
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Haakon Muggerud

Feed-forward neural networks and
how to explain their predictions

Bachelor’s project in Mathematical Studies
Supervisor: Mette Langaas

May 2021

Ba
ch

el
or

’s
pr

oj
ec

t

Haakon Muggerud

Feed-forward neural networks and
how to explain their predictions

Bachelor’s project in Mathematical Studies
Supervisor: Mette Langaas
May 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

Contents

1 Introduction 3

2 Deep feed-forward artificial neural networks 3

2.1 Network architecture . 3

2.2 Mathematical model . 5

2.3 Activation function . 5

2.4 Optimization . 7

2.5 Model assessment and model selection 8

3 Explainable AI 9

3.1 Black box and why we need to look inside it 9

3.2 How to look inside the black box . 10

3.3 Partial dependence plot . 11

3.4 Individual conditional expectation plot 11

4 Data analysis 13

4.1 Boston Housing . 13

4.2 Descriptive statistics . 14

4.3 Fitting an artificial feed-forward neural network with Keras 17

4.3.1 Training and test data . 17

4.3.2 Model setup . 17

4.3.3 Hyperparameter tuning: early stopping 18

4.3.4 Final optimization . 19

4.4 ICE and PD plot . 19

5 Discussion and conclusion 21

References 22

A R-code 23

A.1 Dividing the data . 23

i

A.2 Building the model . 23

A.3 Select early stopping . 23

A.4 Train final model . 24

A.5 Make ICE and PD plots . 24

ii

Abstrakt Et kunstig feed-forward nevralt nettverk bruker lag med noder knyttet
sammen av vekter til å kalkulere prediksjoner p̊a basis av et input. Denne arkitek-
turer i kombinasjon med ikke lineære aktiverings funksjoner gjør at feed-forward
modeller kan bli brukt til komplekse regresjons- og klassifikasjonsproblemer. Feed-
forward modeller bruker observert informasjon til å optimalisere vektene i modellen.
Dette gjør den ved å se p̊a en tapsfunksjon og bruker gradienten sammen med kjern-
eregelen til å forandre p̊a vektene.
Feed-forward modeller er en del av en modellfamilie kalt black-box modeller. I en
black-box modell er kun inputtet og prediksjonen kjent, men hvordan modellen en-
der opp med denne prediksjonen er ukjent. Black-box modeller er mer brukt i dagens
samfunn og det er derfor ikke bare en interesse å se hva som skjer p̊a innsiden av
modellen, men ogs̊a regler for å sikre rettferdigheten ovenfor individene som er berørt
av en black-box modell. Black-box modeller kan ofte være kompliserte og vanskelige
å beskrive, men metoder som ICE og PD plot gjør det mulig å f̊a en bedre forst̊aelse
av modellen ved å se p̊a hvordan komponenter i data settet forandrer prediksjonen
til modellen.

Keywords Feed-Forward Neural Network · Black-box · ICE plot · PD plot

1

Abstract An artificial feed-forward neural network uses layers with nodes linked
together with weights to make predictions from an input. This architecture in
combination with the non-linear activation function makes the feed-forward model
able to be used to solve complex regression and classification problems. The model
uses observed data to optimize its weights by looking at a loss function and uses the
loss functions gradient and the chain rule to update its weights.
Feed-forward models are a part of a model family called black-box models. In a
black-box model only the input and the prediction are known, but how the model
comes up with these predictions is unknown. Because these models are more and
more used in everyday life there is not only an interest to look inside the black-box,
but also regulations in place to ensure fairness for the individual affected by these
models. Explaining these models can be complicating, but methods like ICE and
PD plots can make an individual get a better understanding of which features affect
the model’s prediction.

Keywords Feed-Forward Neural Network · Black-box · ICE plot · PD plot

2

1 Introduction

In this thesis, we will take a closer look at the mathematical foundation and methods
used for estimating parameters in artificial neural networks. The models do not rely
on complex mathematical ideas but can combine simple ideas in a way that makes
you able to solve complex problems. We will look at many aspects of a feed-forward
neural network model from architecture to optimization.

Today more and more decisions are automatically made by machine learning. There-
fore, it is important to understand what the model does and how it makes its pre-
dictions. This is to ensure that both the people working with the model can further
enhance it, and ensure that the people affected by the model also understand it. We
are going to look at two methods that visualize how the model makes its prediction
and how the desired feature affects the prediction of the model. These methods
are called ICE and PD plots. We will study how they are calculated and how to
interpret their outputs.

For the last part, we are going to use the methods discussed in the thesis on a data
set and show how one can analyze a real data set with artificial neural networks and
interpret the fitted model with ICE and PD plots.

2 Deep feed-forward artificial neural networks

Assume we have observed one data set consisting of N observations of p0 features
and one output.

2.1 Network architecture

A feed-forward neural network has a layered structure. The first layer is an input
layer and the last an output layer. In between, we may have several hidden lay-
ers. Each layer consists of nodes. Each layer, except the output layer, also has a
so-called bias node, which is equivalent to an intercept term in a regression model.
The input layer consists of observed features. The hidden layer is where the model
finds patterns to produce a prediction based on the input data. In the output layer
is the predicted answer, the output from the model. The output can either consist
of multiple nodes, for a classification model, or a single node, for a regression model.
We will focus on a regression model.

In Figure 1 we see a feed-forward neural network with two hidden layers. We will
use the following notation for the network parts.

3

Figure 1: Visual representation of an artificial feed-forward neural network.

• X: A matrix of dimension (N × p0) where (X1, .., Xpo) are column vectors.
X1(N × 1) is a vector with input features from a single observation. N is the
number of observations, and p0 is is the number of input features, which equals
the number of nodes of the input layer.

• W (l): Weights going from layer l to layer l + 1, l = 1, 2, ..,m− 1 and m is the
number of layers in the whole network, including the input layer, all hidden
layers and output layer.

• W
(l)
uv : The weight going from node u in layer l to node v in layer l + 1. Here

u = 1, 2, ..., pm−1, v = 1, 2, ..., pm, pl is the number of nodes in layer l.

• Z(l): The hidden layer l, l = 2, 3, .., l − 1.

• Z
(l)
j : The j’th node of the hidden layer Z(l), j = 1, 2, .., pl−1.

• f(Z(l)): Activation function on the nodes in layer Z(l).

• a
(l)
j : The nodes in layer l after applying an activation function.

• ŷ: The predicted output of the neural network.

4

An artificial neural network can be used for a vast variety of problems, but all with
the same idea. The idea is to use observed data to make a model that predicts an
output, as correct as possible, based on patterns found in the observed data.

2.2 Mathematical model

An artificial neural network always starts with an input matrix, X. All the data
about the features are stored in the (N × p0) dimensional input matrix. This data
is then passed into the nodes in the first hidden layer using a set of weights. The
first hidden layer is then a product of the input layer and the first set of weights.

Z(2) = XW (1) (1)

To be able to model non-linear functions we use an activation function on equation
(1), giving equation (2). More information about activation functions will be given
in Section 2.3.

a(2) = f(Z(2)) (2)

We now feed the results of equation (2) to the nodes in the next hidden layer, using
a new set of weights.

Z(3) = a(2)W (2) (3)

a(3) = f(Z(3)) (4)

Using the same formula, applying an activation function to the values of the hidden
layer and feeding it to the next hidden layer using a set of weights, can be used
several times, dependent on the number hidden layers in the model. If the feed-
forward neural network is used for classification, an activation function will also be
used for the output layer.

ŷ = a(3)W (3) (5)

Comparing the output to the true response we asses how well our model performs. In
Section 2.4 we look at how we use the residual, the difference between the networks
predicted response and observed response, to train the model.

2.3 Activation function

Artificial neural networks are inspired by the neurons in the brain. Neurons are
binary, meaning they are either on or off, or as we going to use, either firing or
not firing. Neurons bases their decision on firing or not firing on information from
previous neurons either firing or not firing. This decision is then passed onto several
other neurons, which also has to decide on firing or not firing. This forwarding
of information eventually leads our body to move in a specific way, based on the
information given. We can mimic the choice of firing or not firing in an artificial
neural network by using an activation function. Another reason to use an activation

5

function is that it adds a non-linearity to the model, preventing the model from just
having linear operations. We will look at two commonly used activation functions,
the Sigmoid and the Rectified Linear Unit function (ReLU). There is also possible
to use a combination of multiple activation functions in a model, for example using
ReLU as an activation function for the hidden layers and Sigmoid as an activation
function for the final layer, outputting something that can be interpreted as a prob-
ability (Goodfellow et al., 2016, page 63).

Figure 2: Visual representation of Sigmoid function

Figure 3: ReLU function

Sigmoid

f(z) =
1

1 + e−z
(6)

The Sigmoid function, equation (6) and figure 2, was the previously preferred activ-
ation function for the hidden layers. The function has two horizontal asymptotes,

6

0 when z → −∞ and 1 when z → ∞. The potential problem with the Sigmoid is
that the gradient is 0 at both tails, making the gradient descent method not efficient
(Section 2.4 we talk about gradient descent method).

ReLU

f(z) = max(0, x) (7)

The ReLU function, equation (7) (figure 3), is now the most common activation
function to use on the nodes in the hidden layers of a feed-forward neural network.
Unlike the Sigmoid function, which gives some activation for negative values, ReLU
always sets negative values to 0. The ReLU also has no upper limit to how ”activ-
ated” a node can potentially be. So even though it will have a gradient equal to 0
for negative values, will it not have a gradient equal to 0 for positive values.

2.4 Optimization

We have in Section 2.2 presented the architecture of the network, and seen that the
network model consists of unknown weights and biases that create an output. The
goal of the optimization is to change the weights and biases in an effective way that
makes the model as accurate as possible, in the sense that the output ŷ is as close as
possible to y, the observed response. We will use the feed-forward neural network to
perform a regression task, with the observed data (X, Y). We next want to estimate
values for the network weights. This is done by minimizing a loss function, equation
(8).

L(y, ŷ) =
1

N

N∑
l=1

(yi − ŷi)
2 (8)

A loss function compares the output to the observed response. Due to the non-
linearity of an artificial neural network, most loss functions become non-convex.
Therefore, rather than finding the global minimum an iterative gradient-based op-
timizer is used to lower the loss function (Goodfellow et al., 2016, page 86).

Gradient descent
From calculus it is known that the gradient of a function, ∇L(y, ŷ), gives us the
direction of the steepest ascent, so by taking the negative of the gradient, we get
the direction of the steepest descent. Changing the weights in this direction will
lower the loss function, and therefore indicates the directions we want the weights
to change in. In combination with the direction, a step-size is often utilized to indic-
ate how far in the given direction the weight should change. Too small of a step-size
would mean the gradient method would take many iterations to converge and have
the possibility to get stuck in a local minimum. On the other side, a large step-size

7

could ensure ending up in random places in the graph.

Stochastic gradient descent
Using the gradient descent to find a minimum in a neural network with few features
and observation is no problem. Unfortunately, neural networks often consist of thou-
sands if not millions of features and observations, so the method becomes expensive.
Therefore we need an alternative method for using gradient descent, this method
is called stochastic gradient descent. Stochastic refers to the random choosing of
points. True stochastic gradient descent takes a single random point and uses that
points gradient to give a direction for the whole set. This offers a low cost but is
inaccurate. Batch stochastic gradient descent uses all the points, and is very accur-
ate, but as mention above, can be expensive. Between these two extremes, there
is an efficient compromise called mini-batch stochastic gradient descent (Goodfellow
et al., 2016, page 45).
Mini-batch stochastic gradient descent randomly draws a sample of the points and
uses these points to compute a loss. Then calculating the gradient of the loss func-
tion from these points, and changes the weights based on the gradient.

Backpropagation
The core idea of backpropagation is to use the chain rule to find the partial derivative
of each weight from the loss function. An artificial neural network is essentially a
function consisting of nested functions, so by applying the chain rule, dy

dx
= dy

du
du
dx

, we
can find the partial derivative of every weight and use gradient descent to change
them. The result of backpropagation is an optimal set of weights, Ŵ .

2.5 Model assessment and model selection

One of the first things we do when training a model using a data set is to split
the data set first into two parts, training data, and test data. The training data is
needed for model selection and the training of the model. This is done by divid-
ing the training data into two new sets, a training set, and a validation set. On
the training set, we use the gradient descent method to change the weights, so the
model performs as well as possible on the training set. The validation set is used
for model selection, by avoiding overfitting and implementing early stopping. After
the model is trained it is then exposed to the test data, data the model never has
seen before. This is to evaluate how well the model will perform on new data.

Overfitting and early stopping

A common strategy when dealing with a neural network is choosing a model that
is too big. The global optimum of the model will then overfit the training data.
A validation set is then used to prevent overfitting, by implementing early stop-
ping. It is important to keep in mind that the model is optimized on the training
data, and the validation set is not used in the optimization. Overfitting is when

8

the model is so tailored to the training data that it starts performing worse in the
general case. A reason for overfitting can be that the model finds patterns that only
exists in the training set, and not in the general case. A way to spot overfitting
is to compare the error of the model on the training set to the error of the model
on the validation set. If the model keeps performing better on the training data,
but not on the validation set, this can imply overfitting. A method to prevent the
model to overfit on the training data is early stopping. Early stopping looks at the
performance of the model on the validation set and stops the training of the model
when the model performs best on the validation set. ”When” refers to how many
epochs the model has gone through. An epoch is one cycle through the training set
using gradient descent to optimize the model. Training a neural network often takes
multiple epochs. The early stopping tells the model the optimal number of epochs
to run through to perform best on the validation set.

K-fold cross-validation
We often have a limited amount of observed data, and we want to use the available
data efficiently. One way to do this is the K-fold cross-validation. This method
divides the training data into K different parts or folds. Each fold is then used as
a validation set once, and as a part of the training set the other K − 1 times. This
way the model trains on K slightly different training sets. It then uses the average
of the loss on the validation set as an estimate for how the model performs.

Hyperparameters
All parameters within the model that are not automatically changed or need to be
manually computed are called hyperparameters. This includes the number of hidden
layers, nodes within the layers, step-size, and the number of epochs the model should
train on. A popular strategy is to select a set of values for each hyperparameter and
then evaluate all combinations of these hyperparameters. This method is referred
to as grid search. This is not the main topic of this article and we have only used
the method of early stopping to choose the number of epochs to train the model on
in Section 4.

3 Explainable AI

3.1 Black box and why we need to look inside it

Many machine-learning methods like Random Forest, Neural Networks, and other
Ensemble methods are what we call black-box model. What identifies a black-box
model is that it starts with a problem and finds a prediction, how it ends up with
this prediction is unknown, and happens within the black box. If the model per-
forms well and makes good predictions one might think there is no reason to looking
inside the black box, but there are many reasons for why one want to look inside.

Black-box models are now used in many different fields. A doctor can use a black-
box model to predict the relapse of a cancer patient, or a data scientist uses black

9

box models to make complex models predicting everything from the stock market
to insurance. For many of these users, it would be of interest to look at what is
going on within the black box. For instance, the doctor may want to check what
variables determine whether or not a patient is going to relapse to trust or learn
from the model, or the data scientist wants to study which variables determine the
predictions to improve the model.

Due to the rising popularity of using black-box models for predictions, a regulation
took place in 2018 called General Data Protection Regulation (2018 reform of EU
data protection rules 2018). This regulation states that an individual has the right
to a ”meaningful explanation of the logic involved” when an automatic decision has
taken place. The reason for the regulation was to secure fairness for the individuals
involved. For example, may a bank use a black-box model to determine if a person
is eligible for a loan. If this person is rejected because of the model she has the
right to know why the loan was rejected in a way that makes her understand the
reason behind it. How a black-box model makes its predictions are hard enough for
a data scientist to understand, so describing it in an understandable way such that
everyone at least understands parts of is difficult. In this section, we are going to
review some of the methods that are used to explain what happens inside the black
box.

Figure 4: Visual representation of a black box model, with some model that is
characterized as black box models inside.

3.2 How to look inside the black box

There are many methods to look at what is going on inside the black box. One
method is to look at the importance of the features in the model. This indicated
which features drives the prediction, but nothing about how the expected prediction
varies depending on a single feature.

Some of the methods are global and others are local. A global method tries to
explain the whole model and how the model predicts its output. For example, if
a doctor wants to know how the model predicts a relapse, the doctor would want
to use a global method, like PD or ICE plot. On the other side, if the doctor is
interested in how a specific patient’s set of genes affect the prediction of the model,

10

he would use a local method like LIME or Shapley. The local methods aim to see
how a specific input feature varies the prediction of the model.

Partial dependants plot and individual conditional expectation plot, which we will
be looking at in Section 3.3 and Section 3.4 respectively, are examples of methods
that are model agnostic. If a method is agnostic it means that it works on any
black-box model. The opposite of this is a model-specific method, that only works
on a specific black-box model.

3.3 Partial dependence plot

Partial dependence (PD) plot is an global model agnostic method that aims to show
the marginal effect of a feature on the prediction of the model. The idea is to see
how the prediction changes when a set of features are varied and the others are
kept fixed. As an example, PD plots can be used to see how the weather effects
the number of bikes rented, if you have a model that predicts the number of bikes
rented based on many features including the weather.
We need to define PD plot mathematically. Let S ⊂ {1, ..., p} and C be the comple-
ment set of S. S and C are here index subsets of predictors. Example if S = {1, 2},
then xS refers to a 2× 1 vector containing the first and second coordinates of x. We
define the partial dependence function f on xS as:

fS(xS, xC) = ExC
[f(xS, xC)] =

∫
f(xS, xC)dP (xC) (9)

Each subset S has its own partial dependence function fS. This function gives the
average value of f when xS is fixed and xC varies as explained by the marginal
distribution dP (xC). We need make an estimate of equation (9), as neither the true
f nor the marginal distribution dP (xC) are known. This is done in equation (10),
where xC1, ..., xCN are the different values of xC observed in the data.

f̂S(xS, xCi
) =

1

N

N∑
i=1

f̂(xS, xCi) (10)

For each observation xCi is kept and xSi is switched with the variable we want
to study. Here f̂S is an estimate of the true model, and is the function we plot
(Goldstein et al., 2015).

3.4 Individual conditional expectation plot

Individual conditional expectation (ICE) plot is an extension of the PD plot. The
ICE plots the predicted response as a function of feature xS conditional on an
observed xC , rather than plotting the average partial effect. This results in N
estimated conditional expectation curves. A PD plot is the average of all the ICE
plots. ICE plots can give interesting plots and indications that are not visible
through PD plot.

11

Figure 5: An example of an ICE plot.

Figure 5 is an example of an ICE plot. The plot shows how the proportion of
residential land zoned for lots over 25, 000 sq.ft (Zn) affects the output of the model
used in the Section 4. The bold line with yellow border around it is the PD plot,
while all the other lines are ICE plots. Here we see that the PD plot is the average
of all the individual ICE plots. From the plot we can see that the changes in this
variable almost have no influence on the prediction of the model.

12

4 Data analysis

In this section we will study how to use the methods presented in this thesis on a
real life problem using a popular benchmark data set.

4.1 Boston Housing

We will use the Boston Housing data set to build a feed-forward neural network
as well as show PD and ICE plots. The Boston Housing data set contains 13
feature variables and 506 observations and is collected in 1978. Description is from
The Boston Housing Dataset 1996, and the data set is in the MASS package in R
(Venables and Ripley, 2002) . The following are the features presented in the data
set:

• CRIM - per capita crime rate by town

• ZN - proportion of residential land zoned for lots over 25,000 sq.ft.

• INDUS - proportion of non-retail business acres per town.

• CHAS - Charles River dummy variable (1 if tract bounds river; 0 otherwise)

• NOX - nitric oxides concentration (parts per 10 million)

• RM - average number of rooms per dwelling

• AGE - proportion of owner-occupied units built prior to 1940

• DIS - weighted distances to five Boston employment centres

• RAD - index of accessibility to radial highways

• TAX - full-value property-tax rate per $10,000

• PTRATIO - pupil-teacher ratio by town

• B - 1000(Bk − 0.63)2 where Bk is the proportion of blacks by town

• LSTAT - % lower status of the population

• MEDV - Median value of owner-occupied homes in $1000’s

The goal is to predict the median value of owner-occupied homes in $1000’s.

13

4.2 Descriptive statistics

Understanding the data is important when using machine learning models. Informa-
tion about the data is the basis for both the decision of which model to use and how
to use the data in the model. It is also important to address missing data. When
the data set is missing data points there are many different methods to handle this.
In the Boston Housing data set there are no missing data, so these methods will not
be discussed in this thesis.

We can look at the data by taking a summary in R. This way we can look at the
minimum (min.), median, mean, maximum (max.) and the standard deviation for
each feature. From this, we see that some of the features have a higher variance
than others and a wider range. All these implications can affect the model and we
need to handle the data.

crim zn indus nox black lstat
Min 0.01 0.00 0.46 0.39 0.32 1.73

Median : 0.26 0.00 9.69 0.54 391.44 11.36
Mean : 3.61 11.36 11.14 0.55 356.67 12.6
Max.: 88.98 100.00 27.74 0.87 396.90 37.97

Sd.: 8.60 23.32 6.86 0.12 91.29 7.14

rm age dis rad tax ptratio
Min.: 3.56 2.90 1.13 1.00 187.0 12.60

Median : 6.21 77.50 3.21 5.00 330.0 19.05
Mean : 6.29 68.57 3.80 9.55 408.2 18.46
Max.: 8.78 100.00 12.13 24.00 711.0 22.00

Sd.: 0.70 28.15 2.11 8.70 168.54 2.16

Table 1: The minimum, median, mean, maximum and standard deviation for every
feature in the data set.

14

Figure 6: Pairs plot of the features in the Boston Housing set.

15

Figure 7: Chart that shows the correlation of the features in the Boston Housing
set.

Figure 7 shows the correlation between the features in the Boston Housing set.
From the plot, we are most interested in the correlation between the median value
of owner-occupied homes in $1000’s (MEDV) and the other features. Here two
correlations stand out. The negative correlation with the % lower status of the
population(LSTAT) and the positive correlation with the average number of rooms
per dwelling(RM). This correlation is also visible in the bottom row of the pairs
plot, Figure 6.

Standardization
Depending on the method to be used, data standardization is an important aspect.
For models using the black box methods random forest and gradient boosting stand-
ardization is less important, especially when the sample size is large (Shanker et al.,
1996).
Standardization is used when there is a large difference in the range of the features,
and when the features use different measurement units. If a feature has a wide
range it may dominant the model, standardization makes sure this does not hap-
pen. For Boston Housing we have features measured in dollar, square feet, and other
measurement units as well as wide ranges for certain features, so it is important to
standardize the data set.

X̄ =
1

N

N∑
i=1

Xi (11)

16

S =

√√√√ 1

N

N∑
i=1

(Xi − X̄)2 (12)

Standardization consists of first centering data to have a mean 0 and then scaling
to have a standard deviation of 1. The mean is calculated by equation (11) and the
standard deviation by equation (12). Each value is then subtracted by the mean, and
divided by the standard deviation to get the standardization. In the model, we use
the standardization within the cross-validation. Doing it within the cross-validation
ensures a better representative for the training data. In the cross-validation, you
both standardizes the partial training data and the validation data separately.

4.3 Fitting an artificial feed-forward neural network with
Keras

4.3.1 Training and test data

The first thing we do when building a model is to divide the data set into a training
data set and test data set. A common split is to have 80% of the data being used
as training data and the remaining 20% be test data. This makes sure that we
have enough training data to run a k-fold cross-validation for model selection in
the training data and enough to get a representative result from the test data. We
calculate the feature means and standard deviation on the training data and use that
to standardize the test data now. The reason we want to standardize on the mean
and standard deviation of the training data is that we expect observations in the
future to not come in a data set and that the training data is a better representation
for the mean and the standard deviation of the data set.
Next is to prepare for the k-fold cross-validation by splitting the training data into k
different parts. Practically this is done by giving each observation an index between
1 and k at random, making sure that each split has more or less the same number of
observations. We chose to go with a 5-fold cross-validation, this ensures that neither
the validation set nor the training set is too small.

4.3.2 Model setup

Now we start the set up the architecture of the model. We chose the R package
Keras (Chollet and J. J. Allaire, 2018) to build the model. To get a more optimal
model one could use grid search to get the best possible architecture. This is not the
topic of this thesis and we went for a small model containing two hidden layers with
16 nodes in the first and 8 nodes in the second one. This is a regression problem
and we use the squared loss of Section 2.4. The ReLU, discussed in 2.3, is used as
the activation function.

17

4.3.3 Hyperparameter tuning: early stopping

The only hyperparameter we calculate in this thesis is the number of epochs we use
to train the model, this method is called early stopping and was discussed in Section
2.5. Before starting we assign an upper limit on how many epochs to run through.
We choose this to n = 500. After this, we used the 5-fold cross-validation on the
model. Training on four parts and validating on one part. For every new validation
set, we standardize the partial training set and the validation set. The validation set
is standardized by the mean and standard deviation of the partial training set, as
this is a larger set and is expected to be a better estimate for the mean and standard
deviation of the data set. We train the model on each cross-validation set n times,
after each epoch saving the score on the training set and the validation set. When
the model has been trained on all 5 different sets we take the mean result for epoch
and calculate the standard deviance and plot these in a graph.
Figure 81 shows how the loss on the validation set is affected by the number of
epochs. Here we see that it starts by decreasing before it eventually starts to in-
crease. The increase in the loss of the validation set suggests that the model starts
to overfit. The optimal number of epochs to use is suggested by the lowest loss on
the validation test, which in our case was 72 epochs.

Figure 8: How the mean absolute error on the validation is affected by the number
of epochs.

1Figure 8 is created using the geom smooth() in ggplot2 and does not display the precise value
of the validation mae, but how they are predicted to look like (Wickham, 2016).

18

4.3.4 Final optimization

After we are finished looking at the data, finding the architecture and the hyper-
parameters of the model, we train our final model. The final model is trained on all
available training data in 72 epochs. The final model resulted in a loss of 15.76 and
a mean absolute error of 2.37 on the test data.

4.4 ICE and PD plot

We now present the PD plot and ICE plots for all the features in Boston Housing
set fitted by the artificial neural network. As in Section 3.4 the line with the yellow
border is the PD plot and all the others are the ICE plots.
A interested thing to notice from the plots in Figure 10, 9 and 5 is that most of
the features looks linear. This may indicate that we can use linear regression to get
similar prediction results as for the artificial neural network.
The package used to make the ICE plots(Goldstein et al., 2015) did not handle
predictions from Keras automatically. Therefore, we had to modify parts of the
code, see Appendix A.5.

ptratio rad

rm tax

Figure 9: ICE and PD plots of 4 out of 13 features.

19

age black

chas crim

dis indus

istat nox

Figure 10: ICE and PD plots of 8 out of the 13 features.

20

5 Discussion and conclusion

A feed-forward neural network can be used to fit complex data set, using non-linear
functions, but does not seem to be very accurate on the Boston Housing data set,
considering the mean value of the houses in the data set is $22, 532 and the mean
absolute error for the model is $2, 370. There may be several reasons for this, the
first one being a sub-optimal model. The final model is just a regular feed-forward
with very little hyperparameter calculations around it, so there may be a model that
is more fit for this set. The second reason can be the randomness of the pricing.
If the price is determined by a person a lot more features may have been used to
determine the value of a house. A third reason is the size of the data set. The Boston
Housing set only has 506 observation. From Figure 6 we can see the variable we want
to predict MEDV is unevenly spread, giving the model few training observation for
the houses that are not valued around $20, 000.

Looking at the ICE plots it looks like most of the features are more or less linear. The
reason this is interesting is that artificial neural networks are a lot more expensive to
build compared to regular linear regression. So if a linear regression model performs
just as well as the feed-forward model, it is a lot more cost-efficient to use the linear
regression model. We test this out by making a linear regression model and looking
at the results of the loss and mean absolute error on the test data. The linear
regression model ended up with a loss of $478, 244, 000 and a mean absolute error of
$543, 000 on the test data. This implies that the model is much more complex than
the ICE and PD plots suggest and that a linear model performs much worse on the
data. So even though most of the feature seems to have a linear correlation with
the prediction, we can not use a linear regression model to yield the same results.

If we wanted to expand on this thesis it would be around optimization of the hyper-
parameters in the model. We would also look at more local explainable AI methods
to better understand and explain the model.

21

References

2018 reform of EU data protection rules (25th May 2018). European Commission.
url: https://ec.europa.eu/commission/sites/beta-political/files/data-protection-
factsheet-changes en.pdf (visited on 17th June 2019).

Allaire, JJ and François Chollet (2021). keras: R Interface to ’Keras’. R package
version 2.4.0. url: https://CRAN.R-project.org/package=keras.

Chollet, François and J. J. Allaire (2018). Deep learning with R. Manning Press.
Dahl, David B. et al. (2019). xtable: Export Tables to LaTeX or HTML. R package

version 1.8-4. url: https://CRAN.R-project.org/package=xtable.
Goldstein, Alex et al. (2015). ‘Peeking Inside the Black Box: Visualizing Statist-

ical Learning With Plots of Individual Conditional Expectation’. In: Journal of
Computational and Graphical Statistics 24.1, pp. 44–65. doi: 10.1080/10618600.
2014.907095.

Goodfellow, Ian, Yoshua Bengio and Aaron Courville (2016). Deep learning. MIT
Press.

Molnar, Christoph (2019). Interpretable Machine Learning. A Guide for Making
Black Box Models Explainable. https://christophm.github. io/interpretable- ml-
book/.

R Core Team (2021). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing. Vienna, Austria. url: https://www.R-
project.org/.

Schloerke, Barret et al. (2021). GGally: Extension to ’ggplot2’. R package version
2.1.1. url: https://CRAN.R-project.org/package=GGally.

Shanker, M., M.Y. Hu and M.S. Hung (1996). ‘Effect of data standardization on
neural network training’. In: Omega 24.4, pp. 385–397. issn: 0305-0483. doi:
https://doi.org/10.1016/0305-0483(96)00010-2. url: https://www.sciencedirect.
com/science/article/pii/0305048396000102.

The Boston Housing Dataset (10th Oct. 1996). url: https://www.cs.toronto.edu/
∼delve/data/boston/bostonDetail.html (visited on 13th May 2021).

Venables, W. N. and B. D. Ripley (2002). Modern Applied Statistics with S. Fourth
edition. ISBN 0-387-95457-0. New York: Springer. url: https://www.stats.ox.ac.
uk/pub/MASS4/.

Wickham, Hadley (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-
Verlag New York. isbn: 978-3-319-24277-4. url: https://ggplot2.tidyverse.org.

22

https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf
https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=xtable
https://doi.org/10.1080/10618600.2014.907095
https://doi.org/10.1080/10618600.2014.907095
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://www.R-project.org/
https://www.R-project.org/
https://CRAN.R-project.org/package=GGally
https://doi.org/https://doi.org/10.1016/0305-0483(96)00010-2
https://www.sciencedirect.com/science/article/pii/0305048396000102
https://www.sciencedirect.com/science/article/pii/0305048396000102
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.stats.ox.ac.uk/pub/MASS4/
https://www.stats.ox.ac.uk/pub/MASS4/
https://ggplot2.tidyverse.org

A R-code

A.1 Dividing the data

set . seed (1)
t r a i n = sample (1 :nrow(Boston) , 0 . 8∗nrow(Boston))
colnames (Boston)
head (Boston)
t r a i n data=Boston [t ra in , −14]
t r a i n t a r g e t s=Boston [t ra in , 1 4]
t e s t data=Boston[− t ra in , −14]
t e s t t a r g e t s=Boston[− t ra in , 1 4]
head (t e s t data)

k <− 5
i n d i c e s <− sample (1 :nrow(org t r a i n))
f o l d s <− cut (i nd i c e s , breaks = k , labels = FALSE)

A.2 Building the model

bu i ld model <− function () {
model <− keras model s e q u e n t i a l () %>%

l a y e r dense (un i t s = 16 , a c t i v a t i o n = ” r e l u ” ,
input shape = dim(t r a i n data) [[2]]) %>%

l a y e r dense (un i t s = 8 , a c t i v a t i o n = ” r e l u ”) %>%
l a y e r dense (un i t s = 1)

model %>% compile (
opt imize r = ”rmsprop” ,
l o s s = ”mse” ,
met r i c s = c (”mae”)

)
}

A.3 Select early stopping

num epochs <− 500
a l l mae h i s t o r i e s <− NULL
for (i in 1 : k) {

cat (” p r o c e s s i n g f o l d #” , i , ”\n”)

va l i n d i c e s <− which(f o l d s == i , a r r . ind = TRUE)
va l data <− t r a i n data [va l i nd i c e s ,]
va l t a r g e t s <− t r a i n t a r g e t s [va l i n d i c e s]

23

p a r t i a l t r a i n data <− t r a i n data[− va l i nd i c e s ,]
p a r t i a l t r a i n t a r g e t s <− t r a i n t a r g e t s [− va l i n d i c e s]

model <− bu i ld model ()

h i s t o r y <− model %>% f i t (
p a r t i a l t r a i n data , p a r t i a l t r a i n ta rge t s ,
v a l i d a t i o n data = l i s t (va l data , va l t a r g e t s) ,
epochs = num epochs , batch s i z e = 1 , verbose = 0

)
mae h i s t o r y <− h i s t o r y$metr i c s$va l mae
a l l mae h i s t o r i e s <− rbind (a l l mae h i s t o r i e s , mae h i s t o r y)

}
dput(a l l mae h i s t o r i e s , ” a l l mae h i s t o r i e s . dd”)

a l l mae h i s t o r i e s=dget (” a l l mae h i s t o r i e s . dd”)
average mae h i s t o r y <− data . frame (

epoch = seq (1 : ncol (a l l mae h i s t o r i e s)) ,
v a l i d a t i o n mae = apply (a l l mae h i s t o r i e s , 2 , mean)

)

ggp lo t (average mae h i s to ry , aes (x = epoch , y = v a l i d a t i o n mae))
+ geom l i n e ()

ggp lo t (average mae h i s to ry , aes (x = epoch , y = v a l i d a t i o n mae))
+ geom smooth ()

A.4 Train final model

th i s epochs=which .min(average mae h i s t o r y$ v a l i d a t i o n mae)
model <− bu i ld model ()
model %>% f i t (t r a i n data , t r a i n ta rge t s ,

epochs = th i sepochs , batch s i z e = 1 , verbose = 0)
r e s u l t <− model %>% eva luate (t e s t data , t e s t t a r g e t s)

A.5 Make ICE and PD plots

i c e k e r a s r e g r e s s i o n=function (object ,X, p red i c to r , y)
{

N = nrow(X)
x j = X[, p r e d i c t o r]
grid pts = sort (X[, p r e d i c t o r])
grid pts = unique (grid pts)
num unique pts = length (grid pts)
i c e curves = matrix (NA, nrow = nrow(X) , ncol = length (grid pts))
colnames (i c e curves) = round(grid pts , 2)

24

xvec temp = X[, p r e d i c t o r]
for (t in 1 : length (grid pts)) {

X[, p r e d i c t o r] = grid pts [t]
out=ob j e c t %>% predict (as . matrix (X))
i c e curves [, t] =out

}
X[, p r e d i c t o r] = xvec temp

ac tua l p r e d i c t i o n = ob j e c t%>% predict (as . matrix (X))

xlab = colnames (X) [p r e d i c t o r]
range y = NULL

sd y = NULL
i f (! missing (y)) {

range y = max(y) − min(y)
sd y = sd (y)

}
pdp = apply (i c e curves , 2 , mean)

i c e obj = l i s t (i c e curves = i c e curves , g r i d p t s = grid pts ,
p r e d i c t o r = pred i c to r , x j = xj ,
a c tua l p r e d i c t i o n = actua l p r ed i c t i on ,
logodds = FALSE, prob i t = FALSE, xlab = xlab ,
nominal axis = FALSE,
range y = range y , sd y = sd y , Xice = X, pdp = pdp ,
i n d i c e s to bu i ld = NULL, f r a c to bu i ld = 1 ,
p r e d i c t f c n = NULL)

class (i c e obj) = ” i c e ”
invis ib le (i c e obj)

}

k i c e=i c e k e r a s r e g r e s s i o n (ob j e c t=model ,X=as . data . frame (t r a i n data) ,
p r e d i c t o r =6)

plot (k i c e)

par (ask=TRUE)
for (k in 1 : 13)
{

t h i s=i c e k e r a s r e g r e s s i o n (ob j e c t=model ,X=as . data . frame (t r a i n data) ,
p r e d i c t o r=k)

a s s i g n (paste (” k i c e ” ,k , sep=””) , t h i s)
plot (th i s , c ente red=FALSE, xlab=colnames (t r a i n data) [k] ,

po int labels s i z e =0.5)
}

for (k in 1 : 13)
{

25

t h i s=i c e k e r a s r e g r e s s i o n (ob j e c t=model ,X=as . data . frame (t e s t data) ,
p r e d i c t o r=k)

a s s i g n (paste (” k i c e t e s t ” ,k , sep=””) , t h i s)
plot (th i s , c ente red=FALSE, xlab=colnames (t e s t data) [k] ,

po int labels s i z e =0.5)
}

26

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Haakon Muggerud

Feed-forward neural networks and
how to explain their predictions

Bachelor’s project in Mathematical Studies
Supervisor: Mette Langaas

May 2021

Ba
ch

el
or

’s
pr

oj
ec

t

	Introduction
	Deep feed-forward artificial neural networks
	Network architecture
	Mathematical model
	Activation function
	Optimization
	Model assessment and model selection

	Explainable AI
	Black box and why we need to look inside it
	How to look inside the black box
	Partial dependence plot
	Individual conditional expectation plot

	Data analysis
	Boston Housing
	Descriptive statistics
	Fitting an artificial feed-forward neural network with Keras
	Training and test data
	Model setup
	Hyperparameter tuning: early stopping
	Final optimization

	ICE and PD plot

	Discussion and conclusion
	References
	R-code
	Dividing the data
	Building the model
	Select early stopping
	Train final model
	Make ICE and PD plots

