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Abstract

This thesis is a short introduction to Lie group methods. Some rele-
vant background material of Lie group theory is presented and we give
an introduction to Lie-Euler, Runge-Kutta Munthe-Kaas and commu-
tator free methods. Two mechanical systems are studied; the free rigid
body and the heavy top. We discuss how the different methods con-
serve the structures of the manifolds, such as conservation of angular
momentum and energy, and the advantages the Lie group integrators
have over a classical numerical method.
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1 Introduction

Integration methods on manifolds have for a long time been studied by math-
ematicians and the study of Lie group methods has over the last 30 years
accelerated. They are increasingly being used not only in pure mathematics,
but in a wide range of fields such as robotics, computer sciences, mechanical
engineering and in particular, physics. Problems in geometric mechanics - for
instance those presented in the book by Leok [9] - provide formulations of
differential equations where a Lie group integrator is a natural choice. This is
because classical numerical methods might not make sense once we are work-
ing on vector fields where normal operations like sum and multiplication are
not well defined.

This thesis is an elementary introduction to Lie group integrators and is
divided into two parts. It is assumed the reader is familiar with some ele-
mentary group theory, as well as basic knowledge of numerical mathematics
and analysis.

The first part introduces relevant background material to understand the
methods and presents examples along the way. This part is mostly theoret-
ical, introducing new definitions and terminology, such as manifolds, vector
fields and Lie groups. The examples closely follow the theoretical material
and for the most part focuses on the special Euclidean group, SE(3). Ad-
ditionally, a few Lie group integrators are presented from a theoretical per-
spective.

The second part focuses on two specific models where the Lie group integra-
tors can be applied; the free rigid body and the heavy top. The Lie group
SE(3) is particularly relevant for the heavy top. The results from imple-
menting the integrators for these models are discussed and compared to a
classical numerical method, the modified Euler method.

Most of the theoretical material is based on the books by Marsden and
Ratiu [3] and Olver [1], and the books by Lee [2, 5] are good supplemen-
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tal reading for the theoretical part of this thesis. The integration methods
and implementations are based on a variety of papers [10, 15, 16], and in
particular the work of Munthe-Kaas [12].
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2 Manifolds and vector fields

This section is based on the definitions and properties introduced in the first
chapter of [1], with some exceptions.

2.1 Manifolds

To understand Lie group integrators we need the notion of manifolds. For-
mally, we define manifolds in the following way.

Definition 2.1. An m-dimensional manifold M is a topological space to-
gether with a collection of charts (U,ϕ) such that U ⊂M is an open subset
of M and the map ϕ : U → V ⊂ Rm is continuous, one-to-one and onto.
Here, V ⊂ Rm is an open, connected subset of Rm. We sayM is smooth if
the map ϕαβ = ϕα ◦ ϕ−1β is smooth where it is defined.

Intuitively, we can think about a manifoldM as a space that resembles
Euclidean space near every point. It is clear to see that Rm itself is an m-
dimensional manifold, while less trivial is the m− 1-dimensional manifold of
the unit sphere Sm−1 :=

{
x ∈ Rm |

∑m
i=1 x

2
i = 1

}
. To demonstrate this we

look at the stereographic projection, which is a map σ : Sm−1\{N} → Rm−1

where N = (0, . . . , 0, 1) ∈ Rm is the north pole in Sm−1. This is a widely
used example of representing Sm−1 as a manifold. It is described in detail in
[2] for the sphere, and presented here for the circle, focusing on an intuitive
presentation.

Example 2.1. Take a circle S in R2 as in figure 1. Now, create a map
ϕ : S → R by drawing a line from the point (0, 1) through every point on
the circle.

These lines will intersect the line at each point x ∈ R and the map ϕ is onto.
However, (0, 0) and (0, 1) will map to the same point on the line, and hence
the function is not one-to-one. This is just one way of attempting to create
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Figure 1: Points on the circle mapped to points on the line.

such a map, but in fact there exists no continuous bijection from S to R.
Because of this, the circle is a manifold needing at least two charts; e.g. one
for (S \ (0, 0)) and one for (0, 0). By the same argument, the sphere in any
dimension cannot be covered by a single chart.

Informally we define a submanifold to be a subset N ⊂M of a manifold
M which is itself a manifold. More precisely, we state definition 1.12 in [1].

Definition 2.2. A smooth (analytic) n-dimensional immersed submanifold
of a manifold M is a subset N ⊂ M parametrized by a smooth (analytic),
one-to-one map F : Ñ → N ⊂M , whose domain Ñ , the parameter space, is
a smooth (analytic) n-dimensional manifold, and such that F is everywhere
regular, of maximal rank n.

Additionally, we call a manifoldM differentiable if there is a collection
of charts such that each point m ∈M is a member of at least one chart, and
M is a union of compatible charts.

With these definitions we can now begin to introduce some key properties,
namely the properties of vector fields on manifolds. To obtain these, we need
to know about tangent vectors and tangent spaces.
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2.2 Tangent spaces and vector fields

Definition 2.3. A tangent vector at a point x ∈ M is the tangent to a
smooth curve φ(t) ∈ M passing through m. Take x ∈ M to be such that
φ(0) = x, then

v|x :=
d

dt
φ(t)

∣∣∣∣
t=0

is the tangent vector at x in local coordinates.

With this definition we can imagine that given a point x ∈ M, there
exists several curves inM passing through the point. This results in different
tangent vectors, and sets the foundation for tangent spaces.

Definition 2.4. The tangent space to an m-dimensional manifold M at a
point x ∈ M, denoted TxM, is the m-dimensional vector space formed by
the collection of the tangent vectors at x.

Similarly, we define the tangent bundle to be the union of all tangent
spaces, i.e. TM = ∪x∈MTxM. Furthermore, we define vector fields as they
are defined in [1].

Definition 2.5. A vector field on a manifoldM is a section of the tangent
bundle onM, i.e. a smoothly varying assignment of tangent vectors v :M→
TM such that v(x) = v|x ∈ TxM. We can express this in local coordinates
as

v(x) =

m∑
i=1

ξi(x)
∂

∂xi

where ξi(x) are smooth functions and ∂
∂xi

denote a basis of the tangent space
TxM.

2.3 Frame vector fields

We define a few new properties as introduced by Crouch and Grossman in
[10].

7



Definition 2.6. Let E = {E1, . . . , Ed} be a set of vector fields on a manifold
M of dimension m ≤ d. Then E is a set of frame vector fields if

TxM = span {E1|x , . . . Ed|x} , ∀x ∈M.

With this definition we can say that any vector field F on M can be
expressed by these frame vector fields as

F (y) =

d∑
i=1

fi(y)Ei(y). (1)

Furthermore, we introduce frozen vector fields.

Definition 2.7. The vector field F is called frozen at a point p, denoted Fp,
if

Fp(x) =
d∑
i=1

fi(p)Ei(x).

2.4 The exponential and differential map

A curve φ(t) : R→M when φ(t) = x is called an integral curve of the vector
field v if the tangent to the curve at t coincides with the vector field at x,
i.e. φ̇(t) = v(x). We can express this in local coordinates by

dxi

dt
= ξi(x), xi = φi(t).

Additionally, if φ(t) is a maximal integral curve we write

φ(t) = exp(tv)x0, x0 = φ(0).

Here exp(tv)x0 is the flow generated by v. This exponential mapping has
the same properties as the usual exponential function, and we will study this
in more detail in section 3.4.

The differential or derivative map is a map we are well familiar with,
and we define it on manifolds.

8



Definition 2.8. Given a smooth map F : M → N between manifolds M
and N , the differential is given by dF : TM→ TN such that

dF |x : TxM→ TF (x)N ,

such that for any curve φ(t) with φ(t)|t=0 = x and F (φ(t))|t=0 = F (x) we
have

dF |x (vx) = wF (x).

Here, vx := d
dtφ(t)

∣∣
t=0

and wF (x) := d
dtF (φ(t))

∣∣
t=0

are tangent vectors.

One can show that the differential is a linear map [1].
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3 Lie groups and Lie algebras

All the definitions, properties and examples introduced in this section is
based on chapter 9 of Marsden and Ratiu [3], unless otherwise stated. The
results of the calculations in example 3.5, 3.6, 3.7 and 3.8 can be verified in
chapter 14.7 in [3].

3.1 Lie groups

Now that we have seen the fundamental properties of manifolds and vector
fields, we are ready to define a Lie group.

Definition 3.1. A Lie groupG is a smooth manifoldM with group structure
such that the group multiplication

µ : G×G→ G, (g, h) 7→ gh

is a C∞ map.

A Lie group can therefore be said to be a group that is also a differentiable
manifold. Some important examples of Lie groups are the special orthogonal
group SO(n) and the special Euclidean group SE(n). We will in particular
use these two groups for n = 3 to implement our Lie group integrators in
section 5 and 6, and we will begin to review some properties of SE(3) now.

Example 3.1. The special Euclidean group SE(3) can be defined as an
extension of the special orthogonal group SO(3)1. We describe an element
in SE(3) as the pair (g, u), where g ∈ SO(3) and u ∈ R3, and the group
operation is given by

(g, u) · (h, v) = (gh, gv + u)

1The Lie group SO(3) and its properties are quite thoroughly described in chapter 9.2
by Marsden and Ratiu, and through examples of the rest of the chapter. We therefore
refer the reader to [3] for more information on this.
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for (g, u), (h, v) ∈ SE(3). With this property, one can prove that this set has
a group structure, and since it is viewed as a topological space it is a Lie
group.

The Lie group SO(3) can be identified as the group of rotations in 3 dimen-
sions, allowing SE(3) to include translations as well. The group SE(3) then
corresponds to the set of matrices of the form

A =

[
Q v

0 1

]
, Q ∈ SO(3), v ∈ R3.

The group operation associated with this set is the usual matrix multipli-
cation. We will use this identification of SO(3) and SE(3) in the following
examples and in section 5 and 6.

We will continue to build on this example as we introduce new relevant
definitions and results. Additionally, whenever we use manifolds in the fol-
lowing sections, we will assume they are smooth.

3.2 Lie algebras

Given a Lie group, we define Lie algebras.

Definition 3.2. The Lie algebra g of a Lie group G is the tangent space at
the identity element e, i.e. g := TeG.

Furthermore, we present the algebraic definition of Lie algebras. This
definition also introduces the Lie bracket which we will use throughout this
section, and it is more general than definition 3.2.

Definition 3.3. [1] A Lie algebra g is a vector space with a bracket operation
[·, ·] called the Lie bracket, such that

(i) [·, ·] : g× g→ g is a bilinear map

(ii) It is skew-symmetric, i.e. [u, v] = −[v, u], ∀u, v ∈ g

11



(iii) It satisfies the Jacobi identity, i.e.
[u, [v, w]] + [w, [u, v]] + [v, [w, u]] = 0, ∀u, v, w ∈ g

Example 3.2. We will identify the Lie group SO(3) with the matrix Lie
group of 3× 3 orthogonal matrices with determinant 1. The Lie algebra can
be identified with the vector space of 3×3 skew-symmetric matrices with the
matrix commutator [M,N ] = MN −NM , M,N ∈ so(3) as the Lie bracket
operation.

We define the Lie algebra of SE(3), denoted se(3), to be the pairs (ξ̂, η),
such that ξ̂ ∈ so(3) and η ∈ R3. By identifying ξ̂ as a skew-symmetric
matrix in so(3) we can instead represent it as a vector, and define a vector
space isomorphism

ξ =

 a1

a2

a3

 7→ ξ̂ =

 0 −a3 a2

a3 0 −a1
−a2 a1 0


which is called the hat map [3]. With this notation and the properties of
skew-symmetric matrices, we can simply write ξ̂η = ξ × η, using the cross
product in R3. In fact, for ξ̂, η̂, ν̂ ∈ so(3) we have that

[ξ̂, η̂]ν = (ξ̂η̂ − η̂ξ̂)ν = ξ̂(η × ν)− η̂(ξ × ν)

= ξ × (η × ν)− η × (ξ × ν) = (ξ × η)× ν

= ξ̂ × ην.

Therefore, we can identify so(3) with R3 carrying the cross product as Lie
bracket. The hat map becomes a Lie algebra isomorphism [3].

3.3 Left and right invariant vector fields

Definition 3.4. A vector field v on a Lie group G is called left invariant if

dLg(v) = v,

where Lg : G → G is the left multiplication of G given by Lg(h) = gh and
dLg|x : TxG→ TgxG is the derivative mapping.
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Similarly, one can define right invariant vector fields. An important ob-
servation about left (and right) invariant vector fields, is that by knowing
the vector field at the identity element e, we can reproduce it everywhere
else. In particular,

v(e) = A =⇒ dLg|e (v(e)) = v(g). (2)

Example 3.3. The identity element of the Lie group SE(3) is the pair (I, 0),
where I is the 3×3 identity matrix and 0 is the zero vector in R3. We denote
the left invariant vector field, X(ξ̂,η), and from equation (2) we know that

the vector field at the identity should be (ξ̂, η), i.e.

X(ξ̂,η)

∣∣∣
(I,0)

= (ξ̂, η).

We can calculate X(ξ̂,η) everywhere by using the definition of left invariance,

X(ξ̂,η) = dL(ξ̂,η)X(ξ̂,η),

and at a given point (g, u) ∈ SE(3), we calculate

X(ξ̂,η)

∣∣∣
(g,u)

= TL(g,u)(ξ̂, η) =
d

dt

∣∣∣∣
t=0

L(g,u)(h(t), v(t))

=
d

dt

∣∣∣∣
t=0

(g, u) · (h(t), v(t)) =
d

dt

∣∣∣∣
t=0

(gh(t), gv(t) + u)

= (gḣ(t), gv̇(t))
∣∣∣
t=0

= (gξ̂, gη)

where (h(t), v(t)) is a curve in SE(3) such that (ḣ(0), v̇(0)) = (ξ̂, η) and
(h(0), v(0)) = (I, 0). With an analogous calculation we can obtain the right
invariant vector field, given by

TR(g,u)(ξ̂, η) = (ξ̂g, ξ̂u+ η).

As expected, one can easily confirm that the vector field at the identity is
(ξ̂, η), both for the left and right invariant case.
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3.4 The exponential map

As introduced in section 2.4, the exponential map related to integral curves
and the flow of a vector field is important to the study of Lie groups.

Definition 3.5. Given a Lie group G and its corresponding Lie algebra g,
the exponential map exp : g→ G is given by

exp(ξ) = γ(1)

where ξ ∈ g and γ : R→ G is the integral curve of the left or right invariant
vector field associated with ξ. Furthermore, we can also write exp(tξ) = γ(t).

In particular, for all matrix Lie groups the exponential map coincides with
the matrix exponential [4]. Additionally, one can prove that γ(0) = exp 0 = e

and γ̇(0) = ξ where e ∈ G is the identity element [3]2.

Example 3.4. We can find the exponential map of SE(3) by calculating
the flow of the left invariant vector field we have previously obtained. We
recall the definition of an integral curve in our case; (g(t), u(t)) is the integral
curve of the vector field X(ξ̂,η) if the tangent to the curve at t coincides with

the vector field at (ξ̂, η), i.e.

(ġ(t), u̇(t)) = X(ξ̂,η)

∣∣∣
(g(t),u(t))

.

Since we have already calculated the left invariant vector field in example
3.3, we get the differential equation

(ġ(t), u̇(t)) = (g(t)ξ̂, g(t)η).

Solving for g(t) and u(t) is straightforward using the exponential and basic
knowledge of differential equations, and we obtain

g(t) = exp(ξ̂t), u(t) =
exp(ξ̂t)− I

ξ̂
η

2This result uses one-parameter subgroups which are not defined in this text. They
are, however, well described in the books by Marsden and Ratiu [3] and Lee [5], and we
therefore refer the reader to these for more information.
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using the initial condition (g(0), u(0)) = (I, 0). Now, the final expression for
the exponential is given at t = 1, i.e.

exp(ξ̂, η) = (g(1), u(1)) =

(
exp ξ̂,

exp ξ̂ − I
ξ̂

η

)

[11]. One can verify that the exact same exponential will be obtained by
using the right invariant vector field instead.

3.5 Adjoint and coadjoint representations

Definition 3.6. For an element g ∈ G in a Lie group, we define a map

Ag : G→ G, Ag(h) = ghg−1 = Lg ◦Rg−1(h)

where Lg and Rg is the left and right multiplication of G, respectively, and
h ∈ G is any element in G. The adjoint representation of G on g, Adg : g→ g,
is then the tangent map TAg|e at identity, i.e. for an element ξ ∈ g in the
Lie algebra,

Adg(ξ) = TAg|e (ξ) = TLg ◦ TRg−1(ξ).

Assuming we are working with a matrix Lie group that it is a subgroup of
GL(n)3, one can show that the adjoint representation is given by Adg(ξ) =

gξg−1 [4].

Definition 3.7. Given a curve g(t) ∈ G such that g(0) = e and ġ(0) = η,
the Lie bracket [·, ·] can be defined as

[η, ξ] =
d

dt

∣∣∣∣
t=0

Adg(t)(ξ)

where Adg(t)(ξ) is the adjoint representation of G.
3Chapter 9 in [3] provides a detailed presentation of this Lie group, called the General

Linear Group.
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Definition 3.8. The adjoint representation adξ : g → g of the Lie algebra
g of a Lie group G, is given by

adξ(η) = [ξ, η]

where ξ ∈ g is any element of g. This operator is also called the ad operator.

Proposition 3.1. [12] Powers of the adjoint representation adξ are iterated
commutators, i.e.

ad2
ξ(η) = adξ([ξ, η]) = [ξ, [ξ, η]],

ad3
ξ(η) = adξ([ξ, [ξ, η]]) = [ξ, [ξ, [ξ, η]]],

and so on.

Example 3.5. By using definition 3.6 we can calculate the adjoint repre-
sentation of SE(3). Take (g, u) ∈ SE(3) and (ξ̂, η) ∈ se(3), then

Ad(g,u)(ξ̂, η) = TL(g,u) ◦ TR(g,u)−1(ξ̂, η) = L(g,u) ◦ TR(gT ,−gTu)(ξ̂, η)

= TL(g,u)(ξ̂g
T , ξ̂(−gTu) + η) = (gξ̂gT ,−gξ̂gTu+ gη)

= (ĝξ,−ĝξu+ gη).

Here we have used that (g, u)−1 = (g−1,−g−1u) = (gT ,−gTu) (since g−1 =

gT for g ∈ SE(3)) and the property that gξ̂g−1 = ĝξ.

Definition 3.9. The coadjoint representation Ad∗g : g∗ → g∗ for g ∈ G is a
map from the dual of the Lie algebra g to itself, such that〈

Ad∗g(µ), ξ
〉

= 〈µ,Adg(ξ)〉

for all µ ∈ g∗, ξ ∈ g.

Recall that the dual space V ∗ of a linear space V consists of all linear
functions on V , and for an operator A : V → V we can define the adjoint
A∗ : V ∗ → V ∗ with

〈A∗µ, v〉 = 〈µ,Av〉

for all µ ∈ V ∗ and v ∈ V , and 〈·, ·〉 is the duality pairing [6]. The previous
definition of the coadjoint representation is analogous, and we note that for
real matrix groups A∗ = AT .
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Example 3.6. We now derive the left coadjoint representation of SE(3),
Ad∗(g,u)−1 . From the previous example we can write

Ad(g,u)−1(ξ̂, η) = Ad(gT ,−gTu)(ξ̂, η) = (ĝT ξ,−ĝT ξ(−gTu) + gT η)

= (ĝT ξ, gT ξ × gTu+ gT η) = (ĝT ξ, gT (ξ × u) + gT η).

The duality pairing of (ξ̂, η) with (µ̂, ν) ∈ se(3) is

〈(µ̂, ν), (ξ̂, η)〉 = µT ξ + νT η

and so we use the definition above and obtain〈
(µ̂, ν),Ad(g,u)−1(ξ̂, η)

〉
=
〈

(µ̂, ν), (ĝT ξ, gT (ξ × u) + gT η)
〉

= µT gT ξ + νT gT (ξ × u) + νT gT η

= µT gT ξ − νT gT (u× ξ) + νT gT η

= µT gT ξ − νT gT ûξ + νT gT η

=
〈

(( ̂µT gT − νT gT û)T , (uT gT )T ), (ξ̂, η)
〉

=
〈

(ĝµ+ û× gν, gν), (ξ̂, η)
〉

=⇒ Ad∗(g,u)−1(µ̂, ν) = (ĝµ+ û× gν, gν).

Here we have used the fundamental property of skew-symmetric matrices,
that ûT = −û for û ∈ so(3).

The derivation we have done of the coadjoint of SE(3) is important for
working on the heavy top equations, since it has se(3)∗ as solution space [13].
We will see the applications of this in section 6.

Example 3.7. We now calculate the Lie bracket from definition 3.7. Given
a curve (g(t), u(t)) ∈ SE(3) and (ξ̂, η), (µ̂, ν) ∈ se(3) such that (g(0), u(0)) =

17



(I, 0) and (ġ(0), u̇(0)) = (ξ̂, η) we find[
(ξ̂, η), (µ̂, ν)

]
=

d

dt

∣∣∣∣
t=0

Ad(g(t),u(t)) (µ̂, ν)

=
d

dt

∣∣∣∣
t=0

(ĝ(t)µ,−ĝ(t)µu(t) + g(t)ν)

=
d

dt

∣∣∣∣
t=0

( ˙̂g(t)µ,− ˙̂g(t)µu(t)− ĝ(t)µu̇(t) + ġ(t)ν)

= (
̂̂
ξµ,−µ̂η + ξ̂ν) = (ξ̂ × µ,−µ× η + ξ × ν).

3.6 The derivative of the exponential map

As we have previously defined the derivative and exponential in section 2.4,
we want to add these properties together and define the derivative of the
exponential map.

Definition 3.10. Let u ∈ g. Then the derivative of the exponential map
dexpu : g→ g is given by

dexpu(v) = TRexp(−u)◦T expu(v).

Proposition 3.2. [12] The derivative of the exponential map can be written
as

dexpu(v) =

∞∑
k=0

1

(k + 1)!
adku(v) =

exp(z)− 1

z

∣∣∣∣
z=adu

(v)

where adu : g→ g is the adjoint representation.

The proof of this uses the fact that powers of adjoint representation are
iterated commutators as presented in proposition 3.1.

Furthermore, proposition 3.2 allows us to obtain the inverse of the derivative
of the exponential, dexp−1u (v), by inverting dexpu(v). We obtain

dexp−1u (v) =
z

exp(z)− 1

∣∣∣∣
z=adu

(v) =
∞∑
k=0

Bk
k!

adku(v)

[12] where the coefficients Bk are the Bernoulli numbers.

18



3.7 Lie group actions

The adjoint and coadjoint representation are two examples of Lie group
actions [3], and these are formally defined in the following definition.

Definition 3.11. Let M be a manifold and G a Lie group. Then a left
Lie group action Λ : G ×M → M of G on M is a smooth map with the
properties that

(i) Λ(e,m) = m,∀m ∈M

(ii) Λ(gh,m) = Λ(g,Λ(h,m)), ∀g, h ∈ G,m ∈M

Similarly, we define a right Lie group action by changing the second
property to Λ(gh,m) = Λ(h,Λ(g,m)). We can also denote the Lie group
action as Λg :M→M for g ∈ G. Furthermore, we define a few important
properties of Lie group actions.

Definition 3.12. A Lie group action Λ : G×M→M is

(i) Transitive if for every x, y ∈ M there exists a g ∈ G such that y =

Λ(g, x).

(ii) Free if for any m ∈M, Λ(g,m) = m⇒ g = e.

3.8 The infinitesimal generator

Definition 3.13. Let Λ : G ×M →M be a Lie group action of G onM,
and for ξ ∈ g and m ∈ M, define an R-action Λξ : R ×M →M such that
Λξ(t,m) = Λ(exp tξ,m). Then the infinitesimal generator of the action Λ is
given by

λ∗(ξ)|m =
d

dt

∣∣∣∣
t=0

Λ(exp tξ,m).

λ∗(ξ) is a vector field onM for every ξ ∈ g.
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As we have previously remarked, the adjoint and coadjoint representa-
tions are Lie group actions, and so we can find their infinitesimal generators.

Proposition 3.3. The infinitesimal generator of the adjoint action of G on
g, Adg : g→ g for g ∈ G, is given by

λ∗(ξ)|η = [ξ, η] = adξ(η).

Here, adξ : g → g for ξ ∈ g is the adjoint representation of g. Furthermore,
the infinitesimal generator of the coadjoint action ofG on g∗, Ad∗g−1 : g∗ → g∗

for g ∈ G, is given by
γ∗(ξ)|η = − ad∗ξ(η).

Proof. [3] For the first statement we simply have

λ∗(ξ)|η = Adexp tξ(η) = [ξ, η] = adξ(η),

following directly from definition 3.7, 3.8 and 3.13. For the second statement
we take µ ∈ g and obtain〈

γ∗(ξ)|η , µ
〉

=

〈
d

dt

∣∣∣∣
t=0

Ad∗exp(−tξ)(η), µ

〉
=

d

dt

∣∣∣∣
t=0

〈
Ad∗exp(−tξ)(η), µ

〉
=

d

dt

∣∣∣∣
t=0

〈
η,Adexp(−tξ)(µ)

〉
=

〈
η,

d

dt

∣∣∣∣
t=0

Adexp(−tξ)(µ)

〉
= 〈η,− adξ(µ)〉 =

〈
− ad∗ξ(η), µ

〉
=⇒ γ∗(ξ)|η = − ad∗ξ(η).

Example 3.8. Take (ξ̂, η), (µ̂, ν) ∈ se(3), then the infinitesimal generator
induced by the left coadjoint action will map (ξ̂, η) to a vector field on se(3)∗.
We write

λ∗(ξ̂, η)
∣∣∣
(µ̂,ν)

=
d

dt

∣∣∣∣
t=0

Λ(exp(t(ξ̂, η)), (µ̂, ν)),
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where exp(t(ξ̂, η)) = (g(t), u(t)) is a curve in SE(3). We simplify the ex-
pression by using that (g(t), u(t)) passes through the identity at t = 0 with
tangent (ξ̂, η), i.e. (ġ(0), u̇(0)) = (ξ̂, η). This gives us

λ∗(ξ̂, η)
∣∣∣
(µ̂,ν)

=
d

dt

∣∣∣∣
t=0

Ad∗(g(t),u(t))−1(µ̂, ν)

=
d

dt

∣∣∣∣
t=0

(ĝ(t)µ+ ̂u(t)× g(t)ν, g(t)ν)

= ( ˙̂g(t)µ+ ̂u̇(t)× g(t)ν + ̂u(t)× ġ(t)ν, ġ(t)ν)
∣∣∣
t=0

= (
̂̂
ξµ+ η̂ × ν, ξ̂ν) = (ξ̂ × µ+ η̂ × ν, ξ × ν).
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4 Lie group integrators

4.1 Introduction

We now have all the information necessary to begin derive our Lie group
integrators. The basic idea is to have a smooth manifold M, a vector field
F on M (the tangent space F (y(t)) ∈ Ty(t)M ∀t), a transitive Lie group
action onM and its infinitesimal generator. Our Lie group is denoted G with
the Lie algebra g. Then for m ∈ M, we can construct a map f : M → g

such that
F |m = λ∗(f(m))|m

[12]. Using this idea, we want to solve the initial value problem

ẏ = F (y)

y (t0) = y0
(3)

for y0 ∈M. The reason for this approach to such a problem is that classical
integration methods are not going to make sense once we are working on
vector fields where normal operations like sum and multiplication might not
be well defined.

4.2 Lie-Euler method

The explicit Euler method, given by the equation

yn+1 = yn + hf (yn) ,

is a well known first-order method to solve initial value ODE’s [7]. We want
to convert this method to a method on manifolds, usually called the Lie-Euler
method.

The idea is to look at the problem locally. This means we define ż = f (yn),
z(0) = yn and set yn+1 = z(h), tn+1 = tn + h.
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We look at the case for matrix Lie groups. Consider the Lie group equation
ẏ = A(y)y [14] where A is a matrix. Locally this becomes ż = A (yn) z,
z(0) = yn. The solution is then given by z(t) = etA(yn)yn meaning that we
obtain the Lie-Euler method [15]

yn+1 = ehA(yn)yn, (4)

where e is the matrix exponential.

4.3 Runge-Kutta Munthe-Kaas methods

Runge-Kutta methods are well known classical integration methods [8], and
we can create a similar, yet relevant method for working on manifolds. As
mentioned in the introduction of this section, we need a transitive Lie group
action onM. We denote it Λ : G×M→M. For a neighborhood of y0 ∈M
we can write y(t) as

y(t) = Λ (exp(φ(t)), y0)

where φ(t) ∈ g is a curve in g. We are essentially converting the problem
fromM to g. One can show that the differential equation for φ in g becomes

φ̇ = dexp−1φ (f (Λy0(exp(φ))) (5)

where Λy0(g) = Λ (g, y0) for g ∈ G and f(x) :=
∑d

i=1 fi(x)Ei ∈ g such
that E1, . . . , Ed is a basis of the Lie algebra g. See [12] for details on this
derivation.

We can now write one step of the Runge-Kutta Munthe-Kaas (RKMK)
method, given yn, step size h and the function f :M→ g.

for i = 1 to s:

φi = h

i−1∑
j=1

ai,j ˆdexp
−1
φj (f (Λyn (exp (φj)))

φ̃ = h
s∑
i=1

bi dexp−1φi (f (Λyn (exp (φi)))

Y1 = Λyn(exp(φ̃))

(6)
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[12]. Here ai,j and bi for i = 1, . . . , s, j = 1, . . . , s are the parameters of a
classical Runge-Kutta method, and ˆdexp

−1
φ is the truncation (to the correct

consistency order) of the expansion

dexp−1φ(t)(u) =
z

ez − 1

∣∣∣∣
z=adφ

(u) =
∞∑
k=0

Bk
k!

adkφ(u). (7)

We are simply using a classical Runge-Kutta method on equation (5).

When working on the free rigid body and heavy top models, we will in
particular use the 4th order Runge-Kutta Munthe-Kaas method. Relevant
is then the Butcher tableau of the 4th order Runge-Kutta method given by
table 1, which gives us the coefficients ai,j and bi.

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

1
3

1
3

1
6

Table 1: Butcher tableau of 4th order Runge-Kutta method [8].

4.4 Commutator free methods

We now present commutator free methods. We refer the reader to [16] for a
more detailed presentation of this.

These methods do not involve commutators and use as few exponentials as
possible. The idea is to use frames and frozen vector fields as introduced in
section 2.3, and the fact that a smooth vector field F onM can be expressed
in terms of the frames (equation (1)).
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We present one step of the method as in [16].

for i = 1 to r:

Yr = exp

(∑
k

αkrJFk

)
· · · exp

(∑
k

αkr1Fk

)
p

Fr = hFYr = h
∑
i

fi (Yr)Ei

y1 = exp

(∑
k

βkJFk

)
· · · exp

(∑
k

βk1Fk

)
p

(8)

For a commutator free method of order 4, a generalized version of the classical
Runge-Kutta method of order 4 is given in the Butcher tableau in table 2.
Observe that this method uses five exponentials per step.

0
1
2

1
2

1
2 0 1

2

1 1
2 0 0

−1
2 0 1

1
4

1
6

1
6 − 1

12

− 1
12

1
6

1
6

1
4

Table 2: Butcher tableau of 4th order commutator free method [16].
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5 Free rigid body

5.1 The free rigid body equations

The first application of the theoretical material we have introduced will be
the free rigid body model. A free rigid body is a rigid body rotating freely
about its center of mass with no external forces involved, and the distance
between two points of the body remains unchanged during the motion. We
assume a smooth motion, implying that we can describe the rotation as a
function f(x, t) = A(t)x. Here, A(t) is a proper rotation, meaning A(t) ∈
SO(3) for time t and x ∈ R3 is a point in space. See chapter 9 and 15 in the
book by Marsden and Ratiu [3] for more information on this system.

We have presented examples of SE(3) in section 3, and we will use it more
in section 6, but the subgroup SO(3) is more appropriate for the free rigid
body considered in this section.

We begin by presenting the Euler free rigid body equations

ṁ = −I−1m×m (9)

[3]. m ∈ R3 is the angular momentum in body coordinates and I ∈ R3×3 is
the inertia tensor

I =

 I1 0 0

0 I2 0

0 0 I3.


As usual, × is the standard cross product in R3. We can simplify equation
(9) into a more useful matrix equation

ṁ =

 ṁ1

ṁ2

ṁ3

 =

 0 m3
I3

−m2
I2

−m3
I3

0 m1
I1

m2
I2

−m1
I1

0


 m1

m2

m3

 = A(m) ·m. (10)

We see that this equation is a Lie group equation as introduced in section
4.2. We will implement the Lie Euler method, RKMK and commutator free
method for this model.
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The implementations will use arbitrary values for the inertia vector I =

[I1, I2, I3] (the diagonal of the inertia tensor I) and the initial condition m0.
We choose I = [1, 5, 6] and m0 = [0.7, 0.3, 0.5] and integrate over the time
interval [0, 1] with 100 steps, implying step size h = 0.01.

5.2 Lie Euler method

We begin with a method of order 1, the Lie Euler method as described in
section 4.2. This is perhaps one of the simplest Lie group methods, and
hence it is a great place to start. The single step of this method is given by
equation (4). Here h is the step size and e is the exponential map given by
the matrix exponential since SO(3) is a matrix Lie group. Since A(mn) is a
skew-symmetric matrix we use the Rodrigues’ formula [3]

eA = I +
sinα

α
A+

1− cosα

α2
A2 (11)

where α = ‖a‖ =
√
a21 + a22 + a23 and a is the vector mapping to A through

the hat map as defined in section 3.2.

5.3 Runge-Kutta Munthe-Kaas

The next Lie group method we want to implement is the RKMK method
of order 4. This is a better method than Lie Euler. One can show that it is
defined in the following way.

A1 = hA (mn)

A2 = hA

(
exp

(
1

2
A1

)
·mn

)
A3 = hA

(
exp

(
1

2
A2 −

1

8
[A1, A2]

)
·mn

)
A4 = hA (exp (A3) ·mn)

mn+1 = exp

(
1

6

(
A1 + 2A2 + 2A3 +A4 −

1

2
[A1, A4]

))
·mn
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[12]. Here [·, ·] is the Lie bracket of SO(3) or the matrix commutator as for
every matrix Lie group, h is the step size and exp is the matrix exponential.

5.4 Commutator free method

To avoid large matrix commutator calculations we implement a third method,
a commutator free method of order 4 as introduced in section 4.4. One step
of the method is given by

M1 = mn

M2 = exp

(
1

2
hA1

)
·mn

M3 = exp

(
1

2
hA2

)
·mn

M4 = exp

(
hA3 −

1

2
hA1

)
·M2

mn+ 1
2

= exp

(
1

12
h (3A1 + 2A2 + 2A3 −A4)

)
·mn

mn+1 = exp

(
1

12
h (−A1 + 2A2 + 2A3 + 3A4)

)
·mn+ 1

2

using the Butcher tableau in table 2. Here Ai = A (Mi) for every i.

5.5 Convergence orders

As we have implemented the three different methods, we want to show that
the convergence orders are as stated; 1 for Lie Euler and 4 for both RKMK
and commutator free method.

To check the orders we define an error function. This will compare the angular
momentum m of the Lie group method with a reference solution at time
T . It will apply the Lie group method with different step sizes, find the
2-norm between the end values and return a list of these errors. We use
scipy.integrate.odeint in Python to obtain a reference solution to the
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problem. To obtain good results we need a low tolerance and we use a relative
and absolute tolerance of 10−13 and 10−14, respectively.

We produce a loglog-plot of the convergence orders next to O(hi) for i =

1, 2, 3, 4 to compare, and obtain the plot in figure 2.

Figure 2: Convergence orders of Lie Euler method, RKMK and commutator
free method alongside O(hi) for i = 1, 2, 3, 4. The step sizes are chosen to be
h = 1

5 ,
1
10 ,

1
20 ,

1
40 ,

1
80 .

Clearly the convergence orders are as expected, seeing that the loglog-plot
of the Lie Euler method is parallel to O(h) and the loglog-plots of RKMK
and commutator free method are parrallel to O(h4).

The importance of showing the convergence orders comes from the fact that
a higher convergence order means that the error approaches zero faster as
the step size decreases. It is therefore clear that the methods of order 4
will be more useful than the Lie Euler method; they will require fewer steps
and hence converge to the solution quicker. We cannot say more about the
advantages and disadvantages of using RKMK over commutator free method
from the order of convergence, however the commutator free method is - as
the name implies - commutator free. This means that the method does not
take use of the matrix commutator, i.e. two matrix multiplications. It does
not require much extra time to compute these when we work with small
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matrices like those in SO(3), but with problems on much larger matrices it
might make a difference.

5.6 Comparison with classical integration methods

An important note on the free rigid body system is that the angular momen-
tum is conserved [3], i.e. the norm of the vector m is conserved over time.
This is valuable from a physical perspective and we will see that in this
case the Lie group integrators have an advantage over classical integration
methods.

We take the modified Euler method as an example [7]. This is an explicit
numerical method and one step is given by

yn+1 = yn + hf

(
tn +

h

2
, yn +

h

2
f (tn, yn)

)
.

We can can produce two plots; one to compare the norms of the Lie group
integrators and one to compare with the modified Euler method. Figure 3a
demonstrates that the norm indeed is conserved for the Lie group integrators

(a) (b)

Figure 3: Norm of the angular momentum vector m for the free rigid body
model. (a) Shows shows the norms using Lie group integrators, while (b) com-
pares the Lie group method (RKMK) against a classical numerical method
(the modified Euler method).
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we have implemented. Furthermore, we plot the angular momentum norms
with RKMK against the modified Euler method in figure 3b, obtaining a
clear indication that the modified Euler method does not conserve angular
momentum.
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6 The heavy top

6.1 The heavy top equations

The heavy top is a rigid body moving with a fixed point under the influence
of gravity [3]. This means that we can describe the motion by the special
Euclidean group SE(3). We also mentioned in section 3 that the solution
space is se(3)∗, so the work we have done in the examples will be relevant to
solve these equations and apply Lie group integrators.

From Marsden and Ratiu [3] we formulate the heavy top equations. In
our own notation, they are given by

µ̇ = µ× I−1µ+ ν × cχ
ν̇ = ν × I−1µ

(12)

where I is the inertia tensor as a 3 × 3 diagonal matrix with the inertia
elements I1, I2 and I3 on the diagonal. Furthermore, c is mass times the
gravitational acceleration g times the line segment of length l connecting the
fixed point to the center of mass of the body. ν is a vector pointing in the
direction from the fixed point of the heavy top to the center of mass (in
body coordinates) and χ is the constant unit vector along the line segment
of length l. The solution consists of the pair (µ(t), ν(t)) where µ(t) ∈ so(3)∗

is the angular momentum and ν ∈ R3 is a vector.

We want to use these equations to find a function f : se(3)∗ → se(3) in-
troduced in equation (5) in section 4.3. This can be done by using the in-
finitesimal generator, λ∗ and calculating (µ̇, ν̇) = λ∗(f(µ, ν))|(µ,ν). We get
the following calculation.4

(µ̇, ν̇) = λ∗(f(µ, ν))|(µ,ν) = λ∗(f1(µ, ν), f2(µ, ν))|(µ,ν)
= (f1(µ, ν)× µ+ f2(µ, ν)× ν, f1(µ, ν)× ν)

4We remove the notation of hats since it is apparent which elements are vectors and
which are matrices.
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We substitute µ̇ and ν̇ with the equations in (12), and obtain

f1(µ, ν) = −I−1µ
f2(µ, ν) = −cχ.

(13)

The inertia vector I = [I1, I2, I3], the vector χ and the initial value y0
are chosen to be I = [1, 5, 6], χ = [0, 0, 1] and y0 = [sin 1.1, 0, cos 1.1, 1, 0.2, 3]

in our implementation. Here, we represent a value y = (µ, ν) ∈ se(3)∗ as a
6-dimensional vector such that the first and the last three elements are the
elements of the vector µ and ν, respectively. For simplicity we set c = 1 and
integrate over the time interval [0, 1] with 100 steps.

6.2 Runge-Kutta Munthe-Kaas

We begin by implementing the RKMK method of order 4 for the heavy top
model. By section 4.3 we need to implement functions for dexp−1φ , f , Λyn
and exp, where φ(t) is a curve in se(3). f is the function in equation (13),
dexp−1φ is given by equation (7) and Λyn is a transitive Lie group action,
chosen to be the left coadjoint action of SE(3). Then we can implement the
method given in equation (6), and one step of the algorithm is simplified to

K1 = F (0, yn)

K2 = F

(
1

2
hK1, yn

)
K3 = F

(
1

2
hK2, yn

)
K4 = F (hK3, yn)

yn+1 = Λyn

(
exp

(
1

6
hK1 +

1

3
hK2 +

1

3
hK3 +

1

6
hK4

))
where F (φ, y) := φ̇ is the vector field defined in equation (5). There is a
similar formula to the Rodrigues’ formula for calculating the exponential of
elements in se(3) [17]. Given v = (ξ̂, η) ∈ se(3),

exp(v) = (exp(ξ̂),Vη)
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where
V = I +

1− cosα

α2
ξ̂ +

α− sinα

α3
ξ̂2

such that α = ‖ξ‖. exp(ξ̂) is the exponential map for elements in so(3)

defined in equation (11) of the previous section.

6.3 Commutator free method

As for the 4th order RKMK method for the heavy top, we use the vector
field F (φ, y) := φ̇ and the transitive Lie group action Λyn to simplify the
commutator free method in equation (8) to the following algorithm.

K1 = yn

A1 = F (0,K1)

K2 = Λyn

(
exp

(
1

2
hA1

))
A2 = F (0,K2)

K3 = Λyn

(
exp

(
1

2
hA2

))
A3 = F (0,K3)

K4 = ΛK2

(
exp

(
hA3 −

1

2
hA1

))
A4 = F (0,K4)

yn+ 1
2

= Λyn

(
exp

(
1

12
h (3A1 + 2A2 + 2A3 −A4)

))
yn+1 = Λyn+ 1

2

(
exp

(
1

12
h (−A1 + 2A2 + 2A3 + 3A4)

))

6.4 Convergence orders

Similar to the free rigid body model, we want to study the convergence orders
and confirm what we have previously stated. We use scipy.integrate.odeint
in Python to obtain a reference solution to the problem, with a relative and
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absolute tolerance of 10−13 and 10−14, respectively. By the same method as
in section 5.5, we define an error function and obtain a loglog-plot of the
error in figure 4.

Figure 4: Convergence order of RKMK and commutator free method along-
side O(hi) for i = 1, 2, 3, 4. The step sizes are h = 1
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We observe that both the convergence order of RKMK and commutator free
method is 4. However, it is also worth noting that the two methods use
a different number of exponentials. RKMK uses 4, while commutator free
method uses 5.

6.5 Comparison with classical integration methods

We choose to work with the classical modified Euler method to compare with
RKMK and commutator free method.

In the case of the heavy top equations, the angular momentum µ will not
be conserved [3]. However, the Euclidean norm of the vector ν is constant,
since we have that

d

dt
‖ν‖2 =

d

dt
νT ν = 2νT ν̇ = 2νT (ν × I−1µ)

= 2(ν × ν)T I−1µ = 0.
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(a) (b)

Figure 5: Norm of the vector ν for the heavy top model. (a) Shows shows the
norms using the Lie group integrators RKMK and commutator free method,
while (b) compares the Lie group method RKMK against a classical numer-
ical method (the modified Euler method).

We can verify that this is true for our implementation, and figure 5 shows
the results. The figure also shows that the modified Euler method does not
conserve the vector ν, meaning this method is clearly less suitable for the
problem.

Furthermore, we study the conservation of energy of the system. The Hamil-
tonian of the heavy top equations is presented in [3] and is given by

H(µ, ν) =
1

2

〈
µ, I−1µ

〉
+ 〈ν, cX〉 ,

where 〈·, ·〉 is the standard inner product on R3. Since the Hamiltonian energy
of our system should be conserved, we plot the energy error over time by
comparing the energy at time t with the energy at time t = 0. We use the
Lie group integrators RKMK and commutator free method, and compare
against each other and the classical modified Euler method. Observe the
resulting plots in figure 6. We have increased the time interval to [0, 10] with
200 steps such that the step size is h = 0.05.

The Hamiltonian energy is not conserved for any of the chosen methods, how-
ever from figure 6 it is clear that the energy error is a significantly smaller
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(a) (b)

Figure 6: Hamiltonian energy error of the heavy top model using Lie group
integrators (RKMK and commutator free method) and the modified Euler
method. (a) shows the two Lie group integrators against each other, while
(b) shows the commutator free method against the modified Euler method.

for the Lie group integrators compared to the modified Euler method. Addi-
tionally, the figure suggests that the commutator free method is better than
RKMK, because of a smaller deviation in energy.

We can argue once again that from a physical perspective, the chosen Lie
group integrators are more reliable than the classical integration method.
This is clear since neither the vector ν nor the Hamiltonian energy is con-
served by using the modified Euler method, and the energy error is unques-
tionably larger than that of the Lie group integrators.
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7 Conclusion

In this thesis we have studied some elementary material of Lie group meth-
ods and seen some applications by simulating two mechanical systems. The
theoretical material has provided a basis for understanding the Lie group
integrators. We have in particular focused on studying 4th order Runge-
Kutta Munthe-Kaas and commutator free methods, and we have briefly in-
troduced the Lie-Euler method. However, there are several methods, e.g.
Magnus methods [14] and RKMK and commutator free methods of orders
different from 4, that we have not treated in this thesis. We refer the reader
to [11, 14, 16] for further reading on these topics.

We have seen that the implementation of the two models, free rigid body
and heavy top, have favourable results by using Lie group integrators over
classical numerical methods. This is mainly because the Lie group methods
have an unquestionable smaller error in conserving the structures of the man-
ifolds, such as angular momentum and energy. Both the angular momentum
for the free rigid body and the norm of the vector ν for the heavy top are
only conserved using Lie group methods as opposed to the modified Euler
method. Furthermore, the Hamiltonian energy of the heavy top system is
not completely conserved for the Lie group methods, however, compared to
the modified Euler method, the energy error is undoubtedly smaller.

The models we have presented are only two examples of mechanical sys-
tems of which we can apply Lie group integrators. In addition to SO(3) and
SE(3), the book by by Marsden and Ratiu [3] introduces several other Lie
groups that occur in mechanics, and provide short introductions to their ap-
plications. Additionally, several different rigid and multi-body systems are
presented in the book by Leok [9] (in particular in chapter 9 and 10), and we
refer the reader to this for further reading on formulations of more complex
systems.
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