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Abstract

This thesis aims to give an exposition to the theory on triangulated categories. The main
goals are to show that the Verdier quotient, the homotopy category, and the derived cat-
egory are triangulated.
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Sammendrag

Denne bacheloroppgaven har som mål i å gi en presentasjon av teorien til triangulerte
kategorier. Hovedmålet er å vise at Verdier kvotientent, homotopikategorien og den de-
riverte kategorien er triangulert.
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Introduction

Triangulated categories were defined by Puppe and Verdier independently, as described
by [1] and [2]. Puppe’s definition was motivated by the homotopy category of Spectra,
but he missed the crucial Octahedron axiom. However, when Verdier introduced triangu-
lated categories and derived categories in his Ph.D. thesis published in 1967, he noticed
the importance of the Octahedron axiom. As it stands, there are different ways of defin-
ing a triangulated category. For instance, Neeman showed that the octahedron axiom is
equivalent to having a choice when applying the morphism axiom, such that the mapping
cone becomes a triangle itself. Even though the Octahedron axiom is crucial for showing
many of the important results, it is not known of a pre-triangulated category that is not
triangulated.

In practice, there are two different types of triangulated categories, topological and al-
gebraic. A triangulated category is said to be topological if it is the stable category of a
model category, and likewise algebraic if it is the stable category of a Frobenius category.
In definition, these types of categories are not similar, but in practice, their differences
are quite subtle. This thesis will solely focus on algebraic triangulated categories.

This thesis is split into three parts. The first parts aim to give an exposition to the classical
theory of triangulated categories. Part two aims to introduce exact categories and show
that the stable Frobenius category is triangulated, among with giving examples of trian-
gulated categories. The third part aims to introduce the derived category of the homotopy
category and give an exposition to some related topics.

This thesis assumes that elementary category theory, abelian categories, and derived cat-
egories of abelian categories are known. It is not needed to know some representation
theory of artin rings, but it is needed for the section on self-injective algebras.

vii





Notation

Some of the notation used throughout this text has no explanation before they are used.
This section will cover the preliminary notation which is used. NB! Colors are used in
diagrams throughout the text, these should never be necessary to read the diagram. Their
purpose is to give visual aids to mentally sort the arrows.

• Containment ∈
Instead of using the symbol ∈, in this text : marks containment. That is A∈ C ⇐⇒
A : C.

• Hom-set
For a category C, the set of morphisms between objects A, B : C is denoted as C(A, B).
There is one exception to this rule, and that is if for some ring R C = ModR, then
C(A, B) = HomR(A, B).

• Commutative diagrams
Whenever a commutative diagram is drawn, it should be understood to be commu-
tative unless stated otherwise. Due to that, the name triangle is being used, every
commutative triangle should be called a commutative simplex. A diagram is called
a commutative square if it has four corners, and it is called a commutative rectangle
if it is a combination of more commutative squares.

Simplex

A B

.

C

Square

A B

.

C D

Rectangle

A B E

.

C D F

To denote that a square or a rectangle is a push-out or pullback the symbols ù and
ð are used respectively. To illustrate how they are used, if ù is on the inside of a
square it says that the square is a push-out. If it is on the outside of a rectangle, it
says that the outer rectangle is a push-out.

ix
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Square

A B

.

C D
ù

Rectangle

A B E

.

C D F
ù

• Comma category ↓
As described in [3], there is a category called the comma category which has arrows
as objects. Given two covariant functors F : D → C and G : E → C, define the
category F ↓ G to be the category of arrows indexed over D and E . Let D, D′ : D,
d : D→ D′, E, E′ : E , e : E→ E′, f : F(D)→ G(E), and f : F(D′)→ G(E′) then the
following commutative diagrams can make this definition more precise.

Ob jects

F(D)

.

G(E)

f

Morphisms

F(D) F(D′)

.

G(E) G(E′)

f

F(d)

f ′

G(e)

Whenever there is a subcategory C′ ⊆ C with inclusion functor I : C′→ C, then the
category C′ ↓ G should be considered as the comma category I ↓ G.

• Monos, epis, and isomorphisms
The following arrows are decorated in this manner.

Mono

A B

Epi

A B

Iso

A B'
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Chapter 1

Triangulated Categories

1.1 Definition and First Properties

This section will present what a triangulated category is and show some properties of
some functors from this category. The covariant functors which are of main interest are
the ones that are called homological, while the contravariant are called cohomological.
This family of functors will derive the elementary properties of the triangulation. In this
section let T denote an additive category andΣT : T → T be an additive autoequivalence
of T , which is either called the translation or suspension functor. This section is based on
[4] and [2].

Definition 1.1.1. A candidate triangle is a collection (A, B, C , a, b, c) of objects
A, B, C ∈ T and morphisms a : A→ B, b : B→ C , c : C → ΣT A. These candidate triangles
can be drawn as diagrams in the following way:

A B C ΣT Aa b c

A morphism between candidate triangles is a triple of morphism (α,β ,γ), where α : A→
A′, β : B→ B′ and γ : C → C ′ such that the following diagram commutes.

A B C ΣT A

A′ B′ C ΣT A′

a

α

b

β

c

γ ΣT α

a′ b′ c′

Why these objects are called triangles become apparent when an alternate description
of the diagrams above is given. To remove confusion about the domain or codomain of
the arrows to be presented, one arrow of the triangle will be decorated with "ΣT

|". This
decorator means that the functor ΣT has to be applied to the corresponding edge of the
arrow. With this notation the c arrow points to ΣT A, not A.

1
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A

B

C

a

b

|

c

ΣT

A A′

B B′

C C ′

a

φa

a′

b

φb

b′

|

c

ΣT

φc

|

c′
ΣT

These triangles will make up a triangulation on the category T . Thus, a triangulated
category is an additive category together with a translation functorΣT and a triangulation
class∆T consisting of candidate triangles. When a candidate triangle is an element of∆T
it is usually called a triangle, an exact triangle, or a distinguished triangle. Note that if the
candidate triangles are referred to as triangles it is common to either call the elements of
∆T for exact triangles or distinguished triangles. The elements of ∆T will be called for
triangles.

Definition 1.1.2. A triangulation of an additive category T with translation ΣT is a col-
lection ∆T of triangles consisting of candidate triangles in T satisfying the following
axioms:

1. (TR1) Bookkeeping axiom

a. A candidate triangle isomorphic to a triangle is a triangle.
b. Every morphism a : A→ B can be embedded into a triangle (A, B, C , a, b, c).

A B C ΣT Aa b c

c. For every object A there is a triangle (A, A, 0, idA, 0, 0).

A A 0 ΣT A
idA 0 0

2. (TR2) Rotation axiom
For every triangle (A, B, C , a, b, c) there is a triangle (B, C , TA, b, c,−ΣT a).

A B C ΣT Aa b c =⇒ B C ΣT A ΣT Bb c −ΣT a

3. (TR3) Morphism axiom
Given the two triangles (A, B, C , a, b, c) and (A′, B′, C ′, a′, b′, c′),

A B C ΣT Aa b c A′ B′ C ′ ΣT A′a′ b′ c′

and morphisms φA : A→ A′ and φB : B→ B′ such that square (1) commutes, then
there is a morphism φC : C → C ′ (not necessarily unique) such that (φA,φB,φC) is
a morphism of triangles (2).

(1)
A B

A′ B′

a

φA φB

a′

(2)

A B C ΣT A

A′ B′ C ′ ΣT A′

a

φA

b

φB

c

φC ΣT φA

a′ b′ c′

4. (TR4) Octahedron axiom
Given the triangles (A, B, C ′, a, x , x ′) (1), (B, C , A′, b, y, y ′) (2)
and (A, C , B′, b ◦ a, z, z′) (3)
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(1) A B C ′ ΣT Aa x x ′

(2) B C A′ ΣT Bb y y ′

(3) A C B′ ΣT Ab◦a z z′

then there exist morphisms f : C ′ → B′ and g : B′ → A′, the following diagram
commutes, and the third row is a triangle.

Σ−1
T B′ A A

Σ−1
T A′ B C A′ ΣT B

C ′ B′ A′ ΣT C ′

ΣT A ΣT A

Σ−1
T z′

Σ−1
T g

idA

a b◦a
Σ−1
T y ′ b

x

y

z

y ′

idA′ ΣT x ′

f

x ′

g

z′

ΣT i◦y ′

idΣT A

A triangulated category is denoted as (T ,ΣT ,∆T ), where T is the additive category, ΣT
is the translation and ∆T is the triangulation. When T is called a triangulated category,
it should be understood like a triple.

Remark. The third object in a triangle is usually called cone, fiber, or cofiber. These names
are in use due to historic reasons, rather than portraying their functionality. The names
weak kernel or weak cokernel would be better in the sense that it tells what the function of
this object is. This object will either be referred to as cone, weak kernel, or weak cokernel.

Remark. The rotation axiom has a dual, and it can be thought of as a shift in the opposite
direction. The dual rotation axiom goes as:

Given a triangle A B C ΣT Aa b c ,

there is a triangle Σ−1
T C A B C

−Σ−1
T c a b

To be able to prove this, some more lemmata are needed.

Remark. By the previous remark, one may see that the definition of a triangulated cate-
gory is self-dual. That is a category T is triangulated if and only if T op is triangulated.

Remark. The final axiom is referred to as the octahedron axiom. By using the alternative
description of the triangle diagram, it is possible to rewrite the diagram as an octahedron.
The axiom can be restated as the following.

Given the triangles (A, B, C ′, a, x , x ′) (1), (B, C , A′, b, y, y ′) (2)
and (A, C , B′, b ◦ a, z, z′) (3)
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(1)

A

B

C ′

a

x

|

x ′
ΣT (2)

B

C

A′

b

y

|

y ′
ΣT

(3)

A

C

B′

b◦a

z

|

z′
ΣT

then there exist morphisms f : C ′ → B′ and g : B′ → A′, the following dia-
gram commutes and the squiggly teal back face is a triangle.

. B′

.

.

.

C ′ A′

. A C

.

.

.

B

g

z′

|

ΣT

f

x ′ |
ΣT

ΣT x◦y ′|
ΣT

y ′

|

ΣT

a

b◦a
y

z

b

x

Proposition 1.1.1. The axiom TR3 can be proven from TR1 and TR4.

Proof. Suppose that there are two triangles and a commutative square as follows.

A B

A′ B′

a

φA
η

φB

a′

A B C ΣT A

A′ B′ C ′ ΣT A′

a

φA

b

φB

c

ΣT φA

a′ b′ c′

The upper and lower simplex of the square may be completed to two sets of triangles
satisfying the condition of TR4. Applying the Octahedron axiom twice yields the diagrams
as below.

(1)

A

B

C

a

b

|

c

ΣT

B

B′

B′′

φB

φ′B

|

φ′′B

ΣT

A

B′

E

η

η′

|

η′′

ΣT

(2)

A

A′

A′′

φA

φ′A

|

φ′′A

ΣT

A′

B′

C ′

a′

b′

|

c′
ΣT

A

B′

E

η

η′

|

η′′

ΣT



Chapter 1: Triangulated Categories 5

(1)
. E
.
.
.

C B′′

. A B′

.

.

.

B

g

η′′

|

ΣT

f

c |
ΣT

ΣT c◦φ′′B|
ΣT

φ′′B

|

ΣT

a

η

φ′B

η′

φB

b

(2)
. E
.
.
.

A′′ C ′

. A B′

.

.

.

A′

g ′

η′′

|

ΣT

f ′

φ′′A |
ΣT

ΣT φ
′′
A ◦c

′|
ΣT

c′

|

ΣT

φA

η
b′

η′

a′
φ′A

The teal squiggly lines at the back faces of each octahedron form a morphism g ′ f : C →
C ′. It remains to see that the morphism is a triangle morphism. Diagram chasing reveals
that the following diagram is commutative, which is exactly the requirement for the col-
lection (φA,φB, g ′ f ) to be a morphism of triangles.

B C

B′ E ΣT A

C ′ ΣT A′

b

φB
c

f

b′

η′ η′′

g ′ ΣT φA

c′

Lemma 1.1.2. Let (A, B, C , a, b, c) be a triangle, then b ◦ a = 0

Proof. By TR2 the triangle (A, B, C , a, b, c) can be rotated to (B, C ,ΣT A, b, c,−ΣT a).

A

B

C

a

b

|

c

ΣT =⇒

B

C

ΣT A

b

c
−ΣT a

|ΣT

The triangle (C , C , 0, idC , 0, 0) exists by TR1 and TR3 states that there exists a morphism
from ΣT A to 0 making the diagram below commute.

B C ΣT A ΣT B

C C 0 ΣT C

b

b

c

idC

−ΣT a

0 ΣT b
idC 0 0

Thus 0= ΣT b ◦ −ΣT a = ΣT (−ba) =⇒ b ◦ a = 0 as ΣT is a translation.
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One fundamental object to study when looking at categories is functors. In the case of
triangulated categories there are two import types of functors, triangulated functors, and
homological functors. These are central to this discussion as one can relate triangulations
to each other and derive information about triangulations through abelian categories.
The result 5-lemma has an appearance in triangulated categories through the 2-out-of-3
property.

Definition 1.1.3. A triangulated functor F : S → T between two triangulated categories
(S,ΣS ,∆S) and (T ,ΣT ,∆T ), is an additive functor F along with a natural isomorphism
φX : F(ΣS(X )) → ΣT (F(X )) such that F(∆S) ⊆ ∆T . This means that for every triangle
in T there is a triangle in S.

A

B

C

a

b

|

c

ΣS =⇒

F(A)

F(B)

F(C)

F(a)

F(b)
|

F(c)

ΣT

Definition 1.1.4. Let T be a triangulated category and A be an abelian category. A co-
variant functor H : T → A is called homological if ∀(A, B, C , a, b, c) : ∆T there is a long
exact sequence in A.

A

B

C

a

b

|

c

ΣT =⇒
... H(Σi

T A) H(Σi
T B) H(Σi

T C)

H(Σi+1
T A) H(Σi+1

T B) H(Σi+1
T C) ...

H(Σi
T a) H(Σi

T b)

H(Σi
T c)

H(Σi+1
T a) H(Σi+1

T b)

Dually, a contravariant functor H : T →A is called cohomological if ∀(A, B, C , a, b, c) :∆
there is a long exact sequence in A.

A

B

C

a

b

|

c

ΣT =⇒
... H(Σi−1

T A) H(Σi−1
T B) H(Σi−1

T C)

H(Σi
T A) H(Σi

T B) H(Σi
T C) ...

H(Σi−1
T a) H(Σi−1

T b)

H(Σi
T c)

H(Σi
T a) H(Σi

T b)

Lemma 1.1.3. Let M : T be any object of T , then the represented functor T (M , _) is homo-
logical and T (_, M) is cohomological.

Proof. Only the covariant case needs to be proved, as the contravariant case is dual. For
T (M , _) to be homological, it has to create long exact sequences for every triangle in∆T .
Let (A, B, C , a, b, c) :∆T be a triangle, then sequences in Ab can be extracted for any i : Z.

A

B

C

a

b

c
ΣT

|

=⇒ ΣT (M ,Σi
T A) ΣT (M ,Σi

T B) ΣT (M ,Σi
T C)

Σi
T a∗ Σi

T b∗
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It is enough to prove that these types of diagrams are exact at B, as the other diagrams are
obtained by the rotation axiom. Thus it remains to prove that Im(Σi

T a∗) = Ker(Σi
T b∗).

Since ba = 0 it follows that Im(Σi
T a∗) ⊆ Ker(Σi

T b∗). Assume that f : Ker(Σi
T b∗), that

is f : M → Σi
T B such that b∗( f ) = 0. Showing that f factors through Σi

T A proves exact-
ness, as this means that Ker(Σi

T b∗) ⊆ Im(Σi
T a∗). Note that since T is a translation, it is

necessarily a right adjoint to the inverse translation; T (M ,Σi
T B) ' T (Σ−i

T M , B) and by
this assertion it suffices to assume that f : Σ−i

T M → B such that b ◦ f = 0. By TR1 and
TR2 there exists triangles (Σ−i

T M , 0,Σ−i+1
T M , 0, 0,−Σ−i+1

T id) and (B, C ,ΣT A, b, c,−ΣT a).

Σ−i
T M 0 Σ−i+1

T M Σ−i+1
T M

B C ΣT A ΣT B

0

f

0

0

−Σ−i+1
T id

g ΣT f

b c −ΣT a

The left square commutes by the assumption, thus the morphism g exist by TR3 such that
−ΣT a◦h= −ΣT f ◦Σ−i+1

T id = −ΣT f =⇒ ΣT a◦h= ΣT f . This shows that f = a◦T−1h,
asserting that f factors through A.

Lemma 1.1.4. 2-out-of-3 property. Let (φA,φB,φC) : (A, B, C , a, b, c)→ (A′, B′, C ′, a′, b′, c′)
be a morphism of triangles. If 2 of the maps are isomorphisms, then the last one is an iso-
morphism as well.

A B C ΣT A

A′ B′ C ′ ΣT A′

a

φA'

b

φB'

c

φC' ΣT φA'

a′ b′ c′

Proof. Without loss of generality, assume that φA and φB are the isomorphisms. This can
be done as the rotation axiom reduce the other cases to this case. Then the diagram
depicted below exists.

A B C ΣT A

A′ B′ C ′ ΣT A′

a

φA'

b

φB'

c

φC ΣT φA'

a′ b′ c′

Applying the functor T (C ′, _) to the diagram yields the following diagram in Ab:

T (C ′, A) T (C ′, B) T (C ′, C) T (C ′,ΣT A) T (C ′, T B)

T (C ′, A′) T (C ′, B′) T (C ′, C ′) T (C ′,ΣT A′) T (C ′,ΣT B)

a∗

(φA)∗'

b∗

(φB)∗'

c∗

(φC )∗

ΣT a∗

(ΣT φA)∗' (ΣT φB)∗'

a′∗ b′∗ c′∗ ΣT a∗

By the 5-lemma, (φC)∗ is an isomorphisms, i.e. (φC)∗ is both mono and epi. Thus for
some unique s in T (C ′, C), φC ∗(s) = idC ′ .

Applying the functor T (_, C) yields the diagram:
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T (A, C) T (B, C) T (C , C) T (ΣT A, C) T (ΣT B, C)

T (A′, C) T (B, C) T (C ′, C) T (ΣT A′, C) T (ΣT B′, C)

a∗ b∗ c∗ ΣT a∗

(φA)∗ '

a′∗

(φB)∗ '

b′∗

(φC )∗

c′∗

(ΣT φA)∗ '

ΣT a′∗

(ΣT φB)∗ '

Again, the 5-lemma asserts that (φC)∗ is an isomorphisms, and by the same argument
idC = s′ ◦φC for some unique s′. φC is both split mono and split epi, which means it is
an isomorphism.

Corollary 1.1.4.1. (A, B, 0, a, 0, 0) is a triangle if and only if a is an isomorphism.

Proof. Assume that a is an isomorphism. Then it is seen that (a, idB, 0) is an isomorphism
of triangles.

A B 0 ΣT A

B B 0 ΣT B

a

a'

0

idB'

0

0' ΣT a'

idB 0 0

Conversely, assume that (A, B, 0, a, 0, 0) is a triangle. Then the same diagram as above can
be constructed, and by the 2-out-of-3 property, a has to be an isomorphism.

Lemma 1.1.5. For a triangle (A, B, C , a, b, c) the following are equivalent:

A

B

C

a

b

|

c

ΣT
• a is split mono
• b is split epi
• c = 0

Proof. The proof has two parts. First assume that a is split mono, then prove that b is
split epi and c = 0. By duality, it is then known that b being split epi implies that a is split
mono and c = 0. The final part is to assume that c = 0, and prove either a is split mono
or b is split epi.

Assume that a is split mono, then there exist an a−1 such that idA = a−1a. Let M : T be
any object, then there is a long exact sequence.

T (M ,Σ−1
T C) T (M , A) T (M , B) T (M , C) T (M ,ΣT A)

Σ−1
T c∗

a∗

b∗

a−1
∗

c∗

By assumption a∗ is split mono, thus Σ−1
T c∗ = 0 and in particular c = 0. This implies that

b∗ is epi, making a split short exact sequence.

0 T (M , A) T (M , B) T (M , C) 00

a∗ b∗

a−1
∗

0

b−1
∗
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This split short exact sequence shows that b is split epi, completing the first part of the
proof.
For the final part, assume that c = 0; construct the following triangles.

(1)

A

B

C

a

b

|

0

ΣT =⇒

C

ΣT A

ΣT B

0

−ΣT a

|

−ΣT b

ΣT

(2)

A

A

0

idA

0

|

0

ΣT =⇒

0

ΣT A

ΣT A

0

−idΣT A

|

0

ΣT

(1) is constructed by applying TR2 twice, while (2) is constructed with TR1 and then
applying TR2 twice. Observe that there is a commutative square between the triangles,
allowing for TR3 to make a morphism of triangles.

C ΣT A ΣT B ΣT C

0 ΣT A ΣT A 0

0

0

−ΣT a

idΣT A

−ΣT b

ΣT a−1 0

0 −idΣT A 0

Thus T (a−1a) = idΣT A = ΣT (idA) =⇒ idA = a−1a, making a split mono.

Lemma 1.1.6. Given two triangles (A, B, C , a, b, c) and (A′, B′, C ′, a′, b′, c′) the following
are equivalent:

A B C ΣT A

A′ B′ C ′ ΣT A′

a

f

b

g

c

h ΣT f

a′ b′ c′

1. ( f , g, h) is a morphism of triangles
2. ∃g : B→ B′ such that b′ga = 0

Moreover, if T (A,Σ−1
T C ′)' 0, then f and h are unique.

Proof. 1. =⇒ 2. The composition b′ga = ba = 0 shows the claim.

2. =⇒ 1. The existence of f and h will be seen to be a consequence of the long exact
sequence of the bottom triangle at the covariant functor represented by A.

T (A,Σ−1
T C ′) T (A, A′) T (A, B′) T (A, C ′)

Σ−1
T c′∗ a′∗ b′∗

The morphism ga : T (A, B′) has the property that b′ga = b′∗(ga) = 0, thus ga : Ker(b′∗).
By exactness, ∃ f : T (A, A′) such that a′ f = ga, and by TR3 ∃h : C → C ′ such that ( f , g, h)
is a morphism of triangles. This have shown that f and g exists, it remains to check
uniqueness if the assumption is true.
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Now assume that T (A,Σ−1
T C ′)' 0. Exactness determines that a′∗ is a monomorphism, and

f is therefore unique. Since ΣT is a translation, one gets that T (A,Σ−1
T C ′)' T (ΣT A, C ′).

By using the functor T (_, C ′) at the top triangle, it is seen that b∗ is a monomorphism,
thus h is also unique.

Lemma 1.1.7. Opposite Rotation Axiom; TR2op. If (A, B, C , a, b, c) is a triangle, then
(Σ−1

T C , A, B,−Σ−1
T c, a, b) is a triangle.

Remark. It is known a priori that the direct sum of triangles is a candidate triangle, thus
it remains to check if it is isomorphic to a triangle.

Proof. Apply TR2 twice to construct the triangle below.

A

B

C

a

b
c

|ΣT =⇒

C

ΣT A

ΣT B

c

−ΣT a
−ΣT b

|ΣT

The morphism Σ−1
T c has a triangle (Σ−1

T C , A, B′,Σ−1
T c, a′, b′) by TR1. Use TR3 to find a

morphism between these associated candidate triangles.

C ΣT A ΣT B′ ΣT C

C ΣT A ΣT B ΣT C

c

idC

ΣT a′

idΣT A

ΣT b′

h idΣT C

c −ΣT a −ΣT b

By the 2-out-of-3 property it is seen that h is an isomorphism, so the triple (idΣ−1
T C , idA,Σ−1

T h)
is an isomorphism of candidate triangles, and by TR1, is an isomorphism of triangles, as-
serting that (Σ−1

T C , A, B,−Σ−1
T c, a, b) is in fact a triangle.

Lemma 1.1.8. Let (A, B, C , a, b, c) and (A′, B′, C ′, a′, b′, c′) be two triangles, then the direct
sum of these triangles is a triangle.

Proof. Observe that direct sums of triangles admits long exact sequences of hom-functor,
as T (K , A⊕A′)' T (K , A)⊕T (K , A′). Thus the direct sum of the triangles has the following
exact sequence.

A⊕ A′ B ⊕ B′ C ⊕ C ′ TA⊕ T C

 

a 0

0 a′

!  

b 0

0 b′

!  

c 0

0 c′

!

⇓
... T (K , A)⊕ T (K , A′) T (K , B)⊕ T (K , B′)

T (K , C)⊕ T (K , C ′) T (K ,ΣT A)⊕ T (K ,ΣT A′) ...

The 2-out-of-3 property holds for the direct sum, via 5-lemma. By TR1 there is a triangle

A⊕ A′ B ⊕ B′ D ΣT A⊕ΣT A′
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By TR3 there are morphisms from this triangle to each of the direct summands. Adding
these maps together, there is a map from this triangle to the direct sum. Using the 2-out-
of-3 property this is an isomorphism between a candidate triangle and a triangle, showing
that the direct sum is a triangle.

A⊕ A′ B ⊕ B′ D ΣT A⊕ΣT A′

A B C ΣT A
&

A⊕ A′ B ⊕ B′ D ΣT A⊕ΣT A′

A′ B′ C ′ ΣT A′

⇓
A⊕ A′ B ⊕ B′ D ΣT A⊕ΣT A′

A⊕ A′ B ⊕ B′ A′′ ⊕ B′′ ΣT A⊕ΣT A′

'

Lemma 1.1.9. The direct summands of a triangle is a triangle.

Proof. The proof can be found in [2]

1.2 Mapping Cones, Homotopies, and Contractibility

Up until now, the Octahedron axiom has not yet been used once, other than for proving
TR3. Only by assuming TR1, TR2, and TR3 all of the results from the previous section
follow. This is what will motivate the next definition. This section is based on [2] and [5].

Definition 1.2.1. A pre-triangulation of an additive category T with translation ΣT is a
collection ∆′T of triangles consisting of candidate triangles in T satisfying TR1, TR2, and
TR3.
The category T with the pre-triangulation ∆′T is called a pre-triangulated category, and
the candidate triangles in ∆′T are called triangles.

Remark. This notion of triangles will only be used in this section.

This section aims to see how candidate triangles are constructed and formed. More im-
portantly, it will be discussed when these objects are triangles. These results are essential
to motivate the definition of good morphisms between triangles. Lastly, another equiva-
lent version of TR4 will be presented, and the construction of weak kernels and cokernels
will be shown. For this section, it is assumed that T pre-triangulated.

Definition 1.2.2. Let φ : (A, B, C , a, b, c)→ (A′, B′, C ′, a′, b′, c′) be a morphism of candi-
date triangles.
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A B C ΣT A

A′ B′ C ΣT A′

a

φA

b

φB

c

φC ΣT φA

a′ b′ c′

The mapping cone of φ is defined to be the candidate triangle below.

A′ ⊕ B B′ ⊕ C C ′ ⊕ΣT A ΣT A′ ⊕ΣT B

 

b φB

0 −a′

!  

c φC

0 −b′

!  

ΣT a ΣT φA

0 −c′

!

Definition 1.2.3. A morphism α : (A, B, C , a, b, c)→ (A′, B′, C ′, a′, b′, c′) between candi-
date triangles is called null-homotopic if it factors through a homotopy. A homotopy is
defined to be a triple of maps (Θ,Φ,Ψ) in the following sense.

A B C ΣT A

A′ B′ C ΣT A′

a

αA

b

Θ
αB

c

Φ
αC

Ψ
ΣT αA

a′ b′ c′

It is required that αA = Θa +Σ−1
T (c

′Ψ), αB = Φb + a′Θ and αC = Ψc + b′Φ for the triple
to be a homotopy. Two maps are called homotopic if their difference is null-homotopic

Lemma 1.2.1. The mapping cone only depends on morphisms up to homotopy. I.e. if two
maps are homotopic, then their mapping cones are isomorphic.

Proof. Suppose that ( f , g, h) and ( f ′, g ′, h′) are two homotopic morphisms of triangles:

A B C ΣT A

A′ B′ C ′ ΣT A′

a b c

a′ b′ c′

Let (Θ,Φ,Ψ) be the homotopy between the triangle morphisms. Then there is an isomor-
phism of triangles.

A′ ⊕ B B′ ⊕ C C ′ ⊕ΣT A ΣT A′ ⊕ΣT B

A′ ⊕ B B′ ⊕ C C ′ ⊕ΣT A ΣT A′ ⊕ΣT B

 

b g

0 −a′

!

 

1 Θ

0 1

!

 

c h

0 −b′

!

 

1 Φ

0 1

!

 

ΣT a ΣT f

0 −c′

!

 

1 Ψ

0 1

!  

1 ΣT Θ

0 1

!

 

b g′

0 −a′

!  

c h′

0 −b′

!  

ΣT a ΣT f ′

0 −c′

!

Lemma 1.2.2. Let A denote the candidate triangle (A, A′, A′′) and B denote (B, B′, B′′). Sup-
pose α,β : A→ B are two homotopic morphisms of candidate triangles. Then for any map
γ : eA→ A and any map δ : B→ eB the maps δαγ and δβγ are homotopic as well.



Chapter 1: Triangulated Categories 13

Proof. To prove this statement it is enough to prove that αγ is homotopic to βγ due to
the symmetry of the statement. The goal is then to show that (Θγ′,Φγ′′,ΨΣT γ) is the
homotopy between these maps. This can be seen as

α′γ′ − β ′γ′ = (α′ − β ′)γ′ = (bΘ + Φa′)γ′ = bΘγ′ + Φa′γ′ = b(Θγ′) + (Φγ′′)ea′

.

Definition 1.2.4. A candidate triangle A is called a contractible triangle if idA is null-
homotopic.

Remark. If A is a contractible triangle and F : T →A is an additive functor to an abelian
category, then the identity of the cochain is null-homotopic as well.

... F(A) F(A′) F(A′′) F(ΣT A) ...

The homology of this sequence is, therefore, 0 everywhere, asserting that it is an exact
sequence. The exactness of such sequences allows one to use the 2-out-of-3 property on
morphisms between contractible triangles.

Corollary 1.2.2.1. If A is a contractible triangle, then any map in T (A, _) or T (_, A) is
null-homotopic.

Proof. By definition, being contractible is the same as the existence of a homotopy be-
tween the map and the zero map. If idA ∼ 0 =⇒ f ◦ idA = f ∼ f ◦ 0 = 0. So any map f
is null-homotopic.

Lemma 1.2.3. A contractible triangle is a triangle.

Proof. Let A be the contractible triangle (A, A′, A′′). Writing everything out, there is a ho-
motopy between candidate triangles.

A A′ A′′ ΣT A

A A′ A′′ ΣT A

a

idA

a′

idA′
Θ

a′′

idA′′
Φ

idΣT A
Ψ

a a′ a′′

By using TR1 there is a triangle, and consequently, a long exact sequence.

A A′ E ΣT Aa e e′

⇓

... T (ΣT A, A) T (ΣT A, A′) T (ΣT A, E) T (ΣT A,ΣT A) ...
e′∗ ΣT a∗

Since the map ΣT a ◦ a′′Ψ = 0 and by exactness at T (ΣT A,ΣT A), the kernel KerΣT a∗ =
Ime′∗ 6= 0. This shows that there is a map Ψ′ : T (ΣT A, E) such that e′Ψ′ = a′′Ψ, and the
map (idA, idA′ , eΘ + Ψ′a′′) is a well defined map of candidate triangles. By the remark,
one may use the 2-out-of-3 properties to assert that the map found is an isomorphism,
giving an isomorphism of triangles, showing that the contractible triangle is a triangle by
the Bookkeeping axiom.
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Corollary 1.2.3.1. The mapping cone of the zero map between triangles is a triangle.

Proof. The mapping cone of the zero map can be seen to be the direct sum of two triangles.
Thus it is a triangle.

Corollary 1.2.3.2. The mapping cone of a null-homotopic map between triangles is a tri-
angle.

A natural question to ask is when does the map between triangles admit a mapping
cone which is a triangle. It has been shown that this is true whenever the map is null-
homotopic. It can then be seen that if either of the triangles the map is between is con-
tractible, the mapping cone is a triangle. This section’s main result shows the connection
between triangulations and the realization of mapping cones as triangles.

Definition 1.2.5. A map between triangles will be called good if the mapping cone is a
triangle.

Theorem 1.2.4. A pre-triangulated category T is triangulated if given two triangles (A, B, C , a, b, c)
and (A′, B′, C ′, a′, b′, c′) and diagram (1) commutes, then diagram (1) can be completed to
diagram (2) such that φ is good.

(1)
A B

A′ B′

a

φA φB

a′

(2)

A B C ΣT A

A′ B′ C ′ ΣT A′

a

φA

b

φB

c

φC ΣT φA

a′ b′ c′

This result was shown by [2], however, it also holds in the opposite direction. That is, if T
is a triangulated category, then every pair of morphisms as in (1) may be completed to a
good map between triangles. This highlights an interesting connection between mapping
cones and the Octahedron axiom.

Definition 1.2.6. A commutative square (1) is called homotopy cartesian if and only if
(2) is a triangle. One would say that homotopy cartesian squares arise from triangles.

(1)
D A

B C

HO
ð
ù

=⇒ (2)

D

A⊕ B

C

|

ΣT

Remark. One method to construct homotopy cartesian squares is with homotopy pull-
backs. A homotopy pullback is created with the application of TR1 and TR2, the procedure
is drawn out below.

A

B C

a

b

Collapse
=⇒ A⊕ B C

�

a b
�

TR1
=⇒ A⊕ B C ΣT D ΣT A⊕ΣT B

�

a b
�

TR2
=⇒

D A

B C

HO
ð
ù
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Dually, one may use homotopy push-outs to construct homotopy cartesian squares.

Lemma 1.2.5. Suppose that there is a homotopy cartesian square (1). Then there are tri-
angles and a morphism of triangles as in (2).

(1)
D A

B C

g ′

f ′ HO
ð
ù

f
g

(2)

D A E ΣT D

B C E ΣT B

f ′ f ΣT f ′

Proof. There is a commutative square (1) that satisfies the requirements of the Octahe-
dron axiom (2), yielding a triangle (3).

(1)
D A⊕ B

D A

 

g ′

f ′

!

�

1 0
�

g ′

(2)

D

A⊕ B

C

 

g ′

f ′

!

�

f g
�

|

ΣT
0

A⊕ B

A

ΣT B

�

1 0
�

0

|

ΣT
 

0

1

!

D

A

E

f ′|
ΣT

(3)

.

C E ΣT B ΣT C

.

ΣT g

By TR4 (3) is a triangle, and two commutative squares as below. Every arrow should be
understood to be the arrow from its corresponding triangle.

A⊕ B A

C E
f

E ΣT D

ΣT B ΣT A⊕ΣT B

ΣT g

Since the composition B C E
g

is 0, it is seen that the lower simplex in the
first diagram commute. Dually, the upper simplex in the second triangle also commutes.
This is exactly the condition that the triple of morphisms is a morphism of triangles, as
illustrated below.

D A E ΣT D

B C E ΣT B
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1.3 Calculus of Fractions and the Verdier Quotient

One important construction of triangulated categories is the Verdier Quotient. This con-
struction is a localization of a triangulated category at some set related to a triangulated
subcategory, and this gives the construction some resemblance of classical quotients in
algebra. This section aims to introduce the concept localization of categories, as well
as show how triangulated categories fit within this theory. Localization is most notably
known in commutative algebra where elements are given formal inverses. The idea for
categories is to attach formal inverses of morphisms onto the category. This section is
based on [6], [7], and [2].

Definition 1.3.1. Let S be a collection of morphisms in the category C. The Localization
of C on S is the category C[S−1] together with a functor q : C→ C[S−1] such that:

• ∀s : S|q(s) is an isomorphism
• Any functor F : C → D such that ∀s : S F(s) is an isomorphism, then F factors

through q. That is to say that there is a natural isomorphism η : F → F ′ ◦ q so that
C[S−1] is the universal category where morphisms in S are isomorphisms.

C D

S−1C

F

q F ′

Remark. Even though it is known that C is locally small, it is not clear a priori that the
category C[S−1] is again locally small. Thus it is not evident that these localizations exist.

Remark. Suppose X : C, then one may always assume that idX : S. To see this, let T =
{idX |∀X : C}, then it is evident that IdC is the universal functor in which morphisms in T
are inverted. Thus adding identities to a set, does not alter its localization.

In general, it is difficult to describe a method to construct the localization of a category at
a set. This discussion will however be much easier if one is to put assumptions on the set
S of morphisms. To mimic the construction of localization of rings, one wants to assume
that S is a multiplicative system. Note that every morphism in S will be colored blue.

Definition 1.3.2. A set S of morphisms in a category C is called right multiplicative if it
satisfies the following conditions:

• S is closed under composition, i.e. if f , g : S are composable then g f : S. Every
identity morphism in C is in S.

• (Right Ore condition) If t : X → Y is a morphism in S, then ∀g : Z → Y there is a
commutative square (1) such that f : W → X and s : W → Z exists, where s : S.

(1)
W X

Z Y

f

s t
g
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• (Left cancellation) Suppose f , g : X → Y are parallel morphisms in C, then 1. =⇒
2.:

1. s f = sg for som s : S starting at Y
2. f t = g t for som t : S ending at X

Remark. The previous definition has a dual statement. A set S of morphisms is left mul-
tiplicative if it satisfies:

• S is closed under composition, i.e. if f , g : S are composable then g f : S. Every
identity morphism in C is in S.

• (Left Ore condition) If s : Y → Z is a morphism in S, then ∀ f : Y → X there is a
commutative square (1) such that g : Z → W and t : X → W exists and t : S as
well.

(1)
Y X

Z W

f

s t
g

• (Right cancellation) Suppose f , g : X → Y are parallel morphisms in C, then 1.
=⇒ 2.:

1. f t = g t for som t : S ending at X
2. s f = sg for som s : S starting at Y

If S is both right multiplicative and left multiplicative then it is called multiplicative.

As with the definition of localization of rings, localization of a category C at a multiplica-
tive system will be defined with fractions. That is the morphisms will be "fractions" of
morphisms. These morphisms will be described as diagrams over spans for right mul-
tiplicative systems (or dually cospans for left multiplicative systems), together with an
equivalence relation.

Definition 1.3.3. A span is a diagram of the form:

· · ·

Definition 1.3.4. Let S be a right multiplicative system of morphisms in a category C.
Given a morphism s : Y → X in S and a morphism t : Y → Z , define the right fraction of
s and t to be the span of the morphisms. That is s and t fit in the diagram below.

X Y Zs
t

Right fractions are denoted as ts−1. Let ∼ be the equivalence relation of right fractions
given by the diagram (1) such that ts−1 ∼ t ′s′−1 if and only if ∃w, w′ : C making the
diagram commute and that the middle row is a right fraction.
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Y

X W Z

Y ′

s tw

w′
s′ t ′

Dually, define left fractions as diagrams over cospans such that if t : S, then there is a left
fraction t−1s as the diagram below.

X Y Zs
t

The equivalence relation ∼ is given by the diagram in the same manner as above.

Y

X W Z

Y ′

ws

s′

t

t ′
w′

Proposition 1.3.1. Suppose that S is a right multiplicative system, then the relation stated
above is in fact an equivalence relation.

Proof. An equivalence relation is proven by showing that ∼ is reflexive, symmetric, and
transitive.

• (Reflexive) Let f s−1 be a right fraction. Then diagram (1) shows that f s−1 ∼ f s−1.

(1)

W

X W Y

W

s
f

f
s

s
f

• (Symmetric) Let f s−1 and g t−1 be two right fractions such that f s−1 ∼ g t−1, that is
diagram (2) commute. Due to inherent symmetric nature of the diagram it follows
that g t−1 ∼ f s−1.

(2)

W

X fW Y

W ′

s
fw

w′t

g

=⇒

W ′

X fW Y

W

t

g
w′

ws
f
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• (Transitive) Suppose that there are three right fractions f s−1, g t−1 and hu−1 such
that f s−1 ∼ g t−1 and g t−1 ∼ hu−1. This may be written as diagram (3) and (4).

(3)

W ′

X fW Y

W

s
f

w′

fw′t

g

(4)

W

X f

fW Y

W ′′

t

g
Ýw′′

w′′u
h

Diagram (5) may be created by using the Ore condition on the maps fw′ and Ýw′′.
Since both morphisms are assumed to be in S, it follows that both fw′ and Ýw′′ are in
S as well. Diagram (6) then shows that f s−1 ∼ hu−1.

(5)

f

f

fW f

fW

fW W

f

fw′

Ý

Ýw′′

Ýw′′

fw′

(6)

W ′

fW

X
f

f

fW Y

f

fW

W ′′

s
f

fw′

f

fw′

Ý

Ýw′′

Ýw′′

u
h

Definition 1.3.5. Let S be a multiplicate system in a category C. Given two right fractions
f s−1 and g t−1

X W Ys
f

, Y W ′ Zt

g

the composition of the fractions are defined to be g t−1◦ f s−1. The Ore condition describes
how this composition should be defined,

fW W ′ Z

X W Y

u

h

t

g

s
f

the composite is the right fraction g t−1 ◦ f s−1 = gh(su)−1.

Proposition 1.3.2. The composition of right fractions is well-defined up to equivalence.
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Proof. To prove that the composite is well-defined one must prove that the composite is
independent of the different options of morphisms provided by the right Ore condition
and that it is, therefore, independent from the choice of a right fraction. There will only be
presented proof that the choice of Ore maps is independent, as the other case is analogous.

Suppose there are two right fractions f s−1 and g t−1 as indicated by the diagrams.

X W1 Ys
f

, Y W2 Zt

g

Further, suppose that there are at least two different choices for the morphisms provided
by the right Ore condition, for example, fW and cW . The two compositions may be drawn
as the diagrams below.

fW W2 Z

X W1 Y

eg

es

g

t
f

s

cW W2 Z

X W1 Y

bf

bs

g

t

s
f

Combining the diagrams at W1 by using the right Ore condition, the object W exists as in
the diagram below together with its corresponding maps.

W̄

W cW W2 Z

fW W1 Y

X

ξ

bw

ew bs

bf

t

g

es

eg

f

s

Observe that the three squares commute, as by the definition of right Ore condition. Thus
it follows that sesew = sbsbw, and that t bf bw = teg ew. As t : S one may use right cancellation
to find a ξ : W̄ → W such that bf bwξ = eg ewξ =⇒ g bf bwξ = geg ewξ. Thus the equivalence
relation diagram commutes.

cW

X W̄ Z

fW

sbs g bf
bwξ

ewξ
ses geg

Proposition 1.3.3. The composition of right fractions is associative.
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Proof. Sketch. Let f s−1, g t−1 and hu−1 be right fractions as in the diagrams below.

A X Bs
f

, B Y Ct

g
, C Z Du

h

There are two different ways of calculating the composition.

hu−1 ◦ (g t−1 ◦ f s−1)

W Z D

V Y C

X B

A

(hu−1 ◦ g t−1) ◦ f s−1

V ′ W ′ Z D

Y C

X B

A

To be able to find a relation between these diagrams, create another diagram with the
right Ore condition.

T V ′

W X

To finish the proof, one would need to show
that the maps to A and D commute. The
maps to A commute right out of the bat, by
the right Ore condition. To prove that the
maps to D commute, first apply right cancel-
lation on the maps to B, then on the maps to
C.

Definition 1.3.6. Let S be a right multiplicative system in a category C. Define a category
rS−1C to have objects ObrS−1C = ObC and morphisms ArrS−1C = {right fractions of
S}/∼. This means that the morphisms rS−1C(X , Y ) are spans in C where one of the maps
are in S up to equivalence.

X A Y

This is well-defined by the previous results and the identity morphisms are the right frac-
tions of the form:

X X X

Remark. Dually there is a category lS−1C for a left multiplicative system S in a category
C. It is defined in the same manner as rS−1C, but with left fractions instead.

A priori it does still not make sense to ask for these kind of categories to always exist.
The class of morphisms S−1C(A, B) consists of a large collection of morphism from C.
This collection has been described as a disjoint union of sets on the form ( f , g) : C(A, X )×
C(X , B)modulo an equivalence relation. This disjoint union spans over the whole category
C with the X index. Since C is not assumed to be small, there is no reason for this set to be
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small as well. To see how this problem might be untangled, this collection will be further
studied. This discussion is based on the results and definitions from [7] and [6].

Definition 1.3.7. Let C be a category and S a collection of morphisms from C, such that
every identity morphism is in S and that it is closed under composition. Define the sub-
category C|S ⊆ C to have ObC|S =ObC and ArC = S.

This definition is seen to be well-defined, as it is closed under composition of morphisms
and every identity morphism is in C|S by assumption. Suppose now that S is a right mul-
tiplicative system, then the category C|S is defined. For any A : C, look at the category
C|S ↓ A which have objects ObC|S ↓ A= {s : X → A | s : S} and morphisms as indicated by
the squiggly arrow in the commutative diagram below.

X

A

Y

s
σ

t

δA
=⇒

X

.

Y

σ

This category has a forgetful functor which associate each morphism to its domain δA :
C|S ↓ A→ C, and forgets the commutativity of the arrows. Choose a morphism s : X → A
from C|S ↓ A, then a morphism g : C(δA(s), B) may be regarded as a right fraction gs−1.
In order to describe every possible right fraction from A to B, consider the following col-
imit lim−→C(δA(_), B) over the category C|S ↓ A. Since S is a right multiplicative system it
follows that C|S is a cofiltered category, and the colimit is therefore filtered. The colimit
is calculated as the coproduct modulo an equivalence relation ∼.

The relation∼ can be described with maps from S. Suppose that there are two morphisms
f : C(δA(s), B) and g : C(δA(t), B), and that there exists some morphism σ : C|S(s, t). The
induced morphism σ∗ : C(δA(t), B)→ C(δA(s), B) defines the relation, where f ∼ t if f =
gσ. Observe that this relation is not an equivalence relation, so ∼ has to be the smallest
equivalence relation generated by such relations. The smallest such equivalence relation
may be seen to consist of zig-zags between morphisms in S, connecting two morphisms.
Luckily, the right Ore condition simplifies this picture, reducing to at most 1 zig-zag. To
illustrate with 2 zig-zags, consider two maps f : C(δA(s), B) and g : C(δA(t), B), where
there are zig-zag morphisms σ : s → v, τ : u→ v and υ : u→ t such that the diagram
below commute, relating f and g, i.e. f s−1 = g t−1. It is evident that this equivalence
relation is exactly the same as stated earlier in this section.
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δA(s)

A δA(u) B

A δA(v) B

δA(t)

s
σ

f

u

υ

τ

v

t
g

If S is instead a left multiplicative system one would have to consider the colimit lim−→C(A,γB(_))
over the category B ↓ C|S . Here γB is the codomain functor, and B ↓ C|S may be seen to be
filtered as S is left multiplicative. The discussion would be dual to the right multiplicative
case.

The localization of a category exists whenever each hom-set is in fact a set. That is to say
that rS−1C(A, B) ' lim−→C(δA(_), B) is an object of Set, which is to ask for the colimit to
exist for every A and B. One assumption which does this is to assume that the colimit is
equivalent to a smaller colimit.

Definition 1.3.8. A right multiplicative system S in a locally small category C is called
locally small on the right if for every object X : C there is a set bX , with a small cate-
gory C|

bX ↓ X and a forgetful functor cδX : C|
bX ↓ X → C, such that the colimit functor

lim−→C(cδX (_), _) : C → Set actually evaluates in Set. Moreover there is an isomorphism,

natural in both arguments X and Y , lim−→C(cδX (_), Y )' lim−→C(δX (_), Y ).

Dually, a locally left multiplicative system would require the contravariant colimit functor
to evaluate in Set.

Theorem 1.3.4. Gabriel-Zisman. Let S be a locally small right multiplicative system of
morphisms in a category C. Then the category rS−1C exists and it is the localization of C
on S. This mean that there is an equivalence of categories C[S−1] ' rS−1C together with a
functor q : C→ rS−1C sending a morphism f : X → Y to the right fraction f id−1

X .

Proof. To prove the theorem one must show that q is a functor, and that it is universal.
Suppose that f : X → Y and g : Y → Z are morphisms in C. Then q(g f ) = (g f )id−1

X
and q(g)q( f ) = (gid−1

Y ) ◦ ( f id−1
X ). Choose the composition to be defined by the diagram

below.

X Y Z

X Y

X

f g

f
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Observe that (gid−1
Y ) ◦ ( f id−1

X ) = (g f )id−1
X , asserting the functoriality of q.

To see that q is universal letD be a category where every morphism of S is an isomorphism,
and suppose there is a functor F : C → D. Define a functor rS−1F : rS−1C → D by
rS−1F( f s−1) = F( f )F(s)−1. One may see that F = rS−1F ◦ q, it remains to show that it
is well-defined. Suppose f s−1 = g t−1, that means there is a diagram in C with the blue
arrows in S.

W ′

X W Y

W ′′

s
f

w′

w′′t

g

Thus there is a relationship inD such that F(t) = F(sw′)F(w′′)−1 and F(g) = F( f w′)F(w′′)−1.
This again shows that

rS−1F(g t−1) = F(g)F(t)−1

= F( f w′)F(w′′)−1(F( f w′)F(w′′)−1)−1 = F( f w′)F(w′′)−1F(w′′)F(sw′)−1

= F( f )F(w′)F(w′)−1F(s)−1 = F( f )F(s)−1 = rS−1F( f s−1)

It follows that rS−1F is well-defined and is unique by construction.

Corollary 1.3.4.1. If S is a locally small left multiplicative system instead then lS−1C is the
localization of C on S.

If moreover S is a locally small multiplicative system, then there is an equivalence of categories
rS−1C ' lS−1C.

Proof. The first statement is dual to the theorem.

To see the other statement, note that both rS−1C and lS−1C are the universal categories
where the morphisms of S are isomorphisms. Thus it follows that these categories have
to be equivalent.

Remark. Since right-handedness or left-handedness of the multiplicative system S doesn’t
affect the localization, one simply calls the localization of a (left/right) multiplicative
system for S−1C.

Remark. A morphisms f : C(X , Y ) will be invertible in the localized category if it is in the
same equivalence class as the identity, both idX and idY . This forces a morphism f to be
invertible in S−1C if and only if there is g, h : S such that f g, hf : S.

Proposition 1.3.5. Let C be a category, and S a right multiplicative set of morphisms. The
canonical functor q : C→ S−1C commutes with finite limits.
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Proof. Let T : D→ C be a diagram over a finite category D. Then for any object A : S−1C
one may find the following equation.

S−1C(qA, q(lim←− T_))' lim−→C(δ_, lim←− T_))

' lim−→ lim←−C(δ_, T_)' lim←− lim−→C(δ_, T_)' lim←−S−1C(qA, q(T_))

The first isomorphism is given by the remark and the second is given by the representative
nature of finite limits. The third isomorphism is given by filtered colimits commute with
finite limits in the category Set, this is shown as theorem 3.8.9 in [8]. The colimits are
filtered by the discussion of C|S ↓ A, as the category is cofiltered, but considered as a
contravariant diagram.

Remark. For this thesis, it is also needed that the proposition above also holds for cate-
gories enriched over abelian groups. Luckily, other arguments allow for the interchange
of filtered colimits and finite limits, which will not be discussed here.

Proposition 1.3.6. Let C be a category with a zero, that is an object which is both initial and
terminal. Suppose that S is a right multiplicative system, then q0 is a zero object in S−1C.

Proof. The claim that q0 is initial follows from that initial is a limit of a diagram over the
empty category. To see that q0 is terminal, one has to prove that every right fraction of
the form 0 f −1 is equivalent to 0id−1

A , where A is the codomain of f . This fact can be seen
in the diagram below.

X

A A 0

f
f 0

0

Proposition 1.3.7. If A is an additive category and S is a right multiplicative system, then
S−1A is additive as well.

Proof. From the previous propositions, it is known that q0 is the zero object and that
q(A× B) ' qA× qB. By proving that there is an addition induced by A and that q pre-
serves this addition one obtains that the product is the biproduct induced by the maps in
A.

Suppose that there are fractions f s−1, g t−1 : S−1C(A, B). Define their addition by using
the right Ore condition to find new morphisms f ′, g ′ and u such that f s−1 = f ′u−1 and
g t−1 = g ′u−1.

f s−1 + g t−1 = ( f ′ + g ′)u−1

To prove that this is an addition one must prove that it is well defined; associativity,
inverses, and commutativity will be inherited from A. Let f̄ , ḡ and v be another choice
provided by the right Ore condition. To summarize, the equations f̄ v−1 = f s−1 = f ′u−1

and ḡ v−1 = g t−1 = g ′u−1 have been established. In order to prove well-definedness one
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must show that ( f̄ + ḡ)v−1 − ( f ′ + g ′)u−1 = 0. By definition ( f̄ + ḡ)v−1 − ( f ′ + g ′)u−1 =
f̄ v−1− f ′u−1+ ḡ v−1− g ′u−1. Proving that the whole sum is 0, is the same as proving that
f̄ v−1 + (− f ′)u−1 = ( ¯̄f − f ′′)w−1 = 0. This can be done by writing out the diagrams after
repeatedly applying the right Ore condition.

·

· · · B

· A

·

B

p

p

w
u

f

s
v

s

f

The line to the bottom represents ¯̄f and the line to the right represents f ′′. Using left can-
cellation on the common morphism s into A one obtains the morphism p, which relates
the two fractions and makes the sum go to zero.

It remains to show that q : C→ S−1C respects addition. Assume that f , g : C(X , Y ), then

q( f + g) = ( f + g)id−1
X = f id−1

X + gid−1
X = q f + qg.

Corollary 1.3.7.1. If A is abelian and S is a multiplicative system, then S−1A is abelian as
well.

General descriptions on how to localize categories have been discussed. The next nat-
ural step is to look at the localization of triangulated categories. The goal is to define
the Verdier quotient for triangulated categories. The idea of this localization is to mimic
quotient modules from algebra in a categorical setting. Thus triangulated subcategories
will be at the center of this discussion. This method has been described iteneeman in a
broader term than what was originally proposed by Verdier.

Definition 1.3.9. A triangulated subcategory S of a triangulated category T is a full
additive subcategory such that the inclusion functor is triangulated.

Definition 1.3.10. Let F : S → T be a triangulated functor. The kernel of F is defined to
be the full subcategory Ker(F) of S such that every object in Ker(F) gets mapped to 0 by
F . That is, Ker(F) is the class of objects {K : S|F(K)' 0}.

Lemma 1.3.8. The kernel of a triangulated functor F : C→ D is a triangulated subcategory.
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Proof. Let X : KerF , since F is a triangulated functorΣCX : KerF as F(ΣCX ) = ΣD(FX ) =
ΣD0 = 0. As F is triangulated, one has that every triangle maps to a triangle. Let X , Y :
KerF , then:

X

Y

Z
|

ΣC =⇒

0

0

F(Z)

|

ΣD

By TR3 and the 2-out-of-3 property F(Z)' 0 =⇒ Z : KerF . Thus KerF is a triangulated
subcategory of C.

Definition 1.3.11. A subcategory S of a triangulated category T is called thick if it con-
tains all the direct summands of its objects.

Lemma 1.3.9. The kernel of a triangulated functor F : C→ D is thick.

Proof. Let X⊕Y : KerF , since F is additive one may see that 0' F(X⊕Y )' F(X )⊕F(Y ),
but then there is a splitmono F(X )→ 0 =⇒ F(X )' 0' F(Y ).

Lemma 1.3.10. Let F : C → D be a triangulated functor. Suppose that f : X → Y is a
morphism such that F( f ) is an isomorphism. Then the cone of f is in KerF.

Proof. There is an isomorphism of triangles in D, showing that the cone of f is in KerF .

FX FY F(cone( f )) FΣCX

FX FY 0 FΣCX

F f

'

F f

The goal for the rest of this section is to prove that there is a localization at any trian-
gulated subcategory S ⊆ C. This localization will yield a functor q : C → C/S such that
S ⊆ Kerq. There is a set of morphism MorS related to S such that this set is multiplicative.

Definition 1.3.12. Let C be a triangulated category and S ⊆ C be a triangulated subcat-
egory. Define the collection MorS to be a collection of morphisms in C such that for any
f : MorS there is a triangle with C : S.

A B C ΣCA
f

Remark. Every isomorphism is in MorS . This is because isomorphisms are found in tri-
angles (A, B, 0, f , 0, 0) and 0 : S for any triangulated subcategory.

Lemma 1.3.11. Let f : X → Y and g : Y → Z be two morphisms. If any two of the
morphisms f , g and g f are in MorS then so is the third.

Proof. One can find three triangles in C.
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(1)

X

Y

Z ′

f|ΣC (2)

Y

Z

X ′

g|ΣC

(3)

A

C

Y ′

g◦ f|ΣC

By the Octahedron axiom there exist another triangle in C:

Z ′ X ′ Y ′ ΣCZ ′

Note that f is in MorS if and only if Z ′ : S. WLOG assume that f and g are in MorS , this
can be done by the rotation axiom. Thus one may find the triangle in S by TR1 (Z ′, X ′, Y ′′)
proving that Y ′ ' Y ′′.

Z ′ X ′ Y ′ ΣCZ ′

Z ′ X ′ Y ′′ ΣCZ ′

'

To see that g f is in MorS one can construct the triangle below with the isomorphism
given above.

A C Y ′′ ΣCA
g◦ f

Proposition 1.3.12. Let S ⊆ C be a triangulated subcategory, then MorS satisfies the Ore
condition.

Proof. To prove that a system satisfies the Ore condition there has to be proof for both
right and left conditions. Luckily, the arguments presented here can be dualized to give
proof for the other condition. Thus there will only be presented proof for the right Ore
condition. Let f : A→ C be in MorS and g : B→ C in C. Then one may form a homotopy
pullback creating a homotopy cartesian square as below.

A

B C

f
g

=⇒
D A

B C

g ′

f ′ HO
ð
ù

f
g

By Lemma 1.2.5 there are triangles along this homotopy cartesian square identifying the
cones. Since the cone of f is assumed to be in S, the cone of f ′ is also in S. This proves
that f ′ : MorS .

Proposition 1.3.13. For any parallel morphism f , g : X → Y in C the following are equiv-
alent:
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1. s f = sg for some s : MorS starting at Y .
2. f t = g t for some t : MorS ending at X .
3. f − g factors through an object C : S.

Proof. (1. ⇐⇒ 3.): Suppose that there exists an s : Y → Z such that s( f − g) = 0. By

TR1 there is a triangle Y Z ΣCC ΣCYs ΣCs′
and a long exact sequence.

C(X , C) C(X , Y ) T (X , Z)

p f − g 0

s′∗ s∗

|
s′∗ |

s∗

Since s( f − g) = 0 there exists a p : C(X , C) such that f − g = s′∗p. By definition,
s : MorS ⇐⇒ C : S, but s : MorS =⇒ f − g factors through ΣC , and vice versa.

(2. ⇐⇒ 3.): This argument is dual.

This has shown that MorS is a multiplicative system, and Theorem 1.3.4 says that the
localization exists given that MorS is locally small. The category Mor−1

S C will be denoted
as C/S and it is called the Verdier quotient. As C is additive, it is known that C/S is additive
as well by Proposition 1.3.7. The remaining part is to show that C/S is triangulated and
that localization functor q : C→ C/S is a triangulated functor.

Theorem 1.3.14. Let S ⊆ C be triangulated categories. Then the Verdier quotient C/S to-
gether with the functor q : C→ C/S is the universal triangulated category where morphisms
in MorS are isomorphisms.

Proof. The triangulation on C/S is defined as the following. Let ΣC/S : C/S → C/S be
the additive autoequivalence defined by its action on objects ΣC/S(A) = ΣC(A) and maps
ΣC/S( f ) = ΣC f ◦ id−1

Σ_ . Since q : C → C/S maps every object to itself it follows that
q(ΣC(A)) ' ΣC/S(A) = ΣC/S(q(A)), and define ∆C/S ⊇ q(∆C) such that ∆C/S has every
isomorphism class of q(∆C).

qX

qY

qZ

|

ΣC/S ⇐=

X

Y

Z

|

ΣC

Then by definition, q is triangulated if the category C/S is triangulated. By definition, the
triangles are closed under isomorphisms, (X , X , 0, idX , 0, 0) is a triangle, and TR2 holds.
Thus it remains to show TR1 and TR4 (TR3 is implied by the other axioms). To prove TR1,
let f s−1 : C/S(qW, qY ). Expand f : C(X , Y ) to a triangle in C with TR1, it will induce a
triangle in C/S.

qX qY qZ qΣCX
f id−1

X gid−1
Y hid−1

Z
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There is an isomorphism to the following candidate triangle from the induced triangle,
proving TR1.

qX qY qZ qΣCX

qW qY qZ qΣCW

f id−1
X

sid−1
X'

gid−1
Y hid−1

Z

(ΣCs)id−1
ΣC x'

f s−1 gid−1
Y (ΣCs)hid−1

Z

To show the Octahedron axiom, suppose that there are three triangles in C/S. By con-
struction, these triangles can be chosen such that only the first map is a fraction up to
isomorphism of triangles.

(1)

Z X

A

B

C ′

t ′

s

a
as−1

x

|

x ′
ΣC/S

(2)

Y

B

C

A′

t

b
bt−1

y

|

y ′
ΣC/S

(3)

Z

A

C

B′

st ′

ba′b◦a

z

|

z′
ΣC/S

This is possible, as when composing the fractions from A to B and B to C one may find
an object Z as in the diagram by using the Ore condition. To illustrate with triangle (1),
there is a correspondence of triangles in C/S and C by the following isomorphism.

Z B Z ′ ΣCZ

X B C ′ ΣCX

A ΣCA

at ′

'

t ′

' '

ΣC t

a

s ΣCs

The result of the octahedron axiom follows as one instead considers the triangles found
by the composition of morphisms as below.

Z

Y C

f ′
b f ′

b

Proposition 1.3.15. Let S ⊆ C be triangulated categories. If 0 : X → 0 is an isomorphism
in C/S, then there is an object Y such that X ⊕ Y : S.

Proof. If 0 : X → 0 is invertible, then there exist a map 0 : 0→ Y , such that 0 : X → Y is
in MorS . By definition X ⊕ Y is in S.

This proposition shows that the kernel of q : C → C/S is the smallest thick subcategory
of C such that C/Kerq is the universal category where every morphism in MorS is an
isomorphism. For this reason bS = Kerq is called the thick closure of S.
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Exact Categories

2.1 Definitions and First Properties

This section will focus on defining what an exact category is and its elementary proper-
ties. The main result from this section is proposition 2.1.3. This proposition is similar to
the characterization theorem of push-outs and pullbacks in abelian categories. Another
important result is the obscure axiom, this will be proved and hopefully seen to be not
as obscure as its name suggests. Lastly, variants of some homological diagram lemmata,
like 5-lemma, will also be proved for exact categories. This section is based on [9].

To start with exact categories one should first take a look towards the abelian categories.
Short exact sequences are of great interest, and they can be characterized with two mor-
phisms p : A→ B and q : B→ C such that p is the kernel of q and q is the cokernel of p.
This leads to the first definition.

Definition 2.1.1. Let A be an additive category. A kernel-cokernel pair is a pair of maps
(p, q) such that p is the kernel of q and q is the cokernel of p. A morphism of kernel-
cokernel pairs (p, q) and (p′, q′) is a triple ( f , g, h) such that the following diagram com-
mutes. An isomorphism of a kernel-cokernel pair is a triple in which each morphism is an
isomorphism.

A B C

A′ B′ C ′

p

f

q

g h

p′ q′

Lemma 2.1.1. Let (p, q) be a kernel-cokernel pair, then the image and coimage of p exists
and are isomorphic. I.e. this diagram exists, such that the left square is a push-out and the
right square is a pull-back:

0 A B C

Coim(p) Im(p)

0

0

p q

iso

0

31
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Proof. Since (p, q) is a kernel-cokernel pair one may see that the first simplex is bicartesian
and the second simplex is a push-out.

A B

C

p

0 q

0 A

A

0

0

Thus Im(p) = Coim(p) = A, asserting the isomorphism as the identity in the diagram.

0 A B C

A A

0

0

p q

p 0

Corollary 2.1.1.1. Suppose that (p, q) is a kernel-cokernel pair. If p is an epimorphism,
then p is an isomorphism.

Definition 2.1.2. An exact structure for an additive category A is a class E of kernel-
cokernel pairs which are closed under isomorphisms. A pair (p, q) : E is called a conflation,
here p is called an inflation and q is called a deflation. (A,E) is called exact when the
following axioms holds:

• (QE0) ∀A : A, idA is both an inflation and a deflation.
• (QE1) Both inflations and deflations are closed under composition.
• (QE2) The push-out of an inflation is an inflation.
• (QE2op) The pull-back of a deflation is a deflation.

An exact category is the additive category A together with an exact structure E .

Remark. Decorated arrows will be used when writing diagrams to indicate that a mor-
phism is either an inflation or a deflation. A tail with a circle means inflation: A B◦ .

Double heads with a circle means deflation: A B◦ . (QE2∗) axioms can now be
written as the diagrams below.

A B

C D

◦

ù
◦

A B

C D

◦
ð

◦

Remark. In literature, inflations are also referred to as admissable monomorphisms, and
deflations are referred to as admissable epimorphisms while conflations are also called
short exact sequences.

Remark. Observe that the axioms for an exact structure are self-dual. This allows for
reasoning with duality, as a category has an exact structure (A,E) if and only if (Aop,Eop)
is an exact structure.
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Remark. For any category C, there is a category C→ = C ↓ C consisting of arrows and
C→→ = C ↓ C ↓ C consisting of pairs of composable arrows. If A is additive, then A→ and
A→→ are additive as well. It can be seen that E may be considered as an extension closed
additive subcategory of A→→.

Exact categories aim to characterize the fundamental properties of abelian categories. In
nature, exact categories are quite common and one additive category usually admits more
than one exact structure. Thus there may exist a chain of exact structures in the sense of
subsets Emin ⊆ E1 ⊆ ... ⊆ Emax .

Example. Any abelian category is exact with every short exact sequence as the exact struc-
ture. This exact structure us Emax .

Example. Any additive category is exact with every split short exact sequence as the exact
structure. This structure will always be Emin, and it is always contained inside another
exact structure.

Lemma 2.1.2. The map 0 : 0→ A is an inflation. Dually, the map 0 : A→ 0 is a deflation.

Proof. Consider the diagram 0 A A0 idA . The left morphism is the kernel of the
right morphism making a kernel-cokernel pair (0, idA). The identity idA is assumed to be
a deflation, implying that the pair is a conflation.

Remark. It can be seen that isomorphisms are deflations. Let f : A→ B be an isomor-
phism, then there are two kernel-cokernel pairs: (0, idA) and (0, f ). Between these there
is an isomorphism which is the triple (0, idA, f −1). As the conflations are closed under
isomorphism, (0, f ) is a conflation, making f into a deflation. By dualizing this argument,
f is also an inflation.

0 A B

0 A A

0

0

f

idA f −1

0◦
idA◦

Corollary 2.1.2.1. A kernel-cokernel pair (i, p) found as a split short-exact sequence (1) is
a conflation.

(1) A A⊕ B Bi◦
p
◦

Proof. In a category with an initial object, the coproduct can be thought of as the push-
out with the initial in the upper left corner. This can be assembled into the push-out (1).
By the lemma the zero morphisms are inflations, asserting that i and i′ are inflations by
(QE2). Thus there are conflations (i, p) and (i′, p′).

(1)
0 A

B A⊕ B

0◦
0

◦

i

◦

i′◦
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Corollary 2.1.2.2. The direct sum of conflations is a conflation. I.e. there is a diagram:

A B Ci◦
p◦ , A′ B′ C ′i′◦

p′
◦

⇓

A⊕ A′ B ⊕ B′ C ⊕ C ′i⊕i′◦
p⊕p′
◦

Proof. Start by only considering the conflation (i, p). For any D : A there is a conflation
(i ⊕ idD, p⊕ 0), drawn as the diagram.

A⊕ D B ⊕ D C

 

i 0

0 1

!

◦

�

p 0
�

◦

As kernels and cokernels are preserved by direct sums, this pair is in fact a kernel-cokernel
pair. The epimorphism is a deflation as it can be factored by the deflations:

B ⊕ D B C

�

1 0
�

◦
p
◦

Thus it is seen that (i ⊕ idD, p ⊕ 0) is a conflation, and dually (i ⊕ 0, p ⊕ idD) is also a
conflation. To finish off the proof it is seen that the morphism i⊕i′ factors as i⊕idA′◦idA⊕i′,
asserting that it is an inflation by (QE1). By dualizing the argument, one gets that the
direct sum of conflations is a conflation.

Definition 2.1.3. A square is bicartesian if it is both a pull-back and a push-out.
A B

C D

ð
ù

Proposition 2.1.3. The following statements are equivalent:

1. The square (1) is a push-out.
2. The sequence (2) is a conflation.
3. The square (1) is bicartesian.
4. The square (1) is a part of the commutative diagram (3)

(1)
A B

C D

i◦
f g

j
◦

(2) A B ⊕ C D

 

i

− f

!

◦

�

g j
�

◦ (3)
A B E

C D E

i◦
f

p
◦

g

j
◦

q
◦

Before the proof for this proposition, there will be presented a useful lemma, which will
be proved first.

Lemma 2.1.4. Assume that there is a commutative square (1) and an associated sequence

(2). (1) is a push-out square if and only if
�

p q
�

is the cokernel of the morphism

�

i
− j

�
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(1)
A B

C D

i

j p

q

(2) A B ⊕ C D

 

i

− j

!

�

p q
�

Proof. For any test object T and two maps t1 : B→ T and t2 : C → T , one may construct
the diagrams for the universal properties of both the cokernel and the push-out. It is seen
that these diagrams are equivalent, proving the lemma.

A B ⊕ C

D T

0

 

i

− f

!

�

g j
�

�

t1 t2

�

t ′

⇔

A B

C D

T

ù

i

f g
t1

j

t2

t ′

Corollary 2.1.4.1. For the same diagrams (1) and (2) as above the dual statement is also

true. (1) is a pull-back square if and only if

�

i
− j

�

is a kernel of the morphism
�

p q
�

. Thus

it follows that (1) is bicartesian (i.e. both a pull-back and a push-out) if and only if the
morphisms make a kernel-cokernel pair.

Proof. of Proposition 2.1.3. 1.⇒ 2.: By the previous lemma it is known that
�

g j
�

is the

cokernel of

�

i
− j

�

. Thus proving that

�

i
− j

�

is an inflation, will prove that the pair is a

conflation.

Observe that the morphism

�

i
− f

�

can be factored through the sequence.

A A⊕ C A⊕ C B ⊕ C

 

1

0

!

◦

 

1 0

− f 1

!

'◦

 

i 0

0 1

!

◦

By corollary 3.2.1 the first map is an inflation, as the second map is an isomorphism it is
also an inflation and the last map is the direct sum of two inflations. Thus the composite
of all these maps is an inflation by (QE1), proving the first implication.

2.⇒ 3.: This follows from Corollary 2.1.4.1.
3⇒ 1.: This is by definition.

1. ⇒ 4.: Let p be the cokernel of i, then form the diagram below using the push-out
property.
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A B

C D

T

ù

i◦
f g

p◦j
◦

0

p′

p′ is an epimorphism as p = p′g is epi. To prove that p′ is the cokernel of j let T ′ be another
test object with a map t ′ : D→ T ′ such that 0 = t ′ j. By doing some diagram chases one
may see that 0= t ′ j f = t ′gi, thus by the universal property of p the morphism t ′g factors
through T such that t ′g = t p for some unique t. This shows that t ′g = t p′g = t p, and
t ′ j = t p′ j = 0. Since t ′ is the unique morphism satisfying this equation we demand that
t ′ = t p′. t is also unique, for if there exist another map h such that t p′ = hp′, then t = h
as p′ is epic. The unique existence proves the universal property, and p′ is the cokernel of
j.

A B T

C D T

T ′

ù

i◦
f g

p
◦

j
◦

0

t ′

p′

t

4.⇒ 2.: Start by taking the pullback of p and q using (QE2op). The diagrams below are
determined by using the dual statement of the last implication.

A A

C T B

C D E

i′

◦

i

◦

j′
◦

q′
◦

p′

◦ ð g
p◦

j
◦

q
◦

⇒

B

T B

D E

k

g
q′
◦

p′

◦ p◦

q
◦

From these diagrams one can see that q′ is a split epimorphism. The composite q′(idT −
kq′) = q′ − q′kq′ = q′ − q′ = 0 as q’ is split epi, so (idT − kq′) factors over j′ as in the
following diagram.

T

C T

B

l

idT−kq′

j′
◦

0 q′

◦

From these diagrams one may find three different equations:

• 0= k− k = k− kq′k = (idT − kq′)k = j′lk =⇒ lk = 0 as j′ is monic
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• j′l j′ = (idT − kq′) j′ = j′ =⇒ l j′ = idC as j′ is monic
• jl i′ = (p′ j′)l i′ = p′(idT − kq′)i′ = −(p′k)(q′i′) = −gi = − j f =⇒ l i′ = − f as j is

monic

The morphisms
�

k j′
�

and

�

q′

l

�

are inverses:

•
�

k j′
�

�

q′

l

�

= kq′ + j′l = kq′ + idT − kq′ = idT

•
�

q′

l

�

�

k j′
�

=

�

q′k q′ j′

lk l j′

�

=

�

idB 0
0 idC

�

Thus there is an isomorphism of kernel-cokernel pairs (idA, ,

�

q′

l

�

�

k j′
�

),

from (

�

i
− f

�

,
�

f ′ i′
�

) to (i′, p′). This proves 2.

Corollary 2.1.4.2. The pull-back of an inflation along a deflation is an inflation.

A B

C D

i′◦
e′

◦ ð e◦

i◦

Proof. By (QE2) this pullback exists, as there is a deflation in the pullback. Extend the
diagram by adding the deflation of the inflation in the following manner.

T

A B C

C D C

t

0

t ′

t ′′

i′

e′

◦ ð e◦

pe
◦

i◦
p
◦

pe is a deflation by (QE1), and i′ is a mono as a limit of a mono is a mono. The goal is to
prove that i′ is the kernel of pe. Let T be a test object such that pet = 0, then if follows
that te factorizes over i, such that we can apply the universal property of the pullback to
factorize te over i′. The uniqueness of t ′ is achieved with i′ being monic. This proves that
(i′, pe) is a conflation.

Theorem 2.1.5. The Obscure Axiom. Assume that i : A→ B is a morphism with a cokernel.
If there is a morphism j : B→ C such that ji is an inflation, then i is an inflation.

Proof. Let k : B→ D be the cokernel of i. Start by forming the push-out of i and ji.

A C

B E
ù

ji
◦

i

◦
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By proposition 2.1.3

�

i
ji

�

is an inflation.

�

i
0

�

=

�

idB 0
− j idC

��

i
ji

�

, this is an inflation by

(QE1) as the 2x2 matrix is an isomorphism. Observe that the cokernel of

�

i
0

�

is

�

k 0
0 idC

�

.

The final trick will be to show that there is a pullback square, and then use (QE2) to say
that k is a deflation.

T

B D

B ⊕ C D⊕ C

t1

 

t2

0

!

t

k
 

1

0

!  

1

0

!

 

k 0

0 idC

!
◦

Note that setting t = t2 one get the universal property. This is well defined as kt2 = t1 by
assumption, thus kt = t1. This is what is needed to prove that the square is a pullback,
proving the obscure axiom.

Contrary to its name, The Obscure Axiom is a very natural result. To motivate this, let
A be an abelian category. Here every map has a cokernel, and if i : A→ B is a map and
the composition ji : A→ C is a monomorphism, this result follows. Since ji is mono, it
follows that i has to be mono, thus the kernel of i is 0. This gives a short exact sequence
with the same implications as the obscure axiom.

0 A B Cok(i) 0i πi

The classical diagram lemmata which will be proven are the 5-lemma and the 3x3-lemma.
In this context, they will be dubbed the short five lemma and Noether’s isomorphism
lemma respectively. To prove the short 5-lemma, a lemma is needed.

Lemma 2.1.6. Let (p, q) and (p′, q′) be the conflations:

• (p, q): A B C
p q

• (p′, q′): A′ B′ C ′
p′ q′

A morphism of the conflations ( f , g, h) : (p, q) → (p′, q′) factors through the conflation

A D C ′ such that the following diagram exists, where g = g2 g1.

A B C

A′ D C

A′ B′ C ′

ð
ù

p
◦

f

q
◦

g1

◦
ð
ù

◦
g2 h

p′
◦

q′
◦
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Proof. Observe that the upper part of the diagram is made by taking a push-out of p and
f , where the right part is gained from proposition 2.1.3. Combine the upper part with
the lower part using the push-out property.

A B

A′ D

B′

p
◦

f
ù

g1 g

◦

p′◦

g2

=⇒

A B C

A′ D C

A′ B′ C ′

p
◦

f
ð
ù

g1

q
◦

a◦
g2

c◦
h

p′
◦

q′
◦

It remains to show that the lower right square is commutative, then to use the dual of
proposition 2.1.3 to see that the square is bicartesian. Note that q = cg1 by prop 2.1.3
thus q′g2 g1 = q′g = hq = hcg1. Uniqueness of the push-out property asserts that hc =
q′g2.

Corollary 2.1.6.1. The short 5-lemma. Suppose that there is a morphism of conflations
( f , g, h) as above. If f and h are isomorphisms, then g is an isomorphism.

Proof. Since f is an isomorphism it is at least an inflation, thus g1 is an inflation by (QE2).
As colimits preserve epis, g1 is also an epimorphism. Corollary 2.1.1.1 states that g1 is
an iso, and dually that g2 is an iso. Since isomorphisms are closed under composition it
follows that g is an isomorphism.

A B C

A′ D C

A′ B′ C ′

ð
ù

p
◦

f'

q
◦

g1'

◦
ð
ù

◦
g2' h'

p′
◦

q′
◦

Lemma 2.1.7. Noethers isomorphism lemma. Suppose there is a diagram with rows as
conflations and the first column as a conflation. Then the final column is also a conflation.

A B X

A C Y

Z Z

◦
ð
ù

◦

◦ ◦

◦

◦

◦

◦

Proof. Assume that only the solid part of the diagram above exists. By the universal prop-
erty of cokernels, the upper dashed map exists, and by the dual of proposition 2.1.3 the
square is bicartesian. This infers that the upper dashed map is an inflation, and since the
square is a push-out it follows that the lower dashed map exists such that the final column
is a conflation by proposition 2.1.3.
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2.2 The Stable Frobenius Category

This section aims to introduce Frobenius categories and show that their stabilization is
triangulated. Categories that can be realized as stable Frobenius categories are called
algebraic triangulated categories. To define this construction, one must define projective
and injective objects in an exact category. It will then be shown that the stable Frobenius
category is a quotient category by injective objects. One of the important ideas from this
section is that conflations from the Frobenius category will be the class generating the
triangles in the stable Frobenius category. This section is based on [9] and [4].

Definition 2.2.1. Let (A,E) and (A′,E ′) be two exact categories. A functor F : (A,E)→
(A′,E ′) is called exact if it is additive and F(E) ⊆ E ′. That is to say that conflations gets
mapped to conflations.

Definition 2.2.2. Let (A,E) be an exact category. An object P : A is called projective
if A(P, _) : (A,E) → Ab is an exact functor. Objects I : A are called injective whenever
A(_, I) : Aop→ Ab is an exact functor.

Remark. In the case of exact functors F : (A,E)→ Ab, one generally speaks of a functor
which maps conflations to short exact sequences.

Remark. The hom-functor is called left-exact. This means that conflations get mapped to
sequences which is only exact in the first two terms.

Proposition 2.2.1. Let (A,E) be an exact category. P : A is projective if and only if for every
deflation q : A→ B and morphism f : P → B there is a morphism f ′ : P → A rendering the
diagram below commutative.

P

A B

f ′
f

q◦

Proof. Suppose that P is projective, then A(P, _) is an exact functor. Let (p : A→ B, q :
B→ C) be a conflation, then there is a short exact sequence.

0 A(P, A) A(P, B) A(P, C) 00 p∗ q∗ 0

Pick f : A(P, C), since q∗ is a surjection there exists an f ′ : A(P, B) such that p f ′ = f .
Now, suppose that P has the property described by the diagram in the proposition and
that (p : A → B, q : B → C) is a conflation, then there is an exact sequence in Ab by
A(P, _).

0 A(P, A) A(P, B) A(P, C)0 p∗ q∗

To see that q∗ is a surjection, let f : P → C . As q is a deflation there exists an f ′ : P → B
such that q∗( f ′) = f . Thus the sequence above is short exact and P is projective.

Corollary 2.2.1.1. Let P be projective, then if q : A→ P is a deflation, it is split-epi.



Chapter 2: Exact Categories 41

Corollary 2.2.1.2. Two objects P and Q are projective if and only if P ⊕Q is projective.

Corollary 2.2.1.3. I : A is injective if and only if for every inflation p : B→ A and morphism
g : B→ I there is a morphism g ′ : A→ I rendering the diagram below commutative.

I

A B

g ′

p◦

f

Definition 2.2.3. A category (A,E) has enough projective objects if for any object A : A
there is a projective object P along with a deflation q : P → A. Dually, it has enough
injective objects if for any object A : A there is an injective object I along with an inflation
p : A→ I .

Definition 2.2.4. An exact category is called a Frobenius category if it has enough pro-
jective and injective objects and the class of projective objects coincides with the injective
objects.

The stable Frobenius category will be defined as the quotient of every morphism factoring
through an injective object. This will be made precise, following the construction of the
quotient category provided by [3].

Definition 2.2.5. A congruence relation ∼ on a category C is a relation on the hom-sets,
such that:

1. ∀A, B : C the relation ∼A,B is an equivalence relation.
2. Given that f , f ′ : A→ B is related ( f ∼ f ′) and morphisms g : A′→ A and h : B→

B′, then hf g ∼ hf ′g.

Proposition 2.2.2. Let C be a category and ∼ be a congruence relation. Then there is a
universal category C/ ∼ together with a functor q : C → C/ ∼ such that morphisms f , g :
A→ B are identified if f ∼ g. Universality means that if there is a functor H : C → D such
that H f = H g for any f , g if f ∼ g, then H factors uniquely through C/∼.

Proof. Define the category C/ ∼ to have the same objects as C, and define C/ ∼ (A, B) =
C(A, B)/ ∼a,b. This definition is well defined as ∼ is a congruence relation. A sketch of
this proof can be found in [3].

Remark. Any functor gives rise to a congruence relation. That is, if F : C→ D is a functor,
then there is a congruence relation ∼ defined as follows: ∀A, B : C and f , g : A→ B, one
define f ∼A,B g ⇐⇒ F f = F g. This is a congruence as equality within D gives rise to an
equivalence relation, and functoriality gives the congruence.

Remark. For any relation ∼ the universal category C/ ∼ exists. As in the case for the
Verdier quotient, C/ ∼ is the same as the quotient category of the smallest congruence
relation having the same relations as ∼.
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If A is an additive category, the quotient categories which respect the additive structures
are of interest. That is to say that the functor q : A→ C/∼ is additive and the equivalence
relation ∼ should respect the additive structure. Then a quotient category is additive if
f ∼ f ′ and g ∼ g ′, then f + g ∼ f ′ + g ′. This leads to the following definition.

Definition 2.2.6. Let A be an additive category. I is an ideal of A if:

1. (subgroup) for every abelian group A(A, B) there is a subgroup I(A, B) ⊆A(A, B).
2. (absorption) For every g : A′ → A, h : B → B′ and f : I(A, B) it follows that

hf g : I(A′, B′)

This is equivalent of saying that the equivalence relation f ∼ g ⇐⇒ f − g : I(A, B) is a
congruence relation.

Corollary 2.2.2.1. Let A be an additive category and I be an ideal of A, then A/I is an
additive category.

Let A be a Frobenius category. Define the ideal I as the subgroups of every morphism
factoring through injective objects.

Proposition 2.2.3. For any Frobenius category A the ideal I is well defined and A = A/I
is the stable Frobenius category.

Proof. To prove this one must show that I(A, B) is a subgroup for any A, B : A, and that it is
absorptive. First observe that 0 : I(A, B). Let f , g : I(A, B). Since A has enough injectives,
there exists an injective object with an inflation from A.

J1

A I B

J2

f2f1

g1

i◦

f ′1

g ′1
g2

f − g = f2 ◦ f1 − g2 ◦ g1 = ( f2 ◦ f ′1 − g2 ◦ g ′1) ◦ i. Thus f − g factors through an injective,
and I(A, B) is a subgroup. To see that it is absorptive is to see that if f factors through an
injective, then g f factors through an injective as well.

Objects in the stable Frobenius category is denoted as X and morphisms are denoted as
f . That is the functor q : A → A is defined as q(X ) = X and q( f ) = f . One important
property of the stable Frobenius category is that taking syzygies or cosyzygies is a functor.

Definition 2.2.7. A syzygy of an object X , if it exists, is denotedΩX . The syzygy is defined
to be the kernel object of a deflation p : P → X , where P is projective. A cosyzygy, denoted
as

Ω

X is defined to be the cokernel of an inflation i : X → I , where I is injective.

Remark. Note that this choice is not necessarily unique up to isomorphism. Thus syzygies
and cosyzygies are not in general functors.
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Lemma 2.2.4. Let A be a Frobenius category and suppose that there are two conflations
with injectives as below. Then X ′ ' X ′′.

X I X ′

X J X ′′

i◦ i′◦

j
◦

j′
◦

Proof. Observe that there are morphisms in the diagram as I and J are injective.

X I

X J

j

i◦
f

j
◦

The commutative diagram below is created by the cokernel property.

X I X ′

X J X ′′

X I X ′

i◦ i′◦
f g

j
◦

j′
◦

f ′ g ′

i◦ i′◦

A diagram chase shows that i − f ′ f i = (idI − f ′ f ) ◦ i = 0. This means that ( f ′ f − idI)
factors through X ′, i.e. there exists h : X ′→ I and f ′ f = hi′ + idI . Diagram chasing also
reveals that g ′gi′ = i′ f ′ f = i′(hi′ + idI) = i′hi′ + i′ = (i′h+ idX ′)i′. As i′ is an epi one
obtains that g ′g = i′h + idX ′ =⇒ g ′g = idX ′ as i′h factors through I . g g ′ = idX ′′ is
dual.

Corollary 2.2.4.1. Cosyzygy is a well defined functor

Ω

: A→A

Proof. Let f : X → Y be a morphism in A. Then the following diagrams representing the
different choices of syzygies.

X I

Ω

X

Y J

Ω

Y

f

i p

Ω

f
j q

X I ′

Ω′X

Y J ′

Ω′Y

f

i′ p′

Ω′ f

j′ q′

By the previous proof, there are maps between the diagrams making an almost commu-
tative diagram where all the 8 outer squares commute.



44 Thorbjørnsen: Triangulated Categories

X I

Ω

X

. X I ′

Ω′X
.
.

Y J

Ω

Y

Y J ′

Ω′Y

f

α(X )
◦i

β(X )
◦

p

I f

γ(X )

Ω

f

χ

◦i′

f I ′ f

◦
p′

Ω′ f

α(Y )
◦

j

β(Y )
◦

q

γ(Y )

◦
j′

◦
q′

To see that the definition of the cosyzygy is well defined is to show that the 3 inner squares
are commutative in the quotient category, i.e. that the diagram commutes in the quotient.

Observe that the left inner square commutes by definition, and that the central inner
square commutes in the quotient as every morphism gets related to 0. Thus it remains
to show that γ(Y )◦

Ω

f=

Ω′ f ◦γ(X ), which is the same as to say that γ(Y )◦

Ω

f −

Ω′ f ◦γ(X )
factors over an injective.

By doing a diagram chase in the left cube one may find the following equation (I ′ f ◦
β(X )−β(Y ) ◦ I f )i = 0. This means that the map I ′ f ◦β(X )−β(Y ) ◦ I f factors through
the cokernel of i as χp. By chasing the right cube one may assert the equation q′χp =
(γ(Y )◦

Ω

f −

Ω′ f ◦ γ(X ))p, thus q′χ =γ(Y )◦

Ω

f −

Ω′ f ◦ γ(X ).

Corollary 2.2.4.2. Cosyzygy
Ω

is an autoequivalence with syzygy Ω as quasi-inverse.

Proof. The goal is to show that there is a natural isomorphisms Ω

Ω

' IdA and

Ω

Ω' IdA.
As these are inverse operations one has that taking syzygy then cosyzygy is the same as
taking cosyzygy then syzygy in Aop. Let X : A, the goal is to show that the following
diagram gives a natural isomorphism at the rightmost arrow in A.

ΩX P X

ΩX I

Ω

ΩX

Observe that this case is identical to the one previous proved. This shows that there is a
natural isomorphism from X to

Ω

ΩX.

Remark. A subtle, but important point is that the category A has enough projectives and
injectives. This enables one to find the syzygies and cosyzygies. It is also important that
the projectives are the same as the injectives for this construction to give the isomorphisms
as well.

With the category A and the functor

Ω

it remains to find the triangulation ∆A. The tri-
angulation of A will be defined as the set of candidate triangles in A called standard
triangles. Let x : X → Y be a morphism, then by (QE2) there is a push-out in A. More-
over, by Proposition 2.1.3 (y, z) is a conflation.
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X Y

I(X ) Z

Ω

X

x

ù
i

◦ y◦

0

p◦

x ′

z◦

The set of standard triangles will be
of the form (X , Y , Z , x , y , z). Thus a
triangle (A, B, C , a, b, c) : ∆A if and
only if (A, B, C , a, b, c) is isomorphic
to a standard triangle.

Proposition 2.2.5. ∆A is a triangulation of A.

Proof. Sketch. Most of the details of this proof will be omitted, and they can be found in
[4] or [5]. The proof is structured into 3 different parts, namely showing TR1, TR2, and
TR4. Note that TR1 is satisfied by definition of ∆A. To see this observe that the following
diagram is a push-out.

X X

I(X ) I(X )
ù

i

◦

i

◦

Thus (X , X , 0, idX , 0, 0) is a standard triangle.

(TR2) Consider the standard triangle (X , Y , Z , x , y , z), the goal is to show that there is a
triangle (Y , Z ,

Ω

X , x , y ,−

Ω

x). Let I(X ) and I(Y ) be injectives with inflations from X and
Y respectively. Since I(Y ) is injective there is a unique map by the push-out property in
(1).

(1)

X Y

I(X ) Z

I(Y )

x

ù
i(X )

◦ y
i(Y )

x ′

f

g
(2)

X Y

I(X ) Z

Ω

X

I(Y )

Ω

Y

x

ù
i(X ) y 0

f

x ′

g

z

Ω

x

p(Y )

From (2) one are able to use the push-out to see that the lower right square commutes,
that is p(Y ) f i(X ) =

Ω

xz yz = 0. This is true as p(Y ) f i(X ) = p(Y )g y x = p(Y )i(Y )x = 0
by (1). Note that since z and p(Y ) are deflations with equal kernels, Proposition 2.1.3

says that (

�

g
z

�

,
�

p(Y ) −

Ω

x
�

) is a conflation.

One is now able to find a commutative diagram and by Proposition 2.1.3 the upper left
square is bicartesian.
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Y Z

Ω

X

I(Y ) I(Y )⊕

Ω

X

Ω

X .

Ω

Y

Ω

Y

ð
ù

i(Y )

◦

y
◦

 

g

z

!

◦

z◦

p(Y )◦

ι1
◦ π2

◦
�

p(Y ) −

Ω

x
�◦

Thus (Y , Z ,

Ω

X , y , z,−

Ω

x) is a standard triangle.

(TR4) Suppose that there are three standard triangles where νυ=ω.

X Y

I(X ) Z ′

Ω

X

Ω

X

ù

υ

x i

ῡ

x̄ i′

Y Z

I(Y ) X ′

Ω

Y

Ω

Y

ν

ù
y j

ν̄

ȳ j′

X Z

I(X ) Y ′

Ω

X

Ω

X

ù

ω

x k

x̄

ω̄

k′

By Noether’s isomorphism lemma there is a conflation passing through on the right col-
umn and the middle square is bicartesian. z′ exists by the injectivity of I(Y ) and that i is
an inflation. z′ is an inflation as y is an inflation, thus z̄′ exists.

Y Z ′
Ω

X

Y I(Y )

Ω

Y

Ω

Z ′

Ω

Z ′

i◦
ð
ù

z′

◦

i′◦
s◦

y
◦

ȳ
◦

z̄′

◦ r◦

There is also a map Iυ : I(X )→ I(Y ) induced by the maps between X and I(Y ). By using
the following universal properties one may find the unique maps f and g.

X Y Z

I(X ) Z ′

Y ′

ù

υ

ω

x i

ν

k

ω̄

ῡ

f

X Z

I(X ) Y ′

I(Y ) X ′

ω

x k j
w̄

Iυ
g

ν̄

These maps can be arranged in the diagram below. It can be seen that the middle square
is a push-out, by using the fact that the upper left square and the larger rectangles are
push-outs.
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X Y Z

I(X ) Z ′ Y ′

Ω

X I(Y ) X ′

Ω

Y

Ω

Z ′

υ

x
ù

ν

i k

ῡ

x̄
Iυ

f

z′
ù
g

s
r

ν̄

ùΩ

i◦ j′

Ω

i

Z ′ Y ′

I(Y ) X ′

Ω

Z ′

Ω

Z ′

f

ù
z′

◦ g◦

ν̄

z̄′

◦ Ω

i◦ j′
◦

Thus (Z ′, Y ′, X ′, f , g,

Ω

i◦ j′) is a triangle.

Remark. A more detailed and different proof may be found in [10] or [11].

This construction of triangles admits a close relation to conflations. If there is a conflation
(p : X → Y, q : Y → Z), then there is a triangle (X , Y , Z , p, q,−r) constructed as follows:
Let P : A be a projective object with a deflation p̄ : P → Y , then there exists a pullback
(1), moreover the pullback square is bicartesian. By using TR2 one may find the triangle
(2) as indicated in the diagram.

(1)

ΩZ X

P Y

Z Z

ð
ù

Ωr◦

◦ p◦

p̄
◦

◦ q◦

(2) X Y Z

Ω

X
p q −r

Remark. For any morphism f : A→ B in A, there is an inflation

�

f
−i

�

: A→ B ⊕ I which

is in the same equivalence class as f . Thus f =

�

f
−i

�

, and any morphism in A can be

obtained from an inflation in A.

2.3 Self-injective Algebras

The first example of a triangulated category is going to be derived from finite-dimensional
artin algebras. More specifically, letΛ be a self-injective finite-dimensional artin R-algebra;
that is ΛΛ is injective as left Λ-module, then the finitely generated projective objects coin-
cide with the finitely generated injective objects. This section is based on [12] and [13].

Proposition 2.3.1. If Λ is a self-injective finite-dimensional artin R-algebra, then modΛ is
a Frobenius category.

To prove this statement one will need the following propositions.

Lemma 2.3.2. The category modΛ has enough projectives
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Proof. Let A : modΛ, then A is finitely generated. This means there exists an epimorphism
p : Rn→ A, where n is the number of generators of A.

Lemma 2.3.3. Let R be an artin ring and r denote the nilradical of R. Moreover, let J be the
injective envelope of R/r, then functor HomR(_, J) : modΛ→ modΛop is a duality.

Corollary 2.3.3.1. The category modΛ has enough injectives

Detailed proofs of these statements can be found in [12].

Proof. Suppose that Λ is self-injective. By the lemmas above it is known that modΛ has
enough projectives and enough injectives. It remains to show that the class of injectives
coincides with the projectives. Since every indecomposable Λ module is a summand of Λ
up to isomorphism, it follows that they are injective. As they also are projective, the class
of injectives and projectives coincide.

This shows that modΛ is a Frobenius category, thus modΛ is triangulated. The triangles
in modΛ are the quotients of every short exact sequence in modΛ.

0 X Y Z 0a b =⇒ X Y Z

Ω

X
a b c

Proposition 2.3.4. Let K be a field, then K[x]/(xn) is self-injective.

Proof. As K[x]/(xn) modules, there is only one indecomposable projective module up
to isomorphism, that is K[x]/(xn). Since K[x]/(xn) is commutative, the duality functor
is an automorphism of modK[x]/(xn), thus HomK(K[x]/(xn), K) is the indecomposable
injective K[x]/(xn) module. As the duality functor preserves length the modules have
equal length. By finding a monomorphism i : K[x]/(xn) → HomK(K[x]/(xn), K) one
have that it is an isomorphism as the cokernel has length 0. The socle soc(K[x]/xn) is the
simple module K , this means that the injective envelope of K[x]/(xn) is indecomposable,
thus it is in the same isomorphism class as HomK(K[x]/(xn), K), proving that there is a
monomorphism as stated.

In this particular case, the triangles take on a somewhat special form, where repeatedly
applying TR2 yields the same triangles after 6 iterations. This can be seen by calculating
the triangles of the indecomposable modules. Every other triangle will be a direct sum of
these.

Observe that every submodule of K[x]/(xn) is indecomposable, these make up the class
of the indecomposable modules up to isomorphism. Further observe that the cosyzygy of
any submodule is

Ω

(xk)/(xn) ' (xn−k)/(xn). The repetition of the triangles can be seen
as the natural isomorphism

Ω2(xk)/(xn)' (xn−(n−k))/(xn) = (xk)/(xn).

To find the triangles, let A, B : modK[x]/(xn) and T : A→ B be K[x]/(xn)-linear. T is in the

same equivalence class as

�

T
−i

�

: A→ B ⊕ I with i as the injective envelope of A. Then

there is a triangle as the diagram below.
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A B CokT ⊕ Ker

Ω

T

Ω

A
T

Observe that Cok

�

f
−i

�

' CokT ⊕ Ker

Ω

T , so the triangle above is in fact well-defined.

Lemma 2.3.5. The category Vect(K) is triangulated.

Proof. Sketch. This follows immediately from the discussion above. Look at modK[x]/(x2),
the indecomposable objects of this category are K[x]/(x2) and K up to isomorphism. As
K[x]/(x2) is injective we have that K is the only indecomposable object of modK[x]/(x2),
thus every object is a direct summand K . Also, observe that the cosyzygy is naturally
isomorphic to the identity functor on the quotient. To be precise, one would need to
show that there is an equivalence of categories Vect(K) ' modK[x]/(x2). The triangles in
Vect(K) can then be seen as this three-term repeating triangle.

V W CokT ⊕ KerT VT

 

πT

0

!

�

0 ιT

�

2.4 The Homotopy Category

The next example of a triangulated category is the homotopy category. This category may
be regarded as the prototype for triangulated categories. To define it, the category of
chain complexes and homotopies must be defined first.

Definition 2.4.1. Let A be an additive category. Define Ch(A) to be the category of dia-
grams in A on the form

... A−1 A0 A1 ...
d−2

A• d−1
A• d0

A• d1
A•

such that d i
A• ◦ d i−1

A• = 0 for every i : {−∞, ...,∞}. These objects are referred to as
(co)chain complexes and they are denoted as A•, and the maps in the objects are called
differentials/(co)boundaries. A morphism φ• : A• → B• between (co)chain complexes,
also called chain map, is a collection of morphisms from A, such that the morphisms
commute with the differentials in the following manner:

... A−1 A0 A1 ...

... B−1 B0 B1 ...

d−2
A•

φ−1

d−1
A• d0

A•

φ0

d1
A•

φ1

d−2
B• d−1

B• d0
B• d1

B•

Remark. If A is abelian, then the category Ch(A) is abelian. The kernels and cokernels
of chain maps would be level-wise kernels and cokernels along the chain. Moreover, if
(A,E) is an exact category, then (Ch(A), Ch(E)) will be exact as well, by using level-wise
kernels and cokernels.
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Remark. On the category of cochain complexes there is an additive autoequivalence called
the translation functor. The functor is denoted as (_)[1] : Ch(A)→ Ch(A) and it takes a
complex A• and shifts it one step to the left into A•+1. In fact there is a family of functors
A•[n] = A•+n. Thus (_)[−1] is the quasi-inverse of (_)[1].

Definition 2.4.2. A chain map f • : A• → B• is called null-homotopic if there is a map
ε• : A•→ B•[−1] such that f • = d•−1

B• ε
• + ε•+1d•A• .

... A−1 A0 A1 ...

... B−1 B0 B1 ...

d−2
A•

f −1

d−1
A•

ε0

d0
A•

f 0

d1
A•

f 1ε1

d−2
B• d−1

B• d0
B• d1

B•

ε• is called the homotopy. Two chain maps f • and g• are said to be homotopic f • ∼ g• if
their difference f • − g• is null-homotopic.

Proposition 2.4.1. There is an additive bifunctor nullHomA(_, _) : Ch(A)op×Ch(A)→ Ab
mapping into the set of null-homotopic morphisms. The elements of nullHomA(A•, B•) are
pairs made of null-homotopic maps with their homotopy ( f •,ε•). This is an abelian group
with the product group structure, that is ( f •,ε•)+(g•,γ•) = ( f •+ g•,ε•+γ•). The functor
acts on morphisms almost the same way as the hom-functor. On a chain map f • : B•→ C•

define the covariant direction to be f •∗ = nullHomA(A•, f •) = {( f •g•, f •−1ε•)|(g•,ε•) :
nullHomA(A•, B•)}, and dually f ∗(g•,ε•) = (g• f •,ε• f •) in the contravariant direction.

Proof. To prove the proposition, one must show that the assignment is in fact a functor
and that it is additive as well. It suffices to show that nullHomA(A•, _) is an additive
functor, as it will follow by duality that there is an additive bifunctor as proposed.

Suppose that there is a chain map f • : B• → C•, then nullHomA(A•, _)( f •) = f •∗ . Let
(g•,ε•) : nullHomA(A•, B•) be a null-homotopic chain map. By definition f •∗ (g

•,ε•) =
( f •g•, f •−1ε•). One may now see that f •−1ε• is a homotopy by the following diagram.
The commutativity of the lower left square shows the homotopy. It follows by functoriality
from the Hom-functor that nullHomA(A•, _) is a functor.

... A−1 A0 A1 ...

... B−1 B0 B1 ...

... C−1 C0 C1 ...

d−2
A•

g−1

d−1
A•

ε0

d0
A•

g0

d1
A•

g1ε1

d−2
B• d−1

B•

f −1

d0
B•

f 0

d1
B•

f 1

d−2
C• d−1

C• d0
C• d1

C•

Lastly, one must show that the functor is additive. This is the same as showing that the
assignment
nullHomA(A•, _) : HomCh(A)(B•, C•) → HomAb(nullHomA(A•, B•), nullHomA(A•, C•))
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is a group homomorphism. Let f •, g• : B• → C• be two chain maps, and (h•,ε•) :
nullHomA(A•, B•). Then the following equation asserts the additivity:

( f • + g•)∗(h
•,ε•)

= (( f • + g•)h•, (( f • + g•)[−1])ε•)

= ( f •h• + g•h•, f •−1ε• + g•−1ε•)

= ( f •h•, f •−1ε•) + (g•h•, g•−1ε•)

= f •∗ (h
•,ε•) + g•∗(h

•,ε•)

Corollary 2.4.1.1. The equivalence relation ∼ stated above is an additive congruence rela-
tion. The homotopy category is defined to be the quotient K(A) = Ch(A)/∼.

The goal is to prove that the homotopy category is triangulated. This will be done by
seeing that Ch(A) admits an exact structure, which allows us to view it as a Frobe-
nius category. By checking that the construction of K(A) coincide with Ch(A) will prove
that it is triangulated. This will be revealed by studying the representable nature of
nullHomA(_, _).

Definition 2.4.3. Let f • : A•→ B• be a chain map. Define the object cone( f •) to be the
complex below.

... B−1 ⊕ A0 B0 ⊕ A1 ...
 

d−1
B• f 0

0 −d0
A•

!

Remark. For any chain map f • : A•→ B• there is a short exact sequence.

B• cone( f •) A•[1]

 

1

0

!•

�

0 −1•
�•

Definition 2.4.4. An object A• of Ch(A) is called contractible if id•A• is null-homotopic.

Example. Let A• be a complex, then cone(idA•) is contractible. That is
�

�

id•A• 0
0 id•A•[1]

�

,

�

0 0
id•A• 0

�

�

: nullHomA(cone(id•A•), cone(id•A•))

Proposition 2.4.2. For any complex A• there is a natural isomorphism nullHomA(A•, _)'
HomCh(A)(cone(id•A•), _). This establish that cone(id•A•) is the universal contractible complex
where null-homotopic morphisms from A• factors through.

Proof. This proof will construct two natural maps which are inverses. This is sufficient to
prove the universal property by Yoneda’s lemma.
Let const ruct(A•,_)(B•) : nullHomA(A•, B•)→ HomCh(A)(cone(id•A•), B•) and
dest ruct(A•,_)(B•) : HomCh(A)(cone(id•A•), B•)→ nullHomA(A•, B•) be two morphisms de-
fined the following way. const ruct(A•,_)(B•)( f •,ε•) =

�

f • ε•
�

and
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dest ruct(A•,_)(B•)
�

f • ε•
�

= ( f •,ε•). These natural transformations are constructed such
that they are inverses of each other. It remains to see that these maps are well defined.
This will be done by showing that there is a chain map from the cone of the identity, if
and only if there is a null-homotopic map from the object.

... A−1 ⊕ A0 A0 ⊕ A1 ...

... B−1 B0 ...

d−2
cone(id•

A• )
d−1

cone(id•
A• )

�

f −1 ε0
�

d0
cone(id•

A• )

�

f 0 ε1
�

d−2
B• d−1

B• d0
B•

For
�

f • ε•[1]
�

to be a chain map, the following conditions must hold, i.e. that the square
commute.

�

f 0 ε1
�

�

d−1
A• id0

A•

0 −d0
A•

�

= d−1
B•
�

f −1 ε0
�

By calculating the matrix, it is a chain map if the following conditions are met.

f 0d−1
A• = d−1

A• f −1

f 0 = d−1
B• ε

0 + ε1d0
A•

Thus, a morphism is a chain map from the identity cone if and only if it is a null-homotopic
chain map, which proves that there is a natural isomorphism as stated.

Remark. The identity cone is universal with respect to homotopies. A null-homotopic
chain map f • : A• → B• might admit several factorization through the identity cone.
The factorizations are unique when there is a homotopy witnessing the null-homotopy
property.

A• B•

cone(id•A•)

 

1

0

!

( f •,ε•)

�

f
•

ε
• [1]
�

Corollary 2.4.2.1. The contravariant functor nullHomA(_, B•) is represented by cone(id•B•)[−1].
Thus there is a factorization of null-homotopic maps which ends in B• as follows.

A• B•

cone(id•B•)[−1]

 

ε•

f •

!

( f •,ε•)

�

0
−1
•
�

Lemma 2.4.3. f • is null-homotopic if and only if f • factors through a contractible object.

Proof. Suppose that f • is null-homotopic, then by the universal property of null-homotopy,
it factors through the identity cone. Conversely, suppose that f • : A•→ C• factors through
a contractible object B• as g•h•. Then f • = g•h• = g•id•B•h

•. id•B• is null-homotopic and
homotopy equivalence is a congruence relation shows that f • is null-homotopic.
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By the example in 3.1, any additive category A admits an exact category A,E , where
E = {Split short-exact sequences}. Then there is an exact category (Ch(A), Ch(E)), where
Ch(E) = {level-wise split short-exact sequences}. This exact structure has enough pro-
jectives and injectives which also coincide. Instead of using level-wise split short-exact
sequences, there is a more specific description of this exact structure.

Proposition 2.4.4. The exact structure Ch(E) are diagrams on the form as below, where
r• : A•→ B• is a chain map.

B• cone(r•) A•[1]

 

1

0

!

◦

�

0 −1•
�

◦

Proof. Suppose that there is a conflation (i• : Q•→ R•, p• : R•→ P•) in Ch(A). The goal
is to realize the object R• as a cone of some map. Since the conflation is level-wise split
one get that in the following diagram Ri 'Qi ⊕ P i .

Q1 R1 P1

Q0 R0 P0

i1 p1

d0
Q•

i0

d0
R•

p0

d0
P•

Commutativity of the squares may be rewritten as.

d0
R• i

0 = i1d0
Q• ⇐⇒

�

a b
c d

��

1
0

�

=

�

d0
Q•

0

�

d0
P•p

0 = p1d0
R• ⇐⇒

�

0 d0
P•
�

=
�

0 −1
�

�

a b
c d

�

Thus a = d0
R• , d = −d0

P• and c = 0. The map b : P0→Q1 induces a map b′• : P•[1]→Q•.
This is a chain map by the following calculation.

�

d1
Q• b1

0 d1
P•

��

d0
Q• b0

0 −d0
P•

�

=

�

0 d1
Q• b

0 − b1d0
P•

0 0

�

=

�

0 0
0 0

�

b• is a chain map and thus R• = cone(b•).

To show that (Ch(A), Ch(E)) is a Frobenius category, one must show that every projective
object is contractible. The case of every injective object is contractible will follow from
duality, as there is a covariant and contravariant representation of null-homotopies.

Proposition 2.4.5. An object P• is projective if and only if it is contractible.

Proof. Suppose that P• is projective, then it can be found in a conflation over cone(id•P•)[−1].
By the contravariant universal property of null-homotopies, the identity map is null-
homotopic as described by the diagram below.
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P•[−1] cone(id•P•)[−1] P•

P•

◦ ◦

Conversely, suppose that P• is contractible, then one may see that P• is projective if and
only if cone(id•P•) is projective by the following diagram.

P•[−1] cone(id•P•)[−1] P•

cone(id•P•) P•

◦ ◦

◦

It is enough to show that every identity cone is projective, to show that every contractible
is projective. This is shown if the functor HomCh(A)(cone(id•P•), _) : Ch(A) → Ab is an
exact functor, which is the same as saying that every conflation gets mapped to short-
exact sequences. Suppose further that there is a morphism p• : cone(β•)→ B•[1], where
β• : B•→ C•. To show exactness, one must show that HomCh(A)(cone(id•P•), p•) is a sur-
jection.

First observe that there is an isomorphism HomCh(A)(cone(id•P•), p•)' nullHomA(P•, p•).
Suppose that ( f •,ε•) : nullHomA(P•, B•). Then there is a null-homotopic chain map

( f ′•,ε′•) = (

�

−β•−1ε•

f •

�

,

�

0
(−1)•+1ε•

�

) : nullHomA(P•, cone(β•)[−1]) such that

p•∗( f
′•,ε′•) = ( f •,ε•). A diagram chase suffices to check that this is a chain map and the

the proposed homotopy is in fact a homotopy.

Corollary 2.4.5.1. The class of contractible objects is precisely the class of projectives and
the class of injectives, making (Ch(A), Ch(E)) a Frobenius category. The stable Frobenius
category is equivalent with the homotopy category, i.e. Ch(A) = K(A).

Corollary 2.4.5.2. The homotopy category K(A) is triangulated.

Since the identity cones are injective, one may verify that the cosyzygy functor is the shift
functor (

Ω

_= _[1]). The standard triangles in K(A) are therefore the candidate triangles
on the form below.

A• B• cone( f •) A•[1]
f •
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Derived Categories

3.1 Idempotent Completeness and Krull-Schmidt Categories

This section will introduce the concepts of idempotent complete categories, weakly idem-
potent complete categories, and Krull-Schmidt categories. These are extra conditions that
may be put onto an exact category. The conditions to be introduced are three different
levels of strengthening, where weakly idempotent completeness is the weakest and Krull-
Schmidt is the strongest condition. The concepts introduced in this section is based on
the ideas from [9], [13] and [12]

Definition 3.1.1. An idempotent complete category is an additive category where every
idempotent split. That is, if there is an idempotent p : A→ A (p2 = p), and there is an

isomorphism A' I ⊕ K such that p '
�

0 0
0 1

�

.

Every idempotent in an idempotent complete category admits an analysis. That is the
idempotent p : A→ A has a kernel, cokernel, image, and coimage. In fact, the kernel is
isomorphic to the cokernel, and the image is canonically isomorphic to the coimage. As

p is isomorphic to the matrix

�

0 0
0 1

�

one may observe that the inclusion ι1 : I → A is the

kernel of p, while the projection π1 : A→ I is the cokernel. Similarly the maps ι2 : K → A
and π2 : A→ K are the kernel and cokernel of the map 1− p respectively. Using the fact
that p splits one can construct the following analysis.

A A

I K I

p

π2◦ π1◦ι1 ◦
ι2 ◦

Remark. Assuming that every idempotent in an additive category A has a kernel is suffi-
cient for A to be idempotent complete. The limits and colimits as described above may
be found with the idempotents p and 1− p.

55
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Every additive category A has a fully faithful embedding iA : A→ bA into an idempotent
complete category bA. This completion satisfies the universal property in which if there is
a functor F : A→ B which sends every idempotent p in A to a splitting idempotent, then
the functor factors through the idempotent complete category bA.

A B

bA

iA

F

bF

One may define this completion bA to be the category with objects (A, p), where A is an
object of A and p : A→ A is an idempotent. A morphism bf : (A, p)→ (B, q) is defined as
the morphism bf = q◦ f ◦ p for some morphism f : A→ B. The injection functor is defined
as iA(A) = (A, idA). More on this injection can be found in [9].
Many of the useful theorems needed to describe the triangulated subcategory needed for
the construction of the derived category will arise from the weaker condition of weakly
split idempotents.

Lemma 3.1.1. The following are equivalent in an additive category:

1. Every split-epi has a kernel
2. Every split-mono has a cokernel

Proof. It suffices to prove that (1.) =⇒ (2.), as the other claim is dual. Suppose that
g : B→ A is split-epi with f : A→ B as the corresponding split-mono such that g f = idA.
Since g is split-epi it has a kernel h : C → B.

A B C

f

g

i

h

Looking at the map idB − f g, one may see that g(idB − f g) = g − g f g = g − g = 0, thus
idB − f g factors over the kernel of h as indicated by the dashed arrow.
h is split-mono as hih= (idB − f g)h= h− f gh= h. As h is mono from being a kernel, it
follows that ih= idC . B is the biproduct B ' A⊕ C as idB − f g = hi ⇐⇒ idB = f g + hi.
This in turn implies that i is the cokernel of f .

This lemma is at the core of weakly idempotent complete categories.

Definition 3.1.2. An additive category A is weakly idempotent complete if it satisfies
either of the conditions of Lemma 4.1.

Corollary 3.1.1.1. Let (A,E) be an exact category, then the following are equivalent:

1. The category A is weakly idempotent complete
2. Every split-mono is an inflation
3. Every split-epi is a deflation
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With the notion of a weakly idempotent complete category, the Obscure axiom can be
strengthened into Heller’s cancellation axiom.

Proposition 3.1.2. Heller’s cancellation axiom For an exact category (A,E) the following
are equivalent:

1. A is weakly idempotent complete
2. Let f : A → B and g : B → C be two morphisms in A. Then if g f : A → C is a

deflation, then g is a deflation as well.

Proof. Suppose (1.). Let f : A→ B and g : B→ C be morphisms such that their composi-
tion g f : A→ C is a deflation. Since g f is a deflation, the pullback square exists.

A

B′ B

A C

idA

f

f ′

ð
h

f ′
◦

g

g f
◦

By using the universal property, one may see that g ′ is split-mono, hence it admits an
inflation h′ : A′→ B′. The claim is that hh′ : A′→ B is the kernel of g. If the claim is true,
the Obscure axiom yields that g is a deflation.
To show that hh′ is the kernel one must show the universal property. Let t : T → B be a
test object, such that g t = 0.

T

A′ B

C

t

t ′

hh′

0 g

It is known that t ′ exists as t factors through B′ with t ′′, by the pull-back property. As
g ′ t ′′ = 0, t ′′ factors through A′ using the fact that h′ is the kernel of g ′, this proves the
claim.
For the other direction, suppose (2.) instead and let g f = idA, g f is a deflation and g is
split-epi. By the assumption, g is a deflation, so it has a kernel.

Lastly, suppose that A is an idempotent complete category and that there are some idem-
potents over an object A. These idempotents admit a description of A as a direct sum
of kernels and cokernels. There is, however, no guarantee that these decompositions are
unique. To fix this, define the following category.

Definition 3.1.3. Let A be an additive category. An object A is called indecomposable if
the endomorphism ring of A is local.
An object is called decomposable if it is not indecomposable.
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Definition 3.1.4. An additive category A is called Krull-Schmidt if any object A decom-
poses into a finite direct sum of indecomposable objects.

Having that each indecomposable object is local is enough for the following proposition
to hold.

Proposition 3.1.3. Every decomposition in a Krull-Schmidt category is unique up to iso-
morphism

As being Krull-Schmidt admits decomposition whenever an endomorphism ring is not
local implies a connection to idempotent completeness. That is whenever there is an
idempotent over an object, this idempotent gives rise to two comaximal ideals for the
endomorphism ring. This gives us the decomposition which is required for the idempo-
tent to split. Moreover, there is a deeper connection between being Krull-Schmidt and
idempotent complete.

Definition 3.1.5. Let R be a ring. We say that R is semiperfect if R as a module over itself
admits a decomposition RR' P1⊕P2⊕ ...⊕Pn such that each Pi has a local endomorphism
ring.

Remark. For a ring R the following conditions are equivalent:

• The category modR is a Krull-Schmidt category
• R is semiperfect
• Every simple R-module has a projective cover
• Every finitely generated R-module has a projective cover

Thus any of these conditions can be taken to be the definition of semiperfect.

With this definition, one can state the following proposition, which says whenever an
idempotent complete category is Krull-Schmidt.

Proposition 3.1.4. Let A be an additive category, then the following are equivalent:

1. A is Krull-Schmidt
2. A is idempotent complete and every endomorphism ring is semiperfect.

Example. Let Λ be any artin R-algebra, then modΛ is a Krull-Schmidt category. As an
example, the category of finitely generated real vector spaces is Krull-Schmidt. Every
vector space is a finite direct summand of the only indecomposable vector space R.

More details and examples of Krull-Schmidt categories may be found in Henning Krause’s
notes ([13]).

3.2 Normal Morphisms and Long Exact Sequences

For many of the purposes to encounter, a notion of long exact sequence is needed. This
section aim to develop the definitions needed to talk about exactness, as well as show
how well it is reflected by the classical lemmata from homological algebra. This section
is based on [9], an every unproven result may be found there.
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Definition 3.2.1. Let (A,E) be an exact category. A morphism f : A→ B is called normal
if it has a deflation-inflation factorization. They will be drawn as in the following diagram.

A B

I

◦

f
◦

◦

Remark. A monomorphism is normal if and only if it is an inflation. Dually, an epimor-
phism is normal if and only if it is a deflation.

Remark. In general, the composition g f of two normal morphisms f and g are not nor-
mal. However, if g is a deflation, the composition can be seen to normal, as deflations are
closed under composition. One may also observe that an exact category is abelian if and
only if normal morphisms are closed under composition.

Lemma 3.2.1. Hellers factorization lemma. The factorization of normal morphisms is
unique up to unique isomorphisms.

Proof. Suppose that a normal morphism admits two different factorizations. That means
there exists a commutative diagram as follows.

A I

I ′ B

p
◦

q◦

φ
i

◦φ′

j
◦

By assumption ip = jq, thus jq◦Ker(p) = 0. q◦Ker(p) = 0 as j is mono, thus there exists
a morphism φ : I → I ′ uniquely such that q = φp. Now ip = jq = jφp, and as p is epi
it follows that i = jφ. Reiterating the argument, but with Ker(q) instead, there exists a
φ′ uniquely such that p = φ′q and j = iφ′. Thus i = jφ = iφ′φ, and since i is mono it
follows that idI = φ′φ; dually IdI ′ = φφ′.

Remark. Due to Heller’s factorization axiom, one may see that normal morphisms admit
an analysis.

A B

K I C

f
◦

p◦ Cok(i)◦Ker(p)
◦ i ◦

Observe that the object I coincides with the image and coimage of f . This object will then
be referred to as the image of f . As a consequence of this unique factorization, a normal
morphism is iso if and only if it is mono and epi.

Definition 3.2.2. A sequence of normal morphisms is exact if the inflation of the fac-
torization together with the consecutive deflation forms a conflation. That is there are
conflations between morphisms as in the following diagram. The conflation pairs are
highlighted with different colors.
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. . . A−1 A0 A1 . . .

I−2 I−1 I0 I1

p−2◦

f−2◦
p−1◦

f−1◦
p0◦

f0◦
f1◦

p1◦i−2 ◦
i−1 ◦

i0 ◦
i1 ◦

A morphism of exact sequences is the same as a morphism of sequences. That is a collec-
tion of morphisms (...,φ−1,φ0,φ1, ...) such that the squares in the diagram commute.

. . . A−1 A0 A1 . . .

. . . B−1 B0 B1 . . .

a−2◦

φ−1

a−1◦

φ0

a0◦

φ1

a1◦

b−2◦
b−1◦

b0◦
b1◦

Remark. An exact sequence of normal morphisms is called short exact if it consists of
morphisms on the form (, 0, i, p, 0, ), i.e. as in the following diagram.

0 A B C 0

0 A C 0

0◦ i◦
p
◦

p
◦ 0◦

0◦0 ◦ i◦

Observe how conflations are exactly the class of short exact sequences.

This definition admits properties that mimic properties from homological algebra.

Lemma 3.2.2. 5 Lemma. Given two 5 term exact sequences and a morphism between them
as in the diagram. Then φ is an isomorphism as well.

A0 A1 A2 A3 A4

B0 B1 B2 B3 B4

a0◦

'

a1◦

'

a2◦

φ

a3◦

' '
b0◦

b1◦
b2◦

b3◦

Lemma 3.2.3. Kernel-Cokernel sequence. Let (A,E) be an exact category which is weakly
idempotent complete. Suppose that there are composable normal morphisms f and g such
that g f is normal as well. Then there exists an exact sequence.

Ker( f ) Ker(g f ) Ker(h) Cok( f ) Cok(g f ) Cok(g)◦ ◦ ◦ ◦ ◦

Remark. If (A,E) is an exact category, then one may show that the category A admits
Kernel-Cokernel sequences if and only if it is weakly idempotent complete.

The Kernel-Cokernel sequence enables one to prove that the snake lemma holds in weakly
idempotent complete categories.

Corollary 3.2.3.1. Snake Lemma. Let (A,E) be a weakly idempotent complete category.
Suppose there is a diagram in A having exact rows.

A B C 0

0 A′ B′ C ′

f◦

◦
g◦

◦
h

◦

◦ ◦
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Then there is an exact sequence.

Ker( f ) Ker(g) Ker(h) Cok( f ) Cok(g) Cok(h)◦ ◦ δ◦ ◦ ◦

3.3 Homology and Derived Categories

This section aims to provide a construction for derived categories and discuss the under-
lying assumptions. Every result in this section may be found in [9]. In the case where A
is abelian, the derived category is constructed by localizing at quasi-isomorphisms. How-
ever, in the context of exact categories, how much of the theory transfers? For abelian
groups, homology is defined to be the quotient of the kernel of a map by the image of the
preceding map. For exact categories, the discussion is a bit more complex. Consider the
usual construction of homology, when does the homology exist?.

. . . A−1 A0 A1 . . .

Im(d−1
A• ) Ker(d0

A•) H0(A•)

d−2
A•◦

p◦

d−1
A•◦

d0
A•◦

d1
A•◦

ι ◦
h

κ ◦

?

The complex must admit an analysis at each differential, so assume that the complex only
contains normal morphisms. By looking at the 0-th homology one can find a condition
for when the homology exists. Using the fact that d0

A•ι = 0, there is an unique morphism
h, such that ι = κh by the universal property. The 0-th homology exists whenever the
morphism h has a cokernel, and then h satisfies the assumption of the Obscure axiom,
making h an inflation. One way to not break this condition is to assume that A is weakly
idempotent complete. By Heller’s cancellation axiom it is known that h is an inflation,
which then proves the existence of the cokernel. However, this only allows the construc-
tion of quasi-isomorphisms at weakly idempotent complete categories.

Recall that a quasi-isomorphism is a chain map f • : A•→ B• such that H∗( f •) : H∗(A•)→
H∗(B•) is an isomorphism in homology. In the abelian case, suppose that f • : A•→ B• is
a quasi-isomorphism. Consider the standard triangle

A• B• cone( f •) A•[1]
f •

in the homotopy category K(A), then f • be-
comes an isomorphism in the derived category D(A). This shows that there is a quasi-
isomorphism between 0• and cone( f •) by corollary 1.1.4.1. It follows that cone( f •) is an
exact sequence, and this motivate to the following definition.

Definition 3.3.1. Let (A,E) be an exact category. Define the category Ac(A) ⊂ K(A) to
be the full category whose objects are exact sequences.

The exact complexes are also referred to as acyclic complexes. Note that this subcategory
is not in general either thick or closed under isomorphisms. To be able to show that it
is a triangulated subcategory, it suffices to show that the mapping cone of two acyclic
complexes is again acyclic.
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Lemma 3.3.1. Let f • : A• → B• be a chain map between acyclic chain complexes, then
cone( f •) is acyclic as well.

Proof. Suppose that A• and B• are acyclic chain complexes and that f • : A•→ B• is a chain
map. The chain map factorizes through the images/kernels, as in the diagram below.

A−1 A0 A1

Im(d−1
A• ) Im(d0

A•)

Im(d−1
B• ) Im(d0

B•)

B−1 B0 B1

d−1
A•

◦

f −1

d0
A•

◦

f 0 f 1

◦

f −1′

◦

f 0′

◦ ◦
d−1

B•

◦
d0

B•

◦

This shows that the chain map may be promoted to a morphism of conflations ( f −1′, f 0, f 0′).
By lemma 2.1.6 this morphism factors through another conflation in the following man-
ner.

Im(d−1
A• ) A0 Im(d0

A•)

Im(d−1
B• ) C0 Im(d0

A•)

Im(d−1
B• ) B0 Im(d0

B•)

ð
ù

◦ ◦

◦
ð
ù

◦

◦ ◦

These factorizations exist at every index over the chain complexes. In this way, one may
find the diagram below. Note that two bicartesian squares may be connected to make a
bicartesian rectangle.



Chapter 3: Derived Categories 63

A−1 A0 A1

Im(d−1
A• ) Im(d0

A•)

C−1 C0 C1

Im(d−1
B• ) Im(d0

B•)

B−1 B0 B1

d−1
A•

◦

d0
A•

◦◦

f −1′

ð
ù

◦

f 0′

ð
ù

ð
ù

◦ ◦

ð
ù

◦

◦

◦

◦

d−1
B•

◦
d0

B•

◦

By proposition 2.1.3 there are conflations, along the cone of f •.

C0 Im(d0
A•) A1

B0 Im(d0
B•) C1

◦
ð
ù

◦

f 0′ ð
ù

◦ ◦

=⇒ C0 A1 ⊕ B0 C1

By Heller’s cancellation axiom, combining these sequences creates a long exact sequence.
This shows that cone( f •) is acyclic.

... A0 ⊕ B−1 A1 ⊕ B0 A2 ⊕ B1 ...

C−1 C0

d−2
cone( f •) d−1

cone( f •)

◦

d0
cone( f •)

◦

d1
cone( f •)

◦ ◦

Corollary 3.3.1.1. Ac(A) is a triangulated subcategory of K(A).

Since Ac(A) is triangulated, it makes sense to talk about the class of morphisms MorAc(A).
By definition, a morphism f • is in MorAc(A) if and only if cone( f •) is in Ac(A). Therefore
it makes sense to say that the class of morphisms MorAc(A) may be regarded as quasi-
isomorphisms.

Corollary 3.3.1.2. The derived category is defined by the Verdier quotient D(A) = K(A)/Ac(A)
whenever it exists, and it is triangulated.

Remark. The derived category exists whenever MorAc(A) is a locally small multiplicative
system.

As stated, it is not true a priori that Ac(A) is either thick or closed under isomorphisms.
When this is not true, it might happen that C• ' A• ⊕ B• where C• is acyclic, but neither
A• or B• need not be acyclic. However, the kernel of localization ØAc(A) contains all of
these objects. In this way A• and B• will be related in the derived category, even though
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they are not quasi-isomorphic. The following lemma and corollary say whenever this is
not a problem.

Lemma 3.3.2. The following are equivalent:

1. Every null-homotopic chain complex is acyclic
2. The category A is idempotent complete
3. The subcategory Ac(A) is closed under isomorphisms

Corollary 3.3.2.1. The subcategory Ac(A) is thick if and only if A is idempotent complete.

To weaken the conditions above, one can set boundedness conditions on the chain com-
plexes. A chain complex is called left bounded if there is some m : N such that for any
n : N and n ≤ m < 0 it is true that An = 0. Likewise, right bounded complexes are the
defined for n ≥ m > 0 such that An = 0. A chain complex is called bounded if it is both
left bounded and right bounded.

Definition 3.3.2. The category K(A)+,K(A)− and K(A)[ are the homotopy categories of
left bounded, right bounded and bounded respectively. Ac(A)∗ ⊂ K(A)∗ for ∗ : {+,−, [}
will be the subcategory of acyclic chain complexes satisfying the correct boundedness
condition.
Similarly one defines the (left/right) bounded derived category as D∗(A) = K∗(A)/Ac(A)∗.

Lemma 3.3.3. The following are equivalent:

1. The subcategories Ac(A)∗ ⊂ K(A)∗ for ∗ : {+,−} are thick
2. The subcategory Ac(A)[ is thick
3. The category A is weakly idempotent complete

3.4 The Way Forward

At the end of this thesis, some topics involving derived categories will be looked. This
is a sneak peek into the theory of derived functors and Auslander-Reiten triangles. This
section is based on [4] and [14].

3.4.1 Derived Functors

Suppose that A and B are abelian categories, and that there is an additive functor F : A→
B between the categories. This functor can be lifted to an additive functor between the
chain complex categories and a triangulated functor between the homotopy categories
by applying the functor level-wise. Unfortunately, when localizing down to the derived
categories there is no simple lift. As there is no way of assuring that a quasi-isomorphism
gets mapped to another quasi-isomorphism, the lift will not be well-defined. This is how-
ever true whenever F(Ac(A)) ⊆ Ac(B), which is the same as F being an exact functor.
As known in the classical sense of derived functors, is that they admit a left and right
construction using projective and injective resolutions respectively.
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K(A) K(B)

D(A) D(B)

F

qA qB

?F

For a more general discussion, suppose that T and S are triangulated categories and that
there is a triangulated subcategories M ⊆ T such that the Verdier quotient exists. When
does a triangulated functor F : T → S induce a functor ?F : T /M→ S? Similar to above,
F admits a lift if every morphism in MorM gets inverted. This functor is induced by the
universal property of T /M

T S

T /M

q

F

?F

To answer the question about derived functors, this thesis will follow Deligne’s approach
on how to construct right derived functors. Suppose there is an object A : T /M and a
functor F : T → S, then let rF(_, A) : Sop→ Ab be a contravariant functor sending objects
B : S to groups of semi left fractions ( f : S(B, FC)|g : T (A, C)) such that g : MorM. The
caveat is that the functor sends objects of T /M and S to arrows in T and S. This is well-
defined since q(A) = A by definition and no choice of arrows need to be specified by the
functor. Thus the localization is hidden from the functor at the element level. To illustrate
how these elements look like the semi left fraction is to the left, and the equivalence
relation on this set is given by the diagram on the right. In the same manner, as before,
blue arrows denote arrows located in MorM.

B FC

C A

f

g

FC ′ C ′

B FC ′′′ C ′′′ A

FC ′′ C ′′

Fu uf ′

f ′′′

f ′′

g ′

g ′′′

g ′′
F v v

The aim is to construct a functor RF : U → S on a subcategory U of T /M. The functor RF
is said to be defined at A if the functor rF(_, A) is represented, i.e. S(_,RFA) 'rF(_, A).
This isomorphism also defines a canonical morphism canr : F =⇒ RF ◦ q given by the
identity semi left fraction on every object A : U .

FA FA A A ⇐⇒ FA RFAcan

In order to show that RF is a functor, one must show that rF(_, A) is functorial at the
index A. That is, suppose there is a left fraction t−1s : A→ A′ in T /M, then for ( f |g) as
described above one may define rF(t−1s)( f |g) = (Fs′ ◦ f |g ′ t). g ′ and s′ are defined with
the right Ore condition on MorM, this may be seen with the diagram below.
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FC ′′ C ′′

FC ′ C ′ A′′

B A A′

Fs′
s′

g ′

f
g

s
t

Functoriality of rF(_, _) shows that there is a functor RF , where the action on maps is
defined with the representative isomorphism.

S(_,RFA) rF(_, A)

S(_,RFA′) rF(_, A′)

'

RF(t−1s) rF(t−1s)

'

If U is the full subcategory of objects which are defined for RF , then there is a triangu-
lated functor RF : U → S. U is in fact triangulated as F is a triangulated functor, so it
commutes with the autoequivalence ΣT . Moreover, if I : q−1U → T is the inclusion from
the preimage of U into T , then the canonical morphism induces a morphism of triangu-
lated functors can : F I =⇒ RF I .

Dually, one may define left derived functors using semi right fractions. As the set MorM
is multiplicative, this doesn’t make any problems. If the functor F is in fact exact in the
sense that F sends morphisms in MorM to isomorphisms, then RF ' LF . If one would
define derived functors between abelian categories A and B, then the classical versions
may be retrieved by taking homology, i.e. RnF = Hn(RF) and LnF = H−n(LF).

Suppose that the categories A and B have exact structures and that there is an additive
functor F : A→ B, then there is a connection to the classical derived functors. Let AI be
the full subcategory of injective objects, since every conflation in AI splits, F |AI : AI → B
is an exact functor. Thus F induced on K(A) preserves quasi-isomorphisms of left bounded
injective complexes. In this manner there is a functor RF : D+(AI)→ D+(B), and more-
over this functor extends to the subcategory U ⊆ D+(A) where every object in U admits
an injective resolution.

3.4.2 Auslander-Reiten Triangles

Let K be a field. For the rest of this thesis it will be assumed that A is an additive K-linear
category, that is it is enriched over ModK, and it is also Krull-Schmidt. With these assump-
tions, one may be able to define a special set of triangles whenever A has a triangulation.
As A is Krull-Schmidt, the notion of indecomposable objects exists, which motivates the
definition of triangles which acts as indecomposable triangles.

Definition 3.4.1 (Auslander-Reiten triangles). A triangle (X , Y, Z , u, v, w) is called an
Auslander-Reiten triangle if it satisfies the following conditions:
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1. (AR1) X and Z are indecomposable
2. (AR2) w 6= 0
3. (AR3) If a morphism f : X → W is not split mono, then there is a morphism f ′ :

Y →W , such that f = f ′u

Auslander-Reiten triangles will be abbreviated to AR-triangles

A category A has enough AR-triangles if, for every indecomposable object, it is a part of
a triangle satisfying the conditions above. One may show that the axioms for AR-triangles
are self dual, that is (X , Y, Z , u, v, w) is an AR-triangle if and only if (X op, Y op, Zop, uop, vop, wop)
is a triangle. Note that (AR2) forces the morphisms u and v to not be split. To see that
these triangles represent irreducibility, the following definition is needed.

Definition 3.4.2 (Irreducible morphisms). A morphism f : X → Y is called irreducible
if f is neither split mono nor split epi, and for any factorization f = f2 f1 either f1 is split
mono or f2 is split epi.

Proposition 3.4.1. Let (X , Y, Z , u, v, w) be an AR-triangle, then the following hold:

1. Z is unique up to isomorphism of triangles
2. u and v are irreducible morphisms
3. If f : X → X1 is irreducible, then there is a split epi f ′ : Y → X1 such that f = f ′u.

The motivation for studying AR-triangles comes from their similarity with Auslander-
Reiten sequences. An Auslander-Reiten sequence is a short exact sequence over a finite-
dimensional K-algebra, which is not split and satisfying (AR1) and (AR3). Thus one
may observe that the definition of AR-triangles is exactly the stable Auslander-Reiten
sequences. If A is a finite-dimensional K-algebra, then one has the following results.

Theorem 3.4.2. If A is a finite-dimensional K-algebra of finite global dimension, then the
derived category D[(A) has enough AR-triangles.

Proposition 3.4.3. The following are equivalent:

1. (X , Y, Z , u, v, w) is an AR-triangle in D[(A)
2. in j.dim(X )≤ 1 and pro j.dimZ ≤ 1
3. HomA(I , X ) = 0 for any injective I and HomA(Z , P) = 0 for any projective P
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