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Abstract
The goal of this thesis is to give a brief introduction to a class of functions called
copulas. A major part of the thesis is devoted to understanding and proving Sklar’s
theorem. The remainder of the thesis presents other basic concepts and properties
that are relevant to the studies of copulas.
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Chapter 1

A motivating example

This thesis aims to introduce a class of functions called copulas and the most basic
theory concerning these functions. The thesis is by no means a complete present-
ation of the topic and intends only to serve as an introduction. Before presenting
the formal theory behind copulas, we will present an example that demonstrates
what purpose these functions might serve in a statistical setting. We will not spend
time on definitions in this chapter, as the concepts should be familiar to anyone
who has taken an introductory course in statistics. The following example is a
reconstruction of the motivating example from chapter 1 in the book Elements of
Copula Modeling with R [1]. All simulations have been done in R [2], and visual-
ised using the packages “ggplot2” [3] and “Reshape2” [4].

Assume that you are presented two data sets of paired observations (see Fig-
ure 1.1), and you are asked to find out if they have anything in common. The
data sets consist of 1000 independent realisations of the bivariate random vectors
(X1, X2) and (Y1, Y2). The joint distribution functions of these random vectors are
unknown.

The first thing you notice is that there is dependence between X1 and X2, and
between Y1 and Y2. You ask yourself: “How does a change in X1 affect X2, and
is the effect stronger, weaker, or the same for Y1 and Y2?”. The linear correlation
coefficient, also known as Pearson’s correlation coefficient, is a measure of linear
dependence between two random variables. From examining the plots, you con-
clude that there appears to be a positive correlation for both X1 and X2, and Y1
and Y2. However, you suspect that the variables might not have the same correl-
ation. The calculations of the empirical correlation coefficients confirms this, as
Cor (X1, X2)≈ 0.83 and Cor (Y1, Y2)≈ 0.64.

Next, you want to evaluate the marginal densities of X1, X2, Y1, and Y2, as the
two scatter plots do appear to differ a great deal more than what can be explained
from the difference in correlation alone. From a plot of the empirical densities (see
Figure 1.2), it is natural to suggest that X1 and X2 are both normally distributed,
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(a) 1000 realisations of (X1, X2). (b) 1000 realisations of (Y1, Y2).

Figure 1.1: Scatter plots of the two data sets.

whereas Y1 and Y2 are exponentially distributed.

(a) The density of X1 and X2, along with a
dotted representation of the standard nor-
mal distribution.

(b) The density of Y1 and Y2, along with a
dotted representation of the exponential dis-
tribution with λ= 1.

Figure 1.2: Plot of the estimated marginal density for the data sets.

To conclude, the two data sets appear to come from joint distributions with dif-
ferent marginal densities, and the normally distributed data has a stronger linear
dependence than the exponentially distributed data. However, the linear correl-
ation coefficient is only able to capture the strength of linear dependence of the
underlying random variables. The different marginal distributions of the data sets
might have affected how the dependence is perceived. You decide to transform
the data so that they have the same marginal distribution. Then the comparison
of dependence would be fairer.

Lemma 1.1. Let X be a random variable and let F be its continuous distribution
function, i.e. X ∼ F. Then F(X ) ∼ U[0, 1], where U[0, 1] is the standard uniform
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distribution on [0,1].

The proof follows from the observation that, given Y = F(X ),

P(Y ≤ y) = P(F(X )≤ y) = P(X ≤ F−1(y)) = F(F−1(y)) = y

when the inverse F−1 exists, which it does for both the cumulative normal and
exponential distribution function. 1

Hence, you can calculate U1 = F(X1) and U2 = F(X2), where F in this case is the
standard normal distribution, and similarly V1 = G(Y1) and V2 = G(Y2), where
G is the exponential distribution with λ = 1. After looking at the plots of the
transformed data (see Figure 1.3) you conclude that the two data sets actually
have equal dependence, and the only difference was the marginal distributions.

(a) The transformed data (F(X1), F(X2)). (b) The transformed data (G(Y1), G(Y2)).

Figure 1.3: Plot of the two data sets after transforming the marginal distributions.

The subject of this thesis is a class of functions called copulas. These functions
represent the dependence between variables in multivariate distributions. In our
case, instead of saying that (X1, X2) and (Y1, Y2) have the same dependence, one
could say that they share the same copula. This illustrates that, in contrast to the
well-known Pearson correlation coefficient, copulas serve as a more flexible tool
for describing the dependence of random variables, separately from their marginal
distributions.

A final note to the observant reader. The scatter plot of the two normally distrib-
uted variables (Figure 1.1a) does not look like what you would expect from a
regular plot of the bivariate normal distribution. That is because the copula for X1
and X2 is the Clayton copula (see section 4.2). This copula has a stronger depend-
ence in the left tail than the right tail, which explains the discrepancy between
this scatter plot and what we would expect from a bivariate normal scatter plot.

1A similar argument can be made using a quasi-inverse (see definition 2.5) to generalize for all
continuous functions.
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Chapter 2

Preliminaries and the definition
of copulas

In this chapter we introduce notation, cover certain preliminaries regarding distri-
bution functions and present the copula function with some examples of copulas.
The concepts presented in this chapter can be retraced in chapters 2.1-2.3 of An
Introduction to Copulas [5]. The included illustrations were made using the pack-
ages “copula” [6] and “lattice” [7] in R .

2.1 Notation

Unless specified otherwise, X is a random variable and X = (X1, . . . , Xn) is a ran-
dom vector in n dimensions, where each X j is a random variable.

The unit interval is denoted I = [0,1], and In = I× I× · · · × I, i.e. In is the unit
cube in n dimensions. By × we mean the Carthesian product.

We say that a function f : S1→ S2 has domain Dom f = S1 and range Ran f = S2.
A function f is said to be nondecreasing if f (x)≤ f (y) for all x , y ∈ S1 such that
x < y , and strictly increasing if f (x)< f (y) for all x , y ∈ S1 such that x < y .

2.2 Preliminaries

Before we present what a copula is, it is important to understand what we mean
with a distribution function, and what properties these functions have. The follow-
ing definitions will aid with this.

Definition 2.1. Let H be a function defined on A ⊆ Rn. The H-volume of a box
B = [a1, b1]× [a2, b2]× · · · × [an, bn] ⊆ A is given by

VH(B) :=
∑

v

sgn(v)H(v),
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where v are the vertices of the box B, and

sgn(v) =

¨

1 if v j = a j for an even number of indices.

−1 if v j = a j for an odd number of indices.

When n= 2, the H-volume of a box B = [a1, b1]× [a2, b2] is

VH(B) = H(b1, b2)−H(a1, b2)−H(b1, a2) +H(a1, a2).

Remark. The definition of H-volume might not be intuitive at first, but its use is
mainly for functions that appear in probability theory. We include an additional
example of H-volume after presenting distribution functions, as this might shed
some light on the intuitive understanding of this concept.

Definition 2.2. We say that a function H is n-increasing if

VH(B)≥ 0

for all boxes B with vertices in Dom H.

For a function of one variable, being n-increasing is equivalent to being non-
decreasing. However, for functions of multiple variables these two properties are
not equivalent, as the following two examples, which can be found on page 8 in
[5], demonstrate.

Example 2.1. Let H(x , y) =max(x , y) be defined on I2. Then it is clear that H is
non-decreasing in both arguments. However,

VH(I2) = 1− 1− 1+ 0= −1

which shows that H is not 2-increasing.

Example 2.2. Let H(x , y) = (2x − 1)(2y − 1) be defined on I2 and let B =
[x1, x2]× [y1, y2] ⊆ I2. Then

VH(B) = (2x2 − 1)(2y2 − 1)− (2x1 − 1)(2y2 − 1)

− (2x2 − 1)(2y1 − 1) + (2x1 − 1)(2y1 − 1)

= ((2y2 − 1)− (2y1 − 1))((2x2 − 1)− (2x1 − 1))

= (2(y2 − y1))(2(x2 − x1))≥ 0

This means that our function is 2-increasing. However, for y ∈ [0, 1
2] we get that

H is a decreasing function of x . Similarly, H is a decreasing function of y when
x ∈ [0, 1

2].
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Lemma 2.1. Assume that H : S1× . . .×Sn→ R is an n-increasing function. Further-
more, assume that for each S j ⊆ R there exists a smallest element a j , j = 1,2, . . . , n,
such that

H(a1, x2, . . . , xn) = H(x1, a2, . . . , xn) = . . .= H(x1, x2, . . . , an) = 0.

Then H is non-decreasing in each argument.

Definition 2.3. A function f is right-continuous if for every ε > 0, there exists
δ > 0 such that when x0 < x < x0 +δ we have that | f (x)− f (x0)|< ε.

Less formally, we can say that f is right-continuous at a point x0 if it is continuous
when x0 is approached from the right, and f is a right-continuous function if this
holds for every point in Dom f .

2.3 Distribution functions

Copulas are of interest to us when viewed in applications alongside distribution
functions. In this section, we define these functions and state an important prop-
erty of them.

Definition 2.4. A distribution function F : Rn → [0,1] has the following proper-
ties:

1. The function
x j 7→ F(x1, . . . , x j−1, x j , x j+1, . . . , xn)

is right-continuous for any x1, . . . , x j−1, x j+1, . . . , xn ∈ R and j = 1,2, . . . , n.
2. F is n-increasing.
3. Let x= (x1, x2, . . . , xn). Then

F(x)→ 0 if x j →−∞

for at least one x j and
lim

x→∞
F(x) = 1

where by x→∞ we mean that x j →∞ for j = 1, 2, . . . , n.

Remark. Given a random vector X= (X1, X2, . . . , Xn), the distribution function F
of X is defined as the probability

F(x) = P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn), (2.1)

for x = (x1, x2, . . . , xn) ∈ Rn, and we write X ∼ F to indicate that X has this
distribution.

Many people are first introduced to distribution functions in an introductory stat-
istics class, usually in one dimension and often under the term cumulative dis-
tribution function. Below we see an example of a one-dimensional distribution
function.
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Example 2.3. A random variable X is said to have a standard uniform distribution
if, for x ∈ [0,1],

P(X ≤ x) = x .

We write this as X ∼ U[0,1].

Example 2.4. For the purpose of understanding H-volume, as defined in defini-
tion 2.1, we include an example that should be familiar to anyone who has taken
an introductory course in statistics. Let X be a random variable with distribution
function F . Then, for an interval B = [a, b],

VF (B) = F(b)− F(a) = P(X ≤ b)− P(X ≤ a) = P(a < X ≤ b).

Hence, the H-volume, or in this case F -volume, is the probability given by a dis-
tribution function on a restricted subset B of the domain. This probability is often
visualized as the area under a graph or, for higher dimensions, a volume.

Note that from lemma2.1, it follows that distribution functions are non-decreasing
functions. However, they are not necessarily strictly increasing, and they do not
necessarily have an inverse. Therefore, it is useful to define a quasi-inverse, which
does exist for any distribution function.

Definition 2.5. Let f : [a, b] → [c, d] be a non-decreasing function. Then the
quasi-inverse f (−1) of f is defined as follows:

1. if t ∈ Ran f then f (−1)(t) = x such that f (x) = t, that is

f ( f (−1)(t)) = t.

2. if t /∈ Ran f then

f (−1)(t) = inf{x | f (x)> t}= sup{x | f (x)< t}

Note that the quasi-inverse of f will not necessarily be unique, as there might be
multiple choices of x in 1.

Remark. If f is strictly increasing, we have that f (−1) = f −1, meaning that the
regular inverse and the quasi-inverse of f coincide.

Multivariate distributions are joint distribution functions of two or more random
variables. In the motivating example in chapter 1 we looked at bivariate vectors,
and the vectors had bivariate distributions. We also considered the univariate dis-
tributions of each component of the vectors. The univariate distributions were,
in fact, marginal distributions, as they were the distribution of the elements of a
random vector with a multivariate distribution.

Definition 2.6. The marginal distribution functions F j of a multivariate distribu-
tion function H : Rn→ [0,1] are defined as

F j(x j) = lim
N→∞

H(N , . . . , N , x j , N , . . . , N).

8



where j = 1,2, . . . , n and DomF j = R for each j. We will call the functions F j
marginals for short.

Remark. When we say marginals we will mean the univariate marginal distribu-
tions. However, it is possible to look at k-dimensional marginals, k < n, by letting
x j →∞ for fewer indices j in H.

An important implication of the next theorem is that the continuity of multivariate
distribution functions follows from the continuity of its marginals.

Theorem 2.1. Let H be an n-dimensional distribution function and let F1, F2, . . . , Fn
be its marginals. Then, for any x,y ∈ Rn, we have

|H(y)−H(x)| ≤
n
∑

j=1

|F j(y j)− F j(x j)|

The n-dimensional proof is somewhat intricate and can be found in chapter 6 of
[8]. Below we prove the theorem for two dimensions.

Proof. Assume H is a 2-dimensional distribution function with marginals F1 and
F2. Let x = (x1, x2) and y = (y1, y2), and assume that x1 ≤ y1 and x2 ≤ y2. We
first note that for some real value M ≥ y2,

VH([x1, y1]× [y2, M]) = H(y1, M)−H(x1, M)−H(y1, y2) +H(x1, y2)≥ 0.

This implies that

H(y1, y2)−H(x1, y2)≤ H(y1, M)−H(x1, M),

and by letting M →∞ we get that

H(y1, y2)−H(x1, y2)≤ F1(y1)− F1(x1).

Furthermore, since distribution functions are non-decreasing in each argument
and we assumed x1 ≤ y1, we have

|H(y1, y2)−H(x1, y2)| ≤ |F1(y1)− F1(x1)|. (2.2)

With a similar argument we can show that |H(x1, y2) − H(x1, x2)| ≤ |F2(y2) −
F2(x2)|. Then

|H(y1, y2)−H(x1, x2)| ≤ |H(y1, y2)−H(x1, y2)|+ |H(x1, y2)−H(x1, x2)|
≤ |F1(y1)− F1(x1)|+ |F2(y2)− F2(x2)|.

We use the triangle inequality first, and secondly what we saw in equation (2.2).
An identical argument will work for all other size-orderings of the variables.
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2.4 Copulas

The copula function that we briefly mentioned in the introductory example is itself
a distribution function.

Definition 2.7. Let C be a distribution function in Rn restricted to the unit cube,
with standard uniform marginals. Then C is an n-copula, or simply a copula.

Equivalently, a copula is a function C : In→ I with the following properties,

1. C(u) = 0 if u j = 0 for at least one j.
2. C(1, . . . , 1, u j , 1, . . . , 1) = u j .
3. the C-volume of a box B ⊂ In is non-negative, i.e. VC(B)≥ 0.
4. The marginals of C are standard uniform distribution functions (see ex-

ample 2.3).

As a direct consequence of theorem 2.1, we have the following corollary concern-
ing the continuity of copulas.

Corollary 2.1. Let C : In → I be a copula. Then C is Lipschitz continuous, and the
inequality

|C(u)− C(v)| ≤
n
∑

j=1

|u j − v j|

holds for all u,v ∈ In.

As we have briefly mentioned earlier, these functions are of interest to us due to
their ability to describe the dependence between random variables. We return to
this property in chapter 4. Below we present some examples of functions that are
copulas.

Example 2.5. Let u ∈ In. Then the function Π : In→ I given by

Π(u) = u1u2 . . . un

is an n-dimensional copula called the product copula. See Figure 2.1 and Figure
2.4 for visualisations of this function when n= 2.

Example 2.6. Let u ∈ In. Then the function M : In→ I given by

M n(u) =min(u1, u2, . . . , un).

is an n-dimensional copula called the M copula or the upper Fréchet-Hoeffding
bound. See Figure 2.2 and Figure 2.4 for visualisations of this copula when n= 2.

Why the M copula is called the upper Fréchet-Hoeffding bound stems from the
following theorem.

10



Figure 2.1: The product copula: Π(u) = u1u2.

Figure 2.2: The upper Fréchet-Hoeffding bound: M(u) =min(u1, u2).

11



Theorem 2.2. For every copula C : In→ I and point u ∈ In the following inequality
holds:

W n(u)≤ C(u)≤ M n(u).

Here M n is the M copula from example 2.6 and

W n(u) =max(1+ u1 + . . .+ un − n, 0).

These bounds are called the Fréchet-Hoeffding bounds, hence M n is called the upper
Fréchet-Hoeffding bound and W n is called the lower Fréchet-Hoeffding bound.

Proof. We show first that C(u)≤ M n(u), and secondly that W n(u)≤ C(u).

Start by noting that C(u)≤ C(1, . . . , u j , . . . , 1) = u j for all j = 1, 2, . . . n. In partic-
ular, C(u)≤min(u1, u2, . . . , un) = M n(u).

For the other inequality, we use the fact that copulas are Lipschitz continuous (see
corollary 2.1).

|C(1,1, . . . , 1)− C(u)| ≤
n
∑

j=1

|1− u j|

=⇒ 1− C(u)≤
n
∑

j=1

(1− u j)

=⇒ 1− C(u)≤ n−
n
∑

j=1

u j

=⇒ 1+
n
∑

j=1

u j − n≤ C(u).

We could safely remove the absolute value on both sides of the initial inequality
as C(u) ∈ [0, 1] and u j ∈ [0, 1] for all j. Finally, since C(u)≥ 0, we conclude that
W n(u)≤ C(u) for all u ∈ In.

It turns out that M n is a copula for all n, whereas W n is a copula only when n= 2
(see Figure 2.3 and Figure 2.4 for visualizations of the copula W ). It is easy to
check that W does not meet the requirements of a copula when n≥ 3.

Example 2.7. Let B =
�1

2 , 1
�n ⊂ In. Then the W n-volume (definition 2.1) of B is

given by

VW n(B) =
n
∑

k=0

�

n
k

�

max(1+
k
2
+ (n− k)− n, 0) = 1−

n
2

,

which is clearly negative for n≥ 3.

However, W n is still the best lower bound that can be found.
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Theorem 2.3. For every point u ∈ In, there exist a copula C : In→ I, depending on
u, such that,

C(u) =W n(u).

A proof can be found on page 48 in [5].

Figure 2.3: The lower Fréchet-Hoeffding bound: W (u) =max(u1 + u2 − 1,0).
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Figure 2.4: Contour plots of the product copula (upper-left), the M copula
(upper-right), and the W copula (bottom).
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Chapter 3

Sklar’s theorem

The most central theorem within the theory of copulas is Sklar’s theorem. This the-
orem states that every multivariate distribution function can be expressed through
its univariate marginals and a copula that describes the dependence between the
random variables. It was first presented in an article by Abe Sklar in 1959 [9].
We devote this section to stating and proving this theorem. The proof we present
does not follow the original proof by Sklar, but rather the more recent approach of
Durante, Fernándes-Sánchez, and Sempi [10]. Although what is presented in this
chapter is based on their work, we have done some modifications to the proof.

Theorem 3.1 (Sklar’s theorem). Let H be an n-dimensional distribution function
and let F1, F2, . . . , Fn be its marginals. Then there exists an n-copula C such that

H(x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)) (3.1)

for all x = (x1, x2, . . . , xn) ∈ Rn. If all the marginals are continuous, then C is
unique. If not, then C can be uniquely determined on Ran F1×Ran F2× . . .×Ran Fn.
Conversely, given a copula C and univariate distribution functions F1, F2, . . . , Fn, the
function H defined by (3.1) is an n-dimensional distribution function with marginals
F1, F2, . . . , Fn.

Remark. The name copula actually comes from the Latin word for “link”, due to its
ability to link together, or “couple”, marginal distributions and joint distributions.

The last part of theorem 3.1, which states that given C and F1, . . . , Fn, the function
H defined in (3.1) must be a joint distribution function, is a matter of straightfor-
ward verification. Moreover, the former part of theorem 3.1 follows immediately
from the result below when the marginals of the distribution function H are all
continuous.

Corollary 3.1. Let H be an n-dimensional distribution function and assume that
its marginals F1, F2, . . . , Fn are continuous. Then the copula C satisfying (3.1) is

15



determined, for all u ∈ In, by

C(u) = H(F (−1)
1 (u1), F (−1)

2 (u2), . . . , F (−1)
n (un)),

were F (−1)
j is the quasi-inverse of F j .

Verifying theorem 3.1 when H has marginals with discontinuities is far more in-
tricate. The remainder of this chapter is devoted to this task.

3.1 Approximation to the identity

Let C(In) be the set of continuous functions on the unit cube. Then the space
(C(In),‖ ·‖∞) is a Banach space or, equivalently, a complete normed space. Here,
‖ · ‖∞ denotes the supremum norm on In. Furthermore, denote by C n the set of
n-dimensional copulas.

Theorem 3.2. The set of n-dimensional copulas C n is a compact subset of the
Banach space (C(In),‖ · ‖∞).

Proof of theorem 3.2 will not be given here, but can be found in the article by
Durante et al. [10].

We remind the reader of two important properties of compact subsets of a Banach
space:

1. A compact subset of a Banach space is bounded and closed, meaning every
convergent sequence converges to an element in the space.

2. For every sequence in a compact subset of a Banach space we can find a
convergent subsequence.

Now let us assume that H is a multivariate distribution function, where at least one
of its marginals is discontinuous. We can find a smooth function closely related
to H by taking the convolution of H with an approximation to the identity. Such
approximations are sometimes called mollifiers in literature, and they have certain
specific properties.

Definition 3.1. A function ϕε : Rn→ R is a mollifier if

i)
∫

Rn ϕε(x)dx= 1,

ii) the support of ϕε is the closed ball Bε(0),
iii) ϕε is infinitely differentiable.

Example 3.1. In this example, we construct a function that fulfills the criteria of
a mollifer. Let B1(0) be an open ball around the origin with radius 1. Then we can
define a mollifier ϕ : Rn→ R by

ϕ(x) := k exp
�

1
|x|2 − 1

�

1B1(0)(x). (3.2)
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This corresponds to the case ε = 1 in the definition 3.1. Furthermore, for any
ε > 0, we now define

ϕε(x) :=
1
εn
ϕ
�x
ε

�

. (3.3)

This allows us to construct a sequence of mollifiers by setting ε = 1/m, such that

lim
m→∞

ϕ1/m(x) = δ(x),

where δ(x) is the Dirac delta function. It follows from the definition above that
every element in the sequence {ϕ1/m}m is also a mollifier.

We now define the function Hm by convolution with ϕ1/m as

Hm(x) := (H∗ϕ1/m)(x) =

∫

Rn

H(x−y)ϕ1/m(y)dy=

∫

Rn

H(y)ϕ1/m(x−y)dy. (3.4)

The function Hm is a continuous approximation to H, and below we state some
important properties for Hm and its marginals Fm, j . We skip the proofs concerning
the marginals of Hm, as this follows from analogous proofs.

Lemma 3.1. The function Hm, as defined in (3.4), is a continuous, n-dimensional
distribution function.

Proof. We have Hm = (H ∗ϕ1/m), where H is a distribution function. Hence, there
exists M ∈ N such that H(x) > 1− ε when x j > M for all j, as H(x) tends to 1
when all the elements of x tend to infinity. Therefore, for x where x j > M + 1

m for
all j,

Hm(x) =

∫

Rn

H(x− y)ϕ1/m(y)dy

=

∫

B1/m(0)
H(x− y)ϕ1/m(y)dy

≥ (1− ε)
∫

Rn

ϕ1/m(y)dy= 1− ε.

Here we use property 1. and 2. of definition 3.1. By a similar argument, we can
show that Hm is bounded from below by 0, and thus it satisfies the boundary
conditions for a distribution function.

17



Now, for any box B ⊆ In, the Hm-volume of B is

VHm
(B) =

∑

v

sgn(v)Hm(v)

=
∑

v

sgn(v)

∫

Rn

H(v− y)ϕ1/m(y)dy

=

∫

Rn

∑

v

sgn(v)H(v− y)ϕ1/m(y)dy

=

∫

Rn

VH(B
∗)ϕ1/m(y)dy,

where B∗ is the box B with vertices shifted by the vector y. Clearly, the last integral
is non-negative, as VH(B∗)≥ 0 since H is a distribution function.

The last condition we need to check is that Hm is continuous. We already know
that ϕ1/m is uniformly continuous on its support B1/m(0) ⊂ B1(0) for m ≥ 1. Let
ε > 0, and choose δ > 0 such that |ϕ(x)− ϕ(y)| < ε whenever |x− y| < δ. We
then get

|Hm(x)−Hm(y)|=
�

�

�

�

∫

Rn

H(u)ϕ1/m(x− u)−H(u)ϕ1/m(y− u)du

�

�

�

�

≤
∫

Rn

|H(u)||ϕ1/m(x− u)−ϕ1/m(y− u)|du

≤
∫

B1(x)∪B1(y)
εdu

= 2ελn(B1(0))

Note that we used the fact that sup |H|= 1 in the second inequality.

Lemma 3.2. The marginals Fm,1, Fm,2, . . . , Fm,n of the function Hm defined in (3.4)
are continuous, univariate distribution functions.

Lemma 3.3. Let x be a point of continuity for H. Then

lim
m→∞

Hm(x) = H(x).

Proof. Assume H is continuous at a point x ∈ R. Then, for every ε > 0, there
exists δ > 0 such that |H(x) − H(x − y)| < ε whenever y ∈ Bδ(0). Assume now
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that m> 1/δ. Then

|Hm(x)−H(x)|=
�

�

�

�

∫

Rn

H(x− y)ϕ1/m(y)dy−H(x)

�

�

�

�

=

�

�

�

�

∫

Rn

H(x− y)ϕ1/m(y)dy−
∫

Rn

H(x)ϕ1/m(y)dy

�

�

�

�

≤
∫

Rn

|H(x− y)−H(x)|ϕ1/m(y)dy

=

∫

Bδ(0)
|H(x− y)−H(x)|ϕ1/m(y)dy

≤ ε
∫

Rn

ϕ1/m(y)dy= ε

which shows that Hm(x) tends to H(x) at points x where H is continuous.

Lemma 3.4. Let F1, F2, . . . , Fn be the marginals of the function H, and let F j be
continuous at the point x j for j = (1, 2, . . . , n). Then

lim
m→∞

Fm, j(x j) = F j(x j),

where Fm, j is the j’th marginal of Hm.

3.2 Proof of Sklar’s theorem

We now have all the tools we need to prove Sklar’s theorem when the distribution
function H has marginals with discontinuities.

Proof of Sklar’s theorem (theorem 3.1). Given a distribution function H, we con-
struct the continuous function Hm = H ∗ϕ1/m. Since Hm is continuous, we know
from corollary 3.1 that there exists a copula Cm such that

Hm(x) = Cm(Fm,1(x1), . . . , Fm,n(xn)) (3.5)

for all x ∈ Rn, where Fm, j are the continuous marginals of Hm. The compactness
of C n guarantees that for every sequence (Cm)m, there exists a convergent sub-
sequence (Cm(k))k. In other words, for all ε > 0 there exists K ∈ N, and a C ∈ C n,
such that

sup
u∈In
|Cm(k)(u)− C(u)|< ε (3.6)

whenever k ≥ K . Since equation (3.5) holds for all m, it holds in particular for
the subsequence m(k),

Hm(k)(x) = Cm(k)(Fm(k),1(x1), . . . , Fm(k),n(xn)). (3.7)

19



Consider first all continuity points x of H. At these points, it follows from lemma
3.3 that Hm(x)→ H(x) when m→∞. Furthermore, for any subsequences of Hm,
we have Hm(k)(x)→ H(x) when k→∞.

Similarly, we can show that the right side of equation (3.7) converges as well.
From lemma 3.4 we know that, for any ε > 0 we can find k ≥ K ∈ N such that
|Fm(k), j(x j)− F j(x j)|<

ε
2n . Furthermore, using corollary 2.1 and the convergence

of copulas seen in (3.6) we have that

|Cm(k)(Fm(k),1(x1), . . . , Fm(k),n(xn))− C(F1(x1), . . . , Fn(xn))|
≤|Cm(k)(Fm(k),1(x1), . . . , Fm(k),n(xn))− Cm(k)(F1(x1), . . . , Fn(xn))|
+|Cm(k)(F1(x1), . . . , Fn(xn))− C(F1(x1), . . . , Fn(xn))|

≤
n
∑

j=1

|Fm(k), j(x j)− F j(x j)|+
ε

2

≤ n
ε

2n
+
ε

2
= ε.

We can thus conclude that the right hand side of equation (3.5) converges to
C(F1(x1), . . . , Fn(xn)). Hence, we have shown that, for all points of continuity
x ∈ R, we have

H(x) = C(F1(x1), . . . , Fn(xn)). (3.8)

Assume now that x is a point of discontinuity for H, which means that at least one
of the marginals F j is discontinuous at x j . Then we can make a sequence of con-
tinuity points (xi)i∈N with x i

j > x j and such that lim
i→∞

x i
j = x j for all j = 1, . . . , n.

Since marginals are right-continuous by definition, such a sequence exists, and
for any ε > 0 we can find some i0(ε) ∈ N such that when i ≥ i0 we have

|F j(x
i
j)− F j(x j)|<

ε

n

for all j = 1, . . . , n. Furthermore, we have already shown that equation (3.8) holds
for all continuity points of H, hence, for all i,

H(xi) = C(F1(x
i
1), . . . , Fn(x

i
n)) (3.9)

holds. That H(xi)→ H(x) as i→∞ follows from the fact that the marginals are
right-continuous. Finally, for the right hand side in (3.9) we can see that, when
i ≥ i0(ε), we have

|C(F1(x
i
1), . . . , Fn(x

i
n))− C(F1(x1), . . . , Fn(xn))|

≤
n
∑

j=1

|F j(x
i
j)− F j(x j)|< n

ε

n
= ε,

where we again apply corollary 2.1 for the inequality. Hence, the right-hand side
of equation (3.9) converges to C(F1(x1), . . . , Fn(xn)). This confirms that equation
(3.8) holds for all points x ∈ Rn, and concludes the proof of theorem 3.1.
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Chapter 4

Further properties of the copula

In chapter 1, we presented a motivating example where the dependence appeared
to be different for two random vectors. However, when the two data sets were
transformed to have the same marginal distributions (e.g. standard uniform dis-
tributions), the dependence was clearly the same. In chapter 2, we defined copulas
as distribution functions with standard uniform marginals. We also showed that
copulas are bounded by the upper and lower Fréchet-Hoeffding bounds. In chapter
3, we stated and proved Sklar’s theorem. Sklar’s theorem is particularly important
because it shows how the copula “couples” marginal distribution functions with
a multivariate distribution function. A multivariate distribution function can be
expressed in terms of its univariate marginal distributions and their dependence
structure, which is given by the copula.

In this chapter, which is the final chapter of this thesis, we will further explain
some basic properties of copulas, and see these properties applied with the help of
two examples: the Clayton family and the Marshall-Olkin family of copulas. These
two examples can be retraced on pages 114-115 and 52-54 in [5], respectively.
We limit ourselves to two dimensions in this chapter. However, most concepts can
be generalised to higher dimensions (see in particular [11] or chapter 2.10 in [5]
for details).

4.1 Measuring dependence between random variables

Copulas are primarily of interest when they act as the link between random vari-
ables and their joint distribution function, and this is what we turn our attention
to in this section. More precisely, we will answer two questions that naturally arise
when discussing dependence of random variables: “Which copula corresponds to
the situation where the random variables are independent?” and “If we know the
copula of two random variables, can we then say something about the copula of
transformations of the random variables?”.
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Independence between random variables should be a familiar concept, and so
should the joint distribution function H of two independent variables X ∼ F and
Y ∼ G, which is defined as H(x , y) = F(x)G(y). From Sklar’s theorem 3.1, the
next theorem follows immediately.

Theorem 4.1. Let X and Y be random variables. Then X and Y are independent
if and only if the copula that describes their dependence is the product copula (see
example 2.5), given by

Π(u, v) = uv. (4.1)

Transformations of random variables is a well-known concept in statistics. It turns
out that copulas are well-behaved under monotone transformations of the ran-
dom variables, as we will see below. We first include a small lemma that we state
without proof.

Lemma 4.1. Let f be a strictly monotonic function. Then

i) the inverse f −1 of f exists on Ran f .
ii) if f is strictly increasing, then f −1 is also strictly increasing.

iii) if f is strictly decreasing, then f −1 is also strictly decreasing.

Theorem 4.2. Let X and Y be continuous random variables, and denote by CX Y the
copula of X and Y . If α and β are strictly increasing functions on Ran X and Ran Y ,
respectively, then Cα(X )β(Y ) = CX Y .

Proof. Let FX , FY , Fα(X ) and Fβ(Y ) be the distribution functions for X , Y , α(X ) and
β(Y ), respectively. From lemma 4.1 it follows that

Fα(X )(x) = P(α(X )≤ x) = P(X ≤ α−1(x)) = FX (α
−1(x)).

Then, again using lemma 4.1,

Cα(X )β(Y )(Fα(X )(x), Fβ(Y )(y)) = P(α(X )≤ x ,β(Y )≤ y)

= P(X ≤ α−1(x), Y ≤ β−1(y))

= CX Y (FX (α
−1(x)), FY (β

−1(y)))

= CX Y (Fα(X )(x), Fβ(Y )(y))

and we conclude that Cα(X )β(Y ) = CX Y .

Note that Pearson’s correlation coefficient, which we mentioned in chapter 1, is
invariant under linear transformations, but not under all strictly increasing trans-
formations. On the other hand, some linear transformations can alter the copula.

Theorem 4.3. Let X and Y be continuous random variables, and let CX Y be the
copula of X and Y . If α and β are strictly monotone functions on Ran X and Ran Y ,
respectively, we have the following:
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1. if α is strictly increasing and β is strictly decreasing, then

Cα(X )β(Y )(u, v) = u− CX Y (u, 1− v).

2. if α is strictly decreasing and β is strictly increasing, then

Cα(X )β(Y )(u, v) = v − CX Y (1− u, v).

3. if α and β are both strictly decreasing, then

Cα(X )β(Y )(u, v) = u+ v − 1+ CX Y (1− u, 1− v).

We will not prove this, as the proof has a very similar structure to the proof of
theorem 4.2.

Since copulas are functions it is not necessarily trivial to determine how they relate
to each other. However, since they are measures of dependence it is useful to have
a way of comparing them, and the next definition provides a method for doing so.

Definition 4.1. Let C1 and C2 be copulas. We say that C1 is smaller than C2, writing
C1 ≺ C2, if C1(u, v) ≤ C2(u, v) for all u, v in I. Similarly, we say that C1 is larger
than C2, writing C1 � C2, if C1(u, v) ≥ C2(u, v) for all u, v in I. This ordering is
called a concordance ordering.

The concordance ordering is only a partial ordering, since not all copulas are
comparable in this sense. Note also that the Fréchet-Hoeffding lower bound, W ,
is smaller than every other copula, while the Fréchet-Hoeffding upper bound, M ,
is larger than every other copula.

4.2 Example: the Clayton family

For this section, we will look at a family of copulas called the Clayton family,
and present a setting where this copula naturally appears. We have in fact seen
this copula already. In the introductory example, we presented two data sets with
equal, nonlinear dependence. In order to construct this data set, we drew 1000
samples from a joint distribution function given by a copula belonging to the
Clayton family. This is a one-parameter family of copulas with the general form

Cθ = [max(u−θ + v−θ − 1, 0)]−1/θ , θ ∈ [−1,∞)\{0}. (4.2)

A visualization of this copula for two different choices of the parameter θ is shown
in Figure 4.1. These plots were made by taking 1000 independent realizations of
a bivariate vector (U1, U2) with joint distribution given by the Clayton copula in
equation (4.2).

In Figure 4.1 it appears that the Clayton copula is bounded by Π≺ Cθ ≺ M when
θ ∈ [0,∞), which is a correct observation. Furthermore, for one-parameter fam-
ilies of copulas in general, denoted {Cθ}, we have that their concordance ordering
is Cθ1

≺ Cθ2
if θ1 ≤ θ2.

23



(a) parameter θ = 1 (b) parameter θ = 6

Figure 4.1: 1000 samples drawn from the distribution given by the Clayton cop-
ula in (4.2).

Remark. An important feature of copulas is their ability to measure tail depend-
ence. This is useful for extreme value theory and modeling. The Clayton copula is
lower tail dependent, which can be seen in Figure 4.1.

Let us now present a statistical problem, and a method for finding a suitable cop-
ula to this problem. Assume X1, X2, . . . , Xn is a random sample of continuous inde-
pendent random variables, and assume X j ∼ F for all j = 1,2, . . . , n. Furthermore,
let X(1) =min(X1, X2, . . . , Xn) and X(n) =max(X1, X2, . . . , Xn). We want to find the
copula C1,n that describes how X(1) and X(n) depend on each other.

It is well known that

F1(x) = P(X(1) ≤ x) = 1− [1− F(x)]n, and

Fn(x) = P(X(n) ≤ x) = [F(x)]n.

We start by finding a joint distribution function H̃ of −X(1) and X(n):

H̃(s, t) = P(−X(1) ≤ s, X(n) ≤ t)

= P(−s ≤ X(1), X(n) ≤ t)

= P(X i ∈ [−s, t] for all i)

=

¨

[F(t)− F(−s)]n, −s ≤ t

0, −s > t

= [max(F(t)− F(−s), 0)]n.

Let G(x) = [1− F(−x)]n denote the distribution function of −X(1). We use Sklar’s
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theorem 3.1 to find C̃(u, v) = H̃(G(−1)(u), F (−1)
n (v)). Observe that

u= [1− F(−s)]n =⇒ F(−s) = 1− u1/n, and

v = [F(t)]n =⇒ F(t) = v1/n,

and hence
C̃(u, v) = [max(v1/n + u1/n − 1,0)]n.

The copula C̃ belongs to the Clayton family, with parameter θ = −1/n. Since C̃ is
the copula for −X(1) and X(n), we use the transformation X(1) = −(−X(1)) to find
the copula C1,n that we are interested in. Theorem 4.3, which we covered in the
previous section, allows us to find

C1,n(u, v) = v − C̃(1− u, v) = v −
�

max((1− u)1/n + v1/n − 1, 0)
�n

.

Intuitively we understand that X(1) and X(n) are not independent, and since C1,n 6=
Π they are indeed dependent on each other in some way. However, they are asymp-
totically independent. Note that the Clayton copula C̃θ isΠwhen θ = 0, and when
the sample size grows towards infinity, we get

lim
n→∞

C1,n(u, v) = lim
n→∞

v − C̃−1/n(1− u, v) = v −Π(1− u, v) = v − v + uv = uv

which means that the copula C1,n→ Π as n→∞.

The copula C1,n says something about how the smallest and largest element of
a set depend on each other. When the set is small, X(1) and X(n) are effectively
bounding each other. Say, for instance, that we draw five random samples from a
standard uniform distribution. It is not unlikely that X(n) lies in the lower half of
the interval. However, if it turns out that X(1) = 0.4, then X(n) is suddenly bounded
below by 0.4. Assume now that we draw 15 random samples from a standard
uniform distribution, and that X(1) = 0.2. This does not really tell us much about
X(15), because the probability that X(15) even lies in the lower half of the interval
is as small as P(X(15) < 0.5) = 0.515 = 0.00003052. In other words, for larger
sample sizes, knowing X(1) will tell us close to nothing about what values X(n)
will take.

4.3 Decomposition of the copula

Let us return to the Fréchet-Hoeffding bounds, presented in section 2.4, and in
particular the two plots in Figure 4.2 below. They show 100 independent realiz-
ations of a bivariate vector (U1, U2) with standard uniform marginals and joint
distribution given by the copulas M and W . A question that arises immediately is
“Why do the data points accumulate along the diagonals?”. From the plots it ap-
pears that U1 = U2 when their joint distribution function is M and that U1 = 1−U2
when their joint distribution function is W . This is, in fact, correct.
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Figure 4.2: 100 samples drawn from the distribution given by the copulas M
(left) and W (right).

Theorem 4.4. Assume that U= (U1, U2) is a bivariate vector with U1, U2 ∼ U[0,1].
Then the joint distribution of U is given by the copula M if and only if U1 = U2.

Theorem 4.5. Assume that U= (U1, U2) is a bivariate vector with U1, U2 ∼ U[0,1].
Then the joint distribution of U is given by the copula W if and only if U1 = 1− U2.

In other words, the copulas M and W imply something important about the de-
pendence between U1 and U2, namely that they determine each other with abso-
lute certainty. This relationship is what we call perfect dependence, and the copulas
M and W describe perfect positive and perfect negative dependence, respectively. An
analogous concept is when the Pearson correlation coefficient is 1 or -1, respect-
ively, for a set of multivariate normally distributed variables.

Remark. Keep in mind that W is not a copula for n> 2, as we saw in example 2.7,
and furthermore, note that the idea of perfect negative dependence does not make
sense for dimensions greater than two. Hence, theorem 4.5 can not be generalized
to the case n> 2.

Perfect dependence, and how this relates to the copulas M and W , is not restricted
to random variables with standard uniform distributions, nor linear relationships.
Let X and Y be two random variables. If the copula of X and Y is M , then Y =
α(X ), where α is an increasing function. Similarly, if the copula of X and Y is
W , then Y = β(X ), where β is a decreasing function. The general idea is that if
the copula of two random variables is either M or W , the random variables are
completely determined by each other.

Let us now justify the claims in theorems 4.4 and 4.5. It is straightforward to verify
that, for some U ∼ U[0,1],

(U , U)∼ M and (U , 1− U)∼W.

However, to complete the argument for the converse implications, we need some
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results and terminology from probability theory. We briefly introduce these con-
cepts formally, before explaining them in a more casual manner below.

Given a probability space, which satisfies certain measure-theoretic properties, it
is possible to define a probability measure. This is a real-valued function defined on
a set of events in a probability space. One important thing to note is that, opposed
to general measures, probability measures must assign the value 1 to the entire
probability space.

It is well known that any two-dimensional distribution function H induces a prob-
ability measure on R2. Since H-volume upholds the properties of a probability
measure, this is done by assigning the measure H(x , y) = VH(B) to the box
B = (−∞, x] × (−∞, y]. This measure can be extended to any Borel subset of
R2, and thus create a set of events in R2 that are measurable. Since copulas are
also joint distribution functions, we can in a similar way define a C-measure on
I2 by assigning the measure C(u, v) = VC(B) to the box B = [0, u]× [0, v].

Intuitively, the C-measure of a subset A ⊂ I2 is the probability that a random
vector (U1, U2) with standard uniform marginals and joint distribution function C
assumes values in that subset, that is P((U1, U2) ∈ A) = VC(A). With the notion of
measure established, we are now ready to introduce support, as well as a useful
decomposition of copulas.

Definition 4.2. Let C : I2 → I be a copula. The complement of the union of all
open sets in I2 that have C-measure zero is called the support of C , and is denoted
supp(C). If supp(C) = I2, we say that C has full support.

Again, let (U1, U2) be a random vector with standard uniform marginals and joint
distribution function C . The support of C is the subset of I2 in which (U1, U2) can
take values. Conversely, given a subset A⊂ I2 which satisfies A∪supp(C) = ;, then
P((U1, U2) ∈ A) = 0.

Definition 4.3. Let C : I2→ I be a copula. Then C can be split into an absolutely
continuous component AC and a singular component SC , where

AC(u, v) =

∫ u

0

∫ v

0

∂ 2

∂ s∂ t
C(s, t) dsd t (4.3)

and SC(u, v) = C(u, v)− AC(u, v).

If C ≡ AC on I2 then C is absolutely continuous. If C ≡ SC then C is singular.
Note that C is singular if and only if the Lebesgue measure of its support is zero.
Additionally, the C-measure of the absolutely continuous component and singular
component is given by AC(1, 1) and SC(1, 1), respectively.

Example 4.1. The upper Fréchet-Hoeffding bound is given by M(u, v) =min(u, v).
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Computing the absolutely continuous component of C yields

AM (u, v) =

∫ u

0

∫ v

0

∂ 2

∂ s∂ t
min(s, t) dsd t.

It is obvious that ∂ 2

∂ s∂ t min(s, t) is zero everywhere, except on the diagonal t = s
where it is undefined, thus AM = 0 and SM = M . We could have come to the
same conclusion by observing that supp(M) is the diagonal u1 = u2, which has
Lebesgue measure zero, and therefore M must be singular.

We can relate this back to the plot in Figure 4.2, and the question concerning why
the data points accumulated in such a specific pattern. Example 4.1 concludes that
M is singular, with the diagonal u1 = u2 as its support. This implies that (U1, U2)
has joint distribution function M only if U1 = U2. The case is similar for the lower
Fréchet-Hoeffding bound.

Example 4.2. The product copula is given by Π(u, v) = uv. Hence

AΠ(u, v) =

∫ u

0

∫ v

0

∂ 2

∂ s∂ t
st dsd t =

∫ u

0

∫ v

0

1 dsd t = uv,

which shows that the product copula is absolutely continuous. Furthermore, as-
sume B = [a1, b1]× [a2, b2] ⊆ I2, with a1 < b1 and a2 < b2. Then the Π-volume
of B is

VΠ(B) = (b2 − a2)(b1 − a1)> 0.

Hence, the product copula has full support.

The next section covers an example of a copula that has full support, but has both
an absolutely continuous and a singular component.

4.4 Example: the Marshall-Olkin family

Consider a two-component system, which at all times is subject to “shocks” to
either one of the components, or both simultaneously. These shocks always cause
the components to fail, and they appear according to three independent Poisson
processes with parameters λ1, λ2 and λ12 for failure in component 1, 2, or both,
respectively. The times until failure, denoted T1, T2 and T12, are therefore inde-
pendent, exponential random variables with parameters λ1, λ2 and λ12.

We are interested in finding the distribution of the lifetime of our system. Let
X = {Lifetime of component 1}, Y = {Lifetime of component 2} and H̄(x , y) =
P(X > x , Y > y)1. Then

X =min(T1, T12), Y =min(T2, T12),

1H̄ is called a survival function.
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and

H̄(x , y) = P(T1 > x)P(T2 > y)P(T12 >max(x , y))

= exp(−λ1 x −λ2 y −λ12 max(x , y)).

The marginals of H̄ are given by

F̄(x) = P(X > x) = exp(−(λ1 +λ12)x), and

Ḡ(y) = P(Y > y) = exp(−(λ2 +λ12)y).
(4.4)

We can now, using the fact that max(x , y) = x + y −min(x , y), find

H̄(x , y) = exp(−λ1 x −λ2 y −λ12 max(x , y))

= exp(−λ1 x −λ12 x −λ2 y −λ12 y −λ12 min(x , y))

= F̄(x)Ḡ(y)min(exp(λ12 x), exp(λ12 y)).

Note that

F̄ (−1)(u) =
−1

λ1 +λ12
log(u) and Ḡ(−1)(v) =

−1
λ2 +λ12

log(v),

and define

α=
λ12

λ1 +λ12
and β =

λ12

λ2 +λ12
. (4.5)

We now use Sklar’s theorem 3.1 to find

C(u, v) = H̄(F̄ (−1)(u), Ḡ(−1)(v)) = uv min(u−α, v−β) =min(u1−αv, uv1−β). (4.6)

Remark. Note that this is not direct use of Sklar’s theorem, since F̄ and Ḡ are not
distribution functions, but rather what is known as survival functions. However, it
can be shown that the relationship between univariate and joint survival functions
is analogous to that of regular distribution functions, and the function C obtained
in equation (4.6) is in fact a copula. For further details see pages 32-33 in [5].

The copula in (4.6) belongs to a two-parameter family known as the Marshall-
Olkin family, which is given by,

Cα,β(u, v) =min
�

u1−αv, uv1−β�=

�

u1−αv, uα ≥ vβ

uv1−β , uα ≤ vβ
(4.7)

for 0 < α,β < 1. If we extend the parameter range to 0 ≤ α,β ≤ 1, then Cα,0 =
C0,β = Π and C1,1 = M .

The copulas in this family have full support, but they are neither absolutely con-
tinuous nor singular. We compute the absolutely continuous component by first
finding the partial derivatives
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∂ 2

∂ u∂ v
Cα,β(u, v) =

¨

(1−α)uα, uα > vβ

(1− β)v−β , uα < vβ

and then evaluating the double integral in (4.3) to get

Aα,β(u, v) = Cαβ(u, v)−
αβ

α+ β −αβ
�

min
�

uα, vβ
��(α+β−αβ)/αβ

.

Hence, the singular component is given by

Sα,β(u, v) =
αβ

α+ β −αβ
�

min
�

uα, vβ
��

α+β−αβ
αβ =

∫ min(uα,vβ)

0

t
1
α+

1
β −2d t

and is supported on the line uα = vβ . The Cα,β -measure of the singular component
is given by

Sα,β(1, 1) =
αβ

α+ β −αβ
.

If we return to the initial setup, the singular component corresponds to the case
when a shock kills both components simultaneously, which is when X = Y . To see
this, recall that

H̄(x , y) = C(F̄(x), Ḡ(y)) = AC(F̄(x), Ḡ(y)) + SC(F̄(x), Ḡ(y)).

The singular component, SC , has its support on the line v = uα/β . Recalling what
we defined in equation (4.5), we get that v = uα/β evaluated at u = F̄(x) and
v = Ḡ(y) corresponds to

Ḡ(y) = (F̄(x))α/β = (F̄(x))
λ2+λ12
λ1+λ12 .

Furthermore, using (4.4), we get

Ḡ(y) = (F̄(x))
λ2+λ12
λ1+λ12

exp (− (λ2 +λ12) y) = exp (− (λ1 +λ12) x)
λ2+λ12
λ1+λ12

− (λ2 +λ12) y =
�

λ2 +λ12

λ1 +λ12

�

(− (λ1 +λ12) x)

y = x

To conclude, we have

P(T12 <min(T1, T2)) =
αβ

α+ β −αβ
=

λ12

λ1 +λ2 +λ12
,
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(a) (α,β) = (0.2, 0.2) (b) (α,β) = (0.8,0.8)

(c) (α,β) = (0.8,0.2) (d) (α,β) = (0.3,0.8)

Figure 4.3: 1000 samples drawn from the distribution given by the Marshall-
Olkin copula defined in equation (4.7).

which is coherent with what we would get from manually computing this prob-
ability based on the three independent exponential distributions.

Each plot in Figure 4.3 is made from 1000 simulations of the bivariate vector
(U1, U2) with joint distribution given by the Marshall-Olkin copula from equation
(4.7), with parameter values for α and β indicated in the caption below each plot.
In terms of our example, we can think of U1 = F̄(X ) and U2 = Ḡ(Y )2. We could
have obtained similar plots by simulating the failure times t1, t2, t12 of three inde-
pendent exponential distributions, calculated the point (x , y) for each simulation,
and transformed the data point as u1 = F(x), u2 = G(y).

The singular component is clearly visible in all four plots. Recall that this corres-

2This follows from the same logic that allowed us to transform the variables in the motivating
example in chapter 1. However, keep in mind that here we are not actually transforming anything,
but only arguing for the link that exists between the variables in our example and the data in our
plots.
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ponds to the case T12 < min(T1, T2). By comparison of Figure 4.3a and 4.3b we
conclude that as α and β get close to 1, a shock that destroys both components is
more likely to occur before shocks that only strike one of them.

Furthermore, from 4.3c and 4.3d we can deduce that the plots seem to be sep-
arated into distinct areas. In fact, the area above the singular component corres-
ponds to the situation T2 <min(T1, T12) and the area below the singular compon-
ent corresponds to the situation T1 <min(T2, T12).

Hence, in Figure 4.3c the low value of the β-parameter along with the high value
of the α-parameter result in many simulations where component two breaks first,
and quite few situations were component one breaks first. This is reasonable, since
β < 0.5 < α implies that λ2 < λ12 < λ2, based on how we defined α and β in
equation (4.5). In particular, for β close to one and α close to zero, λ2 is much
greater than λ1, and hence T2 is on average significantly smaller than T1. For
Figure 4.3d the situation is opposite.
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