma 3.3.1 the set

D = {x ∈ (R∗)r × (C∗)s : log x ∈ F ⊕ Rv}

is a fundamental domain for V ′ in (R∗)r × (C∗)s. We will choose v = (1, . . . , 1, 2, . . . , 2)
where there are r ones and s twos. We will denote this vector (1, . . . , 2) from now on. This
is a good choice as then D becomes homogenenous: D = aD for all a 6= 0. With the set
of coset represenatives in place, let us count the elements in ΛJ ∩D with |N(x)| ≤ t‖J‖ in
another way as promised. To do so we introduce the notation

Da = {x ∈ D : |N(x)| ≤ a}
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Then Da = n
√
aD1. If we assume for a moment that D1 is bounded and (n − 1)-Lipschitz

parameterizable and think of (R∗)r × (C∗)s the obvious way, then it follows from Lemma
3.3.3 that ∣∣∣ΛJ ∩ n

√
t‖J‖D1

∣∣∣ =
vol(D1)

vol(Rn/ΛJ)
t‖J‖+O

(
t1−

1
n

)
Using Corollary 3.1.9 we then get

∣∣∣ΛJ ∩ n
√
t‖J‖D1

∣∣∣ =
2svol(D1)√
|disc(OK)|

t+O
(
t1−

1
n

)
and hence comparing with our count of |ΛJ ∩D| earlier we arrive at

iC(t) =
2svol(D1)

|W |
√
|disc(OK)|

t+O
(
t1−

1
n

)
which was what we wanted to prove, up to the calculation of vol(D1). What we have left
to prove is that D1 is bounded and (n − 1)-Lipschitz parameterizable and a calculation of
vol(D1). We start with the first. That |N(x)| ≤ 1 is the same as |x1 · · ·xrz2

1 · · · z2
s | ≤ 1.

Taking the logarithm we get

log |x1|+ · · ·+ log |xr|+ 2 log |z1|+ · · ·+ 2 log |zs| ≤ 0

and so

x ∈ D1 ⇐⇒ log x ∈ F ⊕ (−∞, 0](1, . . . , 2)

Since F is bounded it follows from the definition of the log-map that the preimage of log
by F ⊕ (−∞, 0](1, . . . , 2) is bounded. Hence D1 is bounded. To show that ∂D1 is (n − 1)-
Lipschitz parameterizable we reduce to the subset

D+
1 = D1 ∩ {(x1, . . . , xr, z1, . . . , zs) : x1, . . . , xr ≥ 0}

By how we have defined log we have that ∂D1 is (n − 1)-Lipschitz parameterizable if and
only if ∂D+

1 is (n − 1)-Lipschitz parameterizable and furthermore vol(D1) = 2rvol(D+
1 ). If

we have some Z-basis {v1, . . . , vr+s−1} for ΛU , then we write

F =

{
r+s−1∑
k=1

tkvk : 0 ≤ tk < 1

}

For each k we denote

vk = (v
(1)
k , . . . , v

(r+s)
k )

Recall that x ∈ D1 ⇐⇒ log x ∈ F ⊕ (−∞, 0](1, . . . , 2) so we can characterize a point
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(x1, . . . , xr, z1, . . . , zs) ∈ D+
1 by

log(x1) =
r+s−1∑
k=1

tkv
(1)
k + u

...

log(xr) =
r+s−1∑
k=1

tkv
(r)
k + u

2 log |z1| =
r+s−1∑
k=1

tkv
(r+1)
k + 2u

...

2 log |zs| =
r+s−1∑
k=1

tkv
(r+s)
k + 2u

where the xj are positive, tk ∈ [0, 1) and finally u ∈ (−∞, 0]. Define tr+s = eu. Let us
write each zj in polar coordinates: zj = ρje

iθj . Then we get a new characterization of
(x1, . . . , xr, ρ1e

iθ1 , . . . , ρse
iθs) ∈ D+

1 by applying the exponential function:

xj = tr+se
∑r+s−1
k=1 tkv

(j)
k

ρj = tr+se
1
2

∑r+s−1
k=1 tkv

(r+j)
k

θj = 2πtr+s+j

where tr+s ∈ (0, 1] and all other tk ∈ [0, 1). Hence all the tk parameterize D+
1 by the equation

above: that is we have a parameterization of D+
1 by a half-open n-cube. If we let the tk take

on their boundary value, then we get a parameterization of D+
1 . To see this, let us first give

our function a name

f : [0, 1]n ! Rr × Cs (t1, . . . , tn) 7! (x1, . . . , xr, ρ1e
iθ1 , . . . , ρse

iθs)

Then we claim f([0, 1]n) = D+
1 . We observe that f is continuous, so as [0, 1]n is compact,

f([0, 1]n) is compact. Of course D+
1 ⊆ f([0, 1]n). As f([0, 1]n) is compact, it is closed,

so D+
1 ⊆ f([0, 1]n). But the half-open n-cube is dense in [0, 1]n, so D+

1 must be dense in

f([0, 1]n), so we conclude that D+
1 = f([0, 1]n).

Let us write D+
1 = Interior(D+

1 ) t ∂D+
1 = I t B where t denotes disjoint union as before.

The boundary of the n-cube is the union of 2n (n − 1)-cubes. Now, assume that we knew

f((0, 1)n) ⊆ I. Then as f([0, 1]n) = D+
1 we would necessarily have B ⊆ f(∂[0, 1]n), so in

other words B would be covered by the images of 2n maps from (n − 1)-cubes. If we were
able to show f is Lipschitz as well, then all those maps would be Lipschitz and this would
all together prove that ∂D+

1 is (n − 1)-Lipschitz parameterizable. Hence we aim to prove
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f((0, 1)n) = I and that f is Lipschitz.

Let us first show f((0, 1)n) ⊆ I. To do this we prove that f is an open map, that is it maps
open sets to open sets. Then necessarily (0, 1)n needs to be mapped into I. To prove this
we show that f is the composition of four open maps

(0, 1)n
f1−! Rn f2−! Rn f3−! Rr × (0,∞)s × Rs f4−! Rr × Cs

where the maps are defined as

� f1(t1, . . . , tn) = (t1, . . . , log(tr+s), . . . , tn) (where log is only in the (r + s)th-entry)

� f2(u1, . . . , un) = (u1, . . . , un)U where U is the n× n-matrix defined by

U =



v1
... 0

vr+s−1

1 . . . 2
1 0 0

0 0
. . . 0

0 0 1


Here 1 . . . 2 denote the vector (1, . . . , 2) described earlier in the proof.

� f3(ξ1, . . . , ξr+2s) = (eξ1 , . . . , eξr , 1
2
eξr+1 , . . . , 1

2
eξr+s , 2πξr+s+1, . . . , 2πξr+2s)

� f4(x1, . . . , xr, ρ1, . . . , ρs, θ1, . . . , θs) = (x1, . . . , xr, ρ1e
iθ1 , . . . , ρse

iθs)

We see by direct calculation that f = f4f3f2f1. The map f1 is open as it is the identity
in all coordinates except one, where it is the logarithm, hence it sends a product of open
intervals to a product of open intervals. The same argument also goes through for f3 and
f4. To prove f2 is open, we prove that U defines a linear transformation T of full rank.
Then T−1 exists and since any linear transformation from Rn to another vector space is
continuous it follows that T−1 is continuous, or in other words the preimage of an open set
by T−1 is open. Hence T (U) = (T−1)−1(U) is open if U is open. To see that U has full
rank we first observe that by definition v1, . . . , vr+s−1 and (1 . . . 2) are linearly indepedent
in Rr+s. Clearly the other row vectors in the matrix are linearly independent, with those
vectors as well. This shows that f((0, 1)n) ⊆ I.

From the definition of f we note that all partial derivatives of f exist and are continuous.
Since we are working on a (bounded) closed interval, the continuity of the partial derivatives
imply that they are bounded. By passing from C to R2 and using the mean value theorem
for Rd it follows that f is Lipschitz.

With this proven we are only left with the calculation of κ. As we have shown earlier we only
need to calculate vol(D+

1 ) for this. Our starting point is the integral definition of volume,
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remembering we are using polar coordinates:

vol(D+
1 ) =

∫
D+

1

ρ1 · · · ρs dx1 · · · dxrdρ1 · · · dρs · · · dθ1 · · · dθs

We now substitute accordingly to how we defined the parameterization of D+
1 by [0, 1]n

(it will not make any changes in the integral if we consider the parameterization by a
half-open n-cube or the n-cube). We calculate the Jacobian of this substitution: denote
x1, . . . , xs, ρ1, . . . , ρs, θ1, . . . , θs by w1, . . . , wn. Then for k < r+ s and then k = r+ s we have

∂wj
∂tk

=


v

(j)
k wj j ≤ r

1
2
v

(j)
k wj r < j ≤ r + s
0 j > r + s

∂wj
∂tr+s

=

{ wj
tr+s

j ≤ r + s

0 j > r + s

If k > r + s we have
∂wj
∂tk

=

{
2π j = k
0 j 6= k

Hence the Jacobian matrix J(t1, . . . , tn) is

J(t1, . . . , tn) =



v
(1)
1 w1 · · · v

(r)
1 wr

1
2
v

(r+1)
1 wr+1 · · · 1

2
v

(r+s)
1 wr+s · · · 0 · · ·

...
...

...
...

...
...

...
...

...

v
(1)
r+s−1w1 · · · v

(r)
r+s−1wr

1
2
v

(r+1)
r+s−1wr+1 · · · 1

2
v

(r+s)
r+s−1wr+s · · · 0 · · ·

w1

tr+s
· · · wr+s

tr+s
· · · 0 · · ·
2π

0
. . .

2π


Taking the absolute value of the determinant and using determinant rules we get

| det(J(t1, . . . , tn))| = (2π)sw1 · · ·wr+s
1

2s
| det(U)| = πsx1 · · · xrρ1 · · · ρs

tr+s
| det(U)|

Now

x1 · · ·xrρ2
1 · · · ρ2

s = tnr+s exp

(
r+s−1∑
k=1

tk

(
v

(1)
k + · · ·+ v

(r+s)
k

))
= tnr+s

where we have used that v
(1)
k + · · · + v

(r+s)
k = 0. This is true as each vk ∈ ΛU which is

contained in a hyperplane H defined by y1 + · · ·+ yr+s = 0. Hence the integral reduces to

vol(D+
1 ) = πs| det(U)|

∫
[0,1]n

tn−1
r+s dt1 · · · dtn = πs| det(U)| 1

n

We define reg(OK) = 1
n
| det(U)|. Of course we have to show that this is well-defined (inde-

pedent of choice of basis of ΛU). Putting everything we have done together we get

iC(t) =
πs2s+rreg(OK)√
|discOK |

t+O
(
t1−

1
n

)
which finishes the proof modulo the well-definedness of reg(OK).
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We end by showing that reg(OK) is well-defined and justify what we said earlier about the
regulator meausuring the density of units. Recall that we have a volume on H induced by
the inner product. When we write vol(H/ΛU) in the theorem and its proof its the volume
of ΛU in H we mean.

Theorem 3.3.5. The definition of reg(OK) is independent of the choice of a Z-basis of ΛU

and furthermore

reg(OK) =
1√
r + s

vol(H/ΛU)

Proof. Fix a Z-basis v1, . . . , vr+s−1 for ΛU . We first observe that the (absolute value of the)
determinant of U (from the proof of Theorem 3.3.4) is the same as the determinant of the

(r + s)× (r + s)-matrix having rows v1, . . . , vr+s−1, (1 . . . 2). Let us call this matrix Ũ . This
matrix has coordinate sum 0 for all rows, except the last. Let V denote any matrix that is
obtained by changing the last row of Ũ with any other vector that has the same coordinate
sum. We claim that det(V) = det(Ũ). To see this, we observe that det(Ũ) − det(V) is

the determinant of the matrix having the same rows as Ũ in the first r + s − 1 rows and
the difference between the old and the new vector in the last row. Adding together all
the columns of this matrix we see that we get the zero vector. Hence the vector with 1’s
everywhere is an eigenvector to this matrix associated to the eigenvalue 0, but then this
matrix can’t be invertible, hence the determinant is 0, or in other words det(Ũ) = det(V).

The coordinate sum of the last row in Ũ is n, so if we change the last row with the vector
with n

r+s
, we get the same result, and hence the same determinant by the claim over.

Now let Λ be the lattice spanned by v1, . . . , vr+s−1,
(

n
r+s

, · · · , n
r+s

)
. Since v1, . . . , vr+s−1 all

are in the hyperplane H defined by y1 + · · ·+yr+s = 0, they are orthogonal to the last vector(
n
r+s

, · · · , n
r+s

)
. Hence

vol(Rr+s/Λ) = length

(
n

r + s
, · · · , n

r + s

)
· vol(H/ΛU) = n

1√
r + s

vol(H/ΛU)

Note that by definition, vol(Rr+s/Λ) = nreg(OK) and hence the claim for the formula of
reg(OK) follows. Finally this also shows that reg(OK) is indepedent of Z-basis, since the
volume of the fundamental parallellotope of the lattice ΛU in H is independent of the Z-basis
we choose (see the discussion after Definition 3.1.6). This finishes the proof.
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Chapter 4

Dedekind zeta functions

In this chapter we introduce the Dedekind zeta function ζK of a number field K. We
prove that it defines a holomorphic function in the half plane Re(z) > 1, and then give
an analytic continuation for Re(z) > 1 − 1

n
where n = [K : Q]. The latter as well as the

class number formula will follow almost immediately from Theorem 3.3.4. Finally we prove
that the Dedekind zeta function of Q(ζm) for ζm a primitive m-th root of unity factorizes,
more or less, into Dirichlet L-functions, and from this deduce the non-vanishing of Dirichlet
L-functions of non-principal Dirichlet characters. We then show how this implies Dirichlet’s
theorem.

4.1 The Class Number Formula

From now, all earlier use of r, s, n to denote the number of real and complex embeddings, as
well as the dimension of a number field K over Q, stop. Following tradition, we will denote
a complex number by s = σ + it. We will assume the reader knows some basic complex
analysis. We need one lemma which is an easy consequence of Morera’s theorem in complex
analysis:

Lemma 4.1.1. Let {fn : Ω! C}n be a sequence of holomorphic functions that converge to
a function f : Ω ! C. Suppose that the convergence is uniform on every compact subset of
Ω. Then f is analytic in Ω.

For a proof, see [2, Theorem 5.1]. Before we define the Dedekind zeta function we need a
general lemma on Dirichlet series.

Lemma 4.1.2. Let {an} be a sequence of complex numbers and suppose that
∑

n≤t an = O(tr)
for some r > 0 and all t ≥ 1. Then

∞∑
n=1

an
ns

converges for all s with σ > r and defines a holomorphic function on that half-plane.

47
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Proof. By Lemma 4.1.1, it is enough to show convergence of the sum for all s with σ > r,
and that the convergence is uniform on all compact subsets of that half-plane. Define Ak =∑k

n=1 an. Then by partial summation we have

M∑
n=m

an
ns

=
AM
M s
− Am−1

ms
+

M−1∑
n=m

An

(
1

ns
− 1

(n+ 1)s

)
By assumption |Ak| ≤ Bkr for some constant B > 0. Furthermore n−s − (n + 1)−s =

s
∫ n+1

n
dt
ts+1 so ∣∣∣∣ 1

ns
− 1

(n+ 1)s

∣∣∣∣ ≤ |s|∫ n+1

n

dt

|t|s+1
= |s|

∫ n+1

n

dt

|t|σ+1
≤ |s|
nσ

Putting all this together with the result we got from partial summation we get∣∣∣∣∣
M∑
n=m

an
ns

∣∣∣∣∣ ≤ B

(
M r−σ +mr−σ + |s|

M−1∑
n=m

nr−σ−1

)

Since σ > r, r−σ−1 < −1, so the sum
∑M−1

n=m n
r−σ−1 converges as M !∞. Also since σ > r,

M r−σ,mr−σ ! 0 as m,M ! ∞. Letting M ! ∞, then m ! ∞ afterwards, we see from
the bound just proven that the tail

∑∞
n=m ann

−s tends to 0. To show uniform convergence,

observe that the integral test gives us the bound
∑M−1

n=m n
r−σ−1 ≤

∫∞
m−1

tr−σ−1 dt = (m−1)r−σ

σ−r
for all M . Furthermore, if we are on a compact subset of the halfplane σ > r, then necessarily
we have to be bounded away from σ = r - that is there is an ε > 0 such that σ − r ≥ ε.
Furthermore on a compact subset |s| ≤ B′ for some constant B′. Putting it all together we
have for compact subsets of the halfplane σ > r that∣∣∣∣∣

∞∑
n=m

an
ns

∣∣∣∣∣ ≤ B

(
m−ε +B′

(m− 1)−ε

ε

)
which is independent of s, hence uniform.

The Riemann zeta function is defined as

ζ(s) =
∞∑
n=1

1

ns

which by Lemma 4.1.2 defines a holomorphic function for σ > 1. Observe that we have
absolute convergence for σ > 1 as well. If K is any number field, let jn denote the number
of ideals with ideal norm equal to n. Then we define the Dedekind zeta function of K as

ζK(s) =
∞∑
n=1

jn
ns

Observe that jn = 1 when K = Q so ζQ = ζ. From Theorem 3.3.4 we have
∑

n≤t jn = O(t)
so ζK defines a holomorphic function for σ > 1. We will however analytically continue this
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very shortly to σ > 1 − 1
[K:Q]

. To do this we must first analytically continue the Riemann
zeta function to σ > 0. To this end, define the Dirichlet eta function as

η(s) =
∞∑
n=1

(−1)n−1

ns

By the alternating nature of this sum, Lemma 4.1.2 gives that η is a holomorphic function
for σ > 0 and we have absolute convergence for σ > 1. Now for σ > 1 we have η(s) =
ζ(s)− 2 1

2s
ζ(s) = (1− 21−s) ζ(s). Hence outside some possible poles we have

ζ(s) =
1

1− 21−sη(s)

for σ > 1. This defines an analytic continuation to σ > 0, with possible poles where 21−s = 1.
We claim the only pole of this analytic continuation of ζ is s = 1. To that end, let us write
pk = 1 + 2πik

log(2)
for k = ±1,±2, . . . . Let us define

h(s) = 1 +
1

2s
− 2

3s
+

1

4s
+

1

5s
− 2

6s
+ . . .

The alternating nature of h gives, by Lemma 4.1.2, that h defines a holomorphic function for
σ > 0, and the convergence is uniform for σ > 1. Now h(s) = ζ(s)−3 1

3s
ζ(s) = (1−31−s)ζ(s),

and hence this also provides an analytic continuation for ζ(s)

ζ(s) =
1

1− 31−sh(s)

with possible poles at p̃k = 1 + 2πik
log 3

for k = 0,±1,±2, . . . , but we claim that the only pole
is when k = 0. By the identity theorem in complex analysis,

1

1− 31−sh(s) =
1

1− 21−sη(s)

for σ > 0 outside the possible poles pk, p̃k, but observe that pk are distinct from the p̃k
whenever k 6= 0, so when s ! pk, k 6= 0, the right hand side is finite, and vice versa when
s ! p̃k. Hence we have an analytic continuation of ζ(s) to σ > 0 with only one pole in
s = 1. This pole is simple because (1 − 21−s)′|s=1 = ln(2). We are now ready to prove the
class number formula and at the same time analytially continue the Dedekind zeta function.

Theorem 4.1.3. (Class Number Formula)
Let K be a number field. Let h be the class number of K, w the number of roots of unity
in K, r1 the number of real embeddings of K into C and finally r2 the number of pairs of
non-real embeddings of K into C. Then ζK(s) has a simple pole at s = 1 with residue

lim
s!1

(s− 1)ζK(s) =
h2r1+r2πr2reg(OK)

w
√
|disc(OK)|
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Proof. Let κ = 2r1+r2πr2 reg(OK)

w
√
|disc(OK)|

. The limit is two-sided so we first have to show that this

makes sense, i.e. give an analytic continuation of ζK to the left for σ = 1. To this end,
observe that we have for σ > 0 that

ζK(s) = hκζ(s) +
∞∑
n=1

jn − hκ
ns

By Theorem 3.3.4 we have
∑

n≤t(jn − hκ) = O
(
t1−

1
[K:Q]

)
, so Lemma 4.1.2 implies that the

sum
∑∞

n=1 (jn − hκ)n−s defines a holomorphic function for σ > 1− 1
[K:Q]

. In particular this
implies

lim
s!1

(s− 1)
∞∑
n=1

jn − hκ
ns

= 0

so it enough to show that ζ(s) has residue 1 in s = 1. Now

lim
s!1

(s− 1)ζ(s) = lim
s!1

s− 1

1− 21−sη(s) =
η(1)

ln(2)
= 1

where η(1) = ln(2) follows from considering the Taylor series of ln around 0. Hence we can
conclude that lims!1(s− 1)ζK(s) = hκ as desired.

We have given an analytical continuation of ζK(s) to σ > 1 − 1
[K:Q]

but remark that

much more can be done. Erich Hecke was the first to show that ζK(s) can be analytically
continued to the whole complex plane with only one pole at s = 1 and furthermore it
satisifies a functional equation similar to the functional equation of the Riemann zeta
function. The proof is similar to the proof for the Riemann zeta function using Poisson
summation formula, but this time it is the higher analogue of the Poisson summation
formula in multidimensional Fourier analysis. The details can be found in Lang’s book [7,
Chapter XIII]. Another approach was taken by John Tate in his PhD thesis, where he did
Fourier analysis on the locally compact ring of adeles. This recast of Hecke’s argument
turns out to be very fruitful and there are many interesting results resulting out from it.
Tate’s thesis can be found in [1, Chapter XV].

Our next and last goal in this thesis is to establish Dirichlet’s theorem. To do this we first
show that the Dedekind zeta function has an Euler product. The Dedekind zeta function
converges absolutely for σ > 1, and hence we can write

ζK(s) =
∑
I

1

‖I‖s

where the sum goes over all non-zero ideals of OK .

Lemma 4.1.4. Let K be a number field. Then for σ > 1 we have

ζK(s) =
∑
I

1

‖I‖s
=
∏
P

1

1− ‖P‖−s

where the product is over all (non-zero) prime ideals of OK.
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Proof. Let us order the prime ideals by their norms: P1, P2, . . . so that ‖Pi+1‖ ≥ ‖Pi‖. We
observe that the factors in the product are geometric series:

1

1− 1
‖P‖s

=
∞∑
n=0

(
1

‖P‖s

)n
Fix t. Then by multiplicativeness of the ideal norm and the fact that ideals factorize uniquely
into prime ideals in OK we get

t∏
n=1

1

1− 1
‖Pn‖s

=

(
∞∑
n=0

(
1

‖P1‖s

)n)
· · ·

(
∞∑
n=0

(
1

‖Pt‖s

)n)
=

∑
‖I‖≤‖Pt‖

1

‖I‖s
+Rt(s)

Here we must have Rt(s) ≤
∑

I>‖Pt‖ ‖I‖
−s and this tends to 0 when t!∞ as ζK converges.

Hence letting t!∞ we get the desired conclusion.

4.2 Dirichlet’s Theorem

To prove Dirichlet’s theorem we first need to study the factorization of ideals a bit more.
More specifically we want to take a prime p ∈ Z and study how it splits in OK . By unique
factorization we can write

pOK = P e1
1 · · ·P et

t

We say that the prime ideals Pi lie over p. The exponent ei is called the ramification index,
often denoted e(Pi/p). We say that p ramifies in K if ei > 1 for some i. If not then p
is said to be unramified in K. Recall that OK has Krull dimension 1, so Pi is a maximal
ideal, hence OK/Pi is a field. Of course Z/pZ is also a field. We have a natural inclusion
homomorphism Z ↪! OK inducing a homomorphism Z ! OK/Pi. The kernel of this map
is clearly Z ∩ Pi. We claim this intersection is indeed pZ. Since Pi | pOK it is clear that
pZ ⊆ pOK ⊆ Pi. Hence pZ = pZ ∩ Z ⊆ Pi ∩ Z. Now Z ∩ Pi is an ideal of Z, and as pZ is a
maximal ideal we must have Z ∩ Pi = pZ or Z ∩ Pi = Z. The latter cannot be true because
then 1 ∈ Pi. Hence Z ∩ Pi = pZ. By the first isomorphism theorem we get an embedding
of Z/pZ ↪! OK/Pi. Since the ideal norm is finite, this is an embedding of a finite field into
another finite field. We denote the degree of this field extension by fi or f(Pi/p) and we call
it the inertia degree of Pi over p. We have

pOK =
t∏
i=1

P ei
i

so taking ideal norms and remembering that the ideal norm of a principal ideal is the norm
of the generator itself, we get

pn = ‖P1‖e1 · · · ‖Pt‖et

where n = [K : Q]. Finally, as ‖P1‖ = pki for some ki and OK/Pi is a field extension of
Z/pZ of degree fi it follows that ki = fi. Comparing both exponents we see that we get
n = f1e1 + · · · + fnen, and so we see that ‖Pi‖ = pfi . The theory of prime splitting is
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rich and beautiful, and we will only merely touch it. The interested reader can find a nice
account of this in [8].

It turns out that there is a close relation between the primes that do ramify and the discrim-
inant. We will not prove this, but remark that one can prove this by building the theory of
splitting of primes further.

Theorem 4.2.1. A prime number p ∈ Z ramifies in K if and only if p | disc(OK).

For a proof, see [8, Theorem 24 & Theorem 34].

We now assume that K = Q(ζn) for a primitive n-th root of unity ζn. We proved earlier that

ζK(s) =
∏
P

1

1− ‖P‖−s

The plan is to split this up into those primes p ∈ Z that do ramify and these that are unram-
ified. We can do this by calculating the discriminant, but this is a somewhat complicated
task. Luckily for us Theorem 4.2.1 implies that at most finitely many primes do ramify and
this is enough for us. We need to show that the ramification degree and inertia degree is the
same for all P lying over p. To this end, we study the extension K/Q which is Galois with
Galois group canonically isomorphic to (Z/nZ)∗ (see [4, Theorem 18.1.4]).

Lemma 4.2.2. Let L be a Galois extension of Q and p a prime in Z. Then Gal(L/Q)
permutes the primes in OL lying over p transitively. As a consequence, if Q and P are
primes in OL lying over p then e(Q|p) = e(P |p) and f(Q|p) = f(P |p).

Proof. First we show that σ ∈ Gal(L/Q) restricts to an automorphism of OL. Since σ is the
identity on Z it must map algebraic integers to algebraic integers so σ(OL) ⊆ OL. If α ∈ OL
then a0 +a1α+ · · ·+at−1α

t−1 +αt = 0 for some a0, . . . , at−1 ∈ Z. Since σ is an automorphism
of L there is some β ∈ L such that α = σ(β). In other words a0 + a1σ(β) + · · ·+ σ(β)t = 0
and after applying σ−1 to this equation we get a0 + a1β + · · · + βn = 0 so β ∈ OL, which
shows that σ restricts to an automorphism of OL.

Now let P be a prime of OL lying over p and σ as before. Then σ(pZ) = pZ and so σ(P ) is
still a prime ideal lying over p. If Q is another prime lying over p we claim that there exists
a σ ∈ Gal(L/Q) such that σ(P ) = Q. Assume σ(P ) 6= Q for all σ ∈ Gal(L/Q). By the
Chinese Remainder Theorem we then get the existence of x ∈ OL such that

x ≡ 0 (mod Q) x ≡ 1 (mod σ(P )) ∀σ ∈ Gal(L/Q)

Since Q is an ideal and x ∈ Q we have N(x) ∈ Q. Furthermore N(x) is an integer by
Theorem 1.1.9. Hence N(x) ∈ Q ∩ Z = pZ. However by the congruences above we have
x 6∈ σ(P ) for all σ ∈ Gal(L/Q). Hence σ−1(x) 6∈ P for all σ. We can write N(x) as a
product over all σ−1(x) and none of these are in P . Since P is a prime ideal this implies
that N(x) 6∈ P , but this is a contradicition since N(x) ∈ pZ ⊆ P .
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Finally let us show the claims on ramification and inertia. Write pOL = P e1
1 · · ·P et

t . By the
above we can find σ` ∈ Gal(L/Q) so that σ`(P1) = P` for any 1 ≤ ` ≤ t. Remembering that
σ`(pOL) = pOL and then applying σ` gives pOL = P e1

` · · · σ`(Pt)et so e(P`|p) = e(P1|p). This
shows the claim about the ramification index. To show the claim on inertia index, let σ` be
as before and define ψ : OL ! OL/σ`(P1) by α 7! σ`(α) + σ`(P1). This is a surjective group
homomorphism with kernel P1, hence we get an isomorphism OL/P1

∼= OL/σ`(P1) = OL/P`
and thus f(P1|p) = f(P`|p), which finishes the proof.

Recall that we saw earlier that if there are r primes lying over p then n = f1e1 + · · ·+ fnen
where fi, ei are the inertia index and ramification index of the primes lying over p. As we
have now shown, in Galois extensions the ramification and inertia is only dependent of the
one prime lying under and hence we get that n = rpepfp in this case. We now state without
proof what the discriminant of Q(ζn) is.

Lemma 4.2.3. Let n > 2 and ζn be a primitive nth root of unity. Then

disc(Q(ζn)) = (−1)ϕ(n)/2 nϕ(n)∏
p|n p

ϕ(n)/(p−1)

For a proof see [11, Proposition 2.7]. When n = 2, the cyclotomic extension is just Q itself,
which has discriminant 1. From this we see that the only primes that ramify are those
dividing n. Take any P lying over an unramified p, in other words p - n. Then it can be
proven that fp = ordn(p). For a proof see [11, Theorem 2.13].

There are only finitely many primes that ramify and hence there can be at most finitely
many prime ideals P lying over primes that do ramify. Since every prime ideal P lies over
one unique prime p we split up the product of the Dedekind zeta function as

ζK(s) =
∏

P lying over ramified p

1

1− ‖P‖−s
∏

P lying over unramified p

1

1− ‖P‖−s

We are not going to try to get good control over the first part of the product, and since it is
finite we will see that we can really ignore it in the application to Dirichlet’s theorem that
we are aiming for. For all unramified primes p, we still let rp denote the number of prime
ideals P lying over p, and fp their inertia degree (only dependent on p as we have showed).
Then ∏

P lying over unramified p

1

1− ‖P‖−s
=

∏
p unramified

(
1

1− p−fps

)rp
We now define Dirichlet characters and their corresponding Dirichlet L-functions.

Definition 4.2.4. A Dirichlet character modulo m is a multiplicative homomorphism χ :
(Z/mZ)∗ ! C∗. We can extend this to a function χ : Z ! C by extending χ on residue
classes modulo m and defining χ(k) = 0 whenever gcd(k,m) > 1. The Dirichlet L-function
L(s, χ) associated to χ is defined as

L(s, χ) =
∞∑
n=1

χ(n)

ns



54 CHAPTER 4. DEDEKIND ZETA FUNCTIONS

Since (Z/mZ)∗ has order ϕ(m) we observe that for ` ∈ (Z/mZ)∗ that 1 = χ(`ϕ(m)) = χ(`)ϕ(m)

so the image of χ consists of ϕ(m)th roots of unity. We will now define characters on any
finite abelian group - especially we want to study the characters of Gal(Q(ζm)/Q), but as we
will explain this is the same as studying the Dirichlet characters modulo m. First we remark
that since the Dirichlet character χ modulo m is multiplicative we get an Euler product for
L(s, χ):

L(s, χ) =
∏

p prime

1

1− χ(p)p−s
=

∏
p prime,p-m

1

1− χ(p)p−s

This can be proven by observing that the factors in the Euler product are geometric series
and multiplying all these together yield the Dirichlet L-series by the fundamental theorem
of arithmetic.

Definition 4.2.5. Let G be a finite abelian group. Then a character ψ on G is a homomor-
phism G! C∗. The set of all characters of G is denoted by Ĝ.

Since G is a finite group the image of ψ is actually contained in the unit circle as for Dirichlet
characters. By pointwise multiplication Ĝ is a group, in fact G ∼= Ĝ.

Theorem 4.2.6. Let G be a finite abelian group. Then Ĝ ∼= G.

Proof. We first prove the statement in the case G is a cyclic group, then let the fundamental
theorem of finite abelian groups do the rest of the work, which says G is isomorphic to
a product of cyclic groups, that is G ∼= Z/n1Z × · · · × Z/nkZ. This is enough because
HomZ(

∏k
i=1 Z/niZ,C∗) ∼=

∏k
i=1 HomZ(Z/niZ,C∗). So let G be a cyclic group of order n. Let

a generate G. A character on G is uniquely defined by where it sends a. Let ζ` = exp
(

2πi`
n

)
,

and define a map on G by χ`(a) = ζ`. To check that this is a homomorphism we see that

χ`(a
kam) = ζk+m

` = ζk` ζ
m
` = χ`(a

k)χ`(a
m)

All the homomorphism χ` are different, so |Ĝ| ≥ n. Conversely let χ ∈ Ĝ. Then χ(a) =

exp(2πi`
n

) for some ` and so actually χ = χ`. Hence |Ĝ| = n. Finally observe that for any

`, we actually have χ` = χ`1, so χ1 generate Ĝ. Since there is only one cyclic group of each

finite order up to isomorphism, it follows that Ĝ ∼= G.

Hence there are ϕ(m) Dirichlet characters modulo m. Since (Z/mZ)∗ is a group, multipli-
cation by an element k with gcd 1 to m induces a bijection of (Z/mZ)∗. Hence

m∑
n=1

χ(n) =
∑

n∈(Z/mZ)∗

χ(n) =
∑

n∈(Z/mZ)∗

χ(kn) = χ(k)
∑

n∈(Z/mZ)∗

χ(n)

As long as χ is not the principal character (the trivial character defined by χ(n) = 1 for all
n with gcd(n,m) = 1), there exists a k with gcd(k,m) = 1 so that χ(k) 6= 1, and hence in
this case we can see by comparing the second sum and the last sum that the sum is 0. If χ
is the principal character it is easy to see that the sum is ϕ(m). We have proved:
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Lemma 4.2.7. Let χ be a Dirichlet character modulo m. Then

m∑
n=1

χ(n) =

{
ϕ(m) if χ is principal

0 otherwise

From this lemma it follows by the residue class nature of a Dirichlet character modulo m
that as long as χ is non-principal then∣∣∣∣∣∑

n≤t

χ(n)

∣∣∣∣∣ ≤ ϕ(m) = O(1)

and hence by Lemma 4.1.2 we conclude that L(s, χ) defines an analytic function for Re(s) >
0. When χ is principal, let us call it χ0, we see that

L(s, χ0) =
∏

p prime,p-m

1

1− 1
ps

= ζ(s)
∏
p|m

(
1− 1

ps

)
so taking the analytic continuation of ζ from the last chapter we get that L(s, χ0) is a
meromorphic function for Re(s) > 0 with a simple pole at s = 1. We are now done with the
prerequisites we need for showing non-vanishing of L(s, χ) for non-principal χ.

Theorem 4.2.8. Let χ be a non-principal Dirichlet character modulo m. Then L(1, χ) =
Cχ 6= 0 where Cχ is some constant depending on χ.

Proof. We consider the function F (s) =
∏

χ L(s, χ) where the product runs over all Dirichlet
characters modulo m. As we have seen, as long as χ is non-principal L(s, χ) defines an
analytic function for Re(s) > 0. Hence there is one simple pole at s = 1 in the product
coming from the principal character. If L(1, χ) = 0 for some other χ then this will cancel
out the pole and the product defines an analytic function for Re(s) > 0. When K = Q(ζm)
we will see that ζK is more or less F (s), but by the class number formula ζK has a simple
pole at s = 1, and hence so must F (s) also have, so we cannot have L(1, χ) = 0 for any
non-principal character.

Our next claim is the following: if G is a finite abelian group and we fix g ∈ G and let χ run
through Ĝ then χ(g) will run through all the ordG(g)th roots of unity and moreover it will
take each value equally many times. Here ordG(g) denotes the order of g in G. To prove

this, define ψg : Ĝ! C∗ by ψg(χ) = χ(g). Then ψg is a group homomorphism. We have

kerψg = {χ ∈ Ĝ : χ(g) = 1} ∼= Ĝ/(g)

By the first isomorphism theorem we then get

|Im(ψg)| =
|Ĝ|
|Ĝ/(g)|

=
|G|
|G|

ordG(g)

= ordG(g)

Since the image has order ordG(g) it consists of all of the ordG(g)th roots of unity. Above

we showed there are |G|
ordG(g)

characters that take the value 1 in g. Two characters χ1, χ2 will
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take the same value on g if and only if (χ−1
1 χ2)(g) = 1, so two characters will take the same

value exactly |G|
ordG(g)

times. Since the image is of order ordG(g) this implies that when χ

runs through Ĝ it takes on all the ordG(g)th roots of unity equally many times.

We now apply this on G = Gal(Q(ζm)/Q), which is canonically isomorphic to (Z/mZ)∗ as
mentioned earlier. Hence the characters of G are exactly the Dirichlet characters modulo m.
From now, let f denote the order of p modulo m. Letting ω1, . . . , ωf denote the fth roots
of unity, we then get

∏
χ∈Ĝ

(
1− χ(p)

ps

)
=

(
1− ω1

ps

)ϕ(m)/f

· · ·
(

1− ωf
ps

)ϕ(m)/f

=

((
1− ω1

ps

)
· · ·
(

1− ωf
ps

))ϕ(m)/f

=
1

pϕ(m)s
((ps − ω1) · · · (ps − ωf ))ϕ(m)/f

=
1

pϕ(m)s

(
pfs − 1

)ϕ(m)/f
=

(
1− 1

pfs

)ϕ(m)/f

Now recall that we proved at the start of this section that fp = f for all prime ideals lying
over primes p that does not ramify. Furthermore for any prime P lying over p that does not
ramify, write pOK = P1 · · ·Pt. Then since the Pi are comaximal, taking the quotient and
applying the Chinese Remainder Theorem gives OK/pOK ∼= OK/P1 × · · ·OK/Pt. Taking
norms we get pϕ(m) = ‖(p)‖ = pfp · · · pfp = prpfp (recall rp is the number of prime ideals P
lying over p), and hence ϕ(m) = rpfp = rpf , or more importantly rp = ϕ(m)/f . Hence

∏
χ∈Ĝ

L(s, χ) =
∏
p-m

(
1

1− 1
pfs

)ϕ(m)/f

Recall that we split ζK up into two products; one for ramified primes, the other for unramified
primes. The product of P lying over primes p that may be ramified primes, let us call it
Γram, is finite and each factor is analytic and non-vanishing in a neighborhood of s = 1,
hence Γram is as well. Using the splitting of ζK into ramified and unramified primes we
finally arrive from this that

ζK(s) = Γram(s)
∏
χ∈Ĝ

L(s, χ)

which finishes the proof by the first paragraph of this proof.

Now that we know L(1, χ) 6= 0 for χ non-principal, Dirichlet’s theorem is not that far anyway.
However, we first remark that the factorization of ζK into Dirichlet L-functions (modulo some
finite product coming from ramified primes) can be generalized to any abelian extension.
This comes basically down to the fact that any abelian extension can be embedded into a
cyclotomic extension (this is the Kronecker-Weber theorem). More is true: if K/Q is Galois,
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then ζK factors into Artin L-functions L(ρ, s) where ρ is a representation of the Galois group
Gal(K/Q).

Lemma 4.2.9. Let χ1, . . . , χϕ(m) be the Dirichlet characters modulo m and k, ` ∈ (Z/mZ)∗.
Then

ϕ(m)∑
n=1

χn(k)χn(`) =

{
ϕ(m) if k ≡ ` (mod m)

0 if k 6≡ ` (mod m)

Proof. Let a ∈ (Z/mZ)∗. Then 1 = |χ(a)|2 = χ(a)χ(a). Hence χ = χ−1. Hence we can
rewrite the sum as

ϕ(m)∑
n=1

χn(k)χn(`) =

ϕ(m)∑
n=1

χn(k)χn(`)−1 =

ϕ(m)∑
n=1

χn(k`−1)

If k ≡ ` (mod m), this sum is clearly ϕ(m). If not there exists a Dirichlet character χt
modulo m so that χt(k`

−1) 6= 1, and since the group of Dirichlet characters modulo m is
finite, multiplication by this induces a bijection on this group and we get

ϕ(m)∑
n=1

χn(k`−1) =

ϕ(m)∑
n=1

(χtχn)(k`−1) = χt(k`
−1)

ϕ(m)∑
n=1

χn(k`−1)

Since χt(k`
−1) 6= 1 the desired conclusion follows.

Let s > 1 be real. We want to take the logarithm of L(s, χ), but since L(s, χ) is complex-
valued we must watch out. Why we can take the logarithm is justified in [6, p. 256,261].
Starting from the Euler product of L(s, χ) and taking the logarithm we get

lnL(s, χ) = −
∑

p prime, p-m

ln

(
1− χ(p)

ps

)
=

∑
p prime, p-m

∞∑
n=1

χ(pn)

npns

where we in the last term have used the power series of ln. To ease the notation from now on,
p under the sum means a summation over the prime numbers. Assume gcd(a,m) = 1 or in
other words a ∈ (Z/mZ)∗. Multiply the expression above with χ(a) and then a summation
over all Dirichlet characters χ1, . . . , χϕ(m) modulo m yields

ϕ(m)∑
k=1

χk(a) lnL(s, χk) =

ϕ(m)∑
k=1

∑
p-m

∞∑
n=1

χk(p
n)χk(a)

npns
=
∑
p-m

∞∑
n=1

ϕ(m)∑
k=1

χk(p
n)χk(a)

npns

The interchanging of summation order is justified by absolute convergence. Using Lemma
4.2.9 on the inner sum yields

ϕ(m)∑
k=1

χk(a) lnL(s, χk) = ϕ(m)
∑

p≡a (mod m)

1

ps
+ ϕ(m)Rχ(s)
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Now we bound Rχ(s) with Re(s) > 1: observe that |χk(pk)χk(a) 1
n
p−ns| ≤ p−ns and hence

|Rχ(s)| ≤
∑
p

∞∑
n=2

(
1

ps

)n
=
∑
p

p−2s

1− 1
ps

≤
∑
p

p−2s

1− 1
2s

≤ 2ζ(2)

and hence |Rχ(s)| remains bounded as s ! 1+. Say χ1 is the principal character - we do a
final manipulation of our sum formula to make the conclusion clearer:

χ1(a) lnL(s, χ1) = ϕ(m)
∑

p≡a (mod m)

1

ps
+

ϕ(m)Rχ(s)−
ϕ(m)∑
k=2

χk(a) lnL(s, χk)


Since L(s, χ) 6= 0 for non-principal χ and Rχ(s) is bounded as s ! 1+ it follows that the
expression inside [·] is bounded as s ! 1+. But as we have seen L(s, χ1) has a simple pole
at s = 1 so as s ! 1+, we have lnL(s, χ1) ! ∞ and hence the same has to be true for the
right hand side - the only way this can be true is if the sum has infinitely many terms, hence
the set {p prime : p ≡ a (mod m)} has to be infinite. But this set is exactly the primes in
the arithmetic progression a+m, a+ 2m, a+ 3m, . . . . We have proved:

Theorem 4.2.10. (Dirichlet’s theorem)
Let gcd(a,m) = 1. Then there are infinitely many prime numbers p in the sequence a +
m, a+ 2m, a+ 3m, . . . .
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