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Abstract

When studying time-frequency analysis, one encounters unitary translation and
modulation operators of great importance. These make up a framework for an
operator algebraic approach to time-frequency analysis and can be studied through
noncommutative tori, the universal C∗-algebras generated by two such operators.
Noncommutative tori shows up as dynamical systems in terms of rotation algebras,
in group theory as (completed) twisted group algebras, and even in theoretical
physics, as interesting arenas for Yang-Mills theory on noncommutative spaces.

We develop tools originating from ideas in algebra and topology, such as Hilbert
C∗-modules, which take us towards the operator algebraic formulation of Morita
equivalence, and we generalize topological K-theory to noncommutative scen-
arios and present powerful consequences, such as the classification theorem of
AF-algebras. Higher K-groups and computational tools are introduced, such as Bott
periodicity, the six-term exact sequence and the Pimsner-Voiculescu sequence for
crossed products. We attempt to apply Morita equivalences and K-theory to non-
commutative tori through the work of Rieffel and Pimsner-Voiculescu, which yields
a classification of isomorphism and Morita equivalence classes of noncommutative
tori.

The thesis aims to give an overview of some of the beautiful theory and fruitful
techniques coming from the interaction between several branches of mathematics,
and hence the focus will lie on developing the theory.
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Sammendrag

Når man studerer tidsfrekvensanalyse, møter man unitære translasjons- og modu-
lasjonsoperatorer. Disse legger grunnlaget for en operatoralgebraisk tilnærming til
emnet, og de studeres ofte gjennom ikke-kommutative tori, som er de universale
C∗-algebraene generert av slike operatorer. Ikke-kommutative tori dukker blant
annet opp som dynamiske systemer i form av rotasjonsalgebraer, i gruppeteori
som (komplette) vridde gruppealgebraer og til og med i teoretisk fysikk, hvor de
dukker opp som en interessant arena for Yang-Mills-teori i ikke-kommutative rom.

Vi utvikler verktøy fra ideer i algebra og topologi, slik som Hilbert C∗-moduler,
som tar oss mot en operatoralgebraisk formulering av Morita-ekvivalens, og vi
generaliserer topologisk K-teori til det ikke-kommutative tilfellet, hvilket gir sterke
resultater, slik som klassifikasjonsresultatet for AF-algebraer. Høyere K-grupper
og beregningsverktøy blir introdusert, slik som Bott-periodisitet, eksakte følger
med seks ledd og Pimsner-Voiculescu-følgen for kryssede produkter. Vi forsøker
å følge arbeidene til Rieffel og Pimsner-Voiculescu for å klassifisere isomorfi- og
Morita-ekvivalensklasser av ikke-kommutative tori.

Målet med oppgaven er å gi et overblikk over noe av den vakre teorien og de
nyttige teknikkene som oppstår når forskjellige felter i matematikken samarbeider.
Dermed vil fokuset ligge på å utvikle teorien.
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Chapter 1

Introduction

This thesis can be viewed as the final product of my bachelors degree in mathematics
at NTNU. Readers are not expected to have the same kind of background as myself,
but will be encouraged to read the thesis nevertheless. Some background in analysis,
algebra, and topology must be assumed to avoid vast amounts of pages concerning
preliminaries, but we still include the most important concepts in the next section.

Why this immense amount of pages?

That is a good question, my friend. There are a lot of beautiful concepts to visit,
most of which deserve more than a brief introduction, especially if we want to
take the leap from a close-to-no prior knowledge of C∗-algebras to understanding
the work by Pimsner-Voiculescu and Rieffel. To make sure we motivate, introduce
and explore the concepts in sufficient depth, we gladly accept the fact that there is
no page limit on such a thesis.

The author only knew the theory on C∗-algebras equivalent to a first course, for
example as covered in the preliminaries, and the first basic definitions of operator
K-theory together with a sufficient amount of homological algebra and algebraic
topology. Therefore, most of what is written after the preliminaries, including the
section on Gabor analysis in the preliminaries, was first introduced to the author
throughout the spring of 2021, and is therefore included in-depth throughout the
thesis.

Potential readers, beware! In fear of this thesis finding its place in some sort of
“uncanny valley” between a bachelors thesis and a poorly written textbook, we will
omit a bunch of technical proofs to prioritize giving an ambitious overview.

1
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What are we studying?

There are some main players in this thesis, which deserve an honorable mention
before we start the thesis in full. These are introduced below (perhaps in a too
intense manner), and we include the topics we cover in each chapter.

Player 1 - A noncommutative torus.

The first player, given a fixed θ ∈ R, can be found in the corners of chapter 3 and
8. Through primary motivation from time-frequency analysis, it is the C∗-algebra
generated by two unitary operators satisfying a given commutation relation. It has
deep connections to Gabor frame theory, it can be realized both as twisted group
algebras and as a dynamical system, it yields an interesting arena for Yang-Mills
theory and is a brilliant example of a noncommutative space. Its name may scare
away any topologically challenged analyst, but its theory lies deep in the heart of
applied harmonic analysis. Certainly, we are talking about the noncommutative
torus, Aθ .

Player 2 - A Hilbert C∗-module.

Undergraduates are scared of him (or her), algebraists think he (or she) is just a
messy construction, your regular non-operator algebraist does not understand him
(or her). It is the C∗-algebraic generalization of a Hilbert space and can be found
in the vast plains of chapter 4. In its own right, it yields powerful tools to adapt
Hilbert space theory to C∗-algebras. Given Morita equivalent C∗-algebras A and B, it
works as the manifestation of the Morita equivalence, passing representations and
ideal lattices back and forth through its powerful, A- and B-valued inner products.
Without further ado, we are of course talking about the Hilbert C∗-module, AXB.

Player 3 - A pair of operator K-groups.

It is abstract, but immensely geometrical at the same time. Hiding behind chapters
5 and 7, it is vital to our understanding of AF-algebras in 6. Defined as analogues
to the bundle-theoretic constructions in topological K-theory, they manifest as
equivalence classes of projections and unitaries. Through Bott periodicity and
techniques from homological algebra, they yield six-term exact sequences, which
play prominent rôles in understanding noncommutative tori. They are functorial,
they commute with colimits and they are universal. Given a C∗-algebra A, we are
indeed talking about the K-groups, K0(A) and K1(A).

With the introduction of the players out of the way, we are soon ready to start the
brawl.
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Digressions

This thesis does not set out to do revolutionary things. The author does certainly
believe that we can’t have any more fun reading or writing than what we make
for ourselves. As we are not doing research (yet), we get some freedom to just
explore the world of mathematics, which we will certainly use for what it is worth.
Therefore, we use the notion of a Queequeg to distinguish traditional remarks from
purely exploratory digressions.

Queequeg 1.0.1. If the remarks are exploratory digressions that take us way outside
the scope of the thesis, we will call them Queequegs. This word comes from the
brilliant book “Moby Dick” ([20]) by Herman Melville, where Queequeg shows
up as an easy-going son of a tribal chief leaving his island society to explore and
experience the world, just out of pure curiosity. Therefore, when we encounter a
Queequeg, readers should be aware that these are remarks meant to open doors
to further exploration, deeper connections, and perhaps even to point readers to
topics way beyond the authors knowledge.
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teland" for enlightening discussions the last year, both regarding academic and
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A small poem

Now my thesis has started to merge
And the timing is right on the verge
But I have delivered
You can say I have shivered
Because the number of pages diverge

- The author



Chapter 2

Preliminaries

The field of operator algebras requires a lot of background to delve into. The
reason for this, as we will see in this thesis, is that tools from algebra, topology,
and analysis all come together to develop new theories.

If an optimal reader exists, this reader should have taken at least a first course in C∗-
algebras, roughly similar to what is covered by the first chapter of Putnam ([29]).
We shall mention the most important theorems, propositions, and definitions in
this chapter, but we will assume that readers know basic functional analysis, some
algebra (preferably basic representation theory and homological algebra), as well
as some algebraic topology.

Readers with different backgrounds are also encouraged to read the thesis. Those
should be aware that extensive googling, nlab’ing and wikipedia’ing may become
necessary for certain parts of the thesis, as universal properties of kernels and
cokernels, fun facts concerning short exact sequences or functional analysis and
intuition from bundle theory may be thrown around as in a hurricane.

We introduce some important preliminaries in (a not necessarily meaningful) order.

2.1 Time-frequency analysis

Even though Gabor analysis will not be explicitly used in this thesis, there will be
a few remarks about several topics from the field. Mostly, this will be references to
papers by Luef ([14], [15], [16], [17]), where this branch of time-frequency analysis
yields beautiful connections to topics such as projections in noncommutative tori
and differential geometry. We therefore only mention the basic definitions and
some beautiful results such that readers are able to understand some of these
remarks. Be aware that this is not even close to a complete coverage of the basics,
as we only skim over the main definitions without the motivation or depth they
deserve. We refer to [7] and the references therein for a more thorough treatise.

5



6 Angelsen: K-theory, Morita equivalences and noncommutative tori

To be able to do time-frequency analysis, we need a lattice to sample the time and
frequency from.

Definition 2.1.1. A lattice Λ ⊆ R2 is a discrete subgroup of the form Λ = AZ2,
where A is a real-valued, invertible 2× 2-matrix. Usually, we consider lattices of
the form Λ= αZ× βZ. We define the volume of the lattice by vol(Λ) = det(A).

We will return to the following operators in chapter 3, but as they are quite
important, we define the translation and modulation operators on L2(R) as

Tx f (t) = f (t − x),

Mω f (t) = e2πiωt f (t),

respectively.

For λ= (x ,ω) ∈ Λ, define π(λ) = MωTx as the time-frequency shift.

Definition 2.1.2. The Fourier transform on L2(R) is given by

F( f )(ω) = f̂ (ω) =

∫

R
f (t)e−2πiωt .

Definition 2.1.3. For a fixed window function g ∈ L2(R), define the short-time
Fourier transform (STFT) with respect to g on L2(R) as

Vg f (x ,ω) = 〈 f ,π(x ,ω)g〉=
∫

R
f (t)g(t − x)e−2πiωt d t = F

�

f Tx g
�

(ω).

If we define a weight function to be a non-negative, continuous function v : R2→ R,
we say a weight function m : R2→ R is v-moderate if m(x + y)≤ C v(x)m(y) for
x , y ∈ R2.

With this, we can define modulation spaces.

Definition 2.1.4. Fix p, q ∈ [1,∞] and let m be a v-moderate weight. Then,
modulation spaces are defined as all f ∈ L2(R) such that the STFT of f , Vg f , ends
in the weighted, mixed-norm space Lp,q

m (R2). More precisely, if Lp,q
m (R2) denotes

all h : R2→ C such that

‖h‖Lp,q
m (R2) :=

∫

R

�∫

R
|h(x ,ω)|pm(x ,ω)pd x

�q/p

dω

�1/q

<∞,

we define modulation spaces as

M p,q
m (R) =

¦

f ∈ L2(R) : ‖ f ‖M p,q
m

:=






�

Vg f
�





Lp,q
m (R2) <∞

©

.

There are a few special such spaces.



Chapter 2: Preliminaries 7

Definition 2.1.5. If we take p = q = 1 and we let ms(x ,ω) = (1+ |x |2 + |ω|2)s/2

be a weight function, we can write M1
s (R) := M1,1

ms
(R).

If we take ms = 1 to be the identity, we write S0(R) := M1
1 , which is called

Feichtinger’s algebra.

All of these can be shown to be invariant under the Fourier transform.

We can define Schwartz space, which is the space of functions with rapidly decaying
derivatives, as an intersection of these modulation spaces. Indeed, this is equivalent
to the original definition.

S(R) =
⋂

s≥0

M1
s (R).

By the inversion formula for the Fourier transform, the Fourier transform is a
homeomorphism on S(R).

We also define frames in a Hilbert space H, which intuitively are meant to be
orthonormal bases with some slack.

Definition 2.1.6. A frame is a sequence {ei} indexed by i ∈ I such that we can
find constants A, B ≥ 0 making the frame inequality hold, that is, for all x ∈ H,

A‖x‖2 ≤
∑

i∈I

|〈x , ei〉|
2 ≤ B‖x‖2. (2.1)

B is called the Bessel bound, as it implies all frames are Bessel sequences, and A
is called the redundancy of the frame. If A = B, the frame is called tight, and if
A= B = 1, the tight frame is called a Parseval frame.

The dual frame is any frame {e′i} satisfying

x =
∑

i∈I




x , e′i
�

ei ∀x ∈H. (2.2)

To turn this theory into an operator-based theory, we define the following operators.
Let {ei} be a frame for H.

Definition 2.1.7. The analysis operator C : H→ `2(I) is given by x 7→ {〈x , ei〉}i∈I .
The synthesis operator D : `2(I) → H is given by {ci}i∈I 7→

∑

i ciei. The frame
operator S = DC = C∗C = D∗D : H→H is given by x 7→

∑

i〈x , ei〉ei .

In fact, S is bounded, positive, invertible, and self-adjoint. The set {S−1ei}i turns
out to be a dual frame to {ei}i. We call {S−1ei}i the canonical dual frame. By
positivity, S−1/2 is well-defined, and it turns out that {S−1/2ei}i is a tight frame,
which we call the canonical tight frame associated to {ei}i .

Using π(λ), we can define a special type of system, which is vital to time-frequency
analysis.
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Definition 2.1.8. A Gabor system with atom g is a set G(g,Λ) = {π(λ)g : λ ∈ Λ}.
If this is a frame, we call it the Gabor frame, and an atom γ of any dual frame
G(γ,Λ) of G(g,Λ) is called a dual atom.

Naturally, a multi-window Gabor system is a set
�

π(λ)g j : λ ∈ Λ, 1≤ j ≤ n
	

with a
finite number of window functions g j ∈ L2(R).

The (more general) form of the mixed Gabor frame operator in the single atom
case, which is extended to multi-window frames by summation, is given by

Sg,γ,Λ : L2(R)→ L2(R)

f 7→
∑

λ∈Λ

〈 f ,π(λ)g〉π(λ)γ. (2.3)

It turns out Sg,γ,Λ = id if and only if g and γ are dual Gabor atoms.

Given a lattice Λ, which we often consider to be a separable lattice Λ= αZ× βZ,
it is interesting to know which requirements we need on the atom g or vol(Λ) (e.g.
θ = αβ) for the system G(g,Λ) to be a frame.

We state the following important results.

Theorem 2.1.9. (Density)
If G(g,Λ) is a frame, then vol(Λ)≤ 1.

Theorem 2.1.10. (Balian-Low)
If G(g,Λ) is an orthonormal basis for L2(R), then we either have t g(t) /∈ L2(R) or
ω ĝ(ω) /∈ L2(R).

2.2 Functional analysis

If readers have lacking knowledge of functional analysis, we may refer to [3] for a
good introduction. Several of the results mentioned here can simply be done for
Banach spaces, but since these results will mostly be applied to Hilbert spaces, we
state definitions and theorems mostly in terms of Hilbert spaces.

Theorem 2.2.1. (Closed Graph Theorem) Let X and Y be Banach spaces and let
T : X → Y be a linear map. If the graph of T is closed, then T is continuous.

Definition 2.2.2. Let H be a Hilbert space and let T be a bounded, linear operator
on H, which we denote by T ∈ B(H). We say T is compact if the image of the
closed unit ball in H under T is relatively compact in H, that is, if its closure is
compact in H. We denote the subalgebra of B(H) of compact operators as K(H),
or sometimes just K, if the Hilbert space does not matter.

Proposition 2.2.3. Let H be a Hilbert space. All finite rank operators on H are
compact, and K(H) is the closed span of the rank-one operators g 7→ (g, k)h for
g, h, k ∈H.
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Proposition 2.2.4. K(H) is a closed, two-sided ideal of B(H). In particular, it is a
C∗-subalgebra of B(H).

Since this is a proper ideal for infinite-dimensional Hilbert spaces, we surely expect
the identity to not be a compact operator in this case. Indeed, it is possible to
show that the identity operator is compact on a normed space X if and only if X is
finite-dimensional.

To be able to understand the topology on character space in the next section, we
need the following definition.

Definition 2.2.5. The weak∗-topology is the coarsest topology on X ∗ such that all
representable functionals on X ∗ are continuous, that is, it is the topology generated
by preimages of open balls under functionals φx : f 7→ f (x) for f ∈ X ∗.

2.3 A crash course on C*-algebras

We refer to Putnam ([29]) and Murphy ([21]) for a treatise on C∗-algebras and
operator theory, but most of the main results needed are stated in this section.

Definition 2.3.1. (C∗-algebra)
A C∗-algebra A is an algebra over C with a norm ‖ · ‖ such that

1. we have an involution (a conjugate linear map a 7→ a∗ satisfying (a∗)∗ = a
and (ab)∗ = b∗a∗),

2. the norm is submultiplicative (‖ab‖ ≤ ‖a‖‖b‖),
3. A is complete in this norm,
4. the C∗-equality ‖a∗a‖= ‖a‖2 holds.

The first three axioms ask for a Banach algebra, which is a norm complete, involut-
ive C-algebra with submultiplicative norm, meaning multiplication is continuous.
In the last requirement, the C∗-equality, we are connecting the topological and
algebraic properties, making C∗-algebras powerful tools.

Example 2.3.2. The following examples work as prototypes for C∗-algebras.

1. C is a C∗-algebra with complex conjugation as involution.
2. B(H) for a Hilbert space H, where involution is given by taking adjoint

operators.
3. C(X ) := C(X ,C) on a compact Hausdorff space X with the supremum norm,

where involution is given by pointwise complex conjugation.

We define morphisms between C∗-algebras the natural way, that is, we define
∗-homomorphisms between C∗-algebras to be involution preserving algebra homo-
morphisms.
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Definition 2.3.3. (Special elements) Some elements have certain properties worth
naming.

1. An element a is self-adjoint if a∗ = a.
2. An element p is a projection if p2 = p = p∗.
3. An element a is normal if a∗a = aa∗.
4. If A is unital, an element u is unitary if u∗u= 1= uu∗ (that is, if u−1 = u∗).
5. An element a is positive, written a ≥ 0, if there exists some b such that

a = b∗b.

What do C∗-algebras look like in general? There are some powerful results giving
explicit structures for commutative C∗-algebras and finite-dimensional C∗-algebras.

Theorem 2.3.4. (Gelfand-Naimark) Let A be a C∗-algebra. Then there exists a
Hilbert space H and a C∗-subalgebra B ⊆ B(H) such that A∼= B as C∗-algebras.

Proposition 2.3.5. If A is finite-dimensional C∗-algebra, we can find integers
K , N1, . . . , NK such that

A∼= ⊕K
k=1MNk

(C).

This implies that all finite-dimensional C∗-algebras are unital.

Theorem 2.3.6. (Gelfand) Let A be a commutative, unital C∗-algebra, then there
exists a compact Hausdorff space X such that A∼= C(X ) as C∗-algebras.

Remark 2.3.7. In fact, we can choose X to be the space of characters on A with the
weak∗-topology and the isomorphism is given by the Gelfand transform, sending
a ∈ A to â = eva, which is evaluation by a on the space of characters, M(A) =
HomC∗Al g1Com

(A,C)\{0}.

Even better, these functors define inverse equivalences:

C(−) = HomTopC ptHD
(−,C) : TopC ptHD→ C∗Al g1Com

M(−) = HomC∗Al g1Com
(−,C)\{0} : C∗Al g1Com→ TopC ptHD

To generalize to the nonunital case, take C0 : C∗Al gCom → TopLocC ptHD to get a
similar result. The above equivalence is often called Gelfand duality.

As continuous functions and bounded operators make out the prototypes of C∗-
algebras, we define a generalization of eigenvalues of an operator and the image
of a continuous function, namely the spectrum.

Definition 2.3.8. Let A be a unital C∗-algebra and let a ∈ A. Define the spectrum
of a as spec(a) = {λ ∈ C : λ1− a is not invertible}. The spectral radius r(a) of a is
the supremum of |λ| for λ ∈ spec(a).

Some authors, including the author of this thesis in sloppy or dark moments,
denote the spectrum of a by σ(a).
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It is possible to show that the spectrum must be nonempty and compact. Also,
taking the spectrum in a C∗-subalgebra B ⊆ A yields the same results as in the
ambient C∗-algebra A, which is called spectral permanence.

Proposition 2.3.9. Given a C∗-algebra A, we can find a unique (naive) unitization,
that is, we can find a unital C∗-algebra Ã such that A is a closed two-sided ideal in
Ã and Ã/A∼= C.

Ã is explicitly constructed by letting Ã= A⊕C, the involution is given component-
wise. The multiplication with unit (0, 1) is given by (a,λ)(b,µ) = (λb+µa+ab,λµ),
but the norm is not canonical. See [29] for a brief explanation.

If we don’t want to construct an explicit unit, it is always possible to find an
approximate unit for a C∗-algebra.

Proposition 2.3.10. Every C∗-algebra A admits an approximate identity, that is,
we can find an increasing net (uλ)λ∈Λ such that a = lim uλa = lim auλ for all a ∈ A.

This means that we can find approximate identities for closed ideals in C∗-algebras
as well, since they themselves are C∗-algebras. Note that this could not possibly
act as an approximate identity on the ambient C∗-algebra, if the ideal is proper.

As mentioned, positive elements are elements a such that we can find an element
b with a = b∗b. There are useful results regarding positivity.

Proposition 2.3.11. Let H be a Hilbert space and let T be a bounded operator on
H. The operator T is positive if and only if the sesquilinear form (x , y) 7→ 〈T x , y〉
is positive, where 〈·, ·〉 denotes the inner product in H.

For self-adjoint elements, we get interesting properties.

Proposition 2.3.12. Let a be a self-adjoint element of a unital C∗-algebra. The
following are equivalent.

1. spec(a) ⊆ [0,∞),
2. For all t ≥ ‖a‖, we have ‖t − a‖ ≤ t,
3. For some t ≥ ‖a‖, we have ‖t − a‖ ≤ t.

Proposition 2.3.13. Let A be a C∗-algebras and let a, b ∈ A be self-adjoint elements.
If a ≤ b, then x∗ax ≤ x∗bx for all x ∈ A.

The inverse of the Gelfand transform turns out to be quite interesting and it
unlocks a powerful tool in C∗-algebra theory, called functional calculus. Let a be
a normal element in a C∗-algebra B and let f be in C(spec(a)). It is possible to
show evaluation at a is a homeomorphism M(A)→ spec(a), where A denotes the
C∗-algebra generated by a, a∗ and 1.

This implies we can find an element of A, denoted f (a) such that the function is
given by f = f̂ (a) ∈ C(spec(a)). More precisely, if we let B be a unital C∗-algebra,
a be a normal element of B, meaning aa∗ = a∗a, and A = C∗(a, 1) ⊆ B be the
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C∗-algebra generated by 1 and a, then f (a) is the unique element of A such that
φ( f (a)) = f (φ(a)) for all φ ∈M(A).

Theorem 2.3.14. (Functional calculus) If B is a unital C∗-algebra and a is a
normal element, then the map sending f to f (a) is an isometric ∗-isomorphism
C(spec(a))→ C∗(a, 1) ⊆ B. Furthemore, if f (z) = Σakzmz̄n is a polynomial in z
and z̄, then f (a) = Σakam(a∗)n.

This allows us to consider elements in C∗(a, 1) as complex-valued polynomials!

When studying C∗-algebras, there are many linear functionals, as C∗-algebras are
Banach spaces, meaning we can apply the Hahn-Banach theorem. Characters are
such linear functionals, but they are more rare, due to the fact that they respect
lots of structure.

Some middle ground between being a linear functional and a character can be
found in the definition of a trace. We say a functional φ is positive if φ(a∗a)≥ 0.

Definition 2.3.15. A unit preserving, positive linear functional τ : A→ C is called
a trace if τ(ab) = τ(ba). The trace is faithful if τ(a∗a) = 0 implies a = 0.

On a finite-dimensional Hilbert space H with orthonormal basis {ξ1, . . . ,ξn}, we
can find a unique, normalized, faithful trace on B(H) given by 1

nΣ〈aξi ,ξi〉. In fact,
if p is a projection, then dim(pH) = τ(p)dim(H).

2.4 Representations and group C*-algebras

Much of the motivation of studying operator algebras came from B(H) for some
Hilbert space H. Therefore it is natural to define a representation as a way of
representing a C∗-algebra as bounded operators.

Definition 2.4.1. A representation of A is a pair (π,Hπ) such that π : A→ B(Hπ)
is a ∗-homomorphism.

We say a representation π is nondegenerate if the only ξ ∈Hπ such that π(A)ξ = 0
is ξ = 0. More informally, the representation is nondegenerate if the Hilbert space
is not too big.

A representation π is said to be irreducible if the only invariant, closed subspaces
of π are 0 and Hπ, where a subspace N is invariant if π(A)N ⊆ N .

It is possible to show a representation is nondegenerate if and only if π(1) = 1 and
that all representations can be built from nondegenerate representations and zero
representations.

An element ξ ∈Hπ is cyclic if π(A)ξ is dense in Hπ, and a representation is called
cyclic if it has a cyclic vector. Nondegenerate representations are irreducible if and
only if all nonzero vectors are cyclic.
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Definition 2.4.2. A state on a unital C∗-algebra is a positive linear functional φ
such that φ(1) = 1.

Example 2.4.3. The only nonzero, nondegenerate representation of C is π(z) = z1
since π(1) = 1 and Gelfand duality implies C-linearity of π.

Theorem 2.4.4. If we are given a stateφ on a unital C∗-algebra A, we can construct
a representation, and if we are given a representation, we can construct a state.

In particular, it is possible to show that if a is a self-adjoint element, there exists
an irreducible representation π of A such that ‖π(a)‖= ‖a‖.

This construction is called the Gelfand-Naimark-Segal construction (GNS) and can
be found in any textbook on C∗-algebras.

Often the need to integrate on locally compact groups shows up. We can in fact
find a suitable measure to do this, called the Haar measure. A (right) Haar measure
is a (right) translation invariant, regular Borel measure on G which is finite on
compact subsets.

Theorem 2.4.5. (Haar) If G is a locally compact group, there exists a left (and
right) Haar measure on G. This measure is unique up to scalar multiples.

2.5 Short reminders from algebraic topology

Throughout the thesis, there will certainly be a need for homological algebra and
algebraic topology. Much will be assumed to be known, and hence we refer readers
to Rotman [37] for an introduction to homological algebra and to May [19] for a
concise course in algebraic topology.

When we construct the definition of Morita equivalences through bimodules later,
we need to be fluent in the language of tensor products. We define the algebraic
tensor product of modules, as the case for algebras follows from this.

Definition 2.5.1. Let R be a ring, let A be an abelian group, and let M and N
be R-modules. A morphism φ : M × N → A is R-balanced if it is bilinear and
φ(mr, n) = φ(m, rn) for r ∈ R.

A tensor product is the universal R-balanced abelian group in the sense that it is
an abelian group M ⊗R N together with an R-balanced map t : M × N → M ⊗R N
such that R-balanced morphisms φ : M × N → A factors uniquely through t.

Tensor products exist and are unique up to isomorphism.

Tensor products for C∗-algebras are not as well-behaved as the algebraic ones. If
the C∗-algebras are nuclear, all completed tensor products coincide, but if not, we
may have a vast collection of completed tensor products for C∗-algebras, making
it hard to reason by categorical analogy in operator algebras. We refer to [21] for
a more in-depth discussion of the topic.
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To be able to adapt topological K-theory to operator algebras, it is certainly useful
to understand vector bundles. We won’t do that much topological K-theory, but
(almost) everything we do in those chapters will be inspired from the topological
case, meaning that facts and claims about vector bundles will be tossed around.

Note that if we replace the complex vector space structure with any other fiber, we
obtain the definition of a more general construction called a fiber bundle.

Definition 2.5.2. Let B be a topological space, usually assumed to be compactly
generated weak Hausdorff spaces ([19]). A (complex) n-dimensional vector bundle
is a continuous map p : E → B such that p−1(b) has a (complex) vector space
structure satisfying a trivialization condition. If Uα is a cover of the base space B,
then p−1(Uα) should be trivial in the sense that it is homeomorphic to Uα ×Cn.

Informally, a n-dimensional vector bundle is a construction where we glue on a
n-dimensional vector space in each point in a way that looks locally trivial.

There are lots of reasons to study bundles, homological algebra, and functional
analysis, but for now, we contain ourselves with the definition and leave the rest
for another day.



Chapter 3

Motivation: Noncommutative
tori

The main goal of the thesis is to study lots and lots of developed theory, but to not
lose touch with reality, we need a motivating example we can come back to once
in a while. For us, this will be the well-studied noncommutative C∗-algebras called
noncommutative tori. We give a brief motivation for the structure and some explicit
characterizations that will prove to be useful when attempting to classify these
structures through the developed theory. Readers interested in deeper connections
to time-frequency analysis should find other sources, such as [7].

3.1 A first date with noncommutative tori

Noncommutative tori arise quite naturally in time-frequency analysis and play a
central rôle in the operator-based approach to the topic. For a good overview of
time-frequency analysis, we refer readers to [7], but we will also follow [5] and
[42] in this chapter.

We want to study functions f ∈ L2(R), as these can be thought of as signals.
Intuitively, if we are given a signal and we can translate the signal and change its
frequency, we have come a long way to be able to study all signals we care about.
We recall the natural definitions of the translation and modulation operators.

Definition 3.1.1. Define the translation operator, Tx , as Tx f (t) = f (t − x) and
the modulation operator, Mω, by Mω f (t) = e2πiω f (t).

Two important things to note, which yield key points when defining noncommut-
ative tori, is that these operators are unitary and obey the commutation relation
Tx Mω = e−2πi xωMωTx , which can be shown by a simple calculation.

We jump ahead to define the algebraic structure given through these operators,
which yield our first definition of noncommutative tori.

15
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Definition 3.1.2. Let U and V be unitaries such that UV = e−2πiθV U . Define a
noncommutative torus as the (universal) C∗-algebra generated by U and V and
denote it Aθ .

When we say that this C∗-algebra is universal, we mean that any other structure A
generated by two unitaries Ũ , Ṽ such that this commutation relation holds, will
have a uniquely induced ∗-homomorphism Aθ → A sending U 7→ Ũ and V 7→ Ṽ . A
proof that Aθ is universal can be found in [5]. Note that noncommutative tori are
unital.

The name comes from the fact that for θ = 0 we actually get A0
∼= C(T2), which by

Gelfand duality should amount to studying T2. To see this, note that if θ = 0, we
actually have a commutative C∗-algebra, meaning it can be realized as C(X ) for
some compact Hausdorf space X , due to results by Gelfand (2.3.6). The remaining
task is to show that X is homeomorphic to T2. By universality, we can send U , V
to the coordinate functions z1, z2 on T2, corresponding to time and frequency, if
we stay time-frequency-minded. This will yield the homeomorphism. We refer to
[42] for details.

It is useful to note that we can restrict ourselves to θ ∈ [0, 1], or even better, we can
restrict to θ ∈ [0, 1/2] when working with noncommutative tori by the following
result.

Proposition 3.1.3. A noncommutative torus Aη is isomorphic to a noncommutative
torus Aθ for some θ ∈ [0, 1/2].

Proof. To restrict ourselves to θ ∈ [0,1], note that this follows by universality if
we use the fact that the commutation relation is unchanged under θ → θ + n for
n ∈ Z, which means Aθ+n

∼= Aθ . Now, to see the restriction to θ ∈ [0,1/2], note
that modulo 1, we can consider Aη for an η ∈ [−1/2, 0]. By the ∗-automorphism on
Aθ sending U 7→ V and V 7→ U , we obtain the same commutation relation as if we
choose θ = −η. This means that Aη ∼= Aθ by universality, where θ ∈ [0, 1/2].

To understand the structure better, we look for a more explicit, time-frequency-
related definition of Aθ . The first explicit forms of noncommutative tori are given
through twisted group algebras. In more abstract applications, such as in connec-
tions between noncommutative geometry and Gabor analysis, this definition may
be the most useful, as it allows us to treat more general examples along the lines
of noncommutative tori. We will not use the following characterization further,
but it is worth mentioning to observe the explicit connections to time-frequency
analysis.

Recall that we define a lattice Λ ⊆ R2 to be a discrete subgroup of the form Λ = AZ2,
where A is a real-valued, invertible 2×2-matrix. If we sample x andω from a lattice
Λ = αZ× βZ, where we put reasonable requirements on the sampling density
θ = αβ , we can phrase much of time-frequency analysis through an operator π,
defined by π(λ) = Mx Tω, where λ= (x ,ω) ∈ Λ.
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Definition 3.1.4. Define A1
θ
=
�

a =
∑

λ∈Λ aλπ(λ), (aλ) ∈ `1(Λ)
	

⊆ B
�

L2(R)
�

with norm given by the `1-norm on the coefficients.

Multiplication is given through twisted convolution in the sense that
�

∑

λ∈Λ

aλπ(λ)

��

∑

λ∈Λ

bλπ(λ)

�

=
∑

λ∈Λ

(a\b)λπ(λ),

where the twisted convolution is defined for λ= (x ,ω),µ= (u,η) by

(a\b)λ :=
∑

µ∈Λ
aµbλ−µe−2πiθ (x−u)η.

The convolution is necessary to get a Banach algebra, while the twisted convolution
ensures that we actually get back the noncommutative torus we are working with.

Now, this is not a C∗-algebra yet, but we can define Aθ as its enveloping C∗-
algebra, that is, by completing A1

θ
in the norm given by ‖a‖= sup‖ρ(a)‖, where

the supremum is taken over all representations ρ of A1
θ
. This is isomorphic to the

universal definition by U 7→ Mβ , V 7→ Tα.

More generally, this construction of Aθ comes from considering the enveloping
C∗-algebra of a twisted group algebra `1(αZ×βZ, c) with an associated 2-cocycle
c((x ,ω), (u,η)) = e2πi xη, which justifies the name twisted group algebra for the
noncommutative tori.

Queequeg 3.1.5. There are lots of results and concepts that could have been
mentioned to show the depth of studying noncommutative tori through operator
algebras, but these should be saved for a thesis in its own right. Nevertheless, some
of them are so motivating and beautiful they deserve a short mention.

If we consider the coefficients as coming from Schwartz functions on Λ or equival-
ently by intersecting such structures over weighted `1-spaces, as in the case for
modulation spaces, we get what we call a smooth noncommutative torus, A∞

θ
, but

this is not a Banach algebra.

It is possible to prove theorems in time-frequency analysis, such as the Balian-Low
theorem from Gabor analysis, through techniques of noncommutative differential
geometry on noncommutative tori. This can be found in [16], where the proof
boils down to defining connections with constant curvature on Schwartz space,
which can be realized as a finitely generated projective module over a smooth
noncommutative torus, unlocking the tools of differential geometry as we can
think of it as a vector bundle through the Serre-Swan theorem (5.1.1).

In [36], an attempt due to Rieffel and Connes at defining a Yang-Mills energy
functional through such connections is explained, yielding noncommutative tori
as interesting arenas for doing theoretical physics as well. We briefly return to this
as a final digression.
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It is also possible to define higher-dimensional analogues of noncommutative tori,
but we restrict ourselves to the two-dimensional cases, as there are several open
questions in the higher-dimensional cases that we will resolve later for the two-
dimensional case. Interested readers should also be referred to [14] for a connection
between multi-window Gabor frames and higher-dimensional noncommutative
tori through the Waxler-Raz biorthogonality relations for multi-window Gabor
frames.

Even though the previous definition of noncommutative tori through π is beautiful
and extremely handy in time-frequency analysis, we will not use it much in the
pages to come. On the other hand, understanding noncommutative tori as C∗-
algebras coming from dynamical systems will be important later.

3.2 Crossed product C∗-algebras and rotation algebras

It is possible to realize noncommutative tori as crossed product algebras coming
from dynamical systems, which will be vital when we want to apply the Pimsner-
Voiculescu sequence to calculate the K-groups of Aθ . We start by recalling the
definition of C∗-dynamical systems and crossed product C∗-algebras, most of
which can be found in [42].

Definition 3.2.1. The triple (A, G,α) is called a C∗-dynamical system if A is a C∗-
algebra, G is a discrete group (a group with the discrete topology), and the action
α : G→ Aut(A) is a group homomorphism.

To get a structure from such a C∗-dynamical system, we consider finite formal
sums.

Definition 3.2.2. Define AG as finite formal sums Σg∈Gag g, where ag ∈ A. Addi-
tion and scalar multiplication are defined the canonical way, but for multiplication,
we require αg(a) = gag−1 whenever it shows up. More precisely,

 

∑

g∈G

ag g

!

�

∑

h∈G

bhh

�

=
∑

g∈G

∑

h∈G

ag g bhh

=
∑

g∈G

∑

h∈G

ag g bh g−1 gh

=
∑

g∈G

∑

h∈G

agαg (bh) gh

=
∑

h∈G

 

∑

g∈G

agαg

�

bg−1h

�

!

h,

(3.1)

where we map h 7→ g−1h for simplicity.

This structure can be given an involution by (ag)∗ = αg−1(a∗)g−1, which boils
down to (ag)∗ = g−1a∗.
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Remark 3.2.3. By requiring the automorphism to be inner in the sense that it works
as conjugation, we preserve the noncommutative structure from our C∗-algebras.

Given such a formal structure, it would be natural to consider the enveloping
C∗-algebra.

Definition 3.2.4. We define the crossed product algebra A×α G as the enveloping
C∗-algebra of AG, that is, as the completion of AG in the norm ‖ f ‖= sup‖ρ( f )‖,
where the supremum is taken over all representations ρ of AG.

With the crossed product structure defined, we can define the rotation algebras,
which turns out to be isomorphic to the noncommutative tori.

Definition 3.2.5. Fix a number θ ∈ R. Define an action of Z on C(S1) by n 7→ αn,
where α( f ) = f (t − θ) is the action given by precomposing by rotation on the
circle with an angle θ .

Define the rotation algebra as the crossed product C(S1)×α Z.

Proposition 3.2.6. For a fixed θ , the rotation algebra C(S1)×α Z is isomorphic
to the noncommutative torus Aθ .

Proof. We refer to [42] for a full proof, but the idea is that we can find two gener-
ators in C(S1)×α Z. First, define z ∈ C(S1) by z(t) = e2πi t . Secondly, define w to
be the element representing α by conjugation. Then, it is possible to show the com-
mutation relation of the noncommutative torus holds, yielding a ∗-homomorphism
U 7→ z and V 7→ w. By functional calculus, we can find an inverse.

Queequeg 3.2.7. It is possible to connect the twisted group algebra to the crossed
product by a partial Fourier transform. Let Λ = αZ × βZ and let a ∈ A1

θ
be

given by a =
∑

ak,lπ(αk,β l) . In Gabor analysis, the goal is to study what
π(αk,β l)g looks like, while in operator algebras, we want to understand the
operator

∑

ak,lπ(αk,β l). If we compute

a =
∑

ak,lπ(αk,β l)

=
∑

ak,l Mβ l Tαk

=
∑

ã(k, t)Tαk,

we have a partial Fourier transformation linking a ∈ `1 and ã. In fact, the repres-
entation of the form

∑

ã(k, t)Tαk shows that it is an element of C(S1)×αZ, where
α is the rotation action on the circle. Namely, that the composition of

∑

ã(k, t)Tαk
and

∑

b̃(k, t)Tαk yields an operator of the form
∑

k∈Z(ã ? b̃)(k, t)Tαk for

(ã ? b̃)(k, t) =
∑

l∈Z
ã(l, t)b̃(k− l, t −αl)
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and (
∑

ã(k, t)Tαk)∗ =
∑

ã∗(k, t)Tαk, where

ã∗(k, t) = ã(−k, t −αk).

If we do Gabor analysis, the former corresponds to the Janssen representation of the
Gabor frame operator, while the latter corresponds to the Walnut representation.
More about this can be found in [7].

After we develop more theory, we will return to study noncommutative tori. First,
we move on to study Morita equivalence for C∗-algebras.



Chapter 4

Hilbert C∗-modules and Morita
equivalences

The study of representations is quite fruitful in the world of operator algebras and
extremely important to be able to realize these structures in applications, as seen
in the previous chapter. The notion of Morita equivalences between rings from
representation theory has proven to be quite useful and can probably be adapted
to operator algebras in the sense that Morita equivalent rings have equivalent
module categories and thus yield equivalent representations. In this chapter, we
seek to work out the technicalities that let us adapt Morita equivalences to the
world of C∗-algebras, even though this may be a long and technical journey.

To construct our sense of Morita equivalences, we are inspired by the classical
Morita theorem ([24]), which asserts that two rings are Morita equivalent if and
only if there exists bimodules taking us between the module categories, and thus
inducing representations. Seeking to connect the idea of bimodules and induced
representations to C∗-algebras, we first need to develop some theory about Hilbert
modules, which was introduced for commutative C∗-algebras by Kaplansky ([10])
and extended to the noncommutative case independently by Paschke ([25]) and
Rieffel ([32]) in the ’70s. These play the main rôle of the bimodules connected to
our C∗-algebras.

After this, we induce representations back and forth, which leads to the concept of
imprimitivity bimodules, which are the bimodules implementing our Morita equi-
valences. These play a crucial rôle, as their existence yields the explicit construction
of ideal lattice isomorphisms and induced representations between C∗-algebras.
We follow the presentation of the topic given by Raeburn and Williams ([31]), but
interested readers should also be referred to the work of Lance ([13]). The first
section will be quite pedantic, but for later sections, we skip some of the details
and refer readers to [31].

Throughout this chapter, A and B will be C∗-algebras.

21
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4.1 Hilbert modules

We follow [31] and define our (right) A-modules to be vector spaces X with a
bilinear pairing X×A→ X , (x , a) 7→ x ·a satisfying the usual conditions. Algebraists
usually define modules over rings as additive abelian groups with an action from a
ring, but as we try to generalize the behaviour of spaces over R or C and want to
apply a lot of tools from analysis, it is natural to replace the assumption of additive
abelian groups by assuming we have a vector space over C (or R).

To preserve the relevant structure, we want to generalize Hilbert spaces to modules.
If this is supposed to work out with the actions given by modules, we first need to
consider what inner product modules should look like. We define the right inner
product module structure, even though an analogue definition could be given for
left inner product module structures.

Definition 4.1.1. A (right) A-module X is called a (right) inner product A-module
if it has a pairing 〈·, ·〉A : X × X → A such that the following holds:

a) 〈x ,λy +µz〉A = λ〈x , y〉A+µ〈x , z〉A,
b) 〈x , y · a〉A = 〈x , y〉A · a,
c) 〈x , y〉∗A = 〈y, x〉A,
d) 〈x , x〉A ≥ 0,
e) 〈x , x〉A = 0 implies that x = 0.

We often write XA to indicate that X is a right A-module.

Remark 4.1.2. Note that for condition (d), the inner product maps to A, which
means that inequalities are phrased in terms of positivity of elements as these
are inequalities in C∗-algebras. This will be the case for all inequalities arising in
C∗-algebras.

We can easily show that this inner product is conjugate linear is the first variable
by a standard calculation using (a) and (c):

〈λx +µy, z〉A = 〈z,λx +µy〉∗A = (λ〈z, x〉A+µ〈z, y〉A)
∗ = λ̄〈x , z〉A+ µ̄〈y, z〉A

Also, (b) and (c) imply that 〈a · x , y〉A = a∗ · 〈x , y〉A.

Together, this implies that

span {〈x , y〉A : x , y ∈ X }

is a two-sided ideal in A.

Let us consider some basic examples to see our definition in play.

Example 4.1.3. Inner product C-modules are, as expected, the inner product spaces
with a C-valued inner product. This inner product should be conjugate linear in
the first variable.
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Example 4.1.4. Define an inner product A-module structure on A with inner product
given by 〈a, b〉A = a∗b. All axioms except the last one follow from computations.
The last axiom follows from the C∗-equality.

The definition seems to make sense in this basic case. A natural question to ask is
whether or not we can use this to define a norm in a canonical way. We postulate
that

‖x‖A := ‖〈x , x〉A‖
1/2

gives a norm analogous to the C-valued case. To prove this structure works out
as wanted, we need some extra results. If these C∗-algebraic analogues of inner
product spaces are nice generalizations of regular inner product spaces, we should
also expect some of the key results in this theory to hold, such as the Cauchy-
Schwarz inequality.

Proposition 4.1.5. (The Cauchy-Schwarz inequality) Let X be an inner product
A-module and x , y ∈ X . Then

〈x , y〉∗A〈x , y〉A ≤ ‖〈x , x〉A‖ 〈y, y〉A

with the inequality interpreted in the sense of positivity, which is the standard
way to interpret inequalities for C∗-algebras. Also, if X is an inner product module
over a dense *-subalgebra of A, this still holds if we interpret the inequality in the
completion of A0, making it an inner product module over a C∗-algebra.

As this is not our usual Cauchy-Schwarz inequality, we need a sufficient condition
for positivity to make our life easier. If we connect the notion of positivity in
C∗-algebras to the normal notion of positivity in the ground field, we may be able
to use common tools in the proof, such as the regular Cauchy-Schwarz inequality.

Lemma 4.1.6. Let a be an element of A. If ρ(a)≥ 0 for all states ρ of A, then a is
positive.

Proof. We assume ρ(a)≥ 0 for all states ρ. To show a ≥ 0, we want to construct
a specific state φ such that φ(a)≥ 0 implies a ≥ 0. To do this, let π be a faithful
representation of A on a Hilbert space H, which we can choose from the GNS-
construction of representations (2.3). This allows us to define a state φ(a) =
(π(a)h, h) for all h of norm 1, where (·, ·) denotes the inner product in the Hilbert
space. As φ is a state, we have (π(a)h, h) ≥ 0 for all h. This is the definition of
π(a) being a positive operator on our Hilbert space and we know these are the
positive elements in the C∗-algebra B(H) by 2.3.11. Now we can use 2.3.12 to get
that π(a) ≥ 0 ⇐⇒ specB(H)(π(a)) ⊆ [0,∞). This can be pushed down to the
*-subalgebra π(A) by spectral permanence, which in turn yields the results for a as
π is faithful. Thus we have specA(a) ⊆ [0,∞), which means a ≥ 0.

Equipped with our new lemma, we show 4.1.5.
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Proof. (Proof of 4.1.5)

We want to show that

z = ‖〈x , x〉A‖ 〈y, y〉A− 〈x , y〉∗A〈x , y〉A ≥ 0.

After our technical work, we want to use lemma 4.1.6. Take an arbitrary state ρ. If
we show ρ(z) ≥ 0, we are finished. Using the linearity of ρ and reordering, we
see that it is enough to show

ρ
�

〈x , y〉∗A〈x , y〉A
�

≤ ‖〈x , x〉A‖ρ (〈y, y〉A) .

Looking to apply the usual Cauchy-Schwarz inequality, we consider the (semi-
definite) positive sesquilinear form (u, v) 7→ ρ(〈u, v〉A). We apply the usual Cauchy-
Schwarz inequality to this, giving

|ρ (〈u, v〉A)| ≤ ρ (〈u, u〉A)
1/2ρ (〈v, v〉A)

1/2 .

Inserting u= x〈x , y〉A and v = y yields the following:

ρ
�

〈x , y〉∗A〈x , y〉A
�

= ρ
�

〈x〈x , y〉A, y〉A
�

≤ ρ
�

〈x〈x , y〉A, x〈x , y〉A〉A
�1/2

ρ (〈y, y〉A)
1/2

= ρ
�

〈x , y〉∗A〈x , x〉A〈x , y〉A
�1/2

ρ (〈y, y〉A)
1/2

From 2.3.13, we know that for a ≤ b, we have the inequality d∗ad ≤ d∗bd for all
d. By noting a ≤ ‖a‖1, we get d∗ad ≤ ‖a‖d∗d. The fact a ≤ ‖a‖1 comes from the
equivalent requirements for positivity in terms of inequalities (2.3.12), first used
on the postive element a and then to show ‖a‖1− a ≥ 0.

Thus,

ρ
�

〈x , y〉∗A〈x , y〉A
�

≤
�

‖〈x , x〉A‖ρ
�

〈x , y〉∗A〈x , y〉A
��1/2

ρ (〈y, y〉A)
1/2 ,

which yields our result after squaring and cancelling.

As intended, we get the following proposition from this lemma, with some extra
work.

Proposition 4.1.7. Let X be an inner product A-module. The postulated norm,

‖x‖A := ‖〈x , x〉A‖
1/2 ,

defines a norm on X which is submultiplicative with respect to the action from
A. The normed module (XA,‖ · ‖A) is nondegenerate in the sense that the span of
elements of the form x · a makes up a dense subset of X . Even better,

X · 〈X , X 〉A := span{x · 〈y, z〉A : x , y, z ∈ X }
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is dense in XA with respect to the normed structure given by this inner product.

Proof. By the inner product structure of 〈·, ·〉 and the axioms for the A-norm, we
get all the requirements except the triangle inequality for free. We developed the
Cauchy-Schwarz inequality (4.1.5) exactly for this purpose. This follows from

‖x + y‖2A ≤ ‖〈x , x〉A‖+ ‖〈x , y〉A‖+ ‖〈y, x〉A‖+ ‖〈y, y〉A‖

≤ ‖x‖2A+ 2‖x‖A‖y‖A+ ‖y‖2A
= (‖x‖A+ ‖y‖A)

2 ,

where we used 4.1.5 in the last inequality.

To show submultiplicativity, consider the squared expression and apply submulti-
plicativity of ‖ · ‖.

‖x · a‖2A = ‖a
∗〈x , x〉Aa‖ ≤ ‖a∗‖‖x‖2A‖a‖= ‖a‖

2‖x‖2A

To show that expressions on the form x · 〈y, z〉A are dense, we need to consider
an approximate identity {uλ} on the span of the inner products 〈x , y〉A to get our
approximation game started. Let ε > 0. We have that

‖x − x · uλ‖
2
A = 〈x − x · uλ, x − x · uλ〉A
= ‖〈x , x〉A− 〈x , x〉Auλ − uλ〈x , x〉A+ uλ〈x , x〉Auλ‖ .

We can find a uλ such that ‖x − x · uλ‖A < ε/2. As the approximate identity lives on
the span of the inner products, we find a linear combination of elements arbitrarily
close to uλ, that is, we can find x i , yi ∈ X such that







∑

i 〈x i , yi〉A− uλ




< ε/2‖x‖A,
where the right hand side is chosen for later cancellation.

Now we have















x − x ·

�

∑

i

〈x i , yi〉A

�
















A

=
















x − x · uλ + x · uλ − x ·

�

∑

i

〈x i , yi〉A

�
















A

≤ ‖x − x · uλ‖A+
















x · uλ − x ·

�

∑

i

〈x i , yi〉A

�
















A

< ε/2+ ‖x‖A · ε/2‖x‖A = ε.

The inner product structure seems to work out. Looking to generalize Hilbert
spaces, we add some requirements of completeness in this norm. This leads to the
notion of a Hilbert C∗-module.
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Definition 4.1.8. Let X be an inner product A-module. If X is complete in the
norm ‖ · ‖A, we call X a Hilbert A-module. Also, if the ideal

span {〈x , y〉A : x , y ∈ X }

is dense in A, we call X a full Hilbert A-module.

Before we move on, we should examine some examples.

Example 4.1.9. A Hilbert C-module is a Hilbert space over C with the usual
multiplication and inner product, which is defined to be conjugate linear in the
first variable by setting 〈x , y, 〉C = (y, x), where (·, ·) denotes the regular inner
product in C, which is conjugate linear in the second variable.

Example 4.1.10. AA is a full Hilbert module if we define multiplication as usual
and 〈a, b〉A = a∗b as earlier. The A-module norm is the same as the normal norm
in A by the C∗-equality, which implies completeness. In C∗-algebras, we can always
find an approximate identity by 2.3.10, which means that we can approximate
elements arbitrarily well by a product with some uλ. Thus, by existence of approx-
imate identities, this inner product will span a dense subset. We can also use this
construction to find non-full Hilbert A-modules. Take any proper, closed two-sided
ideal I of A. Then IA will not be full, as the closure of span {〈i, j〉A} for i, j ∈ I is
indeed I instead of A, i.e. we miss elements of A\ I .

The following examples are a bit more exotic. Some of them are just beautiful
examples and some of them do play an important role in Morita Equivalence of
C∗-algebras, which we will return to in section 4.5.

Example 4.1.13 will certainly require some more topological and algebraic back-
ground to understand, but due to its beauty, as well as the fact that the Serre-Swan
theorem can be considered to be the foundation of K-theory, we include it here so
readers can get an impression of the immense relevance of operator algebras in
other fields. Example 4.1.14 will certainly require more analytical background to
understand thoroughly, but this is claimed to be the example that motivated the
theory of Morita equivalence for C∗-algebras by Rieffel. Most of the later results
on Morita equivalences can be applied to example 4.1.14, but this is outside the
scope of this thesis. Therefore we only mention it here as a historical (and perhaps
encouraging) example.

Example 4.1.11. Let H be a Hilbert space and let K = K(H) be the C∗-algebra
of compact operators on H. If h ⊗ k̄ denotes the rank-one operator given by
l 7→ h · 〈k, l〉C = (l, k)h, we can define a left Hilbert K-module structure on H by
setting

T · h= T (h) and 〈
K

x , y〉= x ⊗ ȳ .

The operator norm of h⊗ h̄ is given by ‖h‖2 by considering the supremum over
norm one elements x of h⊗ h̄(x) and recalling that we have equality in 4.1.5 when
the terms are linearly dependent. By choosing x = h/‖h‖, we attain the maximum
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with a normalized element, which yields the result by writing out the terms. Then
the K-norm agrees with the regular norm on H, making H complete in the K-norm.
The fullness of span{〈

K
x , y〉} follows from the fact that finite rank operators are

dense in K.

Example 4.1.12. (Direct sums of Hilbert modules) The direct sum of two Hilbert A-
modules X and Y can be made by giving the algebraic direct sum (right) A-module
X ⊕ Y an A-valued inner product by




(x , y),
�

x ′, y ′
��

A :=



x , x ′
�

A+



y, y ′
�

A ,

which yields a complete structure by

‖x‖2A = ‖〈x , x〉A‖ ≤ ‖〈x , x〉A+ 〈y, y〉A‖

= ‖(x , y)‖2A ≤ ‖x‖
2
A+ ‖y‖2A.

One should be aware of which norms have a subscripted A, as this is quite important
to see which space we work in.

Example 4.1.13. In the ’50s, Serre made some advances on the theory of vector
bundles in the category of affine varieties. Later, in the early ’60s, Swan developed
the work of Serre further, which resulted in the celebrated Serre-Swan theorem
([40]), which asserts that the spaces of sections Γ (X , E) of a vector bundle p : E→
X over a compact Hausdorff space X are finitely generated projective C(X ,C)-
modules. With some modifications, such as in [22], we can get a Hilbert module
structure. Let E be a fiber bundle on X with fibers being Hilbert spaces over C.
Let (·, ·)x denote the inner product in the fiber with base point x . We define the
C(X )-valued inner product on Γ (X , E) by 〈σ1,σ2〉 (x) := 〈σ1(x),σ2(x)〉x . Then

〈σ1,σ2〉 ∈ C(X ) for σ1,σ2 ∈ Γ (X , E), x ∈ X .

If X is locally compact, we only have to replace C(X ) by C0(X ) to get the same struc-
ture. It should be possible to show that every Hilbert C0(X )-module is isomorphic
to a Hilbert module of this form ([22]).

Example 4.1.14. Let G be a locally compact group, which we assume to be unimod-
ular just to simplify the expressions, and let H be a closed, unimodular subgroup
of G. We want to construct a C∗(H)-module X starting with Cc(G), which is the
complex-valued continuous functions on G with compact support. Consider Cc(G)
as a Cc(H)-module by the action given by

f · b(s) =
∫

H
f
�

st−1
�

b(t)d t,

where f ∈ Cc(G). Define the inner product Cc(G)× Cc(G)→ Cc(H) by

〈 f , g〉Cc(H)(s) =

∫

G
f (r)g(rs)dr.
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We reference the reader to page 15 and appendix C in [31] for details and proofs
of the following claims:

1. 〈 f , g〉Cc(H) is conjugate linear in the first variable,
2. 〈 f , g · b〉Cc(H) = 〈 f , g〉Cc(H) ∗ b for b ∈ Cc(H),
3. 〈 f , g〉∗Cc(H)

= 〈g, f 〉Cc(H),
4. 〈 f , f 〉Cc(H) is positive in the C∗ -completion C∗(H),
5. the range of 〈·, ·〉Cc(H) spans a dense ideal in Cc(H).

These claims justify our structure and give quite an interesting example, but Cc(G)
is unfortunately not a Hilbert C∗(H)-module just yet. The first problem is the fact
that Cc(G) is not necessarily complete. This is not a major issue, and actually quite
common when constructing Hilbert modules. The other problem is the fact that
the completed group C∗-algebra C∗(H) does not act on Cc(G), as the action is only
defined for Cc(H).

The following lemma amends these problems. The proof is omitted, as we will not
use it in this thesis, but we refer to lemma 2.16. in [31] for a proof.

Lemma 4.1.15. (Completions) Let A0 be a dense *-subalgebra of A, where A is a
C∗-algebra. Assume X0 is a right A0-module. We suppose that X0 can be considered
as a pre-inner product A0-module (i.e. non-complete) in the sense that we can find
a form 〈·, ·〉0 : X0 × X0→ A0 such that (a)-(d) of definition 4.1.1 is satisfied. The
last condition is assumed to hold in the completion A of A0. Then there exists a
Hilbert A-module X and a linear map q : X0→ X such that the image of q is dense,
q(x) · a = q(x · a) for x ∈ X0, a ∈ A0 and 〈q(x), q(y)〉A = 〈x , y〉0. This Hilbert
A-module X is called the completion of the pre-inner product A0-module X0.

This ends our brief study of the Hilbert modules themselves. As usual, the study of
morphisms between these objects should be at least as interesting as the objects
themselves, which leads us onwards in our study.

4.2 Adjointable operators on Hilbert modules

When we work with Hilbert spaces, an essential result of the Hilbert space theory
is the fact that we can always find the adjoint of an operator. This is not necessarily
the case in Hilbert modules, as we will see. To try to mimic Hilbert space theory
once again, we define adjointable operators and delve into their properties.

Definition 4.2.1. Let X , Y be Hilbert A-modules. We call a function T : X → Y
adjointable if there exists a function T ∗ : Y → X such that

〈T (x), y〉A = 〈x , T ∗(y)〉A

for all x ∈ X , y ∈ Y .

It turns out that these adjointable operators are reasonable to study.
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Lemma 4.2.2. If T : X → Y is an adjointable map between Hilbert A-modules,
then T is a bounded, linear map from X to Y as A-modules.

Proof. All of these claims can be shown for T ∗ as well, by similar approaches. By
the Cauchy-Schwarz inequality (4.1.5), we have that for any x ∈ X ,

‖x‖A = sup {‖〈x , y〉A‖ : y ∈ X and ‖y‖A ≤ 1} .

This implies that x = y ⇐⇒ 〈x , z〉A = 〈y, z〉A for all z ∈ X by considering the
norm of the differences. Now we can use this, along with some standard inner
product tricks from the Hilbert space theory, to show A-linearity. We only show the
A-linearity of T as the claim for T ∗ is totally analogous. Take an arbitrary y ∈ X
and a ∈ A. By writing

〈T (x · a), y〉A = 〈x · a, T ∗(y)〉A = a∗ 〈x , T ∗(y)〉A
= a∗〈T (x), y〉A = 〈T (x) · a, y〉A,

we have shown T (x · a) = T (x) · a. If we do a similar calculation, but replace x · a
with x + x ′ for some arbitrary x ′ ∈ X , we get that T is A-linear.

The only thing left to show is that T is bounded, but to show this, we have to
use tools from functional analysis, such as the Closed Graph Theorem (theorem
2.2.1). This can be used since Hilbert A-modules are Banach spaces and since T
was just shown to be linear. Assume we have a convergent sequence xn → x in
X and that T (xn)→ z for some z ∈ Y . We show T (x) = z. If we take an arbitrary
y ∈ Y , we have both 〈T (xn) , y〉A → 〈z, y〉A and 〈T (xn), y〉A = 〈xn, T ∗(y)〉A →
〈x , T ∗(y)〉A = 〈T(x), y〉A. Thus 〈T(x), y〉A = 〈z, y〉A for arbitrary y, which yields
T (x) = z. The graph of T is then closed, so boundedness follows from the Closed
Graph Theorem.

A natural question to ask now is whether or not all bounded, linear A-module
maps are adjointable. The following counterexample shows that this is in fact not
the case. As usual, counterexamples work best in the world of analysis, not in the
world of algebra.

Example 4.2.3. (Example of a bounded A-linear operator between Hilbert A-
modules that are not adjointable)

Let A= C([0, 1]) and define I = {g ∈ A : g(0) = 0}. Then A and I are both Hilbert
A-modules the usual way. Define the direct sum Hilbert A-module X = A⊕ I and
let T : X → X be defined by ( f , g) 7→ (g, 0). T is bounded, A-linear and ‖T‖= 1.
Now, assume that T has an adjoint T ∗ and consider ( f , g) := T ∗(0, 1). For all pairs
(h, k) ∈ X , we write

k̄ = 〈T (h, k), (1,0)〉A = 〈(h, k), ( f , g)〉= h̄ f + k̄g,

which would imply f ≡ 0, g ≡ 1 as the pair (h, k) was arbitrary. This is a contra-
diction since g is supposed to be in I and hence satisfy g(0) = 0. Therefore T is a
bounded, A-linear operator between Hilbert A-modules that is not adjointable.
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Definition 4.2.4. Let X and Y be Hilbert A-modules. We let L(X , Y ) denote the
set of all adjointable operators X → Y . In the case Y = X , we just write L(X ) for
L(X , X ).

Remark 4.2.5. By using the same inner product tricks as in the proof of lemma
4.2.2, we can show that the adjoint of T ∈ L(X ) is unique, adjointable, and that
T ∗∗ = T . Taking the adjoint turns out to be an involution. Thus L(X ) is a subalgebra
of the Banach algebra B(X ) of bounded operators on X . It turns out, as we restrict
ourselves to the operators that mimic the bounded operators on Hilbert spaces,
that L(X ) certainly is a C∗-algebra, as the C∗-equality still holds.

Proposition 4.2.6. If X is a Hilbert A-module, then L(X ) is a C∗-algebra when
given the operator norm.

To try to say more about L(X ), we want a characterization of the positive elements
in this C∗-algebra.

Lemma 4.2.7. If X is a Hilbert A-module and T : X → X is a linear operator, then
T is a positive element of L(X ) if and only if 〈T (x), x〉A ≥ 0 for all x ∈ X .

Using this lemma, we can deduce a nice bound for the operator norm of adjointable
operators.

Corollary 4.2.8. If X is a Hilbert A-module and T ∈ L(X ), then

〈T (x), T (x)〉A ≤ ‖T‖2〈x , x〉A.

Proof. A similar result applies to operators in L(X , Y ). We want to show that
‖T‖2〈x , x〉A − 〈T(x), T(x)〉A ≥ 0. Since T ∗T is positive by definition, we apply
lemma 4.2.7 to get that ‖T‖2 I − T ∗T is positive in L(X ). Then we can find an
S ∈ L(X ) such that ‖T‖2 I − T ∗T = S∗S, which means that

‖T‖2〈x , x〉A− 〈T (x), T (x)〉A =

�

‖T‖2 I − T ∗T
�

x , x
�

A = 〈S
∗S(x), x〉A (4.1)

= 〈S(x), S(x)〉A ≥ 0. (4.2)

Remark 4.2.9. If X is a Hilbert A-module and T ∈ L(X ) is positive, we have
‖T‖ = sup {‖〈T (x), x〉A‖ : ‖x‖A ≤ 1} by the definition of positivity and the C∗-
equality.

If A= C, the Hilbert A-module structure on X is just a Hilbert space structure H over
C, as mentioned earlier. In this case, every operator is adjointable, which means
L(X ) = B(H). In Hilbert space theory, both B(X ) and K(X ) play a prominent rôle
in the structure theory of Hilbert spaces, but if we consider B(X ) as a C∗-algebra,
it is too big. For example, it would be nice if we could consider all operators as
limits of finite-dimensional operators, which means K(X ) plays the main rôle in
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the structure theory of C∗-algebras. If L(X ) is the analogue of B(X ) in the Hilbert
module theory, perhaps it would be fruitful to find some corresponding version of
K(H).

A natural question to ask is how we should define K(X , Y ) and how it should be
related to L(X , Y ). Recalling that K(H) is an ideal in B(H) (proposition 2.2.4) and
that K(H) is the closed span of rank operators (proposition 2.2.3), we seek to
define some analogue rank-one operators in L(X , Y ) as a start.

Definition 4.2.10. Let X , Y be Hilbert A-modules. For x ∈ X , y ∈ Y , we define
Θy,x : X → Y by Θy,x(z) := y · 〈x , z〉A.

Define K(X , Y ) to be the closed, linear subspace of L(X , Y ) given by the span of
�

Θy,x : y ∈ Y, x ∈ X
	

. If X = Y , we only write this as K(X ).

By analogy to the Hilbert space theory, we call this the algebra of compact operators,
even though the operators are not necessarily compact in the usual case. An
example, which may be outside of the scope of the thesis, is the Gabor frame
operator, when viewed as a rank-one operator of Rieffel’s Heisenberg modules
[14]. In the context of Hilbert C∗-modules, it is in fact a rank-one operator, but it
is not compact in the regular sense.

Remark 4.2.11. This is actually well defined in L(X , Y ), by the following computa-
tion showing these operators are adjointable in a quite explicit sense.

Let x , x ′ ∈ X and y, y ′ ∈ Y .




Θy,x

�

x ′
�

, y ′
�

A =



y ·



x , x ′
�

A , y ′
�

A
=



x , x ′
�∗

A




y, y ′
�

A =



x ′, x
�

A




y, y ′
�

A (4.3)

=



x ′, x ·



y, y ′
�

A

�

A
=



x ′,Θx ,y

�

y ′
��

A (4.4)

Therefore, Θy,x is adjointable and Θ∗y,x = Θx ,y .

This algebra of compact operators seems to work as the regular compacts on a
Hilbert space, as we see in the following lemma.

Lemma 4.2.12. Let X be a Hilbert A-module. Then K(X ) is a closed, two-sided
ideal in L(X ).

Proof. Take any T ∈ L(X ). To show the absorption property, just note that

TΘx ,y(z) = T (x · 〈y, z〉A) = T (x) · 〈y, z〉A = ΘT (x),y(z).

By the earlier remark (4.3), K(X ) is closed under involution. A similar calculation
as the one above yields the fact that this is in fact a two-sided ideal. Closedness
follows from the definition of K(X , Y ).

It turns out that if X is a (right) Hilbert A-module, then it is also a full left Hilbert
K(X )-module.
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Theorem 4.2.13. Let X be a (right) Hilbert A-module. Then X is a full Hilbert
K(X )-module with the action T · x := T (x) and inner product K(X )〈x , y〉 := Θx ,y .
The norm induced by this inner product coincides with the norm induced by the
A-valued inner product.

We end this subsection with a technical result, which may be interesting in its own
right, as it enhances the decomposition we already know from proposition 4.1.7.

Proposition 4.2.14. Let X be a Hilbert A-module. For all x ∈ X , we can find a
unique y ∈ X such that x decomposes as x = y · 〈y, y〉A.

The proof can be found in [31], but we encourage interested readers to try to write
out the decomposition in C.

4.3 Multiplier algebras

A treatment of Hilbert modules will not be complete until we include a section
on multiplier algebras, even though it is not at the core of this thesis. Multiplier
algebras resemble a noncommutative analogue of Stone-Čech compactification
from topology, which in some sense is the maximal compactification of a space.
For more thorough treatments of the topic, one should take a look at [31] or [13].

In some sense, adjoining a unit to a C∗-algebra resembles compactifying a space.
We start by generalizing unitizations to see how the more algebraic theory of
unitizations of C∗-algebras should work.

If we can embed the nonunital C∗-algebra as an ideal in a larger, unital C∗-algebra
without giving it too much space, we should be close to a good definition. Therefore,
by requiring the ideal to ”see” all other ideals in the ambient C∗-algebra, we should
have a useful place to start.

Definition 4.3.1. An ideal I in a C∗-algebra A is essential if I has nonzero inter-
section with each nonzero ideal of A.

With some clever tricks, we show an equivalent and more useful requirement for
an ideal to be essential.

Lemma 4.3.2. Let I be a (closed) ideal of A. Then I is essential if and only if
aI = (0) means that a = 0.

Proof. Let a ∈ A. Assume I is an essential ideal. To show the right-hand side,
algebraic experience (or some sixth sense) tells us it could help to study the ideal
generated by a. Define the ideal generated by a by (a) = span{AaA}. Now aI = (0)
is equivalent to (a) · I = (0). We know that since both of these are ideals in a
C∗-algebra, (a)∩ I = (a) · I by the argument below, which implies (a)∩ I = (0).
Since I is essential, (a) = (0), which means a = 0, as wanted. To show the converse,
we assume that a = 0 if aI = (0). Take a nonzero ideal J and consider a nonzero
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a ∈ J . Then we have that aI 6= (0) =⇒ (a)∩ I 6= (0), which then means I ∩ J 6= (0)
as (a) ⊆ J . Therefore I is essential.

Remark 4.3.3. In the proof above, we claim that intersections of ideals are the
same as products! In the well-behaved world of commutative algebra, we know
that only coprime ideals have this property. This is certainly not commutative
algebra, but it may still be surprising that this strong claim holds for all ideals in
C∗-algebras!

Let us explain this more in-depth. If we have two (closed) ideals I , J ⊆ A, we know
I · J ⊆ I ∩ J by the absorption property and the definition of the product ideal.
To show the other inclusion, we use some of the powerful tools in the theory of
C∗-algebras. Let x ∈ I ∩ J and let {uλ} be an approximate identity for the ideal I ,
which exists by proposition 2.3.10 since the closed ideal I is a C∗-algebra in its
own right. Now, we can consider x as an element in I , which means that for all
ε > 0, we can find uλ such that ‖x − x · uλ‖< ε. Considering x as an element in
both I ∩ J and J , we see that we can approximate elements in I ∩ J arbitrarily well
by elements in I · J the exact same way. ‖x − x · uλ‖< ε, which takes an element
x in I ∩ J and approximates it by some element x · uλ in I · J .

With that out of the way, we can define what we mean by a unitization of a
C∗-algebra in a more formal way.

Definition 4.3.4. A unitization of A is a unital C∗-algebra B with an injective
homomorphism i : A ,→ B such that i(A) is an essential ideal of B.

With new definitions, we should always ask pedantic questions to check our sanity,
For example, does this generalize the regular way of adjoining a unit? What
happens for C∗-algebras that already have a unit?

Remark 4.3.5. If A is already a unital C∗-algebra, with unit 1A, then we can’t find
any other unitization of A than A itself. If A is embedded as an ideal in a C∗-algebra
B, then it should be an essential ideal. Choosing a b ∈ B\A, we should have that
b1A ∈ A by absorption. Now b− b1A 6= 0, but (b− b1A)A= 0, which contradicts A
being essential by lemma 4.3.2.

Example 4.3.6. Our normal way of adjoining a unit (proposition 2.3.9) is indeed
a unitization. We consider the embedding i : A ,→ Ã = A⊕C given the natural
way. i(A) is indeed an ideal in Ã. To check that it is essential, apply lemma 4.3.2
to the following setup. Set (a,λ)i(A) = 0, which means that (a,λ)(b, 0) = 0 for
all b ∈ A. We want to show (a,λ) = (0,0). Writing out the multiplication and
assuming for a contradiction that λ 6= 0, we get −ab = λb, which gives −ab

λ = b
for all b. Then we also have c((−1/λ)a)∗ = c for all c by conjugation, which then
implies (−1/λ)a = ((−1/λ)a)∗, and therefore ((−1/λ)a) is an identity on A. The
pair (a,λ)was arbitrary, which is a contradiction. Therefore, λ = 0, but this implies
that (a, 0) (a∗, 0) = 0. Now both a = 0 and λ = 0, which means i(A) is an essential
ideal. Therefore the pair (Ã, i) is a unitization.
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The following example explains some of the relevance to Hilbert modules.

Example 4.3.7. Consider L : A→ L(AA). This is the embedding of A sending a 7→ La,
which is the operator acting by left multiplication of a. It would be natural to ask
if such an embedding yields a unitization of A. Since

Θa,b(c) = a〈b, c〉A = ab∗c = Lab∗(c),

we can show that the image of L is K(AA). Recalling lemma 4.3.2, we assume
T ∈ L(AA) is such that T K = 0 for all K ∈ K(AA). Then TΘb,c = ΘT b,c = 0 for all
b, c ∈ A. Then T b = 0 for all b, but this means precisely T = 0. Therefore K(AA) is
an essential ideal, so (K(AA), L) is a unitization.

It turns out that this particular unitization plays a special rôle, since it ends up
being our main definition of a multiplier algebra.

Before we define multiplier algebras, we take a short side-step to the topological
compactification mentioned at the start of the section.

Example 4.3.8. We say a compact Hausdorff space Y is a compactification of a space
X if there exists an injection i : X ,→ Y such that i is a homeomorphism onto a
dense subset of Y . One can show compactifications exists for all topological spaces.
Connecting this to C∗-algebras, we know commutative C∗-algebras are spaces
of continuous functions, and compactifying the space X makes even the identity
vanish at infinity, which means we have adjoined a unit to our C∗-algebra. We
can then find a unitization of A= C0(X ) by the induced (and extended) injection
i∗ : C0(X )→ C(Y ) which is given by

i∗( f )(y) =

�

0 if y /∈ i(X ),
f (x) if y = i(x) for x ∈ X .

In topology, we define some sort of maximal compactification βX . This is called the
Stone-Čech compactification of X , which is maximal in the sense that all continuous
functions from X to a compact Hausdorff space factor uniquely through βX .

This motivation leads us to a clear problem. Can we find a maximal unitization?
What do we even mean by a maximal unitization? Note that due to the contravariant
nature of C(−,C) in example 4.3.8, we flip the arrows in our definition.

Definition 4.3.9. If i : A ,→ B is a unitization of A, we say it is maximal if for all
other embeddings jC of A as an essential ideal in a C∗-algebra C , we can find a
homomorphism φ : C → B such that

B

A

C

i

jC

φ
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commutes.

Given this diagrammatic definition of maximal unitizations, we can compare the
structure to other structures with similar properties, at least on a more philosophical
level. Often these structures are unique up to isomorphism. If such a unique
maximal unitization of A exists, it will be our definition for the multiplier algebra,
M(A), of A.

As mentioned earlier, the unitization L : A ,→ L(AA) is important in constructing
these algebras.

Theorem 4.3.10. The unitization L : A ,→ L(AA) is maximal. It is unique in the
sense that if i : A ,→ B is another maximal unitization, the induced homomorphism
φ : B→ L(AA) is an isomorphism.

From a purely algebraic point of view, this would not seem to be so hard to prove,
but as we work in the world of analysis, we have a lot of structure to respect.
Therefore we omit the proof, as we need to develop this theory a bit deeper to give
a readable proof. Interested readers are referred to [31] and [13] for more depth
and for the last proofs in this section.

Nevertheless, this leads us to a natural definition and interesting examples.

Definition 4.3.11. We define the multiplier algebra of A to be L(AA), which we
denote by M(A).

Remark 4.3.12. Historically speaking, one defined M(A) in terms of double cent-
ralizers, which are pairs of operators on A meant to resemble the centralizer of a
ring. These pairs were called multipliers, which justifies the name. Theorem 4.3.10
makes the approach to multiplier algebras through L(AA) a valid approach and
hence motivating our definition.

We end the section with some examples of multiplier algebras to show that this
seems to be a reasonable construction.

Proposition 4.3.13. Let X be a Hilbert A-module, let H be a Hilbert space, and
let T be a locally compact Hausdorff space. Then we have:

1. L(X )∼= M(K(X ))
2. B(H)∼= M(K(H))
3. Cb(T )∼= M(C0(T ))∼= C(βT )

Here βT is the Stone-Čech compactification from example 4.3.8 and Cb(T ) denotes
the bounded, continuous functions on T .

With this, we end our brief discussion on multiplier algebras and move on towards
the core of chapter 4, namely induced representations and Morita equivalence for
C*-algebras.
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4.4 Induced representations

Aiming to define some sort of Morita equivalence for C*-algebras, we should recall
from ring theory that two rings are Morita equivalent if they give equivalent module
categories and therefore equivalent categories of representations. If we can find a
way to pass representations between C∗-algebras A and B, perhaps we can make
sense of A and B being Morita equivalent.

To do this, we want to use our theory of Hilbert modules. Suppose A and B
are C∗-algebras and let X be a (right) Hilbert B-module. Suppose we have a
homomorphism A→ LB(X ), i.e. A acts as adjointable operators on XB. Denote the
action by a · x for a ∈ A, x ∈ X . We will show that we can use the bimodule AXB to
pass representations between A and B, but to construct representations, we will
need to work with tensor products.

We state a lemma on tensor products of Hilbert spaces and refer to Chapter 2.4 of
[31] for a proof, as it is more difficult to prove than imagined.

Lemma 4.4.1. If V, W are Hilbert spaces, we can define an inner product on the
tensor product of vector spaces, V ⊗W , such that

(v1 ⊗w1, v2 ⊗w2) = (v1, v2)(w1, w2).

The completion of the vector space tensor product in the norm induced by this
inner product is what we call the Hilbert space inner product.

Remark 4.4.2. There may be room for confusion below, so let us get things straight
before we do more work on tensor products. We are working with one algebraic
tensor product, which we from now on will denote by �, and complete tensor
products, which we denote the usual way by ⊗. Elementary tensors will always be
denoted with ⊗, but it should be clear from the context where they live. Tensor
products for C*-algebras are not the kind of tensor product one may know from
more algebraic constructions, such as tensor products of abelian groups or modules.
As mentioned (2.5.1), tensor products in these settings are certainly unique up
to isomorphism. The problem is that when we work with C*-algebras and Hilbert
modules, we have a lot of structure to respect. This leads to us losing the regular
universal property of V ⊗W being the canonical ”bilinear structure” in the sense
that bounded bilinear operators on V ×W give bounded linear operators on V ⊗W .
This does not always happen. On the other hand, one can phrase some sort of
universal property if we restrict to so-called weak Hilbert-Schmidt operators. We
refer to [31] and [21] for more on the topic.

Our goal is to take a nondegenerate representation π of B on some Hilbert space
Hπ and have A act as adjointable operators on a Hilbert B-module X , because then
we can use this structure to move representations from B to A. Roughly speaking,
we want to have Hπ to be the Hilbert space on which we represent B with π, then
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take our bimodule X and define a representation on some completion of X �Hπ
to connect the A-related structure of X and the representation π : B→ B(Hπ).

To make this construction, we first need an appropriate inner product to complete
X � Hπ in that connects the representation to the Hilbert space inner product
(4.4.1).

Proposition 4.4.3. Let AXB be a Hilbert B-module with an action of A as adjointable
operators and let π : B→ B(Hπ) be a nondegenerate representation. Then there
exists a unique, positive, semi-definite inner product on the algebraic vector space
tensor product, X �Hπ, such that

(x ⊗ h, y ⊗ k) := (π (〈y, x〉B)h, k) .

In the proof of proposition 4.4.3, we will need to check the positivity of the
sesquilinear form we construct. At that point, we will naturally need to consider a
family

�


x i , x j

�

B

�

, which we can view as a n× n-matrix. Before we start the proof,
we proactively state a lemma on the positivity of such elements and refer readers
to [31] for a proof.

Lemma 4.4.4. Let X be a (right) Hilbert B-module and let x1, . . . xn ∈ X . The
matrix given by

�


x i , x j

�

B

�

i, j
is a positive element of Mn(B).

With this lemma under our belt, we set out to prove proposition 4.4.3.

Proof. (Proof of proposition 4.4.3) To start off, we define a pairing satisfying the
wanted relation. If we fix y, k in (π (〈y, x〉B)h, k), we get a bilinear map in in (x , h),
which induces a linear map f y ⊗ fk : X �Hπ→ C. We want to define a sesquilinear

form on (X �Hπ), but for now we can define a bilinear form (y, k) 7→ f y ⊗ fk from
X ×Hπ to the dual space (X �Hπ)

∼. This certainly induces a linear map L on
X �Hπ, which we can use to define the inner product. Define now (a, b) := Lb(a),
which is a sesquilinear form on X �Hπ. To check the positivity, we want to prove
that

�∑

x i ⊗ hi ,
∑

x i ⊗ hi

�

=
∑

i, j

�

π
�


x i , x j

�

B

�

h j , hi

�

≥ 0.

This is where our matrix positivity lemma comes in. By passing π to the matrix
algebra representation πn, we can consider this sum more easily and apply lemma
4.4.4. If we let M =

�


x i , x j

�

B

�

, we can rewrite this inner product to

∑

i

 

∑

j

π
�


x i , x j

�

B

�

h j | hi

!

=
∑

i

�

(πn(M) (hk))i | hi

�

= (πn(M) (hk) | (hk)) .

Since M is positive, πn(M) is positive, so this last term is nonnegative.
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Remark 4.4.5. We should note that this is only a semi-definite inner product, as
elements of the form (x · b)⊗ h− x ⊗π(b)h are sent to zero by the inner product
with any other element y ⊗ k, but these are not necessarily zero. This is not a
problem, as we mod out vectors of length zero when we complete the space. In
fact, this yields some sort of B-balancedness in the completion, in the sense that
(x · b)⊗ h= x ⊗π(b)h. To emphasize this, we give the tensor product a subscript
B.

Now, finally, we explain how to induce representations between C∗-algebras.

Proposition 4.4.6. Let X be a Hilbert B-module and assume that A acts as adjoint-
able operators. If π is a nondegenerate representation of B on a Hilbert space Hπ,
then we get an induced representation Indπ of A on the Hilbert space X ⊗B Hπ,
which we obtain by completing the algebraic tensor product in the inner product
from proposition 4.4.3. The induced representation is given by

Indπ(a)(x ⊗B h) := (a · x)⊗B h,

and if X is nondegenerate as an A-module in the sense that A〈X , X 〉 · X is dense
in AX , then this induced representation is nondegenerate as well. If we feel the
need to emphasize the Hilbert module X or the C∗-algebras A and B, we write
X − IndA

B π, IndA
B π or X− Ind π.

Proof. The proof is a lengthy and technical endeavour giving little insight, and
we omit the proof and refer interested readers to [31] for a proof, as our focus lies
on giving an overview of the subject.

Before we move on to the next section where we define Morita equivalences
through bimodules, we consider some basic examples of induced representations.

Example 4.4.7. LetπA : A→ B(H) be a representation. We know the nondegenerate
representations ofC on a Hilbert space Hπ areπC(z) = z1, with 1 being the identity
operator on Hπ. Consider AH as a right Hilbert C-module and consider the inner
product, which gives

(x ⊗ h | y ⊗ k) :=
�

π
�

〈y, x〉C
�

h | k
�

=
�

〈y, x〉Ch | k
�

= (x | y)(h | k).

Thus the tensor product on which we get the induced representation on A actually
turns out to be the Hilbert space tensor product H⊗Hπ. The induced representation
on A coming from πC, is the tensor product representation IndπC is given by πA⊗1
such that a 7→ πA(a)⊗ 1.

Example 4.4.8. Consider BB as a left Hilbert module over its multiplier algebra
M(B) = L(BB) and let π be a nondegenerate representation of B. We know the
formula and the space that yields an explicit description of the induced represent-
ation, but it would be interesting to build a representation on the same Hilbert
space. This is what we aim to construct. If we consider the linear extension φ of
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the map b⊗ h 7→ π(b)h, we see the following calculation shows that this map is
an isometry B �Hπ→Hπ where we use the Hilbert space inner product on the
tensor product:

(φ(b⊗ h) | φ(c ⊗ k)) = (π(b)h | π(c)k) = (π (c∗b)h | k) (4.5)

= (π (〈c, b〉B)h | k) = (b⊗ h | c ⊗ k) (4.6)

From the definition of nondegeneracy, we get that the range of φ is dense. If we
complete the tensor product, we get an induced, surjective unitary transformation
U : B⊗B Hπ→Hπ. Fix an element m ∈ M(B) and consider now the operator given
by

U Indπ(m)U∗(π(b)h) = (U Indπ(m)U∗)U (b⊗B h) (4.7)

= U Indπ(m) (b⊗B h) (4.8)

= U (mb⊗B h) = π(mb)h. (4.9)

This certainly extends to a representation of M(B) on the same Hilbert space Hπ.

Note that unitary operators are a sort of intertwining operators. We state a pro-
position (without proof) from [31] showing the functoriality of X − IndA

B from the
category of nondegenerate representation of B and bounded intertwining operators
to the similar category for A.

Proposition 4.4.9. Assume that A acts as adjointable operators on a Hilbert B-
module X , πi are nondegenerate representations of B on Hilbert spaces Hi and
T : H1→H2 is a bounded intertwining operator T(π1(b)h) = π2(b)(Th). Then
the transformation 1 ⊗ T : X � H1 → X � H2 extends to a bounded operator
1⊗B T : X⊗BH1→ X⊗BH2 intertwining the induced representations. Furthermore,
the map T 7→ 1⊗B T is ∗-linear and if S : H2→ H3 intertwines π2 and π3, then
we have that 1⊗B (S ◦ T) = (1⊗B S) ◦ (1⊗B T). In particular, X − Ind preserves
unitary equivalence and direct sums.

With some more work on this theory, one can also show that induced representa-
tions play nice with ideals and faithfulness.

Proposition 4.4.10. Let X be an Hilbert A− B-bimodule. Then

1. ifπ,ρ are representations of B with the same kernels, then ker
�

X − IndA
B π
�

=
ker

�

X − IndA
B ρ
�

.
2. if π is a faithful representation of B and the action of A on X is faithful, the

induced representation is a faithful representation of A.

4.5 Equivalence bimodules and Morita equivalence

As mentioned in the introduction of the chapter, the natural way to express Morita
equivalences should be through bimodules in the operator algebraic context. Now,
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after a bit of work, we have developed a framework in which we can construct
bimodules between C∗-algebras that let us pass representations back and forth.
There are yet some technicalities and unanswered questions connected to these
induced representations, such as whether or not inducing a representation back
and forth will yield the same representation, but for now, we postpone these
technicalities to the next section. We first do some rewarding work on imprimitivity
bimodules and Morita equivalence, which will be essential for the later applications
to noncommutative tori.

Definition 4.5.1. An A− B-imprimitivity bimodule is an A− B-bimodule X such
that the following hold:

1. X is a full left Hilbert A-module and a full right Hilbert B-module.
2. The actions from A and B work as adjointable operators in the sense that for

all x , y ∈ X , a ∈ A and b ∈ B

〈a · x , y〉B = 〈x , a∗ · y〉B and A〈x · b, y〉= A〈x , y · b∗〉

3. For all x , y, z ∈ X ,

A〈x , y〉 · z = x · 〈y, z〉B

Remark 4.5.2. This seems to be a reasonable definition, as we want the Hilbert
bimodule structure and adjointable operators axioms to be able to pass represent-
ations between the C∗-algebras, as well as letting the inner products play nicely
together. There is some redundancy in the definition, as the second axiom actually
implies (a · x) · b = a · (x · b) and (λa) · (x · b) = a · (x · (λb)), that is, we do not
need to assume X is a bimodule to start with. This follows by showing each side of
the equality sign give the same inner product with all other elements in X .

The word imprimitivity bimodule comes from Rieffel’s original work on this topic,
where this theory was connected to the imprimitivity theorem of Mackey. A perhaps
more intuitive word for these modules would be ”equivalence bimodules”, as they
certainly play the rôle as the manifestation of our Morita equivalence.

Let us consider some examples we already know to see this in play.

Example 4.5.3. We know Hilbert spaces H are right Hilbert C-modules and left
Hilbert K(H)-modules, where the left inner product is given by K(H)〈h, k〉 := h⊗ k̄.
By earlier examples, we know the axioms hold and we see that the last axiom
is certainly just the definition of the rank-one operator coming from the inner
product. Thus H is a K(H)−C-imprimitivity bimodule.

Example 4.5.4. A is certainly an A−A-imprimitivity bimodule with the inner products
defined earlier, by straightforward computations of the axioms.

Before we study more interesting examples and give a go at Morita equivalence,
we can actually rephrase the definition with an equivalent version of the second
axiom and define it for pre-inner product modules. The following lemma from
[31] will justify the definition in the noncomplete case.
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Lemma 4.5.5. Let X be an A− B-bimodule such that the first and last axiom in
definition 4.5.1 holds. Then X is an A− B-imprimitivity bimodule (i.e. the second
axiom holds) if and only if for all a ∈ A, b ∈ B and x ∈ X ,

〈a · x , a · x〉B ≤ ‖a‖2〈x , x〉B and 〈x · b, x · b〉 ≤ ‖b‖2〈x , x〉

holds.

Proof. If the regular axiom holds, that is, if A acts as adjointable operators, then
we already have the result by proposition 4.2.8. Conversely, we can compute

〈A〈x , y〉 · z, w〉B = 〈x · 〈y, z〉B, w〉B = 〈z, y〉B〈x , w〉B
= 〈z, y · 〈x , w〉B〉B = 〈z,A 〈x , y〉∗ ·w〉B

(4.10)

by using the first and last axiom. By fullness, the ideal A〈X , X 〉 is dense in A, which
means that 〈a ·z, w〉B = 〈z, a∗ ·w〉B holds for all a in this ideal and all z, w ∈ X . The
new middle axiom implies boundedness, which means we can extend this to all of
A by continuity. The new axiom implies that multiplication with A is an operator
that has norm at most ‖a‖, and therefore we get ‖〈a · z, w〉B‖ ≤ ‖a‖‖z‖B‖w‖B by
the Cauchy-Schwarz inequality and the C∗-equality. A similar argument for B will
yield the result.

Now we can define imprimitivity bimodules over pre-C∗-algebras, to extend our
definition to more applicable cases. We want to mimic lemma 4.1.15.

Definition 4.5.6. Let A0 ⊂ A and B0 ⊂ B be dense ∗-subalgebras. An A0 − B0-pre-
imprimitivity bimodule is a vector space X0 and an A0 − B0-bimodule such that the
following axioms hold:

1. X0 is a left pre-inner product A0-module and a right pre-inner product B0-
module.

2. A0
〈X0, X0〉 and 〈X0, X0〉B0

span dense ideals of A and B.
3. For all a ∈ A0, b ∈ B0 and x ∈ X0, the following inequalities hold in the

completions A and B:

〈a · x , a · x〉B0
≤ ‖a‖2〈x , x〉B0

and A0
〈x · b, x · b〉 ≤ ‖b‖2〈x , x〉

4. For all x , y, z ∈ X0,

A0
〈x , y〉 · z = x · 〈y, z〉B0

(4.11)

Wanting to complete the pre-imprimitivity bimodule, we need the two seminorms
given by these inner products to agree.

Proposition 4.5.7. If X0 is an A0 − B0-pre-imprimitivity bimodule the same way
as before, then for all x ∈ X0,

‖x‖2A =






A0
〈x , x〉





=




〈x , x〉B0





= ‖x‖2B.
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Proof. For any fixed x ∈ X , we use the Cauchy-Schwarz inequality and the in-
equality from the pre-imprimitivity bimodule definition to deduce





〈x , x〉B0







2
=




〈x , x〉B0
〈x , x〉B0





=












x , x · 〈x , x〉B0

�

B0










=












x ,A0
〈x , x〉 · x

�

B0










≤




〈x , x〉B0







1/2












A0
〈x , x〉 · x ,A0

〈x , x〉 · x
�

B0










1/2

≤




〈x , x〉B0







1/2 




A0
〈x , x〉











〈x , x〉B0







1/2
.

Thus, this means




〈x , x〉B0





 ≤






A0
〈x , x〉





, and as this situation is symmetric, we
have the opposite inequality as well.

As the norms agree, we can use lemma 4.1.15 and lemma 4.5.5 to get the following
proposition:

Proposition 4.5.8. (Completions of pre-imprimitivity bimodules) Given the setup
as above, let X0 be an A0−B0-pre-imprimitivity bimodule. Then there exists an A−B-
imprimitivity bimodule X and an A0 − B0-bimodule homomorphism q : X0 → X
such that the image of q is dense in X and for all x , y ∈ X0, a ∈ A0, b ∈ B0,

〈q(x), q(y)〉B = 〈x , y〉B0
, A〈q(x), q(y)〉= A0

〈x , y〉

Enough with the technicalities for now. Let us see what we can say about A and B
when we have an A− B-imprimitivity bimodule X between them. One (perhaps)
unexpected result is the following:

Proposition 4.5.9. All full (right) Hilbert B-modules X are K(X )−B-imprimitivity
bimodules. Conversely, if X is an A− B-imprimitivity bimodule, then there exists
an isomorphism φ : A→ K(X ) preserving the inner product.

Proof. Suppose first we have a full (right) Hilbert B-module X . Then we know
from earlier examples (4.1.11) that X is a full left Hilbert K(X )-module. We know
that K(X ) acts as adjointable operators, but for the second identity of the second
axiom, we consider the following for b ∈ B, x , y, z ∈ X :

K(X )〈x · b, y〉(z) = (x · b) · 〈y, z〉B = x · 〈y · b∗, z〉B = K(X )〈x , y · b∗
�

(z).

As mentioned earlier, the last axiom is just the definition of the rank-one operator
coming from the K(X )-valued inner product.

For the converse, assume X is an A− B-imprimitivity bimodule. We know A acts as
adjointable operators, meaning the regular map φ : A→ L(X ), φ(a)(x) := a · x is
a homomorphism of C∗-algebras, which means that it has closed range. The last
axiom, A〈x , y〉 · z = x · 〈y, z〉B, gives the definition of the stereotypical rank-one
operator when put through φ. More precisely, we get

φ(〈x , y〉) = K(X )〈x , y〉
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for all x , y ∈ X , which means that the range of φ must be K(X ). To show injectivity,
we pick a ∈ kerφ. The fullness of X as an Hilbert A-module lets us approximate a
by some element of the form aΣiA〈x i , yi〉. This element is certainly in the kernel
of φ, as elements in the kernel of φ act as the zero operator, which means

a
∑

i
A〈x i , yi〉=

∑

i
A〈a · x i , yi〉=

∑

i
A〈0, yi〉= 0.

Therefore φ is an isomorphism.

Queequeg 4.5.10. Readers with a deeper background from algebraic representation
theory may (and only may) have expected such a result due to similarities to the
original Morita theorem. The Morita theorem ([24]) says that two rings S, R are
Morita equivalent if and only if one of them can be realized as the endomorphism
ring of a finitely generated projective generator in the module category of the other
ring, where a generator in a category C is an object G for which HomC(G, H) 6= 0
for all nonzero objects H. By waving hands and crossing our fingers for deep
connections, we can think about K(X ) as the analogue to the endomorphism ring,
as it takes care of a lot of the structure theory in our context.

Whether or not there is a solid connection to some Morita theorem for C∗-algebras,
is unknown to the author at the current point, but it may be motivating to remark
the similarities between the ring theoretic theory and the C∗-algebraic theory, even
if such a connection does not exist.

Nevertheless, after all the technical work on Hilbert modules and induced repres-
entations, we are finally ready to define Morita equivalences.

Definition 4.5.11. (Morita equivalence) Let A and B be two C∗-algebras. We say
A and B are Morita equivalent if there exists an A− B-imprimitivity bimodule X .

As mentioned, X is the manifestation of the Morita equivalence, and therefore we
say X implements the Morita equivalence.

Remark 4.5.12. Morita equivalence is certainly weaker than isomorphism. Assume
φ : A→ B is an isomorphism. Then we can choose X = B and give it the following
structure.

x · b := x b, a · x := φ(a)x , 〈x , y〉B := x∗ y, and A〈x , y〉= φ−1 (x y∗)

The word ”equivalence” can be justified, as one can show the following with a bit
of technical work on tensor products of imprimitivity bimodules.

Theorem 4.5.13. Morita equivalence is an equivalence relation on C∗-algebras

Proof. The proof is omitted here, but readers interested in tensor product technic-
alities should certainly take a look at [31] for details.
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With some further technical work, one can show an extremely useful characteriza-
tion of Morita equivalent C∗-algebras in terms of complementary full corners, but
first, we need to define and understand these full corners.

Example 4.5.14. Let p ∈ A be a projection. We can realize Ap as a full right
Hilbert pAp-module with inner product 〈ap, bp〉pap = pa∗bp. This is the structure
inherited when considering it as a subset of A. Fullness follows as products a∗b
are dense in A. Similarly, pA is a full left Hilbert ApA-module, which means that
we can realize Ap as an ApA− pAp-imprimitivity bimodule.

Definition 4.5.15. A C∗-subalgebra B of a A is called a corner of A if there exists a
projection p ∈ A such that B = pAp. A corner is called full if span ApA is dense in A,
or equivalently, the corner is not contained in any proper, closed, two-sided ideal.
A corner qAq is called complementary to pAp if q = 1A− p.

Remark 4.5.16. Full corners of A are Morita equivalent to A via Ap, which means that
any complementary full corners are Morita equivalent with qAp as the qAq− pAp-
imprimitivity bimodule by explicit calculation and transitivity of Morita equival-
ences.

Amazingly enough, one can show all Morita equivalences arise in a similar manner.

Theorem 4.5.17. Two C∗-algebras A and B are Morita equivalent if and only if
there exists a third C∗-algebra C with complementary full corners isomorphic to A
and B.

Proof. The proof is omitted, but readers wanting to learn a new bunch of magic
tricks should take a look at [31] and the linking algebra theory behind the proof.

In the light of this theorem, we see that it would be interesting, from a purely
algebraic point of view, for now, to be able to classify all projections. This will
be extremely relevant when we return to K-theory later in the thesis with more
geometric motivation, but this result will also be relevant when we want to classify
noncommutative tori in the last chapter.

4.6 The Rieffel correspondence

In this last section, we will show that Morita equivalent C∗-algebras have the same
ideal structure and representation theory, that is, the Ind-functors going each way
are actually inverses up to unitary equivalence.

This section will not be as thorough as it deserves to be, since there is a lot of
depth and beauty in this theory, but our motivation for working through this is for
justification and motivation on why studying Morita equivalence classes should be
interesting.
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First, note that the set of closed, two-sided ideals of A, I(A), can be partially ordered
by inclusion with a lattice structure, that is, for each pair of ideals I , J ∈ I(A),
we can find a greatest lower bound and a least upper bound with respect to this
ordering.

Morita equivalent C∗-algebras have isomorphic lattices of ideals in the sense that
we can find an order-preserving bijection between the lattices. In fact, imprimitivity
bimodules give us isomorphisms between the ideal lattices of A and B and the
lattice of closed A− B-submodules of X by preimages and images under the inner
products.

Theorem 4.6.1. Let X be an A− B-imprimitivity bimodule. Then there are lattice
isomorphisms among I(A),I(B) and the lattice of closed A− B-submodules of X
given by the following correspondences:

1. If K ∈ I(A) and J ∈ I(B), then the corresponding A− B-bimodules are given
by

K X = {y ∈ X :A 〈y, x〉 ∈ K for all x ∈ X }
XJ = {y ∈ X : 〈x , y〉B ∈ J for all x ∈ X }

2. If Y is a closed A− B-submodule, then the corresponding ideals are given by

Y I = span{〈x , y〉B : x ∈ X , y ∈ Y } ∈ I(B)
IY = span{A〈y, x〉 : x ∈ X , y ∈ Y } ∈ I(A)

Those who are notationally challenged may, with every right, be confused by the
subscripts and large letters, but if we interpret the subscript to tell us where the
structure comes from and the large letters as which ”side” of the bimodule it lives,
it should be quite clear what this means. For example, IY is the ideal that lives in
the left structure (in I(A)) and comes from the closed A− B-submodule Y .

To prove this, we need a more explicit description of the induced bimodules.

Lemma 4.6.2. Assume X is an A− B-bimodule and J is an ideal of B. Then the
induced submodule, XJ = {y ∈ X : 〈x , y〉B ∈ J for all x ∈ X}, is actually a closed
A− B-submodule and can be realized as

X · J = XJ = {y ∈ X : 〈y, y〉B ∈ J} .

Proof. We already know X · J ⊂ XJ ⊂ {y ∈ X : 〈y, y〉B ∈ J} , since continuity of the
inner product yields that XJ is closed in X and J is an ideal. Now, take any y ∈ Y
such that 〈y, y〉B ∈ J and take uλ to be an approximate identity for J . Then for all
ε > 0, we can find an uλ such that

‖y − y · uλ‖
2
B = ‖〈y, y〉B − 〈y, y〉Buλ − uλ〈y, y〉B + uλ〈y, y〉Buλ‖< ε/2+ε/2= ε.

Therefore y ∈ X · J .
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Proof. (Proof of theorem 4.6.1) To see that we actually get isomorphisms, we
want to show that the maps J 7→ XJ and Y 7→Y I are inverses of each other. Since
they preserve containment, they preserve partial orders. If we can show they are
inverses, these will yield lattice isomorphisms. We show this for J ∈ I(B), as the
result for A is similar. If we actually untangle the definition, we easily see that

XJ
I ⊂ J . To show the reverse inclusion, we now know XJ = X · J , which means that

we can write J〈X , X 〉BJ = 〈X · J , X · J〉B ⊂ XJ
I . By fullness, 〈X , X 〉B is dense in B,

which means that the left-hand side spans a dense ideal of J . Continuity yields that
this is indeed closed, so we get XJ

I = J . To show the converse, consider Y to be a
closed A− B-submodule of X . Then, as earlier, we see that Y ⊂ X

Y I by unraveling
the definition. For the reverse inclusion, note that X

Y I = X ·Y I by lemma 4.6.2,
which means that X

Y I can be spanned by elements x · 〈y, z〉B for x , y ∈ X , z ∈ Y .
This is actually in Y since X is an A− B-imprimitivity bimodule and z ∈ Y , by
x ·〈y, z〉B = A〈x , y〉·z. Therefore X ·Y I ⊂ Y , and as Y is closed, we get equality.

This lattice isomorphism I(B)→ I(A) is given a special name, namely the Rieffel
correspondence. By the last result of the next proposition, we use the same notation
as for the induced representations. We state some results on how the Rieffel
correspondence works before we move on to the last technical part of the chapter.

Proposition 4.6.3. (The Rieffel Correspondence) Let X be an A− B-imprimitivity
bimodule. Then X − IndA

B : I(B)→ I(A) is given by

X − IndA
B J = span{A〈x · b, y〉 : x , y ∈ X , b ∈ J}

and if K = X− IndA
B J , then K · X = X · J is the corresponding closed submodule.

If we let π be a representation of B, then

X − IndA
B(kerπ) = ker

�

X − IndA
B π
�

.

Remark 4.6.4. To see the relevance of the last part of the proposition, note that
we can realize any ideal I ⊂ A as a kernel of a representation π. To do this,
choose the representation given by the composition A→ A/I → B(H), where the
first map is the quotient and the second is a faithful representation given by the
GNS-construction (2.4.4).

Proof. Recall that the definition and lemma 4.6.2 actually yields X − IndA
B J =

IXJ
= IX ·J . The middle submodule can be expressed by

X− IndA
B J = span {A〈x , y〉 : x ∈ XJ and y ∈ X} ,

which is exactly what we want since XJ = X · J , with limit points working as
expected due to the continuity of the inner product.

If K = X− IndA
B J , we get K · X = KX = IXJ

X = XJ = X · J by repeated use of lemma
4.6.2 as well as theorem 4.6.1.



Chapter 4: Hilbert C∗-modules and Morita equivalences 47

For the last part, let J = kerπ and note that elements of the form A〈x , y〉 for
x ∈ X , y ∈ XJ spans Ind J , and

X− IndA
B π (A〈x , y〉) (z ⊗B h) = (A〈x , y〉 · z)⊗B h

= (x · 〈y, z〉B)⊗B h

= x ⊗B π (〈y, z〉B)h
= 0,

where the last line follows from the fact that 〈y, z〉B ∈ J . Now, take a ∈ ker
�

IndA
B π
�

,
which means that a · x ⊗B h= 0 for all x ∈ X , h ∈Hπ. Let h, k ∈Hπ and x , y ∈ X .
Then

(a · x ⊗B h | y ⊗ k) = (π (〈y, a · x〉B)h | k) = 0

This implies 〈y, a · x〉B ∈ J for all x , y ∈ X , which in turn gives a · x ∈ XJ .

To conclude, note that we can approximate a by elements of the form

a

�

∑

A

〈x i , yi〉

�

=
∑

A

〈a · x i , yi〉

by fullness of X , which in turn means that a must be in IXKerπ
= IXJ

= IndA
B(kerπ)

An interesting and powerful property of the Rieffel correspondence, which can be
found in [31], is the fact that the corresponding ideals and quotients are Morita
equivalent as well.

Proposition 4.6.5. Let X is an A− B-imprimitivity bimodule with Rieffel corres-
pondence X − Ind : I(B)→ I(A) and let J ∈ I(B) and K = X − Ind J ∈ I(A). Then
XJ is a K−J -imprimitivity bimodule and X J := X/XJ is an A/K−B/J -imprimitivity
bimodule such that the quotient norm on X J coincides with the norm induced by
the B/J -valued inner product.

To get the inversely induced representations, we first need to develop some notion
of a dual module.

Example 4.6.6. To demonstrate conjugated vector spaces, take a (right) Hilbert
space H (a right Hilbert C-module) and define H, which is just H as an abelian
group. Let [ : H→H be the identity map as abelian groups and define the action
on H by λ · [(h) = [(h · λ̄), which yields a left Hilbert C-module structure on H.

In the same manner, if X is an A−B-imprimitivity bimodule, let X̃ be the conjugate
vector space over a field K such that there is a K-linear bijection [ : X → X̃ .

Then X̃ is a B − A-imprimitivity bimodule with structure as

b · [(x) = [ (x · b∗) [(x) · a = [ (a∗ · x)

B〈[(x), [(y)〉= 〈x , y〉B 〈[(x), [(y)〉A = 〈x , y〉

for x , y ∈ X , b ∈ B, a ∈ A.
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The inverse to X − Ind will be given by X̃ − Ind, but first, let us show that X̃ is the
inverse of X in another interesting sense.

First, recall that isomorphisms of A− B-imprimitivity bimodules are bimodule
isomorphism preserving both inner products. To prove a given linear map is an
isomorphism, we only need to check that it preserves inner products and has dense
range, since preserving inner products implies the map is isometric, which in turn
means that it is an injection with closed range. We can also do some tricks with the
inner products to show these maps are bilinear if they satisfy these two properties.

Proposition 4.6.7. If X is an A− B-imprimitivity bimodule, we can find an iso-
morphism φ : B(X̃ ⊗A X )B →B BB such that φ ([(x)⊗A y) = 〈x , y〉B. In the same
way, we have an isomorphism ψ : A(X ⊗B X̃ )A such that ψ(x ⊗B [(y)) = A〈x , y〉.

Proof. We have a bilinear, A-balanced map ([(x), y) 7→ 〈x , y〉B, which induces
a linear map φ : eX �A X → B. With some work on internal tensor products of
imprimitivity bimodules, we can show by straightforward calculations that this
preserves inner products. The same argument then applies to X̃ since ˜̃X = X .

Why should we expect that X̃ − Ind is the inverse to X − Ind? Well, the space on
which X − Indπ acts is X ⊗B Hπ, which means that eX − Ind(X − Indπ) acts on
eX⊗A (X⊗B Hπ). We come back to the original Hilbert space by

eX⊗A (X⊗B Hπ)∼=
�

eX⊗A X
�

⊗B Hπ ∼= B ⊗B Hπ ∼=Hπ.

Theorem 4.6.8. Let X be an A− B-imprimitivity bimodule and let π,ρ be nonde-
generate representations of B and A. Then eX−Ind(X−Indπ) and X−Ind(X̃−Indρ)
are naturally unitarily equivalent to π and ρ, respectively.

Proof. Due to the long and perhaps not so enlightening nature of the proof, we
only sketch the key ideas. We define U : X̃ ⊗A(X ⊗B Hπ)→Hπ, which is the unitary
operator giving our unitary equivalence. Fix any [(x) ∈ X̃ . We can consider the
bilinear map (y, h) 7→ π(〈x , y〉B)h, which induces a linear map βx : X⊗BHπ→Hπ.
Now we can define a bilinear map when we let [(x) ∈ X̃ vary, which induces a
map U such that U (b(x)⊗A (y ⊗B h)) = π (〈x , y〉B)h.

Nondegeneracy of π means by definition that U has dense range. By lengthy
calculations, U preserves inner products, which means that it extends to a unitary
isomorphism. By several other calculations, we can show that U actually gives
a unitary equivalence. Given two representations πi for i = 1,2, we consider an
intertwining operator between the Hilbert spaces Hi for those representations.
If Ui are these unitaries as mentioned above for representation i, one can show
U2 ◦ ((X̃− Ind) ◦ (X− Ind)) = T ◦ U1 by more calculations.

We show the result for the other representation by applying the first part to B X̃A
instead of AXB.
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We end our theoretical story of Hilbert modules and Morita equivalences with
some expected corollaries.

Corollary 4.6.9. Let X be an A− B-imprimitivity bimodule. The inverse of the
Rieffel correspondence X − Ind : I(B)→ I(A) is indeed X̃ − Ind.

Proof. Since every ideal can be realized as the kernel of some representation,
theorem 4.6.8 and the fact that X − Ind(Kerπ) = Ker(X − Ind) from proposition
4.6.3 gives the wanted result.

Corollary 4.6.10. Let X be an A− B-imprimitivity bimodule and let π be a nonde-
generate representation of B. Then the induced representation X − Indπ is irredu-
cible if and only if π is irreducible.

Proof. If either of these were reducible, then X̃ − Ind and X − Ind would preserve
such a direct sum decomposition by proposition 4.4.9.

Queequeg 4.6.11. Readers interested in applications of sheaf cohomology in analysis
should take a look at the last chapters of [31], where lots of tools regarding
classifying continuous-trace C∗-algebras and applications to group theory are
studied.

After the technical work of fitting Morita equivalence to the world of C∗-algebras,
we shift our focus towards adapting topological K-theory, which seems to be at the
other side of the spectrum compared to Morita equivalence, as we can guess our
approach, as well as the results of operator K-theory, based on a good overview of
the topological case.





Chapter 5

First steps towards K-theory: The
K0-theory

In this chapter we motivate, define and develop several results on the zeroth
K-group, K0. Inspired by the Serre-Swan theorem, we adapt the construction of
K-theory from topological K-theory through the Grothendieck group to define
K0 as a group of equivalence classes of projections. To do this, we first need to
establish some notions of equivalence classes of projections, before we construct
related algebraic structures. These structures are passed through the Grothendieck
group to get an abelian group, becoming our premature definition of K0. After
developing well-known results for K0, we need to amend some small problems for
nonunital algebras in such a way that our results still hold.

In this section, we closely follow [35] and we will frequently refer there for lengthy,
technical, or unenlightening proofs. It is also possible to follow other sources, such
as the encyclopedic book by Blackadar ([1]) or Davidson ([5]).

5.1 Motivation: The Serre-Swan theorem, projective mod-
ules, and projections in C∗-algebras

When discussing Hilbert modules, we used modified vector bundles as an example
(4.1.13). The power behind this example came from the celebrated Serre-Swan
theorem ([40]).

Theorem 5.1.1. (Serre-Swan) Let X be a compact Hausdorff space, let p : E→ X
be a vector bundle, and let Γ (E) := Γ (X , E) be the space of sections (splits to the
epimorphism p) on the total space E. Then a C(X )-module P is isomorphic to a
module of the form Γ (E) if and only if P is finitely generated and projective.

The functor [Γ : VectBund(X)→ fg-proj(C(X))] yields an equivalence of categories.

51
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One can study vector bundle theory, which is highly geometric in nature, by using
the language of finitely generated projective modules. Ideas like this allowed
algebraic geometers in the late ’50s, such as Grothendieck, to develop new theories
in algebraic geometry, e.g. in the context of coherent sheaves, through ”classes”
(and thus the name K-theory, by the German word for class, ”Klasse”). Later, in
the ’60s, topologists like Atiyah and Hirzebruch applied these constructions to
vector bundles to develop topological K-theory, which is a reduced cohomology
theory in the sense of Eilenberg-Steenrod. For a brief introduction to the history
on the topic, we refer to [11] and the references therein. Later, algebraists like
Quillen ([30]) took up the story from a more algebraic point of view, and operator
algebraists made their own variant of K-theory yielding interesting results such as
the classification of AF-algebras.

Perhaps finitely generated projective modules seem a bit too far-fetched to adapt
to operator algebras. Projective modules have a lot of definitions, and even though
the definition involving exactness of the covariant Hom-functor may be the most
usual, one can define an A-module P to be projective if and only if P is isomorphic
to a summand of a free module, as this will surely be equivalent. In more operator
algebraic terms, given a C∗-algebra A and an A-module P, we say P is projective if
and only if there exists a projection p ∈ A and a free module An such that P ∼= pAn.

Projections in C∗-algebras turns out to be hard to find and classify, and from an
algebraic point of view, they should be! If we can find all (self-adjoint) idempotents
of an algebra, we can say a lot about the algebraic structure. Perhaps the best
example to give after a long chapter on Morita equivalences is the result on Morita
equivalence and complementary full corners (4.5.17), where projections certainly
play a key rôle.

Recall that commutative C∗-algebras are all of the form C0(X ) for some locally
compact Hausdorff space X by Gelfand duality (theorem 2.3.6). Projections in these
commutative C∗-algebras should then correspond to finitely generated projective
modules, which corresponds to vector bundles over X by Serre-Swan (5.1.1).
Considering the same process of classifying projections in noncommutative C∗-
algebras, we may think about the coming theory as an analogue of classifying
”noncommutative vector bundles”. This idea is of importance in noncommutative
geometry and we can only refer interested readers to Connes ([4]) for a treatment
of this topic.

Projections will be the foundation for the K0-theory, and it turns out we can
formulate the K1-theory in terms of unitary elements in a similar manner, which
we postpone to later chapters (7.1), but as unitaries are important elements in
constructing K0 as well, we include the necessities.

It turns out that the theory should be defined in terms of unital C∗-algebras, but
through unitizations, there should be a way to link the nonunital case to the unital
definition.
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5.2 Equivalences of projections and homotopy

The main part of this section will be on developing equivalence relations compat-
ible with a monoid structure on projections to construct our invariants. Perhaps
inspired by topological K-theory ([43], [8]), we want to apply the Grothendieck
construction, which involves abelian monoids and equivalence relations. Aiming
to construct a relevant abelian monoid, we try out different types of equivalence
relations of projections to see if we can get an abelian monoid up to some equival-
ence. In the end, all these equivalence relations give the same equivalence classes
when we stabilize our construction by passing to matrices.

Let A be a C∗-algebra. To make sure we are all on the same page:

Definition 5.2.1. If A is unital, we denote the group of unitary elements in A by
U(A). The set of all projections A is denoted by P(A).

Definition 5.2.2. Let a, b ∈ A. We say a and b are homotopic, denoted a ∼h b, if
there exists a path between a and b. That is, if there exists a continuous function
v : [0,1]→ A such that v(0) = a and v(1) = b.

More generally, two elements a, b are homotopic if the constant maps fa : X → A,
x 7→ a and fb : X → A, x 7→ b are homotopic in the usual sense, where X is
some arbitrary C∗-algebra. Two maps f , g : A→ B are homotopic if there exists a
continuous function v : [0, 1]×A→ B such that v(0, x) = f (x) and v(1, x) = g(x)
for x ∈ A.

We denote by U0(A) by the set of all u in U(A) such that u∼h 1 in U(A).

For now, we claim that homotopy is the strongest of the equivalence relations
we will consider. At a later stage, it turns out we can pass to matrices to make
homotopy equivalent with the other equivalence relations we will consider, as well
as to get rid of some dimensional problems with our construction. The proceeding
lemma originated as a technicality to be used in algebraic K-theory, but it is still
highly relevant to the study of operator K-theory.

Lemma 5.2.3. (Whitehead)

Let u, v ∈ U(A). Then
�

u 0
0 v

�

∼h

�

uv 0
0 1

�

∼h

�

vu 0
0 1

�

∼h

�

v 0
0 u

�

in U (M2(A))

In particular, if v = u∗, it follows that

�

u 0
0 u∗

�

∼h

�

1 0
0 1

�

in U (M2(A))

One can actually prove this with not too much work, but it is not necessary for our
purposes. We refer to page 17 of [35] for a proof.
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If one is interested to develop the study of K1-theory from scratch, this small study
of unitary elements should be extended quite a bit, as unitary elements are one of
the main players in this theory. We come back to this at a later point (section 7.1).

Definition 5.2.4. Let p, q ∈ P(A) for some arbitrary C∗-algebra. We define the
following equivalence relations on P(A).

• p ∼h q if there exists a path from p to q as defined in 5.2.2.
• p ∼u q if ∃u ∈ U(Ã) such that q = upu∗. We say p and q are unitarily

equivalent.
• p ∼ q if ∃v ∈ A with p = v∗v and q = vv∗. We say p and q are Murray-von

Neumann equivalent.

With our definitions ready to roll, we only need to check that they work out the
way we want them to. We list some results on these matters, most of which have
detailed proofs in chapter 2. of [35].

Proposition 5.2.5. The relations on P(A) as defined in 5.2.4, are actually equival-
ence relations.

Proof. The only part we need a clever trick to prove is the transitivity of the
Murray-von Neumann equivalence, as the rest mainly follows from writing out the
definitions. If v is a partial isometry, i.e. v∗v is a projection, then we have v = vv∗v.
To show this, define z = (1− vv∗)v and calculate z∗z. By repeated applications of
the fact that v∗v and vv∗ are projections along with the C∗-equality, this is 0. If
we now set p = v∗v and q = vv∗, we can show that v = qv = vp = qvp. Consider
projections p, q, r such that p ∼ q and q ∼ r. Choose partial isometries v, w such
that p = v∗v, q = vv∗ = w∗w and r = ww∗. Then z = wv will be the partial isometry
giving the equivalence p ∼ r.

We further state some results from [35] on how the hierarchy of equivalence
relations is ordered, but omit the proofs as we are more eager to move on to the
K0-theory than to deal with technical lemmas.

Proposition 5.2.6. Let A be a unital C*-algebra and let p, q be projections in A.
Then the following are equivalent:

1. p ∼u q,
2. q = upu∗ for some u ∈ U(A),
3. p ∼ q and 1A− p ∼ 1A− q.

In the light of this result, we see that Murray-von Neumann equivalence is a weaker
form of equivalence than unitary equivalences for unital C*-algebras. We will see
that this holds for non-unital C*-algebras as well in proposition 5.2.9.

Proposition 5.2.7. Let A be a C*-algebra and let p, q be projections in A.
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1. If ‖p− q‖< 1, then p ∼h q.
2. p ∼h q ⇐⇒ ∃u ∈ U0(Ã) such that q = upu∗

Remark 5.2.8. We can show a similar statement to the first claim for unitary
elements u, v as well, but then we only require ‖u− v‖< 2 to get the same result.

The second part, on the other hand, tells us the following:

Proposition 5.2.9. Let A be a C*-algebra (not necessarily unital) and p, q be
projections in A.

1. If p ∼h q, then p ∼u q.
2. If p ∼u q, then p ∼ q.

Proof. By proposition 5.2.7, we need a unitary equivalence where our unitary
element is homotopic to the identity in U(Ã) for the unitary equivalence to imply
homotopy. Thus homotopy is a stronger relation than unitary equivalence.

For the second part, assume p = uqu∗ for some unitary u ∈ U(Ã). Then v = uq is
in A and p = vv∗, q = v∗v.

Example 5.2.10. (Partial counterexample to the converse of proposition 5.2.9)

A tempting question to ask is whether or not there was a need for this result in the
first place? Can we find projections p, q that are Murray-von Neumann equivalent,
but not unitarily equivalent?

From proposition 5.2.6, it would suffice to find p, q such that p ∼ q, but 1A− p �
1A− q. To construct this counterexample, we consider a non-unitary isometry s on,
such as the unilateral shift S on `2(N) from page 25 of [35]. Recall isometries in
unital C∗-algebras are elements s such that s∗s = 1. Consider such a non-unitary
isometry s in a unital C*-algebra A. Then we know, by the definition of Murray-von
Neumann equivalence, that s∗s ∼ ss∗ since s ∈ A.

Then 1−s∗s = 0 and 1−ss∗ is a nonzero projection. The latter cannot be equivalent
to 0. If v∗v = 0, then v = 0 by the C*-equality, which means vv∗ = 0. Therefore,
the only projection equivalent to the zero projection is the zero projection itself,
meaning that the zero projection 1− s∗s is not equivalent to the projection 1− ss∗.

Similar arguments can be made for the other converse of proposition 5.2.9, by
using the Whitehead lemma (5.2.3)

Note that proposition 5.2.6 gives us an explicit requirement to be able to move
upwards in the hierarchy (5.2.9).

It is natural to ask whether we can do some modifications or perhaps tweak our
C*-algebra to make Murray-von Neumann equivalence imply homotopy.
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By the power of the Whitehead lemma 5.2.3, we can do this, given that we put
our C*-algebra in a matrix algebra.

Proposition 5.2.11. Let A be a C*-algebra. Let p, q be projections in A.

Denote the matrices

�

p 0
0 0

�

,

�

q 0
0 0

�

in M2(A) by p′ and q′, respectively. Then

1. if p ∼ q, then p′ ∼u q′ in M2(A)
2. if p ∼u q, then p′ ∼h q′ in M2(A)

Proof. For the first part, find an element v in A such that p = v∗v, q = vv∗.
Construct

u=

�

v 1− q
1− p v∗

�

, w=

�

q 1− q
1− q q

�

.

Both u and w are unitary elements in M2(Ã) by using some of the identities
mentioned in the sketch of the proof of proposition 5.2.5. Also, by computation,
we can note that wup′u∗w∗ = q′ and that wu is a unitary in M2(Ã). Thus, since

wu is in the unitization of M2(A), M̃2(A), we will have an element of U(M̃2(A)) to
define our unitary equivalence in M2(A)

For the second part, use the assumption that p ∼u q in A to find u in U(Ã) such
that q = upu∗. We know from the Whitehead lemma (5.2.3) that the identity in
U(M2(Ã)) is homotopic to the matrix with u and u∗ on the diagonal. Thus we can
find a continuous path v(t) in U(M2(Ã)) such that

v(0) =

�

1 0
0 1

�

, v(1) =

�

u 0
0 u∗

�

.

Define et = v(t)p′v(t)∗. Then we have that et belongs to P(M2(A)), where the
map t → et is continuous and e0 = p′, e1 = q′, meaning p′ ∼h q′.

5.3 A monoid of projections and the Grothendieck con-
struction

One of the key ideas we have observed is that if we pass to matrices, the Murray-von
Neumann equivalence becomes as powerful as homotopy, even though the former
is a lot easier to work with. To be able to construct our invariants, we use this as
our main motivation. Let A be a C∗-algebra.

Definition 5.3.1. We define Pn(A) = P(Mn(A)) and P∞(A) =
∞
⋃

n=1
Pn(A).

For p ∈ Pn(A), q ∈ Pm(A), we define

p⊕ q = diag(p, q) =

�

p 0
0 q

�

in Pn+m(A).
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For such p, q, we say p ∼0 q if there exists a v in Mm,n(A) such that p = v∗v and
q = vv∗, were we recall that taking adjoints in the matrix algebras correspond to
transposing and taking adjoints entrywise.

This Murran-von Neumann-like relation will be critical to defining the K0-group,
which is why it is denoted with a subscripted 0. Actually, if p and q belong in the
same level of P∞(A), then p ∼0 q ⇐⇒ p ∼ q by definition. Thus, we have made
our Murray-von Neumann equivalence independent of the dimension of the matrix
algebra our projections lie in, and the generalization to matrices preserves the idea
of making this relation as powerful as homotopy.

One should also note that the structure (P∞(A),⊕) actually gives us a monoid.

Remark 5.3.2. Our need for matrices was not only inspired our wish to reverse
the equivalence hierarchy (5.2.9), but also to amend problems with the missing
structure in P(A). Let p, q to be projections in A. We would want p + q to be a
projection, but by setting p = q, we see that p+ p = 2p 6= (2p)2 is not in P(A). By
passing to P∞, we can sum p and q without letting them interact.

We wanted an abelian monoid structure, at least up to some equivalence. To ensure
that our generalization of the Murray-von Neumann equivalence does not admit
immediate pathological behaviour, we state the following properties of our new
equivalence relation and refer readers to [35] for the details.

Proposition 5.3.3. Let A be a C*-algebra and let p, p′, q, q′, r be projections in
P∞(A).

1. ∼0 is actually an equivalence relation on P∞(A),
2. p ∼0 p⊕ 0n, where 0n is the zero n-dimensional matrix over A,
3. if p ∼0 p′ and q ∼0 q′, then p⊕ q ∼0 p′ ⊕ q′,
4. p⊕ q ∼0 q⊕ p,
5. (p⊕ q)⊕ r = p⊕ (q⊕ r),
6. if p and q are projections in Pn(A) such that pq = 0, that is, they are mutually

orthogonal, then p+ q is a projection with p+ q ∼0 p⊕ q.

Definition 5.3.4. Let A be a C*-algebra.

Define V (A) = P∞(A)/∼0. Addition on V (A) is defined as [p]V +[q]V := [p⊕q]V .

This is well defined by proposition 5.3.3 and it makes (V (A),+) an abelian monoid.

Remark 5.3.5. One should note that at each step in this construction, we create
new objects. The same can be done for morphisms, as a ∗-homomorphism φ :
A→ B of C∗-algebras induces a ∗-homomorphism on the matrix algebras. This
induces a monoid homomorphism P∞(A) → P∞(B), which in turn induces a
homomorphism of abelian monoids V (A) → V (B). It is thus straight forward
to show that V : C∗Al g → AbMon is a covariant functor from the category of
C∗-algebras to the category of abelian monoids.
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This is totally analogous to topological theory, and we adapt the letter V from
topological K-theory, where the analogue of this monoid is the monoid of vector
bundles under Whitney summation.

Remark 5.3.6. One can define this abelian monoid in other ways. We follow the
structure of [35] quite closely, but if one follows [1], the definition is a bit different.
That being said, the result will be the same. In [1], they show that every idempotent
will be homotopic to a projection and then they define M∞(A) to be the direct limit
of Mn(A) under the maps a 7→ diag(a, 0), which means that M∞(A) consists of
infinite matrices with finitely many non-zero entries. This may not be a C*-algebra
in its own right, but we can complete it to be one, which we call the stabilization
of A. Then one can define V (A) as equivalence classes of idempotents in M∞(A),
but this will give the same result as our, perhaps more explicit, approach.

With this abelian monoid describing equivalence classes of projections, we are
ready to apply the Grothendieck construction to construct K0. We first explain this
important construction. From now on, all monoids are abelian if not otherwise
specified.

Construction 5.3.7. (The Grothendieck construction)

Let (S,+) be an abelian monoid and define∼ on S×S by setting (x1, y1)∼ (x2, y2)
if we can find z ∈ S such that x1 + y2 + z = x2 + y1 + z.

We can note that ∼ actually defines an equivalence relation. The term +z is added
to ensure the transitivity of this relation. If we start with the relation without this
term, obtained from wanting x1 − y1 to be equal x2 − y2 in the semigroup, it fails
to be a transitive relation. Taking the transitive hull, we obtain the relation defined
above.

As we are working with additive maps between the monoids, the terms +z do not
yet cancel, but as soon as we pass to a group structure, they disappear. Therefore,
this term is only relevant in AbMon, where it ensures transitivity.

We define the quotient G(S) = (S × S)/∼.

If [x1, y1], [x2, y2] denotes two elements in G(S), we define addition component-
wise by [x1, y1] + [x2, y2] = [x1 + x2, y1 + y2].

Note that [x , x] = 0 and that −[x , y] = [y, x].

Definition 5.3.8. The abelian group G(S) associated to the abelian monoid S is
called the Grothendieck group of S.

Define the Grothendieck map

γS : S→ G(S), x 7→ γS(x) = [x + y, y].

First, we should note that γS is additive since addition is done componentwise. By
the definition of the equivalence relation in G(S) we can see that it is independent
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of choice of y as [x + y ′, y ′] = [x + y, y] ⇐⇒ x + y ′ + y = x + y + y ′, which
surely holds for all y ′.

This construction has some useful properties.

Proposition 5.3.9. Let S be an abelian monoid. Then the following properties
hold:

1. Universal property.
Let H be an abelian group and let φ : S→ H be an additive map. Then there
exists a unique homomorphism φ̃ : G(S)→ H of abelian groups such that
the diagram

S H

G(S)

φ

γS φ̃

commutes.
2. Functoriality.

We know the constructions assigns an abelian group G(S) to each abelian
monoid S. For all abelian monoids S, T and for every additive mapφ : S→ T ,
there exists a unique group homomorphism G(φ) : G(S)→ G(T ) such that
the diagram

S T

G(S) G(T )

φ

γS γT

G(φ)

commutes.
3. G(S) = {γS(x)− γS(y) : x , y ∈ S}.
4. For x , y ∈ S,γS(x) = γS(y) ⇐⇒ x + z = y + z for some z ∈ S.
5. γS is injective if and only if S has the cancellation property, that is, if and

only if x + z = y + z =⇒ x = y .
6. If we take S ⊆ H, where H is some abelian group and S is closed under

addition, then G(S) ∼= SH =< {x − y : x , y ∈ S} >, the subgroup of H
generated by the differences in S.

Proof. We first prove 3., as the characterization as differences will yield uniqueness
of our maps.

3. We rewrite the elements in G(S) and use the definition of γS .
[x , y] = [0, y − x] = [x + y, y]− [x + y, x] = γS(x)− γS(y), as wanted.

1. Assume we are given such H and φ. Note that [x1, y1] = [x2, y2] implies

φ(x1) +φ(y2) +φ(z) = φ(x2) +φ(y1) +φ(z)

in H for some z ∈ S by additivity of φ. This yields φ(x1)−φ(y1) = φ(x2)−
φ(y2), which means that a map φ̃ : G(S)→ H defined by [x , y] 7→ φ(x)−
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φ(y) would be well-defined, additive and make the diagram in 1. commute.
Uniqueness follows from point 3. since any other additive map that fits here
would need to send these differences to the same thing.

2. Apply 1. to H = G(T ) with the additive map S→ H being the composition
S→ T → G(T ).

4. If x + z = y + z, the results follow from G(S) being a group and γS being
additive. If γS(x) = γS(y), then [x + y, y] = [y + x , x], which means
(x + y)+ x +w = (y + x)+ y +w. Therefore, with z = x + y +w, we get the
result.

5. Follows directly from 4.
6. We know S must be an abelian monoid with the cancellation property since

it is closed under addition in the ambient abelian group H. Considering the
additive inclusion i : S ,→ H and the induced map ψ = G(i) : G(S)→ H, we
must haveψ(γS(x)) = x for all x in S. By 3., elements in G(S) are differences,
so the image of ψ is the subgroup of H generated by the differences. If
ψ(γS(x)− γS(y)) = 0, x − y = 0, which means γS(x) = γS(y), that is, ψ is
injective.

Remark 5.3.10. The Grothendieck functor G can be realized as the left adjoint
of the forgetful functor U : Ab → AbMon, i.e. (G, U) is an adjoint pair. For our
purposes, we must have that G preserves colimits, as it has a right adjoint. In
fact, we will see this is vital when we work with AF-algebras in chapter 6, as
AF-algebras are colimits of finite-dimensional C∗-algebras. We refer to [37] for
details on category theory.

Queequeg 5.3.11. More categorically attracted readers may be interested to hear
that there have been some developments on generalizing the definition of the
Grothendieck group to n-exangulated categories. An extriangulated category is the
unifying concept of a triangulated category and an exact category. By generalizing
triangles to n-angles and working out the right definitions, an n-exangulated
category is the unifying concept of a n-angulated category and an exact category.
Several of the properties we have shown above can be carried over to n-exangulated
categories. Interested readers are referred to [9].

We are finally ready to define K0.

5.4 The K0-group - the unital case

Definition 5.4.1. (K0 for unital C∗-algebras) Let A be a unital C∗-algebra and let
(V (A),+) be the abelian monoid of projections defined in 5.3.4. Then K0(A) is
defined to be the Grothendieck group of V (A).

K0(A) = G(V (A))
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Define [·]0 : P∞(A)→ K0(A) by [p]0 = γ([p]V ).

It turns out that there is another type of interesting equivalence on P∞(A) which
is weaker than the generalized Murray-von Neumann equivalence.

Definition 5.4.2. (Stable equivalence) Let p, q ∈ P∞(A) and define p ∼s q if and
only if there exists r ∈ P∞(A) such that p⊕ r ∼0 q⊕ r. This relation is called stable
equivalence.

If A is unital and 1n denotes the unit of Mn(A), p ∼s q if and only if p⊕1n ∼0 q⊕1n
for some n. All stable equivalences can be realized like this, since if p⊕ r ∼0 q⊕ r
for r ∈ P(A), we have

p⊕ 1n ∼0 p⊕ r ⊕ (1n − r)∼0 q⊕ r ⊕ (1n − r)∼0 q⊕ 1n

Let us examine how this structure looks.

Proposition 5.4.3. (Standard picture of K0 for unital C∗-algebras)

Given a unital C∗-algebra A. Then the following hold:

K0(A) = {[p]0 − [q]0 : p, q ∈ P∞(A)} (5.1)

= {[p]0 − [q]0 : p, q ∈ Pn(A), n ∈ N}. (5.2)

1. [p⊕ q]0 = [p]0 + [q]0 for all projections p, q ∈ P∞(A) and [0A]0 = 0.
2. If p, q ∈ Pn(A) and p ∼h q, then [p]0 = [q]0.
3. If p, q ∈ Pn(A) are mutually orthogonal projections, then [p+ q]0 = [p]0 +
[q]0.

4. For p, q ∈ P∞(A), we have [p]0 = [q]0 if and only if p ∼s q.

Proof. The first equality follows from the properties of the Grothendieck construc-
tion (proposition 5.3.9). An element g ∈ K0(A) can hence be written g = [p]0−[q]0
for some p ∈ Pk and q ∈ Pl . If we choose n≥max{k, l}, we can define p′ = p⊕0n−k
and q′ = q ⊕ 0n−l . By proposition 5.3.3, we have p ∼0 p′ and q ∼0 q′. Now
p′, q′ ∈ Pn(A) and g = [p′]0 − [q′]0.

For 1., note that

[p⊕ q]0 = γ ([p⊕ q]V ) = γ ([p]V + [q]V ) = γ ([p]V ) + γ ([q]V ) = [p]0 + [q]0

and that this implies [0A]0 + [0A]0 = [0A]0.

For 2., just recall the hierarchy of relations (proposition 5.2.9) and that the regular
Murray-von Neumann equivalence is at the bottom of the hierarchy. This is a
special case of ∼0 for when p, q are in the same degree of P∞(A). Therefore
p ∼h q =⇒ p ∼0 q =⇒ [p]V = [q]V =⇒ [p]0 = [q]0 by the definition of [·]0 for
p, q ∈ Pn(A).

For 3., recall from proposition 5.3.3 that if p and q are mutually orthogonal
projections, p+ q ∼0 p⊕ q. Then the result follows from 1.
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For 4., recall the properties of the Grothendieck map (proposition 5.3.9). Since
[p]0 = [q]0, we can find a projection r ∈ P∞(A) such that [p]V+[r]V = [q]V+[r]V ,
which in turn means [p⊕ r] = [q⊕ r]. Then p⊕ r ∼0 q⊕ r, which is the definition of
p ∼s q. Conversely, stable equivalence implies p⊕ r ∼0 q⊕ r for some r. This means
[p]0 + [r]0 = [q]0 + [r]0. Recall that K0(A) is a group, which yields [p]0 = [q]0 by
cancellation.

It would be natural for the universal property of the Grothendieck construction to
be transferred to K0, which will ensure the functoriality of K0.

Proposition 5.4.4. (Universal property of K0)

Let A be unital, let G be an abelian group, and let v : P∞(A)→ G be a map such
that

1. v(p⊕ q) = v(p) + v(q) for all projections p, q ∈ P∞(A)
2. v(0A) = 0
3. For all projections p, q that belong to the same degree of P∞(A) and p ∼h q,

then v(p) = v(q).

If these hold, there exists a unique group homomorphism f : K0(A)→ G such that

P∞(A)

K0(A) G

[·]0 v

f

commutes.

Remark 5.4.5. It is possible (but not necessarily easy) to show that the homotopy
requirement in the third assumption on v can be replaced with ∼u, ∼0 and ∼s to
give equivalent results given the first two assumptions on v. Note that the unitary
equivalence must happen in the same degree Pn(A), while the two last relations
only need to hold for p, q ∈ P∞(A).

Proof. We sketch the proof. To construct the map, first show that for p, q ∈ P∞(A)
such that p ∼0 q, we have v(p) = v(q). This implies that the map f : V (A)→ G
given by f ([p]V ) = v(p) is well defined, as v must factor through V (A) due to
the first statement in the proof. Additivity of f follows from additivity of v. We
can then find a unique group homomorphism by the universal property of the
Grothendieck group (proposition 5.3.9) such that the wanted diagram commutes,
which completes the proof.

We now know this construction takes unital C∗-algebras to their K0-groups, but
what happens with morphisms between C∗-algebras? Given a map between C∗-
algebras, for example A→ B, we know we get an induced map φ : P∞(A) →
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P∞(B). Defining v : P∞(A) → K0(B) by v(p) = [φ(p)]0, we can see that this
actually satisfies the necessary properties to invoke the universal property of
K0 given in proposition 5.4.4. This implies v factors uniquely through a group
homomorphism K0(φ) : K0(A)→ K0(B) given by exactly K0(φ)([p]0) = [φ(p)]0.

This actually makes it quite easy to see that K0 defines a functor from the category
of unital C∗-algebras to the category of abelian groups. It is usual to consider the
zero C∗-algebra, {0}, as unital. We denote the zero morphism, A→ B, by 0B,A.

Proposition 5.4.6. (Functoriality of K0 in the unital case)

1. If A is a unital C∗-algebra, then K0(IdA) = IdK0(A), where IdA is the identity
map on A.

2. If A, B, C are unital C∗-algebras andφ : A→ B,ψ : B→ C are ∗-homomorphisms,
then K0 preserves composition, that is, K0(ψ ◦φ) = K0(ψ) ◦ K0(φ).

3. K0({0}) = 0 and K0(0B,A : A→ B) = 0K0(B),K0(A) : K0(A)→ K0(B).

The first two claims of this proposition check that K0 is a functor, while the last
claim ensures that the zero C∗-algebra plays nicely with K0.

Proof. By the definition of the maps induced by K0, we see K0(IdA)([p]0) = [p]0
and K0(ψ◦φ)([p]0) = (K0(ψ)◦K0(φ))([p]0), which means that we are finished by
the standard picture of K0. The last claim follows by writing out the construction
of K0({0}) and realizing 0B,A = 0B,0 ◦ 00,A : A→ {0} → B.

Remark 5.4.7. We have defined a functor, but only for unital C∗-algebras. Observant
readers may have noted that this construction seems to work out for nonunital
C∗-algebras as well. The problem, which we will soon return to, is that most of the
computational powers are lost if we define K0 this way for nonunital C∗-algebras.
As we will see later, the same definition of K0 for nonunital C∗-algebras will yield
a functor that is not even half exact, making the usual computations through long
exact sequences close to useless.

Remark 5.4.8. Readers familiar with topological K-theory may recall that topo-
logical K-theory is a reduced cohomology theory, implying that the K-functor
should be contravariant (thus denoted K0). In similar cases, there is usually some
contravariant composition lurking backstage, flipping the arrows. Indeed, given a
map f : X → Y of base spaces and a vector bundle π : E→ Y , the induced bundle
is given by the pullback bundle f ∗π : f ∗E→ X , where f ∗E denotes the pullback
of the diagram

E

X Y,

π

f
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which explains why K0 is contravariant.

Since our approach to the theory is taken from algebraic topology and based on
reversing the hierarchy of equivalence relations, we better expect that this functor
is homotopy invariant!

Proposition 5.4.9. Assume A and B are unital C∗-algebras. Then

1. if ψ,φ : A→ B are homotopic ∗-homomorphisms, K0(ψ) = K0(φ).
2. if A, B are homotopy equivalent through φ : A → B and ψ : B → A, we

have K0(A) ∼= K0(B). In particular, K0(φ), K0(ψ) are isomorphisms with
K0(φ)−1 = K0(ψ).

Proof. For 1., choose any pointwise continuous path of ∗-homomorphisms, φt ,
connecting these homotopic maps. Extend this pointwise to a path in the matrix
algebras φt : Mn(A)→ Mn(B) for each n. Now the path t 7→ φt(p) is continuous
for each p ∈ Pn(A). So φ(p) = φ0(p)∼h φ1(p) =ψ(p). Therefore we must have

K0(φ)([p]0) = [φ(p)]0 = [ψ(p)]0 = K0(ψ)([p]0),

which means we are done, since the standard picture of K0 expresses K0(A) in
terms of these classes [p]0.

For 2., just note that the composition of φ and ψ, which is sent to the composition
of the induced maps due to functoriality of K0, is homotopic to the identity, which
is sent to the identity.

Our main way of computing K-groups will be through exact sequences. Before we
show K0 preserve simple split exact sequences, we prove a lemma, which may be
interesting in its own right.

Lemma 5.4.10. Let φ,ψ : A→ B be mutually orthogonal ∗-homomorphisms in
the sense that φ(x)φ(y) = 0 for all x , y ∈ A. Then φ +ψ is a ∗-homomorphism
and K0(φ +ψ) = K0(φ) + K0(ψ).

Proof. By mutual orthogonality, it is straightforward to seeφ+ψ is a ∗-homomorphism
that induces mutually orthogonal maps when extended to matrices. That is, we
have (φ +ψ)n = φn +ψn. Using the standard picture of K0 given in proposition
5.4.3, we fix p ∈ Pn(A) and obtain

K0(ϕ +ψ) ([p]0) = [(ϕ +ψ)n(p)]0 = [ϕn(p) +ψn(p)]0
= [ϕn(p)]0 + [ψn(p)]0
= K0(ϕ) ([p]0) + K0(ψ) ([p]0) ,

as wanted.
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Lemma 5.4.11. Given a unital C∗-algebra A, the split exact sequence

0 A Ã C 0i π

λ

induces a split exact sequence

0 K0(A) K0(Ã) K0(C) 0
K0(i) K0(π)

K0(λ)

This split exact sequence may seem a bit weird to consider, as we assume A is
unital already, but it will be vital when defining K0(A) for nonunital C∗-algebras,
and certainly, we should know what the ”easy” K-groups such as K0(C) are.

Proof. We keep it brief. Define f = 1Ã− 1A and note that since A is already unital,
we get Ã= A+C f and a f = f a = 0 for all a ∈ A. We can define ∗-homomorphisms
µ : Ã→ A by µ(a+α f ) = a and λ′ : C→ Ã by λ′(α) = α f .

By writing out expressions for K0(id) in each term of the short exact sequence
through µ and λ, noting that i ◦µ and λ′ ◦π are mutually orthogonal and applying
lemma 5.4.10, one can deduce that this sequence is exact.

We consider some examples of K0-groups of known, unital C∗-algebras, and as we
will see in chapter 8, traces play a key rôle in the classification of noncommutative
tori.

Example 5.4.12. K0(Mn(C)) is isomorphic to Z for all n and the isomorphism is
given by K0(Tr), where Tr denotes the standard trace on Mn(C). Let e denote a
one-dimensional projection in this matrix algebra, then the generator of K0(Mn(C))
as a cyclic group is given by [e]0. For n= 1, we obtain K0(C)∼= Z.

Proof. (Short explanation)

Consider an element g ∈ K0(Mn(C)). Then we may find k and p, q ∈ Mk(Mn(C)) =
Mkn(C) such that g = [p]0 − [q]0. This implies that

K0(Tr(g)) = Tr(p)− Tr(q) = dim(p(Cnk))− dim(q(Cnk)),

which means that K0(Tr)(g) certainly is an integer. It is possible to show that
Tr(p) = Tr(q) is equivalent to p ∼ q, which implies that K0(Tr) is injective. Since
the image of K0(Tr) is a subgroup of Z that contains 1 = K0(Tr)([e]0), where e is
a one dimensional projection, K0(Tr) is surjective.

Example 5.4.13. Let H be an infinite-dimensional, separable Hilbert space. Then
K0(B(H)) = 0.



66 Angelsen: K-theory, Morita equivalences and noncommutative tori

Proof. Note that Mn(B(H)) can be identified with B(Hn). The map dim : P∞(B(H)→
{0,1,2, . . . ,∞} given by dim(p) = dim(p(Hn)) is surjective, since Pn(B(H)) =
P(B(Hn)). In a similar manner to example 5.4.12, we can show that two projec-
tions in the same degree of P∞(A) are equivalent if and only if they yield the
same value under dim, meaning that dim is injective on each degree of P∞(A).
Recall that dimension is additive and note that dim(p ⊕ 0) = dim(p), which
means that this extends to all p, q ∈ P∞(A). Now the map d([p]V ) = dim(p)
is a well defined monoid isomorphism d : V (B(H))→ {0,1, . . . ,∞}. Therefore
K0(B(H)) ∼= G({0,1, . . . ,∞}) ∼= 0. The Grothendieck group of such a group is 0
since all elements will be equivalent to 0 by the existence of∞.

Remark 5.4.14. The same result actually holds if H is not separable, but we omit
the proof.

Example 5.4.15. Let X be a contractible, compact Hausdorff space. The map dim :
K0(C(X ))→ Z is an isomorphism, where dim([p]0) = Tr(p(x)) is independent of
the choice of x with Tr denoting the standard trace on Mn(C).

Proof. The idea is constructing a homotopy equivalence between C(X ) and C,
but we omit the proof and refer readers to [35]. Nevertheless, we want to explain
briefly why dim is well defined. Consider the map x 7→ Tr(p(x)). This belongs to
C(X ,Z). The connectedness of X implies that every function C(X ,Z) is constant
since nonconstant functions would give an immediate separation of X by preimages.
This implies x 7→ Tr(p(x)) is constant and thus dim is independent of x ∈ X .

As we can see, these computations require a bit of work. We will soon develop some
computational tools, but first, we need to extend K0 to nonunital C∗-algebras.

5.5 Extending K0 to the nonunital framework

At the end of the previous section, we calculated some basic examples of K0-groups.
If we were to continue in this manner, it would be natural to consider tweaking
closely related topological spaces to see how the behaviour of K0 would change.
This leads to some problematic behaviour of K0 regarding half exactness when we
study nonunital algebras. Recall the following basic definitions.

Definition 5.5.1. A functor F is called exact if it preserves the exactness of all
short exact sequences. If the functor only preserves all split exact sequences, we
say that it is split exact. If the only exactness preserved is exactness in the middle
object, we call the functor half exact.

We come back to the half exactness of K0 when we have amended these problems
with a new definition of K0.

Example 5.5.2. (Problems with half exactness of K0 for nonunital C∗-algebras)
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We refer to [35] for the details, but we explain the idea behind finding the problems
for nonunital C∗-algebras.

For example, if we let X be a connected, compact Hausdorff space and x0 being
any point in X , we can consider the split exact sequence given by

0 C0(X\{x0}) C(X ) C 0.i π

λ

We have defined π( f ) = f (x0) and λ to be the function lifting a scalar α to the
constant function sending everything to α. With some work, one can show the
following diagram commutes:

K0(C(X ))

K0(C) Z

K0(π) dim

K0(Tr)

Since we know K0(Tr) is an isomorphism, we get Ker(dim) = Ker(K0(π)), where
dim is defined in example 5.4.15. With some more work, for example, showing
the K0-group of the nonunital C∗-algebra C0(X\{x0}) is zero, we can show that
the induced sequence is exact in the middle object K0(C(X )) if and only if the map
dim : K0(C(X ))→ Z is an isomorphism. With a lot more work, we can show that
K0(C(S2)) = Z⊕Z, which means that in this case, dim will not even be injective. In
cases like this, we will not have exactness even in the middle term of the induced
sequence.

If it is not even possible to guarantee some sort of exactness of K0 for simple spaces
such as C(S2), we lose up to all computational power from the analogue of the
standard tools of algebraic topology through exact sequences.

We amend these problems as fast as possible, without changing our successful
approach for unital C∗-algebras.

Definition 5.5.3. Let A be a nonunital C∗-algebra and consider the associated
short exact sequence

0 A Ã C 0i π

λ

Define K0(A) = Ker[K0(π) : K0(Ã)→ K0(C)], for all C∗-algebras A, independently
of whether it is unital or not.

Remark 5.5.4. Since K0(A) is a kernel in the category of abelian groups, it is certainly
an abelian subgroup of K0(Ã). We get an induced map [·]0 : P∞(A)→ K0(A) by the
universal property of the kernel, since all p ∈ P∞(A) induces a class [p]0 ∈ K0(Ã),
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which is mapped to 0 by K0(π). Readers with experience from topological K-theory
should note that this resembles reduced K-theory, which intuitively corresponds to
K-theory modulo trivial bundles.

We still want our earlier results on functoriality and homotopy invariance to hold.

To get the induced maps in K0-theory for nonunital C∗-algebras, note that for all
C∗-algebras A, we have the following short exact sequence,

0 K0(A) K0(Ã) K0(C) 0.? K0(π)

K0(λ)

The first map is either K0(i) or the inclusion, depending on whether or not A is
unital.

To get the induced map in the nonunital case, just note that if φ̃ is the induced
map on the unitizations coming from the map φ, we get

0 A Ã C 0

0 B B̃ C 0.

iA

φ

πA

φ̃

iB πB

This induces a commutative diagram in K0-theory.

0 K0(A) K0(Ã) K0(C) 0

0 K0(B) K0(B̃) K0(C) 0.

K0(φ)

K0(πA)

K0(φ̃)

K0(πB)

The dashed arrow, K0(φ), exists and is unique by K0(B) being the kernel of K0(πB)
and the composition K0(A)→ K0(Ã)→ K0(B̃)→ K0(C) being zero.

Since the morphism is unique and the map [p]0 7→ [φ(p)]0 fits here, we still get
K0(φ)([p]0) = [φ(p)]0.

In the same way as earlier (proposition 5.4.6), we get that K0 must be a homotopy
invariant functor.

Proposition 5.5.5. (Functoriality of K0)

1. If A is a C∗-algebra, then K0(IdA) = IdK0(A), where IdA is the identity map
on A.

2. If A, B, C are C∗-algebras and φ : A→ B, ψ : B→ C are ∗-homomorphisms,
then K0 preserves composition, that is, K0(ψ ◦φ) = K0(ψ) ◦ K0(φ).
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3. K0({0}) = 0 and K0(0B,A : A→ B) = 0K0(B),K0(A) : K0(A)→ K0(B).

Proof. The proof is extremely similar to proposition 5.4.6 and thus omitted.

Proposition 5.5.6. Assume A and B are C∗-algebras. Then

1. if ψ,φ : A→ B are homotopic ∗-homomorphisms, then K0(ψ) = K0(φ).
2. if A, B are homotopy equivalent through φ : A→ B and ψ : B → A, then

K0(A)∼= K0(B) and K0(φ), K0(ψ) are isomorphisms with K0(φ)−1 = K0(ψ).

Proof. The proof is extremely similar to the proof of proposition 5.4.9, and is thus
omitted.

We still have functoriality, but we must also hope the powerful standard picture of
K0(A) holds, at least in a similar manner.

First, consider the split exact sequence

0 A Ã C 0.i π

λ

We can return to Ã by the composition s = λ ◦ π, which we will call the scalar
mapping, which will be defined by s(a + z1) = z1 for all a ∈ A, z ∈ C. Then we
can see that π(s(x)) = π(x) and x − s(x) ∈ A for all x ∈ Ã. One can note that the
scalar mapping is natural in the sense that for a ∗-homomorphism φ : A→ B, we
get a commutative diagram

Ã Ã

B̃ B̃.

φ̃

s

φ̃

s

We can extend this scalar mapping the standard way to P∞(Ã). The standard
picture of K0(A) is given in terms of the scalar mapping and scalar elements, i.e. in
terms of elements such that x = s(x).

Proposition 5.5.7. Given a C∗-algebra A,

K0(A) = {[p]0 − [s(p)]0 : p ∈ P∞(Ã)}.

In addition, the following hold:

1. For each pair of projections p, q ∈ P∞(Ã), the following are equivalent:

• [p]0 − [s(p)]0 = [q]0 − [s(q)]0,
• there exists k, l such that p⊕ 1k ∼0 q⊕ 1l in P∞(Ã),
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• there exists projections r1, r2 such that p ⊕ r1 ∼0 q ⊕ r2, where r1, r2
are scalar elements.

2. If p ∈ P∞(Ã) satisfies [p]0 − [s(p)]0 = 0, then we can find m such that
p⊕ 1m ∼ s(p)⊕ 1m.

3. Given a ∗-homomorphism φ,

K0(φ)([p]0 − [s(p)]0) = [φ̃(p)]0 − [s(φ̃(p))]0.

Proof. This is quite a long proof. Interested readers are referred to [35], while we
continue our quest towards proving the half exactness of K0.

Remark 5.5.8. Readers with experience from topological K-theory should note that
these scalar elements work as an analogue of trivial bundles if we restrict ourselves
to compact Hausdorff spaces. In this case, the standard picture in topological
K-theory is given by a difference of equivalence classes of a vector bundle and a
trivial bundle.

We borrow this slightly technical lemma from [35], which we will need when
working with elements in a kernel to prove half exactness.

Lemma 5.5.9. Suppose φ : A→ B is a ∗-homomorphism and suppose we choose
g ∈ Ker K0(φ). Then

1. there exists a natural number n, a projection p in Pn(Ã) and a unitary
u ∈ Mn(B̃) such that uφ̃(p)u∗ = s(φ̃(p)) and g = [p]0 − [s(p)]0.

2. if φ is surjective, we can find a p ∈ P∞(Ã) such that φ̃(p) is a scalar element
and g = [p]0 − [s(p)]0.

The following lemma will be helpful as well.

Lemma 5.5.10. Given a short exact sequence of C∗-algebras,

0 I A B 0,
φ ψ

the following hold:

1. φ̃n : Mn( Ĩ)→ Mn(Ã) is injective.
2. An element a belongs to Im(φ̃n) if and only if ψ̃n(a) is a scalar element in

Mn(B̃).

Proposition 5.5.11. (Half exactness of K0) Given a short exact sequence of C∗-
algebras,

0 I A B 0,
φ ψ

we get an exact induced sequence,

K0(I) K0(A) K0(B),
K0(φ) K0(ψ)
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in the sense that Im(K0(φ)) = Ker(K0(ψ)).

Proof. Im(K0(φ)) is certainly contained in Ker(K0(ψ)) by functoriality, since

K0(ψ) ◦ K0(φ) = K0(ψ ◦φ) = K0(0) = 0.

Conversely, take g ∈ Ker(K0(ψ) and apply lemma 5.5.9 to find a natural number
n and a projection p ∈ Pn(Ã) such that g = [p]0 − [s(p)]0 and ψ̃(p) is a scalar
element. Now, by lemma 5.5.10, p must be in the image of φ̃, which means we
can find a preimage e ∈ Mn( Ĩ). This preimage is unique, which implies that e is a
projection, by writing out the self-adjointness and idempotency of e. This lets us
write

g = [φ̃(e)]0 − [s(φ̃(e))]0 = K0(φ) ([e]0 − [s(e)]0) ∈ Im (K0(φ)) .

Hence K0 is half exact.

It should be reasonable to expect only half-exactness, at least as an analogue to
topological K-theory. In hTop, we can’t make sense of short exact sequences. We
have to work with pairs, yielding natural three-term sequences, but not in an
exact sense. Usually, we can’t just guarantee exactness at the endpoints of exact
sequences coming from hTop, which means the natural notion of exactness to
expect is half-exactness.

From half-exactness, it follows that this functor is split exact.

Proposition 5.5.12. (Split exactness of K0)

For every split exact sequence of C∗-algebras,

0 I A B 0,
φ

ψ

λ

we get an induced split exact sequence of abelian groups,

0 K0(I) K0(A) K0(B) 0.
K0(φ)

K0(ψ)

K0(λ)

Proof. Exactness in the middle term follows from proposition 5.5.11 and functori-
ality yields exactness in the last term, since

IdK0(B) = K0(IdB) = K0(ψ) ◦ K0(λ).

For a proof of injectivity, readers are referred to [35].
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Proposition 5.5.13. Given C∗-algebras A and B, we have

K0(A⊕ B)∼= K0(A)⊕ K0(B).

More specifically, the canonical inclusion maps iA, iB : A, B→ A⊕ B will yield the
isomorphism through K0(iA)⊕ K0(iB) : K0(A)⊕ K0(B)→ K0(A⊕ B).

Proof. Consider the diagram

K0(A)⊕ K0(B)

0 K0(A) K0(B) 0

K0(A⊕ B)

K0(iA)⊕K0(iB)

and note that it commutes as ⊕ defines a biproduct in the category of abelian
groups. Therefore, by the five lemma or some standard diagram chase, we get that
the wanted map is an isomorphism.

Remark 5.5.14. Note that this implies K0(Ã)∼= K0(A)⊕Z since K0(C)∼= Z.

Before we consider examples of when exactness fails at each end of the sequence,
we state a useful stability property of K0 from [35].

Proposition 5.5.15. (Stability) Fix a C∗-algebra A and a natural number n. Then
the ∗-homomorphism

λn,A : A→ Mn(A), a 7→
�

a 0
0 0

�

induces an isomorphism K0(λn,A) : K0(A)→ K0(Mn(A)).

More generally, let iK : A→ KA is the canonical inclusion of A into its stabilization,
KA, which can be shown to be K ⊗ A, where K denotes the compact operators
on some Hilbert space. Then the induced map K0(iK) : K0(A) → K0(KA) is an
isomorphism.

Example 5.5.16. (Counterexample to right exactness)

Consider the short exact sequence

0 C0((0,1)) C([0, 1]) C⊕C 0,
φ

where φ( f ) = ( f (0), f (1)).

By earlier computations (5.4.12 and 5.4.15), we know K0(C⊕C) ∼= Z⊕ Z and
K0(C([0, 1]))∼= Z. Therefore K0(φ) is not a surjection, and thus we have a counter-
example to right exactness.
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Example 5.5.17. (Counterexample to right exactness)

Consider a separable, infinite dimensional Hilbert space H, let K = K(H) denote
the algebra of compact operators and let B = B(H) and Q = B/K denote the
algebra of bounded operators and the Calkin algebra, respectively.

0 K B Q 0,

We know from example 5.4.13 that K0(B) = 0. With some work on stabilizations
of C∗-algebras as mentioned in proposition 5.5.15 , we can show that K0(K)∼= Z,
which means we have a counterexample to left exactness, as the induced map
cannot be injective.

This completes our first steps towards K-theory. We will soon enough (in chapter
7) develop higher K-groups and work out computational tools such as the Pimsner-
Voiculescu sequence which we will later apply to noncommutative tori in chapter
8, but we first work through some important applications of the K0-theory.

Queequeg 5.5.18. Even though we only define the foundations of operator K-theory
in this and the coming chapters, there is no need to stop there. It is possible to work
out some sort of universal coefficient theorem, Künneth formula, an analogue to the
Chern character, and more useful theory from algebraic topology and homological
algebra. To do this, one would have to develop a bunch of new theories, such as
extension theory in the sense of Brown-Douglas-Fillmore, KK-theory in the sense of
Kasparov, and noncommutative geometry in the sense of Connes ([4]). Interested
readers are referred to the encyclopedia-like book by Blackadar ([1]) for these
constructions and further references.





Chapter 6

Important applications of
K0-theory

Before we move on to higher K-theory, the computational tools and consequences
for noncommutative tori, we briefly establish some important applications of the
K0-theory. We will first explore the notions of finite, infinite, and stably finite
algebras through projections and ordered groups, which lets us realize K0(A) and
its cone as an ordered group structure. After a brief discussion of colimits and
the continuity of K0, we move on to AF-algebras and the classification theorem by
Elliott. This will be vital to classifying noncommutative tori, even though these
are not AF-algebras. All stated propositions are to be found mainly in [35], but we
also refer to [1].

6.1 Stably finite C*-algebras and ordered K0-groups

Our aim is the classification theorem of Elliott on AF-algebras, which are certain
C∗-algebras that arise as a limit of finite-dimensional algebras, as we will define
later. To be able to study these in-depth through K0-theory, we need to go back a
step to consider some questions related to how we constructed K0.

When defining K0 of a C∗-algebra, we first reversed the hierarchy of equivalences
(5.2.9) by passing to matrices (5.2.11). To fix dimensional issues, we considered
projections in all matrix rings, which seemed to be justified by the stability property
of K0 (5.5.15).

We didn’t really dwell on what the possible ”infinite projections” would look like,
but to be able to append more structure (and hence more computational power)
to K0, we briefly return to the topic.

Definition 6.1.1. Let p be a projection in a C∗-algebra A. If p is equivalent to a
proper subprojection of itself, we say p is infinite. That is, p is infinite if there exists

75
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a projection q in A such that p ∼ q < p. We say p is finite if it is not infinite.

We say a unital C∗-algebra A is finite if 1A is a finite projection. If not, A is called
infinite. A is called stably finite if it stays finite when we pass it to matrices, that is,
if Mn(A) is finite for all natural n.

For nonunital C∗-algebras, we consider finiteness in terms of their unitizations.

Finiteness of projections is the key property that lets us determine whether or not
a C∗-algebra is finite. We borrow this presentation of equivalent statements for
unital C∗-algebras from [35].

Lemma 6.1.2. If A is a unital C∗-algebra, the following are equivalent:

1. A is finite.
2. All isometries in A are unitary.
3. All projections in A are finite.
4. Every left-invertible element of A is invertible.
5. Every right-invertible element of A is invertible.

Remark 6.1.3. One should note that the requirement of A being unital cannot be
loosened. We always have the implication [A is finite] =⇒ [All projections in
A are finite], but for nonunital C∗-algebras, there are some examples where the
converse do not hold, such as the Toeplitz algebra, which we leave to interested
readers to investigate.

The fact that we need to define stably finite C∗-algebras suggests that there exist
algebras that lose their finiteness when passed to a matrix ring of some dimension
n. These certainly exist, but they are not the easiest to construct.

Before we consider the connection to K0(A), we need to define ordered groups.

Definition 6.1.4. Let G be a group. A pair (G, G+) is called an ordered abelian
group if G is abelian, G+ is a subset of G and the following claims hold:

• G+ + G+ ⊆ G+

• G+ ∩ (−G+) = 0
• G+ − G+ = G

This lets us define a partial order on G by saying x ≤ y ⇐⇒ y − x ∈ G+.

Let u ∈ G+ be an element in an ordered abelian group (G, G+) such that for all
g ∈ G, we can find an n with −nu≤ g ≤ nu. Then we call u an order unit and the
triple (G, G+, u) is called an ordered abelian group with a distinguished order unit.

Ordered abelian groups are simple if all nonzero elements are order units.

Example 6.1.5. Consider an abelian group G with an order relation satisfying
x + z ≤ y + z whenever x ≤ y and x , y, z ∈ G. If we define G+ = {x ∈ G : x ≥ 0},
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then (G, G+) will satisfy at least the two first axioms of being an ordered abelian
group.

The intuitive example of an ordered abelian group is given by considering (Z,N0).

In the light of this definition, we recall the standard picture of K0 (proposition
5.5.7), which makes it natural to define the following:

Definition 6.1.6. Let A be a C∗-algebra and define the positive cone of K0(A) to be
the set

K0(A)
+ = {[p]0 : p ∈ P∞(A)} ⊆ K0(A).

As one would probably expect from a construction expected to tell us more about
the structure, the positive cone plays nicely with biproducts.

Proposition 6.1.7. The positive cone of K0(A⊕ B) is given by

K0(A⊕ B)+ ∼= K0(A)
+ ⊕ K0(B)

+.

It is natural to ask which criteria we can put on A to interpret (K0(A), K0(A)+) as
an ordered abelian group.

Proposition 6.1.8. Let A be a C∗-algebra.

1. K0(A)+ + K0(A)+ ⊆ K0(A)+

2. If A is unital, then K0(A)+ − K0(A)+ = K0(A) and [1A] is an order unit for
K0(A).

3. If A is stably finite, then K0(A)+ ∩ (−K0(A))+ = 0.

Therefore, if A is unital and stably finite, (K0(A), K0(A)+, [1A]0) is an ordered abelian
group with distinguished order unit [1A]0.

To be able to talk about isomorphic order groups later on, we need to define some
notions related to morphisms.

Definition 6.1.9. Let (G, G+) and (H, H+) be ordered abelian groups. A group
homomorphism φ : G→ H is called positive if φ(G+) ⊆ H+. If φ is an isomorphism
G→ H and φ(G+) = H+, we call φ an order isomorphism. If u, v denotes the order
units of these ordered abelian groups, respectively, we say φ is order unit preserving
if φ(u) = v.

(G, G+, u) and (H, H+, v) are said to be isomorphic if there exists an order unit
preserving order isomorphism between G and H.

Remark 6.1.10. By the definition of the induced maps in K0-theory, we see that
for a ∗-homomorphism φ : A→ B, K0(φ) : K0(A) → K0(B) is a positive group
homomorphism.

Given an isomorphism φ, functoriality implies that K0(φ) is an order isomorphism.
If, in addition, the C∗-algebra is unital, K0(φ) is order unit preserving.
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The triple (K0(A), K0(B)+, [1A]0) is an isomorphism invariant of A.

Queequeg 6.1.11. We can develop this a bit further and show that all states on
the ordered group (K0(A), K0(A)+, [1A]0) for unital C∗-algebras A can be realized
as K0(τ) for some quasi-trace τ on A. If in addition A is exact in the sense that
the endofunctor B 7→ B ⊗ A is exact, where ⊗ denotes what’s called the minimal
tensor product of C∗-algebras, then τ can be chosen to be a trace and not just a
quasi-trace. We refer to [35] and the references therein for further elaboration.

6.2 AF-algebras and classification

Before we are ready to define AF-algebras, we need a quick detour to category
theory and the definition of a colimit.

Definition 6.2.1. An inductive sequence in a category is a sequence of objects
{An}∞n=1 with morphisms φn : An → An+1. These define connecting morphisms
φm,n = φm−1 ◦ · · · ◦φn : An→ Am.

Definition 6.2.2. A colimit (or inductive limit) of an inductive sequence

A1 A2 A3 . . .
φ1 φ2 φ3

is a system (A, {µn}∞n=1) consisting of an object A and morphisms µn : An→ A such
that the following hold:

1. We have a commutative diagram

An An+1

A.
µn

φn

µn+1

2. If (B, {λn}∞n=1) is a system satisfying the same property, there exists a unique
morphism λ : A→ B such that

An

A B
λnφn

λ

commutes.

Remark 6.2.3. Indeed, one can define colimits in a category C a more categorical
way as the left adjoint to the constant functor, that is, if we letX denote some (small)
index category, we can define the colimit as the left adjoint to∆(−) : C→ preshC X .
Limits are defined dually.
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Note that due to the second property of the colimit, it is certainly unique up to
isomorphism.

The colimit does not need to exist in a category. To see this, just consider the attempt
at finding an inductive limit in the category of finite sets with An = {1, . . . , n} and
φn as the inclusion An ,→ An+1. The limit could not possibly be a finite set, and
hence not in the category.

Therefore we have the following definition.

Definition 6.2.4. A category is called (co-) complete if it contains all of its (co-)
limits.

Nevertheless, all the categories we will work with will be cocomplete and satisfy
nice properties, some of which are mentioned here.

Proposition 6.2.5. The categories of C∗-algebras, abelian groups, and ordered
abelian groups satisfy the following properties.

• C∗Al g is a cocomplete category and furthermore,

1. ‖µn(a)‖ = limm→∞ ‖φm,n(a)‖ for all natural numbers n and all a ∈ An,

2. A=
⋃∞

n=1µn(An),

where φm,n denotes the composition φm,n : An → Am for m ≥ n and
(A, {µn}∞n=1) denotes the limit.

• Ab is a cocomplete category and furthermore,

1. G =
⋃∞

n=1µn(Gn),
2. Ker(µn) =

⋃∞
m=n+1 Ker(φm,n),

where φn denotes the map φn : Gn → Gn+1 and (G, {µn}∞n=1) denotes the
limit.

• OrdAb, the category of ordered abelian groups with positive group homo-
morphisms as morphisms, is a cocomplete category. Furthermore, the colimit
is given by ((G, G+), {µn}), where (G, {µn}) denotes the colimit in Ab and
G+ =

⋃∞
n=1µn(G+n ).

With the knowledge of these colimits and cocomplete categories, it is now in-
teresting (and well-defined) to consider the C∗-algebras arising as colimits of
finite-dimensional algebras.

Definition 6.2.6. An AF-algebra (or Approximately Finite-dimensional algebra)
is a C∗-algebra isomorphic to the colimit of a sequence of finite-dimensional C∗-
algebras.

Before we move on to examples and connections to K0-theory, we present an
equivalent statement for separable C∗-algebras from [35] due to Ola Bratteli.
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Proposition 6.2.7. A separable C∗-algebra is an AF-algebra if and only if for every
ε > 0 and every finite subset {a1, a2, . . . an} of A, there exists a finite dimensional
sub-C∗-algebra B of A and elements b1, . . . , bn in B such that ‖ai − bi‖< ε for all i.

This justifies the name Approximately Finite-dimensional algebra, as it is certainly
approximately finite-dimensional.

Now, let us consider some examples.

Example 6.2.8. A trivial example could be to take a finite-dimensional C∗-algebra A
and let An = A with the identity between An and An+1. Then, by magic, A becomes
the colimit.

Example 6.2.9. We know the C∗-algebra of compact operators on a (separable)
Hilbert space, K(H), comes from finite rank operators. It is certainly possible to
realize this as an AF-algebra.

Example 6.2.10. Consider the sequence where An = M2n(C) and the connecting

homomorphism φ : An→ An+1 is given by φ(A) =

�

A 0
0 A

�

.

The inductive limit of this sequence is called the CAR-algebra, where CAR stands
for ”canonical anticommutation relations”, which we explain in Queequeg 6.2.18.

This is a classical example of an AF-algebra ([5]), but its history and interest go a
lot deeper than the author understands at the current point.

Queequeg 6.2.11. It is possible to show that commutative C∗-algebras are AF if
their spectrum is totally disconnected. By ”spectrum”, we mean the spectrum
of the C∗-algebra, which is defined in the appendix of [31]. This is defined in
terms of the primitive spectrum of prime ideals with the hull-kernel topology,
which is a noncommutative analogue of the Zariski topology. For commutative
C∗-algebras, the spectrum is exactly the primitive spectrum. This holds for example
for continuous functions a Cantor set, which is an extremely interesting C∗-algebra
related to dynamical systems ([6]).

Since finite-dimensional algebras are direct sums of matrix algebras (proposition
2.3.5), we can wonder if K0 respects colimits, as this would give us immense
computational power for AF-algebras since the K0-group would be easy to study.
Since the Grothendieck functor is a left adjoint, this does in fact hold.

Theorem 6.2.12. (Cocontinuity of K0) Given an inductive sequence of C∗-algebras,
K0(lim→ An)∼= lim→ K0(An) as abelian groups. If each (K0(An), K0(An)+) are ordered
abelian groups, then this isomorphism also holds in the category of ordered abelian
groups. Furthermore,

1. K0(A) =
⋃∞

n=1 K0(µn)(K0(An))

2. K0(A)+ =
⋃∞

n=1 K0(µn)(K0(An)+)
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Remark 6.2.13. If we are given an AF-algebra, we have an inductive sequence of
C∗-algebras, which gives us an induced sequence of abelian groups by applying K0.
Now we only need to take the limit of this sequence, which will be much easier, as
we know a lot about finite-dimensional C∗-algebras and K0. For example, if A is
finite-dimensional,

K0(A)∼= K0(
K
⊕

k=1

MNk
(C)) (since A is finite-dimensional)

∼=
K
⊕

k=1

K0(MNk
(C)) (since K0 preserves biproducts)

∼=
K
⊕

k=1

K0(C) (by stability of K0)

∼=
K
⊕

k=1

Z (since K0(C)∼= Z is known),

which implies that we should need to consider sequences of abelian groups on the
form An = ZKn when studying the K0-theory of AF-algebras.

This leads to the definition of a dimension group, which certainly is a step in the
right direction of understanding the structure of AF-algebras.

Definition 6.2.14. A dimension group is an ordered abelian group isomorphic to
the colimit of a sequence of ordered abelian groups of the form

Zn1 Zn2 Zn3 . . . ,
α1 α2 α3

where ni are positive integers, αi are positive group homomorphisms and (Zn)+ is
given the usual way as n-tuples of nonnegative integers.

One can certainly ask how strong the connection between K0-groups and dimension
groups is. There are, perhaps surprisingly, powerful and beautiful answers to
questions like these.

First, note that all AF-algebras are stably finite since they are colimits of finite-
dimensional C∗-algebras, which are direct sums of matrix algebras over C. We
know the identity is a finite projection in each of these matrix algebras since traces
are constant on equivalence classes by the trace property and the definition of the
Murray-von Neumann equivalence. Any proper subprojection of the identity would
not yield the same value under the standard trace, and can hence not be equivalent
to the identity. Therefore, each of these matrix algebras are finite, which means
that each finite-dimensional C∗-algebra is finite in the sense of definition 6.1.1.
Now, by proposition 6.2.5, the colimit must also be stably finite.

This implies that for an AF-algebra A, (K0(A), K0(A)+) is an ordered abelian group.
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Proposition 6.2.15. If A is an AF-algebra, the ordered K0-group (K0(A), K0(A)+)
is a dimension group. Conversely, every dimension group is order isomorphic to
the ordered K0-group of some AF-algebra.

With some more work and a couple of technical lemmas, it is possible to prove
Elliott’s classification theorem through the power of these dimension groups.

Theorem 6.2.16. (Elliott) Two unital AF-algebras A and B are isomorphic if and
only if the triples (K0(A), K0(A)+, [1A]0) and (K0(B), K0(B)+, [1B]0) are isomorphic.

Moreover, if there is an order unit preserving order isomorphism,

α : (K0(A), K0(A)
+, [1A]0)→ (K0(B), K0(B)

+, [1B]0),

we can find a ∗-isomorphism φ : A→ B satisfying K0(φ) = α.

Remark 6.2.17. Even though Elliott’s theorem (6.2.16) requires the AF-algebras to
be unital, it is still possible to give such a classification result in the nonunital case.
We have to change our positive cone

K0(A)
+ = {[p]0 : p ∈ P∞(A)} ⊆ K0(A)

and the order unit to something else. If we define the dimension range of A to be

D0(A) = {[p]0 : p ∈ P(A)} ⊆ K0(A)
+,

a similar theorem also holds for nonunital AF-algebras.

Two AF-algebras A and B are isomorphic if and only if the pairs (K0(A),D0(A))
and (K0(B),D0(B)) are isomorphic in the sense that it exists a group isomorphism
α : K0(A)→ K0(B) with α(D0(A)) = D0(B).

We end this brief section on applications of K0-theory with the following dense
remark and continue on our journey towards the higher K-groups and the compu-
tational tools we have been dreaming about for the last n+ 1 pages.

Queequeg 6.2.18. Interested readers should certainly consider learning about the
Effros-Handelman-Shen theorem, which classifies exactly when ordered abelian
groups are dimension groups, but we leave this excursion to [35] and [1].

AF-algebras and classifications are topics of wide interest when studying dynamical
systems. Measurable dynamical systems that are irreducible, in the sense that they
are ergodic, are closely linked to something called Cantor Minimal Systems. There
are a lot of interesting AF-algebras, both connected to Cantor Minimal Systems
and not. These are perhaps better explained diagrammatically in terms of Bratteli
diagrams, named after the Norwegian mathematician Ola Bratteli. We refer readers
to sources such as [6] for treatments of these topics.

The AF-algebra we saw in example 6.2.10 can actually be realized in some way as
a model for fermionic systems in quantum mechanics. One usually considers the
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space of quantum states to be some separable Hilbert space, which in a technical
sense must be a so-called rigged space for us to be able to talk about the Dirac delta
distribution as a potential function. We know there can only exist half-integer spin
particles, called fermions, or integer spin particles, called bosons. Quantum states
of fermions satisfy the canonical anticommutation relation and bosonic quantum
states satisfy the canonical commutation relation. The algebras generated by these
quantum states are called CAR- and CCR-algebras, respectively. For a treatise on
these topics, we refer to [38] and [26].

With some poetic license, these canonical anticommutation relations are the reason
for the Pauli principle, which in turn is the reason why we (or anything fun for
that matter) exist.





Chapter 7

Higher K-groups and tools in
operator K-theory

In this chapter, we develop the computational tools that let us compute several
K0-groups. To do this, we are still inspired by topological K-theory and the compu-
tational methods in algebraic topology through exact sequences. As we will see,
the topological approach boils down to defining the K1-groups in an analogous
way to the K0-group. This is done quite briefly, as many of the ideas are found in
chapter 5. We refer to [35] for missing details.

This definition of K1 can be connected to K0 through an index map, which yields
the first steps towards the long exact sequence in K-theory. We find an isomorphism
K0(SA)∼= K1(A), where S denotes the suspension endofunctor in the category of
C∗-algebras. This inspires us to define higher K-groups and lift the index map to
obtain the long exact sequence in K-theory, the beautiful Bott periodicity theorem,
and more. For these first parts, we continue to follow [35] and [1]. To converge
the thesis slowly towards the classification of noncommutative tori, we develop
the computational tools further by adapting them to crossed product C∗-algebras
and we derive the Pimsner-Voiculescu exact sequence.

7.1 The K1-theory and the index map

It is natural to try to define the K0-theory in terms of projections since these
projections show up directly from the finitely generated projective modules cor-
responding to vector bundles in the Serre-Swan theorem (5.1.1). In topological
K-theory, K1(X ) is defined similarly to K0(X ), but in terms of the suspension of the
compact Hausdorff space X . This does not necessarily tell us anything interesting
about our C∗-algebras at first glance, but we try to bend this towards a more
operator algebraic approach to K1.

We refer readers to [43] for the following proposition.

85
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Proposition 7.1.1. There is a bijection between k-dimensional vector bundles
on the suspension of X and the homotopy class of maps from a compact Haus-
dorff space X into the group of invertible elements in Mk(C), called clutching
functions. More precisely, if GL(A) denotes the invertible elements in A and
GLk(A) = GL(Mk(A)),

Vectk(SX )∼= [X , GLk(C)] as sets.

If we forget the contravariant structure and just consider GL(A), we turn the
contravariant topological K1-functor to a covariant one, which explains why the
approach we take yields a covariant functor.

Queequeg 7.1.2. The result above can probably be considered as a special case of
the classification of principal G-bundles in algebraic topology. We refer to [18] for
a topological treatise of bundle theory and homotopy theory.

The following proposition connects GL(A) to the unitary elements by saying U(A)
is a retract of GL(A) that preserves homotopies coming from GL(A). The element
|a| is defined as |a| = (a∗a)1/2, where the square root makes sense due to the
functional calculus (proposition 2.3.14).

Proposition 7.1.3. Let A be a unital C∗-algebra.

1. If z is an invertible element in A, then so is |z|, and ω(z) = z|z|−1 ends
in U(A). Note that this implies the polar decomposition of elements in A,
z =ω(z)|z|.

2. The map ω : GL(A) → U(A) is continuous, ω(u) = u for u ∈ U(A), and
ω(z)∼h z in GL(A) for z ∈ GL(A).

3. If u, v ∈ U(A) and u∼h v in GL(A), then u∼h v in U(A) as well.

Proof. We prioritize giving a proof of this proposition, as it justifies our unitary-
based approach to K1.

1. If z is invertible, then z∗z is invertible, and hence |z|= (z∗z)1/2 is invertible
with inverse explicitly given by ((z∗z)−1)1/2. Now define ω(z) = z|z|−1 and
compute.

ω(z)∗ω(z) = |z|−1z∗z|z|−1 = |z|−1|z|2|z|−1 = 1,

as wanted.
2. We know multiplication in C∗-algebras is a continuous operation, meaning

that the map z 7→ z−1 for z ∈ GL(A) is continuous as well. If we want to show
ω is continuous, we only need the fact that taking absolute values yield a
continuous function. By considering the decomposition of the absolute value
function, we see that it is the composition of continuous functions. Given an
unitary u, we have |u|= 1, meaning ω(u) = u by definition.
For a fixed z ∈ GL(A), define the continuous path t → zt :=ω(z)(t|z| − (1−
t) · 1A). We only need to show zt ∈ GL(A) for all t ∈ [0,1]. Note that since
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|z| is positive and invertible, there exists a λ ∈ (0,1] such that |z| ≥ λ · 1A
since the spectrum of |z| is closed and bounded. Recall that we work in a
C∗-algebra, meaning this inequality is phrased in terms of positivity. That
is, λ exists since 0 /∈ spec(|z|). This means that for each t ∈ [0, 1], we have
t|z|+(1− t) ·1A ≥ λ ·1A. Hence zt is invertible, so the continuous path t 7→ zt
is a homotopy ω(z)∼h z in GL(A).

3. If we are given a continuous path t 7→ zt between u, v in GL(A), then
t 7→ω(zt) gives the wanted continuous path in U(A).

This allows us to take the geometric idea of defining K1 in terms of vector bundles
over suspended spaces and rather focus on attacking the problem through unitary
elements in A. The idea of using GL(A) to define K1 turns out to be the right way to
do it, as this is the theoretical basis for K1 in algebraic K-theory, where K1 is defined
in terms of the abelianization of GL∞ ([43]). We closely mimic the successful
approach for projections in the K0-theory.

Definition 7.1.4. Let A be a unital C∗-algebra and let U(A) denote the groups of
unitary elements. Define the following structures and binary operation.

Un(A) = U (Mn(A)) , U∞(A) =
∞
⋃

n=1

Un(A)

u⊕ v =

�

u 0
0 v

�

∈ Un+m(A), u ∈ Un(A), v ∈ Um(A)

Define a relation ∼1 on U∞(A) by saying u∼1 v for u ∈ Un(A), v ∈ Um(A) if there
exists a k ≥max{m, n} such that u⊕ 1k−n ∼h v ⊕ 1k−m in Uk(A).

We refer to [35] for the following lemma on the properties of this construction.
Note the similarity to the case with projections.

Lemma 7.1.5. If A is a unital C∗-algebra, then

1. ∼1 is an equivalence relation on U∞(A).
2. u∼1 u⊕ 1n for all u ∈ U∞(A) and natural n.
3. u⊕ v ∼1 v ⊕ u for all u, v ∈ U∞(A).
4. u∼1 u′ and v ∼1 v′ implies u⊕ v ∼1 u′ ⊕ v′ for all u, u′, v, v′ ∈ U∞(A).
5. if u, v ∈ Un(A) for some n, then uv ∼1 vu∼1 u⊕ v.
6. (u⊕ v)⊕w= u⊕ (v ⊕w) in U∞(A).

With these properties, we can define the K1-group of a C∗-algebra, which by the
previous lemma should be well-defined and abelian.

Definition 7.1.6. Let A be a C∗-algebra. Define the K1-group of A by

K1(A) = U∞(Ã)/∼1 .
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Let [u]1 denote the equivalence class of u ∈ U∞(Ã) and define addition on K1(A)
by [u]1 + [v]1 = [u⊕ v]1.

We do not need to pass through the Grothendieck group, as we did for K0. This is
because U∞(A) already has a group structure, whereas for projections, we didn’t
even have a binary operation that made sense, as p+ p = 2p 6= (2p)2 for nonzero
projections p.

By the fifth property mentioned in proposition 7.1.5, which follows from White-
heads lemma (5.2.3), products in A and addition in K1(A) correspond quite nicely.
This implies that 0 = [1n]1 = [uu∗]1 = [u]1 + [u∗]1, and hence −[u]1 = [u∗]1,
which means that we preserve the unitary structure.

These remarks surely make K1(A) into an abelian group, and as we will see, most
of the properties of K0(A) hold for K1, but more simply, as we didn’t need to pass
through the Grothendieck group to achieve an abelian group structure. Actually,
compared to the K0-theory, it becomes so simple that the standard picture becomes
more like a restatement of the definition and lemma 7.1.5 rather than a proposition,
but we state it nevertheless.

Proposition 7.1.7. (Standard picture of K1) Let A be a C∗-algebra. Then

K1(A) = {[u]1 : u ∈ U∞(Ã)}

Furthermore, the map [·]1 : U∞(Ã)→ K1(A) satisfies

1. [u⊕ v]1 = [u]1 + [v]1,
2. [1]1 = 0,
3. if u, v ∈ Un(Ã) with u∼h v, then [u]1 = [v]1.

In addition to the standard picture, we also get a universal property for K1, totally
analogous to the property for K0.

Proposition 7.1.8. (Universal property of K1) Assume A is a C∗-algebra, G is an
abelian group and v : U∞(Ã)→ G satisfy the following properties:

1. v(u⊕w) = v(u) + v(w),
2. v(1) = 0,
3. if u, w ∈ Un(Ã) with u∼h w, then v(u) = v(w).

Then there exists a group homomorphism α : K1(A)→ G such that

U∞(Ã)

K1(A) G

[·]1 v

α

commutes.



Chapter 7: Higher K-groups and tools in operator K-theory 89

Before we state more similarities between K1 and K0, we should stop to ponder
what this definition actually looks like for unital C∗-algebras. We are defining K1(A)
in terms of the (naive) unitization Ã, but for unital C∗-algebras, we would want
to define K1(A) as U∞(A). In fact, the following proposition from [35] shows us
that it doesn’t matter how we define it, as the two constructions are isomorphic as
groups.

Proposition 7.1.9. Let A be a unital C∗-algebra. Then there exists an isomorphism
ρ : K1(A)→ U∞(A)/∼1 making the following diagram commute:

U∞(Ã) U∞(A)

K1(A) U∞(A)/∼1

[·]1

µ

ρ

Here µ denotes the lifted projection π : Ã= A⊕C→ A.

With this out of the way, how does K1 lift morphisms? Well, the canonical way is by
lifting to unitizations, lifting to matrices, and then restricting to unitary elements.
As expected, K1 is a functor.

Proposition 7.1.10. (Functoriality of K1 and more) Let A, B and C be C∗-algebras.
Then

1. K1(IdA) = IdK1(A).
2. K1(ψ ◦φ) = K1(ψ) ◦ K1(φ) for composable morphisms ψ,φ.
3. K1({0}) = {0}.
4. K1(0B,A) = 0K1(B),K1(A).
5. if ψ,φ : A→ B are homotopic ∗-homomorphisms, then K1(ψ) = K1(φ).
6. if A and B are homotopy equivalent through φ : A→ B and ψ : B→ A, then

K1(A)∼= K1(B) and K1(φ), K1(ψ) are isomorphisms with K1(φ)−1 = K1(ψ).

There are more properties of K1 that are so similar to the case of K0 that we
summarize them in the following proposition.

Proposition 7.1.11. (Further properties of K1)

1. K1 is half exact in the sense of proposition 5.5.11.
2. K1 is split exact in the sense of proposition 5.5.12.
3. K1 preserves biproducts in the sense of proposition 5.5.13.
4. K1 is cocontinuous in the sense of theorem 6.2.12.
5. K1 is stable in the sense of proposition 5.5.15.

Proof. The proofs can be found in [35], but note that they are extremely similar to
the cases we proved earlier in the K0-theory. These will easily be verified when we
show that K1 can be realized as the composition of K0 and the suspension functor
S in theorem 7.2.5.
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The construction has a lot of wanted properties, but we still need to develop it
further to be close to the power of topological K-theory. Before we do this, we state
some examples from [35] and [1] to get a feel on what different K1-groups look like.
Some of them will be revisited later when we have developed our computational
tools.

Example 7.1.12. (Some examples of K1-groups)

1. K1(Mn(C)) = K1(C) = 0.
2. Let H be a separable Hilbert space. Then K1(K(H)) = K1(B(H)) = 0.
3. Let A be an AF-algebra. Then K1(A) = 0.
4. K1(Q(H))∼= Z, where Q(H) denotes the Calkin algebra.
5. If n is natural, then K1(C(S2n)) = 0.
6. If n is natural, then K1(C(S2n+1))∼= Z.

It is time to start our hunt for computational tools. We know that if we are given a
short exact sequence, we get an induced sequence in K0 and K1. For computational
reasons, we want to find a map that fits in, linking K1 to K0. That is, given

0 I A B 0,

we get induced sequences such that

K1(I) K1(A) K1(B)

K0(B) K0(A) K0(I).

Hence, if we can find a map δ1 : K1(B)→ K0(I) linking these together to a diagram

K1(I) K1(A) K1(B)

K0(B) K0(A) K0(I),

we would certainly progress in finding a long exact sequence in K-theory.

Remark 7.1.13. Note that such a map would measure the obstruction to lifting
unitaries from a matrix algebra over B to a matrix algebra over A, that is, it measures
how much the map K1(A)→ K1(B) fails to be surjective.

The main problem comes when we want to understand how this map is constructed.
We need to take an equivalence class of unitary elements in K1(B) and assign to
them an equivalence class of projections in K0(I) in a way that connects the
exactness of the two sequences.

The following lemma borrowed from [35] takes care of this. We assume we are
given a short exact sequence of the form
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0 I A B 0.
φ ψ

Lemma 7.1.14. Let u ∈ Un(B̃).

1. There exists a unitary v ∈ U2n(Ã) and a projection p ∈ P2n( Ĩ) such that

ψ̃(v) =

�

u 0
0 u∗

�

, φ̃(p) = v

�

1n 0
0 0

�

v∗, s(p) =

�

1n 0
0 0

�

.

2. If w ∈ U2n(Ã) and q ∈ P2n( Ĩ) satisfy

ψ̃(w) =

�

u 0
0 u∗

�

, φ̃(q) = w

�

1n 0
0 0

�

w∗,

then s(q) = diag(1n, 0n) and p ∼u q in P2n( Ĩ).

In short, this lemma lets us take a unitary in B, assign a unitary v ∈ A, which is a
step back in the sequence, and then construct a projection with this unitary. This
projection can be lifted to a projection in I , which is well defined, as this projection
is unique up to unitary equivalence.

Proof. The proof can be found in [35]. With more work on unitaries, this is not
necessarily a challenging proof, if we are given the right lemmas. We leave it to
the encouraged reader to investigate.

This lets us define a map with the following properties, as shown in [35].

Proposition 7.1.15. Define v : U∞(B̃) → K0(I) given by v(u) = [p]0 − [s(p)]0,
where p corresponds to u as in lemma 7.1.14. This map has the following properties:

1. v(u1 ⊕ u2) = v(u1) + v(u2) for all u1, u2 ∈ U∞(B̃),
2. v(1) = 0,
3. if u1 ∼h u2 in Un(B̃), then v(u1) = v(u2),
4. v(ψ̃(u)) = 0 for all u ∈ U∞(Ã)
5. K0(φ)(v(u)) = 0 for all u ∈ U∞(B̃).

The first three properties are enough to invoke the universal property of K1 and the
last two will ensure that we actually get a complex. Exactness is yet to be shown.

Definition 7.1.16. The unique group homomorphism δ1 : K1(B)→ K0(I) induced
by the universal property of K1 applied to the map v : U∞(B̃)→ K0(I), is called
the index map associated to the short exact sequence.

Remark 7.1.17. Indeed, the induced index map has the same properties as v in
the sense that δ1([u]1) = [p]0 − [s(p)]0, δ1 ◦ K1(ψ) = 0 and K1(φ) ◦δ1 = 0.

By dense computations, one can actually show that the index map is natural.
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Proposition 7.1.18. Assume we are given a commutative diagram of C∗-algebras
with short exact rows and vertical ∗-homomorphisms,

0 I A B 0

0 I ′ A′ B′ 0.

φ

γ

ψ

α β

φ′ ψ′

If δ1 : K1(B)→ K0(I) and δ′1 : K1(B′)→ K0(I ′) denote the index maps of the upper
and lower short exact sequences, respectively, the following diagram commutes:

K1(B) K0(I)

K1(B′) K0(I ′).

K1(β)

δ1

K0(γ)

δ′1

Queequeg 7.1.19. The name ”index map” comes from the study of Fredholm
operators and the Fredholm index. The index map is closely connected to this
study. Given a Fredholm operator T on a Hilbert space H, it is possible to show
that

index(T ) = (K0(Tr) ◦δ1)([π(T )]1),

whereπ is the quotient map B(H)→Q(H) and K0(Tr) is an isomorphism K0(K)→
Z induced from a suitable trace.

We do not intend to develop all of the details around the index map, but it is
certainly a necessary component to create a long exact sequence in K-groups.

There are a lot of details to consider to do this thoroughly, but we only mark the
end result.

Proposition 7.1.20. For all short exact sequences

0 I A B 0
φ ψ

of C∗-algebras, we get an induced exact sequence

K1(I) K1(A) K1(B)

K0(B) K0(A) K0(I).

K1(φ) K1(ψ)

δ1

K0(φ) K0(ψ)

Before we move on to the higher K-groups, we consider an easy example of a
calculation, namely the K1-group of the Calkin algebra.
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Example 7.1.21. Consider the short exact sequence

0 K B Q 0

of compact operators, bounded operators, and the Calkin algebra on a Hilbert
space H, respectively. This induces an exact sequence

K1(K) K1(B) K1(Q)

K0(Q) K0(B) K0(K).

δ1

As we know K1(B) = K0(B) = 0, we do not even need to consider the maps
in the sequence, as this immediately yields K1(Q) ∼= K0(K) ∼= Z, where the last
isomorphism can be shown by more work on stabilizations as in proposition 5.5.15.

7.2 Higher K-groups

To define the higher K-groups Kn, we must verify that K1(A) ∼= K0(SA) as in the
topological case. This allows us to recursively define Kn+1(A) := Kn(SA) and lift
the index map to these higher K-groups and extend our exact sequence to a worthy
long exact sequence in K-theory.

We start off with some definitions to understand how suspensions of C∗-algebras
actually work.

Definition 7.2.1. The suspension SA and the cone CA of a C∗-algebra A is given
by

SA= { f ∈ C([0,1], A) : f (0) = f (1) = 0}= C0((0, 1), A)

CA= { f ∈ C([0,1], A) : f (0) = 0}

These fit in a short exact sequence

0 SA CA A 0,

where the last morphism is given by f 7→ f (1).

Remark 7.2.2. Indeed, the cone is contractible. Let φt : CA→ CA be given by
φt( f )(s) = f (st) for f ∈ CA and s, t ∈ [0,1]. This is continuous, φ0 = 0 and
φ1 = id. Hence K0(CA) = K1(CA) = 0.

To see that S is functorial, we need a more explicit description of the suspension,
which we borrow from [35].

Lemma 7.2.3. Let X be a locally compact Hausdorff space. If f ∈ C0(X ) and a ∈ A,
let f a ∈ C0(X , A) denote the element given by ( f a)(x) = f (x)a. Then the set
span{ f a : f ∈ C0(X ), a ∈ A} is dense in C0(X , A).
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This allows us to understand the lifting of morphisms, as we only need to define
the morphism on this dense subset. Let φ : A→ B. Then Sφ : SA→ SB is given by
Sφ(a f ) = φ(a) f ∈ SB. The following proposition is direct from the above lemma.

Proposition 7.2.4. The functor S is exact.

As mentioned, the higher K-groups in topological K-theory are defined in terms
of iterated suspensions. For K1, we managed to tweak this description to a more
operator algebraic approach, namely in terms of unitary elements. We have not
lost the underlying isomorphism. In fact, it turns out to have quite a concrete
description.

Theorem 7.2.5. The groups K0(SA) and K1(A) are isomorphic. Moreover, the
collection of isomorphisms θA : K1(A)→ K0(SA) is natural in the sense that for
every ∗-homomorphism φ : A→ B between two C∗-algebras A and B, the diagram

K1(A) K1(B)

K0(SA) K0(SB)

θA

K1(φ)

θB

K0(Sφ)

is commutative. In fact, the isomorphisms have concrete descriptions. If u ∈ Un(Ã)
satisfies s(u) = 1n, and v ∈ C([0,1],U2n(Ã)) satisfy v(0) = 12n, v(1) = diag(u, u∗)

and s(v(t)) = 12n for all t, we can construct a projection p = v

�

1n 0
0 0

�

v∗ in

P2n(S̃A). This projection satisfies s(p) = diag(1n, 0n) and θA([u]1) = [p]0− [s(p)]0.

Proof. We keep it brief. Since CA is contractible, the exact sequence (proposition
7.1.20) applied to the short exact sequence (7.2.1), yields that the index map
δ1 : K1(A)→ K0(SA) is an isomorphism. Hence we can choose θA = δ1. Naturality
follows from the fact that morphisms A→ B induce morphisms between the short
exact sequences. The wanted naturality is just the naturality of the index map. To
consider the explicit description, note that a function f ∈ C([0, 1], M2n(Ã)) belongs
to M2n(C̃A) if and only if s( f (t)) = f (0) for all t and that f belongs to M2n(S̃A)
if and only if s( f (t)) = f (0) = f (1). With these identifications, it is possible to
tweak the explicit form of the index map δ1 to obtain the wanted description.

Due to this isomorphism, it would seem natural to define the higher K-groups
inductively in a similar manner.

Definition 7.2.6. For n≥ 2, define a functor Kn from the category of C∗-algebras
to the category of abelian groups by Kn = Kn−1 ◦ S, where S is the suspension
endofunctor on the category of C∗-algebras.

Corollary 7.2.7. Kn(A) := K1(Sn−1A)∼= K0(SnA).
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Since S is exact and the base cases K0 and K1 are half-exact, Kn is half-exact for all
n.

Now, what about the index maps? Are we able to lift the index map δ1 to higher
analogues δn?

Let

0 I A B 0
φ ψ

be a short exact sequence of C∗-algebras. Then, by exactness of S,

0 Sn I SnA SnB 0
Snφ Snψ

is also exact. Let δ1 denote the index map of this short exact sequence.

The isomorphism θSn−1 I : Kn(I)→ K0(Sn I) fits into the diagram

Kn+1(B) Kn(I)

K1(SnB) K0(Sn I),

δn+1

θSn−1 I

δ1

where the dotted map, δn+1, exists uniquely as the diagram commutes.

These higher index maps are natural in a similar manner to the original index map
δ1, which can be proved by just moving the argument from K1(B) and K0(I) to
Kn+1(B) and Kn(I).

This makes it possible to move on to the computational tools in K-theory.

7.3 Standard computational tools in K-theory

In this section, we give a brief overview of the main computational tools and
important results in K-theory, such as the long exact sequence, Bott periodicity,
and the six-term sequence.

We have already lifted our construction of the index map to higher K-groups,
which means much of the groundwork is done towards constructing the long exact
sequence.

Proposition 7.3.1. (Long exact sequence in K-theory)
All short exact sequences

0 I A B 0
φ ψ
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of C∗-algebras induce long exact sequences in K-theory

. . . Kn(I) Kn(A) Kn(B) Kn−1(I) . . .

. . . K0(I) K0(A) K0(B),

δn+1 Kn(φ) Kn(ψ) δn Kn−1(φ)

δ1 K0(φ) K0(ψ)

where δ1 is the index map and δn denotes the higher analogues for n≥ 2.

Proof. We let δ′n denote the n’th index map associated to the sequence

0 SI SA SB 0.
Sφ Sψ

We want to do an inductive argument. The diagrams

K2(I) K2(A) K2(B) K1(I) K1(A) K1(B)

K1(SI) K1(SA) K1(SB) K0(SI) K0(SA) K0(SB)

δ2

θI θA θB

δ′1

and

. . . Kn(B) Kn−1(I) Kn−1(A) Kn−1(B) . . .

. . . Kn−1(SB) Kn−2(SI) Kn−2(SA) Kn−2(SB) . . .

δn

δ′n−1

commute. We already know the lower row in the first diagram is exact, which
implies that the upper row is exact. The induction step now follows from the last
diagram.

It is possible to say something stronger about this sequence than just exactness.
Similar to the topological case, the sequence collapses.

Given a projection p ∈ Pn(A) for a unital C∗-algebra A, we can define the projection
loop fp : T→ Un(A) by fp(z) = zp+ (1n − p). If we use an equivalent definition of
the suspension SA as SA= { f ∈ C(T, A) : f (1) = 0}, it is possible to identify fp
with some function fp ∈ Un(S̃A). This allows us to define a map taking projections
to continuous functions mapping into unitaries, that is, we can send projections to
unitaries on the suspension of A.

Definition 7.3.2. (The Bott map) Define the Bott map βA : K0(A) → K1(SA) by
βA([p]0) = [ fp]1 for p ∈ P∞(A). We refer to [35] for the fact that this is well
defined.

We state the celebrated Bott periodicity theorem, which yields an amazing under-
standing of how the higher K-groups are connected.
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Theorem 7.3.3. (Bott periodicity) The Bott map βA : K0(A) → K1(SA) is an
isomorphism for all C∗-algebras A.

The proof can be found in [35] or [1]. Note that this means all the K-theoretic
information in a C∗-algebra is contained in its projections and unitary elements, or
more precisely, in K0 and K1, respectively. This means the only K-groups we need
to calculate, are K0(A) and K1(A).

By induction, Bott periodicity implies the following corollary.

Corollary 7.3.4. For all C∗-algebras A and n≥ 0, Kn+2(A)∼= Kn(A).

This should collapse our long exact sequence to a shorter, perhaps even cyclic,
exact sequence, as we can just start over at K0 when we study K2n and K1 when
we study K2n+1.

Definition 7.3.5. Let

0 I A B 0
φ ψ

be a short exact sequence of C∗-algebras and define the exponential map δ0 :
K0(B)→ K1(I) by the composition

K0(B) K2(B) K1(I).
βB δ2

We then have the following powerful proposition.

Proposition 7.3.6. Let

0 I A B 0
φ ψ

be a short exact sequence of C∗-algebras. For all such short exact sequences, the
six-term sequence

K0(I) K0(A) K0(B)

K1(B) K1(A) K1(I)

K0(φ) K0(ψ)

δ0δ1

K1(ψ) K1(φ)

is exact.

This is indeed an important tool when doing computations. To observe the power of
this six-term exact sequence, let us calculate K0(Q(H)) for some separable Hilbert
space H.

Example 7.3.7. Let H be a separable Hilbert space and let Q denote the Calkin
algebra, as earlier. Then

K0(K) K0(B) K0(Q)

K1(Q) K1(B) K1(K)

δ0δ1
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is exact. We know K0(B) = K1(B) = 0, yielding the exponential map to be an
isomorphism K0(Q) = K1(K) = 0. The last equality follows from the fact that K is
an AF-algebra. We will soon return to the computation of K1 for AF-algebras.

It is possible to show that the exponential map is natural in the same sense as the
index maps. In addition, it has quite an explicit description, justifying the name.
We briefly mention this here and refer to [35] for a proof.

Proposition 7.3.8. (Explicit description of the exponential map) Let

0 I A B 0
φ ψ

be a short exact sequence of C∗-algebras. Let δ0 : K0(B)→ K1(I) be the associated
exponential map and let g ∈ K0(B).

We can calculate δ0(g) the following way: Find a projection p ∈ Pn(B) such
that g = [p]0 − [s(p)]0. Lift this projection to an element a ∈ Mn(Ã) such that
ψ̃(a) = p. There exists a unique unitary u ∈ Un( Ĩ) such that φ̃(u) = exp (2πia).
Then δ0(g) = −[u]1.

To conclude our general overview of K-theory, we use our computational tools to
justify some of the K-groups claimed earlier.

Example 7.3.9. By stability, K1(Mn(C)) = K1(C). It is possible to show that if u is
a unitary element such that σ(u) 6= T, then u must be homotopic to the identity
(see chapter 2 of [35]). Any given unitary element in Mn(C) has finite spectrum,
which means that it must be homotopic to the identity. Hence, the unitary group
of Mk(Mn(C)) = Mnk(C) is connected, which implies that U∞(Mn(C))/∼1 must
be the trivial group, that is, K1(Mn(C)) = 0.

Note that this implies K1(A) = 0 for all AF-algebras A, by cocontinuity of K1.

It is possible to show that K1(K(H)) = K1(B(H)) = 0 for separable Hilbert spaces
H, in a similar manner. The first K-group being 0 follows from the compacts being
an AF-algebra. This would imply the K-groups of the Calkin algebra, as done in
earlier examples.

Example 7.3.10. Since R is homeomorphic to (0,1), we see that the suspension
SA of a C∗-algebra A is isomorphic to C0(R, A). For a pair X , Y of locally compact
Hausdorff spaces, we have C0(X , C0(Y )) ∼= C0(X × Y ). More generally, similar
results hold for pairs of compactly generated weak Hausdorff spaces ([19]). This
implies that SnC∼= C0(Rn), which means that

K0(C0(Rn))∼= Kn(C) and K1(C0(Rn))∼= Kn+1(C),

for all n≥ 1.

By Bott periodicity, we get

K0(C0(Rn))∼= Kn(C)∼=

¨

Z, n even

0, n odd
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and

K1(C0(Rn))∼= Kn+1(C)∼=

¨

0, n even

Z, n odd.

Example 7.3.11. Since the one-point compactification of Rn is homeomorphic to
Sn for n≥ 1, C(Sn) is isomorphic to the naive unitization of C0(Rn). For K1, this
means that

K1(C(S
n))∼= K1(C0(Rn))∼=

¨

0, n even

Z, n odd,

while for K0, we split over the direct sum to obtain

K0(C(S
n))∼= K0(C0(Rn))⊕ K0(C)∼=

¨

Z⊕Z, n even

Z, n odd.

Queequeg 7.3.12. In algebraic topology ([19]), cohomology theories can often be
represented by a spectrum due to the Brown representability theorem ([39]). The
motivational example is the Eilenberg-Maclane spaces K(G, n), which represent
singular cohomology with coefficients in a group G in the sense that Hn(X ; G) is
in bijection with [X , K(G, n)].

Operator K-theory is not a reduced cohomology theory, but a reduced homology
theory. The problem with this, if we for example consider homology, is that [−,−]
preserves products, while homology does not. Is it even possible to find a way to
represent the K-groups?

There are in fact results on the topic if we do lots (and lots) of work on KK-theory.
Take for example proposition 4.2. in [23].

We can find a functor K(−) : C∗Al g → Ho(Spect ra) such that πn(K)(A)∼= Kn(A).

What does this mean? We take a C∗-algebra A and get a spectrum K(A), which
lies in the stable homotopy category, where we can define some sort of homotopy
theory, giving back the K-functors.

For such spectra, we can always define homotopy groups. Define the sphere spec-
trum S= Σ∞S0, where Σ denotes the suspension of topological spaces. Let X be
an object in Ho(Spect ra).

Now, define
πn(X ) = [S, X ]n = [Σ

nS, X ] .

Proposition 4.2. in [23] says that Kn can be realized as the composition

C∗Al g Ho(Spect ra) Ab.
K(−) πn(−)
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Recall that our goal is to study noncommutative tori through K-theory. We move
on to study a six-term sequence suited for crossed product C∗-algebras.

7.4 The Pimsner-Voiculescu exact sequence

We give a short introduction of the Pimsner-Voiculescu exact sequence, a six-term
exact sequence suited for studying crossed product C∗-algebras.

There are several proofs of the following theorem. The original proof was by
Pimsner and Voiculescu in [27], where they developed the sequence in a technical
manner through so-called Toepliz extensions. Our brief justification will be through
more modern tools and is based on [1] and [36], even though it is historically in
the totally wrong order. Therefore, the following statements and results are only
included to display some beautiful tools.

Theorem 7.4.1. Let A be a C∗-algebra and let α ∈ Aut(A). If α∗ denotes the induced
morphism in K-theory, there exists a six-term exact sequence

K0(A) K0(A) K0(A×α Z)

K1(A×α Z) K1(A) K1(A).

1−α∗ i∗

i∗ 1−α∗

Proof. We sketch the main ideas found in [1] and [36], but we make several
claims and omit details as the proof requires theory we have not encountered in
this thesis.

We first assume we know Connes’ Thom isomorphism theorem, saying that for an α :
R→ Aut(A), we have an isomorphism Ki(A×α R)∼= K1−i(A) for i = 0, 1. Secondly,
we need the Takai duality theorem, stating that (A×α G)×α̂ Ĝ ∼= A⊗K(L2(G)),
where Ĝ denotes the Pontryagin dual of continuous group homomorphisms into
T and α̂ denotes the induced action on the crossed product. The (completed)
tensor product is not necessary to specify as K is a nuclear C∗-algebra, meaning
all completed tensor products coincide.

If we define the mapping torus Mα of α to be

Mα = { f : [0, 1]→ A : f (1) = α( f (0))},

we get a short exact sequence

0 SA Mα A 0.

More precisely, the mapping torus of α is the pushout of the following diagram,
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which is similar to the definition of a mapping cylinder from homotopy theory.

A A× S1

A

α

It is possible to realize the crossed product B ×α R as a mapping torus on B ×α T
and B ×α Z as a mapping torus on B ×α Zn.

If we define B = A×α Z, the action β = α̂ of T on B can be regarded as an action
from R where the integers acts trivially. Now, by Takai duality, the crossed product
B ×β T is isomorphic to A⊗K, and B ×β R can be realized as a mapping torus,
which we will denote by Mα when passed through K-theory.

Now these fit into the short exact sequence

0 S(A⊗K) B ×β R A⊗K 0.

If we had developed the theory of stabilizations sufficiently, then it would be
well known that Ki(A⊗K) ∼= Ki(A), but we take this for granted. After applying
the six-term exact sequence, Connes’ Thom isomorphism, Bott periodicity, and
the necessary shifts due to the suspension in the first term, we get the following
diagram,

K1(A) K0(Mα) K0(A)

K1(A) K1(Mα) K0(A).

∂∂

We can realize A×α Z as a mapping torus, implying we only need to show that
the connecting maps ∂ are of the form 1−α∗, but this argument can be found in
[1].

With this powerful computational tool in our toolbox, we are ready to face the
computation of K-groups of noncommutative tori.





Chapter 8

The case of noncommutative tori

In this final section, we will apply K-theory and Morita equivalence to noncom-
mutative tori. Most of our results will be due to [33], but we are also inspired by
[5]. The aim of the chapter is not to rewrite the research in [33], but to give an
overview of some of the main results from the ’80s on noncommutative tori, where
K-theory and Morita equivalence played a prominent rôle. We start by computing
the K-groups of noncommutative tori using the Pimsner-Voiculescu sequence.

8.1 K-groups of noncommutative tori

Consider Aθ as C(S1)×αZ, where the action α ∈ Aut(C(S1)) is given by α( f )(x) =
f (e−2πiθ x), as explained in chapter 3. Note that rotating a point on the circle is
homotopic to the identity by finding the canonical path rotating it back to the
starting point.

The Pimsner-Voiculesu exact sequence then yields

K0(C(S1)) K0(C(S1)) K0(Aθ )

K1(Aθ ) K1(C(S1)) K1(C(S1)).

1−α∗ i∗

i∗ 1−α∗

Since α works as the identity up to homotopy, we get that 1 − α∗ = 0, as the
K-functors are homotopy invariant. This lets us split the Pimsner-Voiculescu exact
sequence to the following short exact sequences:

0 K1(C(S1)) K1(Aθ ) K0(C(S1)) 0

0 K0(C(S1)) K0(Aθ ) K1(C(S1)) 0.

103
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We know that Ki(C(S1))∼= Z for i = 0, 1. Since Z is free in the category of abelian
groups, as abelian groups are Z-modules, the following sequences split.

0 Z K1(Aθ ) Z 0

0 Z K0(Aθ ) Z 0.

This implies K0(Aθ )∼= K1(Aθ )∼= Z2.

We now have a starting point for classification, but unfortunately, this is not enough
to be able to classify noncommutative tori. With these K-groups, we recall the
theory of AF-algebras and the classification theorem of Elliott (6.2.16) to find
another approach.

8.2 Isomorphism classification and the unique trace

Not only will the K-groups themselves be too weak to classify noncommutative
tori, but they are also independent of θ , since for all θ , we have Ki(Aθ )∼= Z+ θZ
as abelian groups. If we consider ordered abelian groups, this is no longer the case,
as we can find irrational numbers θ and η such that there is no order isomorphism
(or even a positive order homomorphism) Z+ηZ→ Z+ θZ.

From now on, let us assume θ ∈ R\Q is irrational. One reason why such an
assumption could make things simpler can be found in ergodic theory ([41]),
where irrational rotations yield an ergodic action on the circle, leaving no invariant
subset of significant measure under the transformation. Due to this, we would
expect the C∗-algebra to be simple. We return to this shortly.

Recall that AF-algebras can be classified through K0 due to their structure as
dimension groups. A hope could be to utilize this powerful theorem in the work
on classification. In fact, in 1980, Pimsner and Voiculescu ([28]), along with other
mathematicians at the time, showed that we can embed Aθ in an AF-algebra
preserving the K0-group. The noncommutative tori are not AF-algebras themselves
due to their nonzero K1-groups, but it is possible to approximate the generators
U , V by finite-dimensional analogues through a continuous fraction expansion of
θ , yielding a way of embedding Aθ in an AF-algebra. A crash course on the topic
can be found in [5], which we will borrow some results from at a later stage. If
this means we can apply the classification theorem of AF-algebras (6.2.16), the
problem amounts to studying an ordered group structure on Aθ .

To construct the ordered structure, we need to realize what we are looking for.
We have K0(Aθ ) ∼= Z2, which tells us that we have two equivalence classes of
projections generating the K0-group. To understand this more thoroughly, we
inspect what these projections look like for the simplest case, θ = 0. In this case,
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we know the noncommutative torus is ∗-isomorphic to C(T2). A crucial fact is that
T2 is connected, implying C(T2) is connected. If we have a projection f ∈ C(T2),
then f 2 − f = 0, meaning f 2(x)− f (x) = 0 for all x , which implies f (x) = 0 or
f (x) = 1. Since C(T2) is connected, f must map all x to either 0 or 1, as any
mix would yield a nontrivial separation of C(T2) by preimages under evaluation.
Hence f = 1 or f = 0, yielding only trivial projections in A0.

If θ is nonzero, it is natural to ask whether or not we have any nontrivial projections.
In the irrational case, it is possible to find a powerful approach to answering this
question.

We will construct a unique normalized trace on Aθ . This trace will, at the level of
K-theory, be central in proving most of our results.

Remark 8.2.1. First, we need to understand why we would care about such traces.
In fact, their image on projections give an isomorphism invariant of C∗-algebras.

Assume we are given a separable, unital C∗-algebra B with a unique, normalized
trace τ : B → C. The values of τ on projections are quite interesting to study.
When studying the trace evaluated on projections, we note that we end in R+,
meaning τ : B→ R+. There are mainly three key points to notice to see that this is
an isomorphism invariant.

1. Given a projection p ∈ B, we have p ≤ 1B, implying 0 ≤ τ(p) ≤ τ(1B) = 1
by positivity. The image of the projections end up in [0,1].

2. If two projections p and q are Murray-von Neumann equivalent, they give
the same value under τ, because we can find a v ∈ B such that p = vv∗ and
q = v∗v. This implies τ(p) = τ(vv∗) = τ(v∗v) = τ(q).

3. The image of τ on projections is countable. Denote this image by τ(P(B))
and let pλ j

denote elements in P(B). Assume τ(P(B)) is uncountable. Then,
since B is separable, we can find a dense, countable subset {bi}∞i=1. Now,
define Bi = {b ∈ B : ‖b− bi‖< 1/2}. These are open sets and the union of
the Bi is B. Observe that if we take two projections pλ1

, pλ2
∈ Bi, we have

‖pλ1
−pλ2

‖< 1, which in turn implies pλ1
∼h pλ2

. Since homotopic elements
are Murray-von Neumann equivalent, τ(pλ1

) = τ(pλ2
). We have countably

many Bi , meaning τ(P(B)) must be countable as well.

Finally, let B and B′ be ∗-isomorphic C∗-algebras through a ∗-isomorphism φ :
B→ B′ and let τ,τ′ denote the unique normalized traces on B and B′, respectively.
Then τ′ ◦φ is also a normalized trace on B, meaning τ′ ◦φ = τ.

This means the image of projections under such a trace is an isomorphism invariant,
due to

{τ′(p) : p ∈ B′}= {τ′(φ(φ−1(p))) : p ∈ B′}= {τ′(φ(q)) : q ∈ B}= {τ(q) : q ∈ B}.

Traces certainly deserve a place in operator K-theory, but how can we find such a
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normalized trace and why is it unique? We refer to [5] for a deeper treatise on the
concepts visited here.

It is time to start our construction of the normalized trace. First note that if we
scale our generators (U , V ) to (λU ,µV ), where λ,µ are both on the unit circle,
the pair (λU ,µV ) still satisfies the commutation relation for (U , V ), yielding a ∗-
homomorphism ρλ,µ sending U 7→ λU , V 7→ µV . This is clearly an automorphism,
since the ∗-homomorphism ρλ̄,µ̄ is the inverse.

If we fix an A∈ Aθ , it is possible to show the morphism f : T2→ Aθ sending (λ,µ)
to ρλ,µ(A) is continuous. Then we can define the following endomorphisms on Aθ .

Define

Ψ1(A) =

∫ 1

0

ρ1,e2πi t (A)d t and Ψ2(A) =

∫ 1

0

ρe2πi t,1(A)d t,

where the integrals make sense as Riemann sums.

Proposition 8.2.2. Ψ1 is a positive, contractive, faithful, idempotent surjection
and Ψ1 takes Aθ to C∗(U).

Moreover, for a finite linear combination of UkV l for k, l ∈ Z, we have

Ψ1(
∑

ak,l U
kV l) =

∑

ak,0Uk and Ψ1(A) = lim
n→∞

1
2n+ 1

n
∑

−n

U jAU− j .

Similar results hold for Ψ2 : Aθ → C∗(V ).

Theorem 8.2.3. The map τ = Ψ1Ψ2 = Ψ2Ψ1 is a unique, faithful, unital, scalar
valued trace on Aθ .

Proof. We show uniqueness and leave the rest to [5] after noting that τ(UkV l) =
δk,0δ0,l on each monomial UkV l , which means that τ picks out the coefficient of
U0V 0.

If σ is another normalized trace on Aθ , we can note that by splitting σ over the
sum and applying the trace property to the following expression, we find

σ(A) = lim
n→∞

σ(
1

2n+ 1

n
∑

−n

U jAU− j).

We know the latter part is equal to σ(Ψ1(A)). Similar arguments for Ψ2 show
σ(A) = σ(Ψ2(A)).

In total, we σ(A) = σ(Ψ2(A)) = σ(Ψ1Ψ2(A)) = σ(τ(A)) = τ(A), where the last
equality follows from the fact that τ(A) is a scalar.
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The observant reader may have noted that we have not explicitly used θ /∈Q to
get the unique trace, but in fact, we have. It can be shown that the limit formula
for the trace comes from a Birkhoff type-ergodic theorem ([41]) for C∗-algebras
([2]), which we can apply as irrational rotations yield ergodic transformations on
the circle.

As expected, if θ is irrational, then Aθ is simple.

Theorem 8.2.4. Aθ is simple, which implies C∗(Ũ , Ṽ ) is canonically isomorphic
to Aθ for any Ũ , Ṽ satisfying the commutation relation.

Proof. Let I be a nonzero ideal of Aθ . We can find a positive, nonzero element x
in I . The limit formula for Ψi shows the ideals map into themselves since U i xU−i

belongs to I , meaning that τ(x) belongs to I . Now, τ is faithful, meaning nonzero
elements have a nonzero trace. Hence τ(x) = λ1 for some nonzero λ, but this
means I = Aθ .

By universality of Aθ , we can find a surjective ∗-homomorphism from Aθ . This
must then be an isomorphism since Aθ is simple.

Let us return to projections. The algebras C∗(U) and C∗(V ) are both isomorphic
to C(T), which only contains trivial projections. We should not expect to find any
nontrivial projections in Aθ , but the following result by Rieffel ([33]) tells us we
could not be further away from the truth.

Theorem 8.2.5. For all α ∈ (Z+ Zθ) ∩ [0,1], there is a projection p ∈ Aθ such
that τ(p) = α.

The proof can be found in [33] and [5], but it boils down to constructing projections
on the form p = Tg V + T f + ThV ∗, where Tx denotes the translation operator on
C(T), which is the rotation action on the circle. By computing the requirements
p2 = p = p∗, it is possible to find functions f , g and h such that τ(p) = α. This
projection is called the Rieffel-Powers projection.

Queequeg 8.2.6. In [15], Luef creates projections in both weighted and smooth
noncommutative tori by developing equivalent criteria in terms of Gabor frame
of functions in weighted modulation spaces or Schwartz space, respectively. If we
take g ∈ M1

s (R) or S(R), which can be realized as equivalence bimodules over
certain noncommutative tori, the left inner product

θ 〈g, g〉(l, t) =
∑

k∈Z
g(t −αk)g(t −αk− l)

is a projection in Aθ if and only if G(g,Λ) is a tight Gabor frame for L2(R). By the
Morita equivalence between Aθ and A−1/θ , which we will soon return to, this is
equivalent to

〈g, g〉1/θ =
∑

k∈Z
g(t − k

α)g(t −
k
α − l) = 1.
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Rieffel choose an appropriate g such that just the case k = 0 is non-zero. This case
is also known in Gabor analysis as painless non-orthogonal Gabor expansions. This
means we can interpret the Rieffel projection ([33]) as coming from a tight Gabor
frame, which gives a deeper reason for why such a projection should exist.

Through the embedding of Aθ in an AF-algebra, we obtain the following theorem,
which can be found in [5].

Theorem 8.2.7. (Embedding noncommutative tori in AF-algebras)
There exists a ∗-monomorphism ρ : Aθ → Aθ , where Aθ is an AF-algebra, such
that ρ∗ : K0(Aθ )→ K0(Aθ ) is a surjective ∗-homomorphism. Moreover, if we let τ
and σ denote the unique traces on Aθ and Aθ , respectively, then τ∗ = σ∗ρ∗ is a
surjective order homomorphism K0(Aθ )→ Z+Zθ .

Remark 8.2.8. It is possible to find another approach to see that the AF-algebra we
embed Aθ in has a unique trace. In [21], results on nuclear C∗-algebras are proved,
such as the facts that all AF-algebras are nuclear and that the endofunctor −⊗ A
is exact for all nuclear C∗-algebras A. By 6.1.11, if we consider the unique trace
on Aθ , we can consider the unique state in ordered K-theory. When embedding
Aθ in an AF-algebra preserving the ordered K-theory, we can pull the state back
uniquely to a trace on the AF-algebra, as AF-algebras are nuclear.

This leads to the following isomorphism classification. In fact, τ∗ is an isomorphism,
but we already have enough information to classify irrational rotation algebras.

Corollary 8.2.9. (Isomorphism classification)
Two irrational noncommutative tori Aθ and Aη are isomorphic if and only if η≡ ±θ
mod Z.

Proof. If η≡ ±θ mod Z, these are certainly isomorphic as they can be made to
obtain the same commutation relation, which means we can find a nonzero ∗-
homomorphism by universality. Due to the simplicity of irrational noncommutative
tori, this must be an isomorphism.

Conversely, if Aθ and Aη are isomorphic, they have the same K0-group and the
same unique trace, yielding an order isomorphism between Z+Zθ and Z+Zη.
The above statement is an equivalence, due to the AF-algebra embedding. We also
have Z+Zθ ∩ [0,1] = Z+Zη∩ [0,1] as sets.

If these two are equal, we can observe that

{eθmodZ : e ∈ Z}= {n+ eθ : n, e ∈ Z, n+ eθ ∈ [0,1]}= Z+Zθ ∩ [0,1].

Now, if we have (Z+Zθ)∩ [0,1] = (Z+Zη)∩ [0,1], we can find a, a′, b, b′ ∈ Z
such that eθ = a+ bη and θ = a′ + b′η. Observe that if a+ bη = c + dη, we must
have a = c and b = d. If we work in R, this implies that θ = a′+ b′η = a/e+ b/eη,
meaning a′ = a/e and b′ = b/e, or equivalently, e|a and e|b. By reversing the
argument, we can find b| − a and b|e. If e|b and b|e, we must have e = ±1 and
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b = ±1, hence giving θ = a ± η. Since a ∈ Z, we now have θ = ±ηmodZ, as
wanted.

8.3 Morita equivalence classification

This unique trace actually gives rise to the Morita equivalence classification as
well.

The main result is the following, which can be found in [33] and [36].

Theorem 8.3.1. (Morita equivalence classification) Given two irrational numbers
θ and η, Aθ and Aη are Morita equivalent if and only if θ and η are in the same
orbit under the action of GL(2,Z) on the irrational numbers as a linear fractional
transformation.

That is, GL(2,Z) acts as

�

a b
c d

�

· θ :=
aθ + b
cθ + d

.

Proof. To show that they are isomorphic implies they are in the same orbit, we
need more work, but for the converse, note that GL(2,Z) is generated by

�

0 1
1 0

�

and

�

1 1
0 1

�

.

These send θ to 1/θ and θ + 1, respectively. The latter yield isomorphic noncom-
mutative tori, and we claim that Aθ is Morita equivalent to A1/θ . This claim will
be justified by the following lemma from [33].

Lemma 8.3.2. Let G be a locally compact group and let H and K be closed
subgroups of G. G acts by left and right translation on C(G/H) and C(G/K),
respectively. We can restrict the action to K and H such that K acts on C(G/H)
and H acts on C(G/K) with actions αK and αH , respectively.

Then the corresponding crossed product C∗-algebras C(G/H)×αK
K and C(G/K)×αH

H are Morita equivalent.

The claim now follows by taking G = R, H = Z and K = Zθ . Then C(R/Z)×αZθ Zθ
and C(R/Zθ )×αZ Z are Morita equivalent. The latter of these is equal to Aθ , while
the first is isomorphic to C(R/Zθ−1) ×αZ Z by the homeomorphism t 7→ tθ−1.
Hence, Aθ is Morita equivalent to Aθ−1 , meaning Aθ is Morita equivalent to Aη if
they are in the same orbit of GL(2,Z) by linear fractional transformations.

To show the converse statement, we need to utilize the unique traces.
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Proposition 8.3.3. Given two C∗-algebras A and B with an A− B-imprimitivity
bimodule X , there is a bijection between the nonnormalized, finite traces on A and
B. Given a trace τ on A, there exists a trace τX on B such that

τX (〈x , y〉B) = τ(A〈x , y〉) for all x , y ∈ X .

The proof can be found in [33] along with the construction of τX .

The induced trace in K-theory that did most of the work for us. Linking traces on
Morita equivalent C∗-algebras could be a fruitful approach to proving the theorem.

Recall theorem 4.5.17 that connects complementary full corners and Morita equi-
valence. Together with the following result from [33], we see that K-theory is an
invariant for Morita equivalence.

Proposition 8.3.4. Let A be a unital C∗-algebra, let pAp be a full corner of A and
let i : pAp→ A be the injection. Then i∗ : K0(pAp)→ K0(A) is an isomorphism.

We also have the following proposition, which will be important.

Proposition 8.3.5. Assume we have two C∗-algebras A and B with an A− B-
imprimitivity bimodule X and a finite trace τ on A, with τX as the induced
nonnormalized trace on B. Let φX denote the isomorphism K0(A) → K0(B) in-
duced through the bimodule X and τ∗,τX ,∗ the induced traces in K-theory. Then
τX ,∗ ◦φX = τ∗. In fact, the ranges of τ∗ and τX ,∗ are equal.

With these results, we actually have enough to prove the last part of the Morita
equivalence classification.

Theorem 8.3.6. (Revisiting Morita equivalence classification)
Given two irrational numbers θ and η, Aθ and Aη are Morita equivalent if and
only if θ and η are in the same orbit under the action of GL(2,Z) on the irrational
numbers as a linear fractional transformation.

Proof. We only need to prove that if Aθ and Aη are Morita equivalent, we will
find θ and η in the same orbit of GL(2,Z). Now, assume we have an equivalence
bimodule X between Aθ and Aη and let τ be the unique normalized trace on Aθ .
Then we can induce the nonnormalized trace τX on Aη such that τX ,∗(K0(Aη)) =
τ∗(K0(Aθ )). Since there is a unique trace on Aη, τX must differ from this trace by
a scalar r, meaning that the equality τX ,∗(K0(Aη)) = τ∗(K0(Aθ )) must be given
by multiplication with r. More explicitly, Z+Zθ = r(Z+Zη). Now, we can find
a, b, c, d ∈ Z such that 1 = r(a+ bη) and r = c+ dθ , meaning that 1

c+dθ = a+ bη.
By rearranging, we have η = 1

b (
1

c+dθ − a) = 1−ac−bdθ
bc+bdθ , which we recognize as a

linear fractional transformation. By symmetry of Morita equivalence, it must be
invertible, which means the action is indeed from GL(2,Z).



Chapter 8: The case of noncommutative tori 111

8.4 Rational noncommutative tori and construction of pro-
jections

A natural question now is to ask what happens if we do not assume θ to be rational.

In fact, Rieffel shows the following result by Høegh-Krohn and Skjelbred in [34].

Theorem 8.4.1. Given two rational numbers α and β in [0, 1/2], then Aα ∼= Aβ if
and only if α= β .

This means, in the search of isomorphism classification, we have found one unifying
result, namely Aα ∼= Aβ if and only if α= β for α,β ∈ [0,1/2]. Even though this
holds both in the rational and irrational case, the rational case requires much more
work to prove, and the proofs are not even close to similar.

For Morita equivalence, the rational case turns out to be quite simple.

Theorem 8.4.2. Let θ ∈Q. Then Aθ is Morita equivalent to C(T2).

This was shown by Rieffel in [34], and the argument goes along the same lines as
when we argued Aθ and Aθ−1 are Morita equivalent.

We follow Rieffel ([33]) and end with a curiosity, linking equivalence bimodules to
creating projections. This does for example mean that we can create projections in
noncommutative tori directly by considering functions in time-frequency related
spaces, such as Schwarz space and Feichtinger’s algebra, as these are realized as
equivalence bimodules between certain noncommutative tori. This can be found
in [17].

Proposition 8.4.3. Let X be an A− B-imprimitivity bimodule. For x ∈ X , the
element A〈x , x〉 is a projection if and only if x〈x , x〉B = x .

Proof. If the latter holds, then A〈x , x〉x = x〈x , x〉B implies A〈x , x〉 is idempotent.
We already know A〈x , x〉 is self-adjoint. If the first holds, then

A〈x〈x , x〉B − x , x〈x , x〉B − x〉= 0,

yielding x〈x , x〉B = x .

8.5 Closing remarks and final digressions

There are a lot of concepts, theories, and beautiful rabbit holes that the author
would love to discover. The small digressions to Gabor analysis and time-frequency
analysis could certainly be extended, but due to the authors lack of knowledge
in this area (or perhaps time and space), we settle for taunting hints at deeper
connections. To recycle references, we can refer to [14], [15], [16], [17] and of
course [7] more depth on this topic.
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There are lots and lots of extensions (literally) to K-theory and Morita equivalences,
but to avoid forgetting some of them, we simply refer to [1] and the references
therein.

The excursion to AF-algebras could have been extended, but perhaps from a
different point of view. Interested readers are referred to [6] for a treatise.

Without too much (formal) knowledge from theoretical physics, the author is
amazed at the attempts at doing Yang-Mills theory on noncommutative tori. We
attempt to explain it in the following manner, and we refer to [12] and [36] to
correct any mistakes or lead to other references.

Connes showed all finitely generated projective modules V over noncommutative
tori admit a constant curvature connection ∇. With this connection, Rieffel and
Connes defined a Yang-Mills energy functional by Y M(∇) = −τEnd(V )({Θ∇,Θ∇}),
where Θ∇ denotes the curvature of ∇ and {·, ·} denotes an analogue of the Poisson
bracket. They also showed constant curvature connections yield minima of the
Yang-Mills functional, and hence they will be the Y M -connections, as these are
the ones minimizing the energy functional.

Of course, there are many other results and interesting topics we could delve into,
but for now, we part ways with a poem.

A parting poem

With new concepts now stuck in my head
as I lay down to sleep in my bed
my brain will be jamming
the digressions it’s cramming
but to more mathematics it lead

- The author
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