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Abstract

In preparation of constructing so called peak functions we are studying properties of
subharmonic polynomials.

1. Introduction

We work in Cn with coordinates (z1, ..., zn) where two standard domains in Cn are the
unit polydisc ∆n = ∆(0, 1) × ... × ∆(0, 1) and the unit open ball Bn. By definition
∆(0, 1) = {z ∈ C :| z |< 1} is the unit disc in C with center 0 and radius 1, and the unit
open ball is defined by Bn = {(z1, ..., zn) |

√
| z1 |2 +...+ | zn |2 < 1}. Some additional

definitions are needed in order to talk about peak functions.

Definition 1. Let Ω be a domain in Cn and f : Ω → C a function. Then f is
holomorphic in Ω if zj 7→ f(z1, ..., zn) is analytic for every j = 1, ..., n. This is writ-
ten as f ∈ H(Ω).

A holomorphic function is a key ingredient in the definition of a peak function, but first
we need to define the kind of domain we want to find peak functions on.

Definition 2. Ω is pseudoconvex if for all p ∈ ∂Ω there exists a neighbourhood U(p) of
p and if V is a connected component of U ∩Ω, then there exists f ∈ H(Ω) such that f |V
does not extend holomorphically to any set W that contains p.

Not all domains are pseudoconvex however.
Example of non-pseudoconvex domain: Consider the domain A ×∆ where we have the
annulus A = {1/2 <| z |< 1} and unit disc ∆ = ∆(0, 1). Choose the function f such
that f ∈ H(A × ∆), then f(z, w) = Σ∞j=−∞aj(w)zj where aj(w) is analytic in ∆ and

Σ∞j=0aj(w)zj converges when | z |< 1 while Σ−1
−∞aj(w)zj converges when | z |> 1/2.

Thus Σ∞j=0aj(w)zj converges in ∆×∆.

Consider the open neighbourhood U of a point in ∆ of the variable w and define
Ω = (A × ∆) ∪ (∆ × U). Choose the forementioned function f such that f ∈ H(Ω).
Hence we find that aj≤−1(w) = 0 for w ∈ U in order to make the sum Σ−1

−∞aj(w)zj

converge in ∆×∆. Being analytic and zero in an open set, we find that aj(w) ≡ 0 in ∆
of the variable w. Thus f = Σ∞j=0aj(w)zj which is holomorphic in ∆×∆. Consequently,

if f ∈ H(Ω) then there exists a function F ∈ H(∆2) such that F |Ω= f .

The definition of a peak function is as follows

Definition 3. Let Ω be a domain in Cn and p ∈ ∂Ω be a point. If there exists a function
f ∈ H(Ω) ∩ C(Ω) such that f(p) = 1 and | f(z) |< 1 if z ∈ Ω \ {p}, then f is a
peak function and p is a peak point.
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In order to illustrate the importance of the choice of Ω regarding peak functions, consider
two examples.

Positive example: Recall the definition of strict convexity for a set. All points on a line
connecting two points in the set, also must be in the set. So consider Ω as a strict convex
domain of Cn. Then every point p ∈ ∂Ω is a peak point.

Denote p = (ξ1, ..., ξn) = (u1 + iv1, ..., un + ivn) and an arbitrary point z ∈ Ω as
z = (z1, ..., zn) = (x1 + iy1, ..., xn + iyn). Consider the function L(x1, y1, ..., xn, yn) =
Σnj=1aj(xj−uj)+bj(yj−vj) in Ω, where aj , bj ∈ R. Since Ω is strictly convex we find that

there exists aj , bj ∈ R such that L(x1, y1, ..., xn, yn) < 0 in Ω\{p} while L(p) = 0. Hence
by the function h(z1, ..., zn) ≡ Σnj=1(aj − ibj)(zj − ξj) and zj − ξj = xj − uj + i(yj − vj)
some swift calculations show that Reh(z1, ..., zn) = L(x1, y1, ..., xn, yn) < 0. Finally look
at f(z) ≡ eh(z) which then has the properties f(p) = 1 and | f(z) |= eReh(z) < 1 when
z ∈ Ω \ {p}. Thus f is a peak function for the point p.

Thus the open ball Bn have only peak points on its boundary as it is strictly convex. Since
strict convexity implies pseudoconvexity, it follows that the open ball is pseudoconvex.

Negative example: Consider ∆2 = ∆(0, 1)×∆(0, 1) and choose a point p ∈ ∂∆2. Assume

that p = (0, 1) and that there exists a function f ∈ H(∆2)∩C(∆
2
) such that f(0, 1) = 1

and | f(z, w) |< 1 in ∆
2 \ (0, 1). This is a contradiction however, as we will see.

By these assumptions we have for an a ∈ R+ that | f(z, 1) |≤ a < 1 when | z |= 1/2.
Then consider the family of discs ∆t := ∆(0, 1/2)×{t} where t ∈ [1−δ, 1] for a 0 < δ � 1.
Since z 7→ f(z, t) is analytic with z ∈ ∆(0, 1/2) we may look at f |∆t

and let t→ 1. As t
approaches one, we find that f(0, t)→ 1 and | f(z, t) | goes to a value ≤ a if | z |= 1/2.
Since we are looking at ∆t and z 7→ f(z, t) being analytic, we find | f(0, t) |>| f(z, t) |
where z ∈ ∂∆(0, 1/2) and t close to 1. This is a contradiction to the maximum principle
because (0, t) is an inner point, and not on the boundary of ∆t. In order to avoid
contradiction of the maximum principle we must have f(z, 1) = 1 on ∆1, which then
contradict the assumption of p being a peak point.

The unit polydisc is also pseudoconvex.

From BEDFORD-FORNÆSS 1978[1] we study the case Ω = {(z, w) | Rew+P2k(z, z) <
0} where P2k subharmonic, homogeneous and not harmonic. It may also be stated that
when P2k satisfy these properties, it follows that Ω is pseudoconvex. Thus this bachelor
thesis will study the properties of P2k from BEDFORD-FORNÆSS 1978[1].
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2. Tasks

This section is included as preparation for the relevant theory.

• ”Show that the laplacian ∆ operator in polar coordinates is ∂2

∂r2
+ 1

r
∂
∂r + 1

r2
∂2

∂θ2
”.

Given that u = u(x, y) and x = rcosθ and y = rsinθ, it follows that

∂u

∂r
=
∂u

∂x

∂x

∂r
+
∂u

∂y

∂y

∂r
= uxcosθ + uysinθ

⇒ ∂2u

∂r2 =
∂

∂r

(
∂u

∂r

)
= uxxcos

2θ + uyysin
2θ + uxycosθsinθ + uyxcosθsinθ

and

∂u

∂θ
=
∂u

∂x

∂x

∂θ
+
∂u

∂y

∂y

∂θ
= r (uycosθ − uxsinθ)

⇒ ∂2u

∂θ2 =
∂

∂θ

(
∂u

∂θ

)
= r

{
cos θ

∂

∂θ
(uy)− uysinθ −

[
sin θ

∂

∂θ
(ux) + uxcosθ

]}
,

where the last equation is derived by using the formula for derivative of products. Cal-
culating the second derivative of both formulas are done by using the formula for the
first derivative in a recursive manner. Therefore the rightmost side of the last equation
is written

∂2u

∂θ2 = r2 cos(θ) (uyy cos(θ)− uxy sin(θ))− ruy sin(θ)− r2 sin(θ) (uyx cos(θ)− uxx sin(θ))− ux cos(θ)

= −ruxcosθ − ruysinθ + r2
(
uxxsin

2θ + uyycos
2θ − uxycosθsinθ − uyxcosθsinθ

)
.

That is, after subtracting terms and using the identity cos2θ + sin2θ = 1 the following
solves the problem at hand:

∂2u

∂r2 +
1

r

∂u

∂r
+

1

r2

∂2u

∂θ2 =
∂2u

∂x2 +
∂2u

∂y2 .
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3. Remarks on subharmonic functions

Let P2k(z) = Σ2k
j=0ajz

jz2k−j be a real-valued polynomial of degree 2k defined on complex

numbers, where the coefficients may be complex. It can be seen that P2k(tz) = t2kP2k(z)
for real number t. Which means that P2k is homogeneous.

Denote z =| z | eiθ and by swift calculation we find P2k(z) =| z |2k Σ2k
j=0aje

2iθ(j−k), so

define g(θ) by P2k(z) =| z |2k g(θ). Homogeneity is important because it allows us to
write P2k this way.
For a complex number ω the expression ω + ω is real, and since P2k is real-valued it
follows that for every term in g(θ), the complex conjugate of the term in also a term in
the sum of g(θ). Writing the coefficients in polar coordinates

g(θ) = Σ2k
j=0 | aj | ei[2θ(j−k)+θj ], (1)

we find that g(θ) is a linear combination of cosines. As such g(θ) has to be a wave
function by the superposition principle.

Since g(θ) is a trigonometric polynomial it follows that g(θ) has a final number of roots.
Also, every ray emanating from the origin in the complex plane corresponds to one value
of θ.
This means that {z | P2k(z) < 0} consists of finite number of disjoint sectors that
correspond to finite number of disjoint segments I1, ..., Is of θ-values in the unit circle.
Similarly with {z | P2k > 0} and segments J1, ..., Jt.

Assume P2k is subharmonic, that is ∆P2k ≥ 0. Also assume that ∆P2k is not identically
zero. By using the polar Laplacian with | z |= r we find:

∆P2k = 2k(2k − 1)r2(k−1)g(θ) + 2kr2(k−1)g(θ) + r2(k−1)g′′(θ) = r2(k−1)
(
4k2g(θ) + gθθ

)
.

Thus
(2k)2g + gθθ =| z |−2(k−1) ∆P2k > 0, (2)

except at isolated points.

Lemma 3.1. Let P2k(z) =| z |2k g(θ) be a real-valued polynomial on complex numbers
of degree 2k that is homogeneous and subharmonic, but not harmonic.
If g(θ0) = g′(θ0) = 0 and g 6≡ 0, then g vanishes to even order at θ0, and there exists
integer m > 0 such that g(j)(θ0) = 0, 1 ≤ j ≤ 2m− 1 and g(2m)(θ0) > 0. It follows that
if θ̃ is such that g(θ̃) = 0 then θ̃ is the endpoint of at least one J-interval. Consequently
the number of J-intervals is greater than or equal to the number of I-intervals, that is
t ≥ s.
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Proof. By previous paragraphs and equation 1 it is clear that g(θ) is a real analytic func-

tion. By Taylor series expansion locally about a point θ0 we get g(θ) = Σ∞j=l
g(j)(θ0)

j! (θ −
θ0)j where l ≥ 2 by the hypothesis. That is g(θ) = C(θ− θ0)l +O((θ− θ0)l+1) for some
constant C. This proof relies on the fact that g is not identically zero in an interval, how
small it may ever be.

Sublemma 1. The function g is not identically zero in an interval, how small it may
ever be.

Proof. If g = 0 for all θ in (θ̃ − ε, θ̃ + ε) then P2k =| z |2k g(θ) is zero in a small open
domain U in C, and since P2k is real analytic in a domain containing U it follows that
P2k ≡ 0. Which is a contradiction since the polynomial is not harmonic. Every zero of
g will therefore be isolated.

By equation 2 it follows

(2k)2g(θ) + g′′(θ) = (2k)2(θ − θ0)l +O((θ − θ0)l+1) + Cl(l − 1)(θ − θ0)l−2 +O((θ − θ0)l−1)

= Cl(l − 1)(θ − θ0)l−2 +O((θ − θ0)l−1) ≥ 0.

If C < 0 the value of left hand side of equation 2 will be negative for some θ, so we must
have C > 0. Similarly if l − 2 is odd then the left hand side will be negative for values
of θ close to θ0, so l − 2 and thus l must be even.
Denote l = 2m for an integer m > 0. It must be that g(j)(θ0) = 0 for 1 ≤ j ≤ 2m − 1
and g(2m)(θ0) > 0.

Let θ̃ be fixed such that g(θ̃) = 0. Then, either g′(θ̃) = 0 or g′(θ̃) 6= 0.
If g′(θ̃) = 0 the proof above applies and there exists a constant C̃ and integer m̃ > 0 such
that g(θ) = C̃(θ − θ̃)2m̃ +O((θ − θ̃)2m̃+1) and g(θ) > 0 for θ in an interval containing θ̃
as an inner point. That is, two J-regions are neighbours.
If g′(θ̃) 6= 0 it follows that g have opposite signs at opposite sides of θ̃, for otherwise g
would not be continuous. It follows that every I-region is neighboured on each side by
J-regions. Consequently θ̃ is an endpoint of at least one J-region, and since two of these
J-regions may be neighbours we find t ≥ s.

Lemma 3.2. Let P2k(z) =| z |2k g(θ) be a real valued polynomial on complex numbers
of degree 2k that is homogeneous.
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If P2k is subharmonic but not harmonic, then each interval Im has length strictly less
than π/2k and each interval Jn has length strictly greater than π/2k.

Proof. The idea is to choose a function defined and continuous on Im, Jn respectively,
then taking the integral over said interval in order to derive an inequality involving the
length of Im, Jn respectively.

Since Im 6= ∅ define Im = (θ0, θ0 + δ) for some θ0, where δ > 0. This interval has length
δ. It follows that g(θ) < 0 for all θ in Im, because P2k < 0 for all θ in Im by definition
of Im. Thus by equation 2 and g < 0 in Im we have 4k2g2 + g′′g ≤ 0 in Im. By similar
argumentation as in lemma 3.1 every zero of g is isolated since P2k is not harmonic, so
4k2g2 + g′′g < 0 almost everywhere in Im.

Let h(θ) = arctan(g′(θ)/2kg(θ)) on Im be the function in question. If h is well de-
fined in the endpoints of Im it is necessarily a smooth function on Im, because h is an
arctan-function and g has no zeros in the interior of Im. But by construction of Im we
have limθ→θ0 g(θ) = 0, limθ→θ0+δ g(θ) = 0. Since two I-intervals can not be neighbours
it follows that limθ→θ0 g

′(θ) < 0, limθ→θ0+δ g
′(θ) > 0.

In other words limθ→θ0 g
′(θ)/g(θ) = −∞ and limθ→θ0+δ g

′(θ)/g(θ) = ∞. Therefore
h : (θ0, θ0 + δ)→ (−π/2, π/2) is smooth.

Calculation shows that

h′(θ) =
g′′(θ)g(θ)− (g′(θ))2(

1 +
(
g′(θ)

2kg(θ)

)2
)

2kg(θ)2

.

From 4k2g2 + g′′g < 0 in Im it follows that gθθg < −4k2g2, hence

h′(θ) < − (2kg(θ))2 + (g′(θ))2(
1 +

(
g′(θ)

2kg(θ)

)2
)

2kg(θ)2

= −2k almost everywhere in Im.

Thus −π < π =
∫ h(θ0+δ)

h(θ0)
dh =

∫ θ0+δ

θ0
h′(θ)dθ < −2kδ, which yields δ < π/2k.

Now look at Jn. The reasoning is similar as for Im. Since Jn 6= ∅, define Jn = (θ0, θ0 +δ)
for some θ0. By definition of Jnwe have g(θ) > 0 for all θ in Jn. Now we need to make
sure that Jn has both boundary points as zeroes of g. By lemma 3.1 two I-regions can
not be neighbours.
If a J- and I-region are neighbours, they must have a point that separates them since
they are disjoint. If the value of g is anything else than zero in this point, we have a
contradiction with the continuity of g. So this point is a zero of g.
If two J-regions are neighbours, there is a point separating them since they are disjoint.
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If the value of g at this point is greater than zero, we no longer have two J-regions but
only one. If the value of g is below zero at this point, g will no longer be continuous. To
avoid contradictions the point between these regions must be a zero of g.

Now we have shown that every two neighbouring regions has a zero that separates them.
It remains to show that for every Jn we may choose to look at, it has neighbours on both
sides. So consider the sequence of J- and I-regions that the graph of g consists of in the
real plane. As g has a final number of roots, it also has a finite number of these J- and
I-regions. This raises the question of what happens with the intervals at the ”end” of the
sequence of regions. Say one of these intervals at the end is an I-region. We then know
that it has a finite length, so the I-region must have zeroes at both boundary points to
avoid contradictions. Suppose then, that one of these intervals at the end is a J-region
and call it J̃ . Now we need to make sure that J̃ is in fact of finite length. By equation 1
it follows that g must have a period of 2π as it is a linear combination of cosines. Thus
we may extend g(θ) so the variable θ may take all values of R. Therefore J̃ may not have
a length strictly greater than 2π. Consequently J̃ must have zeroes at both boundary
points to avoid contradictions. So for any Jn = (θ0, θ0 + δ) we find limθ→θ0 g(θ) = 0,
limθ→θ0+δ g(θ) = 0 in Jn.

Since g is positive in Jn it follows that limθ→θ0 g
′(θ) ≥ 0. Also limθ→θ0+δ g

′(θ) ≤ 0
because the neighbouring J- or I-region on right hand side of Jn gives a local minimum
point or negative slope of g, respectively, in the point θ0 + δ. Therefore, if we assume
g′(θ) 6= 0 in these boundary points the following claim is trivially true:

lim
θ→θ0

g′(θ)
g(θ)

=∞ and lim
θ→θ0+δ

g′(θ)
g(θ)

= −∞.

But this claim is also true otherwise. For if g′(θ) = 0 in these points, lemma 3.1 states
that there exists integer m > 0 such that g(2m)(θ) > 0 and g(j)(θ) = 0, j < 2m.
Successive applications of L’Hopitals rule proves the claim true. Thus by the previous
defined h we find limθ→θ0 h(θ) = π/2 and limθ→θ0+δ h(θ) = −π/2 in Jn.

From equation 2 we have 4k2g2 + g′′g ≥ 0 in Jn. Similarly as for Im we then have
4k2g2 + g′′g > 0 for almost every point in Jn, so the inequality for h′(θ) is given as

h′(θ) > −2k almost everywhere in Jn. Thus −π =
∫ h(θ0+δ)

h(θ0)
dh(θ) =

∫ θ0+δ

θ0
h′(θ)dθ >

−2kδ, which yields δ > π/2k as desired.

Remark. In order to motivate the choice of function h, consider the simplest version of
P2k(z) as z2k. A small perturbation of P2k may then be written z2k + ε | z2k | for ε > 0,
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so Re z2k + ε | z2k |=| z |2k (cos(2kθ) + ε) which is analogue to P2k(z) =| z |2k g(θ).

Let g(θ) = cos(2kθ + ε). Calculation shows that g′(θ)
2kg(θ) = − sin(2kθ)

cos(2kθ)+ε which is almost a

tangent function. Therefore let h(θ) = arctan
(
g′(θ)

2kg(θ)

)
.

Corollary 3.2.1. Let R(z, η) =| z |2k G(θ, η) be a real-valued function on complex
variables that is subharmonic and homogeneous in z of degree 2k. Assume that for
all η that R is not harmonic in z and the coefficients vary smoothly with η ∈ C. Let
R(z, 0) = P2k(z) as the polynomial from previous lemmas, which gives G(θ, 0) = g(θ).
Let I = (θ1, θ2) be the angular sector in the unit circle that corresponds to the sector in
C where R(z, 0) = P2k(z) < 0, i.e. where G(θ, 0) = g(θ) < 0. Then I varies smoothly
with η in the following sense: there exists δ > 0 and smooth functions θ1(η), θ2(η) defined
near η = 0 such that θ1(0) = θ1, θ2(0) = θ2 and

(θ1(η), θ2(η)) = {θ ∈ (θ1 − δ, θ2 + δ) | G(θ, η) < 0}. (3)

Proof. By lemma 3.1 two I-intervals can not be neighbours, so it follows that Gθ(θ1, 0) <
0 < Gθ(θ2, 0) since G(θ, 0) = g(θ) is continuously differentiable. Thus by the Implicit
Function Theorem there exists smooth θ1(η), θ2(η) for η close to zero such that θj(0) = θj
and G(θj(η), η) is identically zero for j = 1, 2.

By continuity of gθ and since Gθ(θ1, 0) < 0 it follows that Gθ(θ1(η), η) < 0 for η suf-
ficiently small. Therefore for two points Θ1,Θ2 sufficiently close to θ1(η), such that
Θ1 < θ1(η) < Θ2, we find G(Θ2, η) < 0 < G(Θ1, η). The sign of G is opposite in (Θ1, η)
and (Θ2, η) because (θ1(η), η) is a zero of G and Gθ(θ1(η), η) 6= 0. A similar situation
happens near θ2(η).

Now, if equation 3 does not hold, there exists θ ∈ (θ1(η), θ2(η)) such that G(θ, η) > 0.
By lemma 3.1 there must be a J-interval containing this θ or having θ as an boundary
point. If θ is an boundary point of this interval, it follows that we may consider a point
θ̃ in the interior of non-empty open J such that G(θ̃, η) > 0, so without loss of generality
assume that G(θ, η) > 0. That is θ ∈ J . By lemma 3.2 each I-interval has length less
than π/2k and each J-interval has length greater than π/2k. Consequently the J-interval
must contain θ1(η) or θ2(η) which is a contradiction. Thus equation 3 must hold.

As a special case of the function R(z, η) in the corollary we may consider the following
lemma.
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Lemma 3.3. Let P2k be a homogeneous suharmonic, but not harmonic, polynomial of
degree 2k. Write P2k =| z |2k g(θ) where θ = Argz and assume g(θ0) = g′(θ0) = 0 for a
point θ0. Let R(z, η) = Re ηz2k + P2k(z) =| z |2k G(θ, η) for η ∈ C.

Then there exists a germ of a piecewise real analytic C1 curve γ through the origin in
the η-plane with the following properties:

1. For each point p ∈ γ there exists a point θ(p) close to θ0 such that G(θ(p), p) = 0
while G(θ, p) > 0 whenever 0 <| θ − θ(p) |< π/4k.

2. Locally about a point p ∈ γ the curve γ will divide a neighbourhood into two sides
γ−, γ+. For each point p− ∈ γ− there exists θ1(p−), θ2(p−) close to θ0 such that
θ1(p−) < θ2(p−) and G(θ, p−) < 0 when θ1(p−) < θ < θ2(p−), and G(θ, p−) > 0
when θ ∈

(
θ1(p−)− π

4k , θ1(p−)
)
∪
(
θ2(p−), θ2(p−) + π

4k

)
.

Moreover θ1, θ2 are smooth on γ− and extend continuously to γ− ∪ γ. If p− → p,
then θ1(p−)→ θ(p) and θ2(p−)→ θ(p).

3. For each point in γ+, denoted p+, G(θ, p+) > 0 for all θ ∈
(
θ(p)− π

4k , θ(p) + π
4k

)
where θ(p) is the value from property 2.

Proof. If we write η = reiψ and z =| z | eiθ, then
Re(ηz2k) = Re(r | z |2k ei(ψ+2kθ)) =| z |2k r cos(ψ + 2kθ). Thus G(θ, η) = r cos(ψ +
2kθ) + g(θ) and it follows that G(θ, η) is real analytic because g(θ) is real analytic. If
θ0 6= 0 we may then look at the translation θ 7→ θ̃ ≡ θ − θ0 which is well defined, and
gives us θ̃ = 0 for θ = θ0. Also, by this translation we find ψ̃ = ψ + 2kθ0. Rename θ̃, ψ̃
to θ, ψ and assume that θ0 = 0.

By the hypothesis Gθ(θ0, 0) = G(θ0, 0) = 0 in the origin of the η-plane. In order to find
the wanted curve γ in the η-plane that goes through the origin, look at the following
system of equations:{

E(1) : G(θ, reeψ) = r cos(ψ + 2kθ) + g(θ) = 0

E(2) : Gθ(θ, re
iψ) = −2kr sin(ψ + 2kθ) + gθ(θ) = 0

.

Which may be written {
E(1) : −r cos(ψ + 2kθ) = g(θ)

E(2) : 2kr sin(ψ + 2kθ) = gθ(θ)
. (4)

Ultimately these are two equations of three variables θ, r, η. By the Implicit Function
Theorem we can find and solve r as a function of ψ. In order to find this relation we use
the Implicit Function theorem again, but this time by looking at the equation resulting
from dividing E(1) by E(2) where the variable r cancels. We thus find θ as a function of
ψ which may be inserted into E(1) to find r = r(ψ).
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By E(1)/E(2) : −1/ tan(ψ + 2kθ) = 2kg(θ)/gθ(θ) and the identity tan(x − π/2) =
−1/ tan(x) we find for θ close to 0 that

tan(ψ+2kθ−π
2

) = 2k
g(θ)

gθ(θ)
= 2k

Cθ2m +O(θ2m+1)

2mCθ2m−1 +O(θ2m)
=

k

m

θ2m +O(θ2m+1)

θ2m−1 +O(θ2m)
=

k

m

θ +O(θ2)

1 +O(θ)
.

Here the series expansion of g is given by the proof of lemma 3.1 where C > 0 and m is
a positive integer. Further simplification is done by noticing that

1

1 +O(θ)
=

1

1−O(θ)
= Σ∞j=0[O(θ)]j = 1 + Σ∞j=1O(θj),

so tan(ψ + 2kθ − π
2 ) = k

m (θ + O(θ2)). At the same time the series expansion tan-
gent states that tan(ψ + 2kθ − π

2 ) = ψ + 2kθ − π
2 + O((ψ + 2kθ − π

2 )3) for ψ close
to π/2. As it is easier to work with O((ψ + 2kθ − π

2 )2) than O((ψ + 2kθ − π
2 )3) and

O((ψ + 2kθ− π
2 )3) = O((ψ + 2kθ− π

2 )2), we then obtain after some rearrangement that

ψ − π
2 +O((ψ + 2kθ − π

2 )2) = k−2km
m θ +O(θ2).

Notice that (ψ + 2kθ − π
2 )2 = (ψ − π

2 )2 + 4(ψ − π
2 )kθ + 4k2θ2, and since we already

know that θ = θ(ψ) we may look at θ as function of ψ − π/2. As θ is supposed to
vary with different choices of z we may also assume that θ is not a constant. Therefore
O((ψ+2kθ−π

2 )2) = O((ψ−π
2 )2) and θ(ψ) = a(ψ−π

2 )+O((ψ−π
2 )2) where a = m

k−2km < 0.

From E(1) : r = −g(θ)/ cos(ψ + 2kθ) with the identity sin(x − π/2) = − cos(x) it
follows that

r =
g(θ)

sin
(
ψ + 2kθ(ψ)− π

2

) =
g(θ)

sin
(
ψ − π

2 + 2ka(ψ − π
2 ) +O((ψ − π

2 )2)
) =

g(θ)

sin
(
ã(ψ − π

2 ) +O((ψ − π
2 )2)

) ,
where ã = 2ka+ 1 = 2km

k−2km + 1 = 1
(1/2m)−1 + 1 < 0. By the series expansion of sine and

similar use of geometric series with big oh notation as before, we find

r =
g(θ)

ã(ψ − π
2 ) +O((ψ − π

2 )2)
=

g(θ)

ã(ψ − π
2 )

1

1−O(ψ − π
2 )

=
g(θ)

ã(ψ − π
2 )

(
1 +O(ψ − π

2
)
)
.

Meanwhile, by using the binomial theorem for multiplying out θ(ψ)2m, θ(ψ)2m+1. By
inspection we find the following expression

g(θ) = Cθ(ψ)2m+O(θ(ψ)2m+1) = Ca2m(ψ−π
2

)2m+O((ψ−π
2

)2m+1)+O
(

(ψ − π

2
)2m+1 +O((ψ − π

2
)2m+2)

)
.
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Finally, with g(ψ) = Ca2m(ψ − π
2 )2m +O((ψ − π

2 )2m+1) we may write

r(ψ) =
Ca2m(ψ − π

2 )2m +O((ψ − π
2 )2m+1)

ã(ψ − π
2 )

[
1 +O(ψ − π

2
)
]

= α(ψ−π
2

)2m−1+O((ψ−π
2

)2m),

(5)
where α = Ca2m/ã < 0 and r − α(ψ − π/2)2m−1 is real analytic. Since the situa-
tion is local , this parametrization of a real analytic curve is valid for 0 < r � 1
and ψ ∈ [π/2 − δ, π/2 + δ] for some δ > 0. The curve can be extended to the ori-
gin where Re(η) = 0 is the tangent line. A similar curve is obtained for 0 < r � 1,
ψ ∈ [−π/2 − δ,−π/2 + δ] for some δ > 0. Thus we have a piecewise real analytic C1

curve γ through the origin.

1) Now that we have shown the existence of γ, we know by the Implicit Function theorem
and equation 4 that any fixed p on γ will give the function θ = θ(p) close to θ0 = 0 such
that G(θ(p), p) = 0. This is done by looking at E(1). Similarly we find Gθ(θ(p), p) = 0
by E(2). The function G now satisfies the conditions for lemma 3.1 in the z-plane. As
explained in the last paragraph of the proof of lemma 3.1 we thus have G(θ, p) > 0 for θ
close to θ(p), where θ < θ(p) and/or θ > θ(p). Where g is linear combination of trigono-
metric functions, G is also linear combinations of trigonometric functions. Consequently
G will have both I and J-regions. Thus we have adjacent J-regions of G on each side of
(θ(p), p). They must have length strictly greater than π/2k by lemma 3.2. Ultimately
this means that G(θ, p) > 0 whenever 0 <| θ − θ(p) |< π/2k, which implies G(θ, p) > 0
whenever 0 <| θ − θ(p) |< π/4k. Thus, as we could without loss of generality assume
that θ0 = 0, we find that property 1 of the lemma has been proven.

2) Consider the η-plane where the first axis is the real part of η and the second axis is
the imaginary part. The formula for r(ψ) given above is not defined for ψ > π/2 as this
will give us r < 0 which is absurd. Therefore look at the first quadrant. By inspection,
differentiating r(ψ) once shows us that the growth rate is negative, and thus that r(ψ)
decreases. While differentiating r(ψ) twice shows us that the only local inflection point
is the origin. Thus for the neighbourhood where the curve γ is locally defined, γ will
separate the set of complex points in the neighbourhood into two connected components.
One on the left hand side and one on the right hand side. Denote these by γ− and γ+

respectively.

Choose the point p− ∈ γ− and keep it fixed. Rotate this point by the transformation
p− → p ≡ p−eiα where α < 0 such that p ∈ γ. As before we may apply the implicit
function theorem for a point on γ and find that θ = θ(q) for points q in a neighbourhood
of p. By definition, any point in γ− is close to γ. Consequently a fixed p− ensures that
θ = θ(p) is fixed. Denote p− = r0e

iψ0 . We find Gψ |(θ(p),p)= −r0 sin(ψ0 − 2kθ) < 0 and
G(θ, p) = 0. Thus we may look at the transformation p → e−iαp = p− and find that
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G(θ(p−), p−) < 0.

Thus for all p− ∈ γ− there exists a θ such that G(θ(p), p−) < 0. Consequently there must
exist an I interval of the θ variable as G is real analytic. Denote I = (θ1, θ2). Since all
conditions of corollary 3.2.1 are met we thus have θ1(p−), θ2(p−) both close to 0 such that
θ1(p−) < θ2(p−) and G(θ, p−) < 0 whenever θ1(p−) < θ < θ2(p−). By lemma 3.1 this
I-region can not have another I-region as neighbour, so lemma 3.2 gives us G(θ, p−) > 0
for when θ ∈

(
θ1(p−)− π

2k , θ1(p−)
)
∪
(
θ2(p−), θ2(p−) + π

2k

)
. Consequently G(θ, p−) > 0

for θ ∈
(
θ1(p−)− π

4k , θ1(p−)
)
∪
(
θ2(p−), θ2(p−) + π

4k

)
.

Corollary 3.2.1 also states that these θ1, θ2 are smooth on γ−, and as γ− is a connected
component in the η-plane it follows that θ1, θ2 can be extended continuously to the
boundary γ of γ−. That is, θ1, θ2 can be extended continuously to γ− ∪ γ. Now we
may investigate what happens when we let p− → p ∈ γ. As p ∈ γ the equation E(1)

is valid, and considering p− → p we find that θ1(p−), θ2(p−) will change in a smooth
manner to the point where E(1) applies. In other words | r cos(ψ+ 2kθi) + g(θi) |→ 0 for
i = 1, 2. Consequently the points θ1, θ2 will coincide as the I-region shrinks and we find
θi(p

−) → θ(p) for i = 1, 2. As we have assumed without loss of generality that θ0 = 0,
we find that property 2 from the lemma has been proven.

3) From property 2), if we let p− → p we find that G(θ, p) > 0 for θ ∈ (θ(p)−π/4k, θ(p))∪
(θ(p), θ(p) + π/4k) = (θ(p)− π/4k, θ(p) + π/4k) \ {θ(p)}. At the point θ(p) we can not
have G(θ(p), p) < 0 as this would contradict continuity of G. Hence we have the situation
as in property 1) where G(θ(p), p) = 0. We may change the coordinates in the θ-plane by
rotation such that θ(p) = 0. Then consider Gψ(θ, r, ψ) = −r sin(ψ + 2kθ) which states
that Gψ(θ, r, ψ) |θ=θ(p)=0< 0 where ψ ∈ (π2 − δ,

π
2 ) for a δ > 0. As we go from p to a

point p+ we decrease the value of ψ and increase the value of G. Thus for all points
p+ ∈ γ+ we know that there is a J-region of G of the variable θ, where we must have
θ(p) = 0 ∈ J .

Now that we have proven the existence of these J-intervals, it remains to investigate other
points of the variable θ that may lie in them. This has to be done in a more stringent
manner, since changing p to a point p+ may change both variables r, ψ. For this purpose
define the intervals Intθ = (θ(p) − π

4k , θ(p) + π
4k ) = (− π

4k ,
π
4k ), IntΨ = (π2 − δ,

π
2 ) and

D = {(θ, r, ψ) | θ ∈ Intθ, ψ ∈ IntΨ, r ∈ (0, r0)}, where r0 > 0 has yet to be determined.

Now look at the set D in order to prove that G > 0 in D. Let ψ ∈ IntΨ and denote
ψ = π

2 − δ̃ where 0 < δ̃ < δ. We know that g(θ) > 0 for θ ∈ Intθ. Thus assume
θ ∈ (−π/4k, π/4k) which corresponds to 2kθ ∈ (−π/2, π/2). We find that ψ + 2kθ ∈
(−δ̃, π− δ̃). Denote the cosine term in G as r cos(ψ+ 2kθ). The cosine term in G will be

12



negative for ψ + 2kθ ∈ (π/2, π− δ̃). However, we may choose r0 � 1 such that G > 0 in
this specific interval since G and g is real analytic and r ∈ R. In order to this we need
| r cos(ψ + 2kθ) |≤ r < g(θ) for all r < r0 and for all θ such that ψ + 2kθ ∈ (π/2, π − δ̃).
By inverting ψ+2kθ a quick calculation shows that this corresponds to θ ∈ (δ̃/2k, π/4k).
Hence it follows that minθ∈(δ̃/2k,π/4k) g(θ) > 0 since δ̃/2k > θ(p) = 0. Thus choose

r0 = minθ∈(δ̃/2k,π/4k) g(θ) to be a fixed constant and we find that G > 0 in the interval

ψ+ 2kθ ∈ (π/2, π− δ̃). Rename the r0 in the definition of D to the one being used here.

For ψ + 2kθ = π/2 we find that the cosine term in G is zero, and thus G being equal to
g(δ̃/2k) > 0 since ψ + 2kθ = π/2 corresponds to θ = δ̃/2k > θ(p) = 0. The cosine term
will be positive for ψ + 2kθ ∈ [0, π/2) and consequently G > 0. By the hypothesis it is
assumed that g(θ(p)) = 0, which correspond to the point ψ+2kθ = ψ = π

2 − δ̃ ∈ [0, π/2).
This is not an issue because the cosine term of G is positive at this point. For the small
interval ψ+2kθ ∈ (−δ̃, 0) we know that cosine is an even function and is therefore positive
in this interval. In addition g is positive for all values θ in (−π/4k, π/4k) = Intθ, hence
we find G > 0 for the part ψ + 2kθ ∈ (−δ̃, 0). Thus we have found that G(θ, r, ψ) > 0 in
D.

For each point p+ in γ+ we have ψ = Arg(p+) ∈ IntΨ. Since γ+ lies in a neighbourhood
of a point p on γ, we have 0 < r � 1. We might as well assume that r < r0. As G > 0
in D we conclude: For each point p+ in γ+, G(θ, p+) > 0 for all θ ∈ Intθ. Ultimately as
we have assumed that θ(p) = 0 without loss of generality, we may conclude G(θ, p+) > 0
for all θ ∈ (θ(p)− π

4k , θ(p) + π
4k ) for each point p+ ∈ γ+.
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