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Abstract

In this thesis, we consider the construction of the Cantor set with its unique mathematical
properties, together with different equivalent representations of the set in both metric
spaces and general topological spaces. Last, we define the general way we may construct
automorphisms on the Cantor set using the notion of Brattelie diagrams.
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Introduction

The main object of study in this thesis is a well the Cantor set, named after the German mathemati-
cian George Cantor. In 1883 he gave a general definition for the set, as an example of a subset of
the real line, with what may seem like counterintuitive properties. It is these properties that will
be of study, and as we’ll see, actually characterize the set itself. We will look at different, although
equivalent, representations of the Cantor set, with the primary goal of constructing automophsims
on the Cantor set. In the abstract theory of analysis it is often used as an example to illustrate
the various mathematical definitions, that includes one of the main sources for this thesis, Abbott
(2015).

In addition to being a well-studied object in the aforementioned field, the Cantor set finds its way
into many other fields as well. In the study of dynamical systems, one can find that the fractal ge-
ometry, the self-similarity or pattern, as we may all call it, actually can describe chaotic systems of
the real world. By describe, we mean that they “converge” to the geometry described by a fractal.
In the case the Cantor set, or in most cases, its graphical representation named the Devil’s stair-
case, which has been shown to describe a wide range of phenomena. Everything from earthquakes
(Chen et al., 2020) to the distribution of the galaxies in the universe (Choudhury et al., 2019). In
some sense, there is truth to the statement that the Cantor set can be reckoned as the discretization
of the very space we occupy. It is the "distribution” of the stardust of the universe. Then, as the
evolution of the space in time can be reflected by the automorphism defined on the Cantor set, one
can, in theory, describe all instances of a dynamical system. Which is to say, we can predict to a
certain degree of accuracy the future of the system.

Furthermore, the Cantor set is one of the many ways one can discretize the real line. This is impor-
tant, as we will later observe that binary sequences can represent the elements of the set. Though
they are of infinite length, this is an obvious connection to the way computers work. However,
they do not work in the continuum, as everything about a computer has to be finite or discretized,
and somehow the Cantor set is the best way to do this. The mathematics underlying how one can
approximate elements of the Cantor set with finite sequences of 0’s and 1’s, is the same underlying
how the computer deals with the infinite numbers of the real line. Take the number 7 = 3.14. ...
It is not convenient nor efficient to store all the digits of 7 on the computer. Instead, the number
can be represented as a convergent geometric series, the same for which we will use to describe
elements of the Cantor set.

Now before we begin, a special mention is to be made of a fellow algebro in the house of two rooms,
Jorn Olav Jensen for great laughs, valuable feedback, and clearing up a few things in the thesis,
and topology in general.
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1 Cantor spaces €

1.1 The Cantor set C

We begin with a fascinating mathematical construction on the real number line R. This unique set
of numbers, formed as a subset of the real line, is a helpful tool for extending the intuition and
understanding of mathematical properties and definitions of both the real line and its subsets.

One category of examples of the Cantor set C, is any closed subset of a closed interval, formed
by removing open intervals in a specific manner. While there are many ways to construct a cantor
set this way, the most used modern construction is called the Cantor ternary set, and it is defined
on the closed interval between 0 and 1 of the real numbers, referred to as the unit interval. As
the name suggests, this set is constructed via iteratively deleting the open middle third of the line
segment ad infinitum. It is the closed subsets on the interval that are not removed that form the
Cantor ternary set C.

Remark 1.1. Take note of the construction of the ternary set. While it is the most used example,
one is not limited to removing middle thirds. In fact, removing any fixed quantity from the original
line segment will yield a Cantor set.

Figure 1.1: A graphical illustration of first six iterations of the Cantor ternary set. The black ”bars” represents
the segments that eventually form the cantor ternary set.

Definition 1.2. Given the closed interval [0,1] c R. We construct the Cantor ternary set C
by removing the open middle third interval ad infinitum. In other words, through iteration from
Co = [0, 1] one can recursively construct each subsequent closed set C, ¢ C for a natural number
n>1.

Co = [0, 1], (1.1)
12 1 2
C1 :CO\ (g,g) = [O,g] U [5,1] 5 (12)
(1.3)
c, = &Ly (Z C”‘l) (1.4)
3 3 3
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From this, we have that the intersection of the intervals that are not removed is what results in the
Cantor ternary set.

n=1

Observe that each C, yield 2" closed intervals, all with length (Lebesgue measure) 1/3". Figure 1.1
illustrates the first 6 iterations.

1.1.1 Elements of the Cantor Set

Since the interval removed is always internal to the current interval, the endpoints of the current
interval are never removed in any of the consecutive eliminations. Take the endpoints 0,1 € C
as an example. Observe that they are never removed in any of the consecutive eliminations of the
middle third interval and are therefore an element of C. This is also true for the next set of endpoints
%, % € C. The endpoints are essential to highlight, as we can via a sum of the endpoints running
from left to right, approximate every element in C, which motivates the following definition and

lemma.

Definition 1.3. An arbitrary finite sequence of numbers (ag ... a,) of length n € N, that for sim-
plicity is noted as (a,) is a binary sequence if each element a, can take only on two distinct values,
either O or 1. A finite binary sequence (a,) of length n is noted as the following element from the
set of all finite binary sequences of length n by a, € {0,1}". An infinite binary sequence (a,) is
noted as the following element from the set of all infinite binary sequences by (a,) € {0, 1}*.

Remark 1.4. Each removal leaves behind two separated intervals. By labelling the interval to the left
0 and the interval to the right 1 we can use this to our advantage when formulating the following
lemma.

Before we do that however, we must bring to mind a few critical results from calculus on the
topic of geometric series, in order to prove the lemma. If |r| < 1 for an infinite geometric series,
then the series converges to the following

Zark: e (1.5)
— 1-r

k=0
If r # 1 for a finite geometric series, then the series converges to the following
n
1= rn+1
Z ark = q (1—) ) (1.6)
k=0 -

Lemma 1.5. Every element x € C can be written as a geometric series of the form

(o)

2a,
23—6; fora, € {0,1}.

n=1

Proof. Let m € N, m > 1, and C,, be the m-th set after a finite number of iterations m. If we sum
from the left, and always sum two times the fraction we removed, then the geometric series will
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always converge on the left endpoint of any interval in C,, (Recall that C,, is a union of intervals).
In other words it will be a finite geometric series up to index m. However, to approximate any
element x € C we need the sum of all the subsequent intervals ad infinitum. In other words this
will be an infinite geometric series. We dub the finite geometric series as the head, and the infinite
geometric series as the tail.

™\ 2a > 2a
nzz; m +n:zm;rl £ for a, € {0,1}. (1.7)
N—— N—

Head Tail

It can easily be verified that the head converges to left endpoint of any interval. The interesting
series is the tail. If we can approximate the right interval endpoint, then we know we can approxi-
mate any element on this interval by changing the values for a,. For the series to approximate the
right element, then a, = 1 for all n. By using both equation (1.5) and equation (1.6) we can show
that it converges to the following element.

> 2a 1 N - |
kR R R
n=m+1 n=m+1 n=0 n=0
1— lm+1 L4 (=1) + lm+1
cof - ) o™
—3 -3 3
1m+1 1
S?’g) =3

Which is exactly the length (Lebesgue measure) of each interval in C,,! Since we can approximate
x with the both head and the tail we must conclude that x € C,, for all m, and thus also belong in
C = ;-1 Cm. By combining the head and the tail we get the following

) 2n
Z 36; for a, € {0,1}.

n=1

O

Remark 1.6. If we let a, = 0 for every n, then the geometric series sum to 0, and if we let a, = 1
for every n, then the geometric series converges to 1. Thus any sum corresponding to an element
of the Cantor space is bounded by these values, as well as demonstrating that both 0,1 € C as
expected. Additionally, it follows that the Cantor space is non-empty, as by its very construction
must at least include the endpoints on the interval on which it is constructed.

 2-0 2.1
Zgn =0, Zgn :2'1_

n=1 n=1

W=

=1.

1
3

Remark 1.7. Observe from the proof that if given x € C, it will have a unique binary sequence that
can be viewed as a ”set of directions” on how to find x within C. The sum of the endpoints by
lemma 1.5 will converge to x if one follows its unique binary sequence. Note that two elements of
the Cantor space cannot have the same binary sequence unless they are equal.

10
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Example 1.8. Let us do an example on the interval highlighted in figure 1.2. We use the geometric
series lemma 1.5, and split it so that the first sum approximates the endpoint on the left of this
interval. To reach this interval we need to let n = 4, and we want the contribution from the first
2/3, and the latter 2/9 as marked with green and yellow arrows. In other words we want a; = 1,
az =0, a3 =1 and a4 = 0 in our geometric series.

4

2,

n=1

[\

an
n

2:0 2-1 2-0 20
+ +

© o3l 32 33 34 T 97

w

Now for the sum to actually approximate an element of the Cantor set, it must run to infinity. In
other words, the tail of lemma 1.5 after the split is what must converge to all elements of the Cantor
set within this interval. If the series is still to converge on the endpoint on the left side we calculated
above, we must have that every a, after n = 4 is equal to zero, as to get no contributions from the
later fractions. If we want the sum to converge on the endpoint on the right side on this interval,
then we need the contribution from every fraction after n = 4, and thus every a, after n = 4 must
equal to one. As we showed in the proof of lemma 1.5, we know that the tail will converge to the
length of this interval, which is 1/ 34,

Figure 1.2: lllustration of the head in example 1.8.

1.1.2 Length of the Cantor Set

AsC c [0,1] € Ritis Lebesgue-measurable. That is to say, we have one way of measuring lengths
on subsets of R.

Definition 1.9. For a subset S C R, the Lebesgue measure ¢ of the interval I = [a, b] (or I = (a, b))
gives the length of I as

t(I)=b-a.

It sounds reasonable that if we sum the Lebesgue measure of all the open intervals that are removed,
we can find the Lebesgue measure of the closed intervals that are left. In other words, we can
measure the length of C. Recall that each iteration in equation (1.4) yields 2" closed intervals
of Lebesgue measure 1/3". The same holds true for the intervals we remove, and we have the
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following geometric series

R 2n—1 S n—1 -n 1 1

Zgn :ZQ 3= =1
n=1 n=1

In other words, the Lebesgue measure of the intervals removed is 1. Recall that C is defined on

the closed unit interval, which has Lebesgue measure 1. Now, subtracting the Lebesgue measure

of the intervals removed yields the Lebesgue measure of C. Henceforth, the Cantor set is of zero
length. A strange result, for which the preceding arguments is a proof for the following lemma.

Lemma 1.10. The Cantor set has Lebesgue measure zero.

1.1.3 Counting the Elements of the Cantor Set

By removing intervals not containing their endpoints (open intervals), one could come to the mis-
leading conclusion that the only elements of the Cantor set are the endpoints themselves, as the
removal is solely happening to the internal of an interval. However, while it is true that the Cantor
set contains no intervals of any kind, it can be helpful to think of what is left as arbitrarily small
sized intervals. What we are suggesting here is that C must contain elements that are not end-
points. To clarify this, notice that all of the interval endpoints are rational numbers. If the Cantor
set only contained the interval endpoints, then the set would be countable as the rational numbers
are countable. Thus, if the Cantor set contains elements that are not endpoints, is it still countable?

Lemma 1.11. The Cantor set is uncountable.

Proof. Recall that any element of C has a corresponding (infinite) binary sequence (a,) € {0, 1}".
Suppose that we have a numbered list L with all possible binary sequences in C. In other words,
let L = C, and assume that L is countable.

1 (an)

2 (bn)

N (xn)

Can we form a new binary sequence that is not listed in L? If true, then we have a contradiction
on the assumption that we had every element listed in L to begin with. Let («,) be a new binary
sequence not already listed in L. Furthermore, let the binary sequence be constructed in the follow-
ing specific way. Take the first binary sequence (a,) € L. The value of the first position ay € (an)
is determined by the value of the first position ag € (a,).

1 ifag=0,
apg =
0 ifa():l.

12



1 Cantor spaces €

This insures that ay # ag, and thus (a,,) # (a,). Now, take the second binary sequence (b,) € L, and
determine the value of the second position a; € (a,) by the value of the second position by € (by,).

1 ifby =0,
a1 =
0 ifby =1.

This insures us that @; # by and thus (a,) # (b,). Do this for every binary sequence (x,) € L. The
resulting binary sequence (a,) will for all (x,) € L never be listed in L. By the specific manner of
constructing (a,) we have insured that it will always be different to every binary sequence already
listed in L, no matter how long or “detailed” L is. That is to say, if we added (a,) to L, then we
could construct another sequence (f,) ¢ L in the same way. As we always can continue doing
this, our list of binary sequences will never be complete. Thus we must conclude that every binary
sequence cannot be listed in a numerated list, which is to say that they are uncountable. As every
element in C has a corresponding binary sequence, C must be uncountable. O

The implications of lemma 1.11 are important. As mentioned, if C only contained the interval
endpoints, then our set would be countable. This result however, suggests that the Cantor set
contains other points, and that there are uncountable many of these(!). To conclude, from the
point of measuring the length of the Cantor set, it has the same Lebesgue measure as a single
point. In terms of cardinality, it is uncountable.

1.1.4 Self-Similarity

Dimension Scaling X3 # new copies Magnification factor

Point 0 - 1 30
Line 1 — 3 3!
Square 2 — 9 32
Cube 3 — 27 33
C x - 2 3*

Table 1.1: Demonstrated in the table is one way we can find the dimension of C

Take a good look at the pattern in figure 1.1. Notice we have omitted any label of 0 and 1, which
are the most apparent elements of C C [0, 1]. Actually, we could have formed the Cantor ternary
set on the closed interval [0, 3], where the only change would be a scaling of all elements of C by
a factor of three. Furthermore, observe in this case that the “original” Cantor ternary set is the left
interval after the first removal. In other words, the Cantor ternary set is always equal to two copies
of the original set if these two copies are shrunk by a factor of three and translated. The structure
of the Cantor set under magnification is indistinguishable from the structure of the whole. This
self-similar property means that it is equally valid to think of C as a fractal. A fractal need not
be intricate for it to be complex. The simple rule in which we form the Cantor set can, from one
viewpoint, be the purest or prototype of all fractals as one single — simple — line — can become
innumerable many — self-similar lines.

To make the link with fractals more evident, we will need a notion of dimension. Without giving
any formal definition of dimension (of which there are several), there is a solid argument in the
following. A point has dimension zero, a line segment has dimension one, a square has dimension

13
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two, and a cube has dimension three. Recall that the Cantor set, when scaled by a factor of three,
resulted in two “new” copies of the original set. Observe in the following table 1.1 what happens
when all of the aforementioned “sets” are scaled by the same factor.

Note that the dimension of the figure is always present in the exponent of the magnification
factor. In other words, the dimension of the Cantor set should satisfy 2 = 3%, which with a simple
logarithm yields x = %23:23 ~ (.631. The association behind the mathematical concept of fractal
and the resulting fractional dimension above only further underlines this aspect of the Cantor set.
However, it is worth mentioning that “fractal” was first used by Benoit Mandelbrot in 1975, while
Cantor’s original construction is, as mentioned in the introduction, almost 140 years old. However,
the definition Cantor himself gave for C was abstract and general, where the construction of the
ternary set we have studied here, was only mentioned in passing as a short example (Edgar, 2004).

Figure 1.3: A illustration of the two dimensional Cantor set.

1.1.5 Alternate Representations

Another equally valid representation of the Cantor set builds directly on the notion of infinite
binary sequences as directions to elements of the cantor set. In a binary sequence we have to
possibilities for each position, by forming a map of the possibilities at each position we can con-
struct the following infinite complete binary tree shown in figure 1.4. In other words, the infinite
complete binary tree is a map” of all possible binary sequences of C. Furthermore, observe the
following geometric series for all the rightmost red nodes on the Cantor set in figure 1.4.

Using equation (1.5) we find that it converges to 1, which is exactly the right endpoint of the first
interval Cp. By inducing our notion of selecting whether we can go right or left on each index n

14
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we get the following geometric series

+Zg—z for a, € {0,1}.

n=1

N —

This geometric series coincides with lemma 1.5, in the sense that they both converge to the same
elements for the same binary sequences, and is therefore an equally valid representation of the
elements of C.

0 ///////T \\\\\\ 1
Od// \\bl 16// \\&1

Figure 1.4: The development of the infinite complete binary tree associated with the Cantor ternary set.

As mentioned in remark 1.1, removing any fixed percentage in the same manner, will yield a Cantor
set. Figure 1.5 illustrates what this set looks like, with its associated infinite complete tree.

/

JIN /1IN /IN

00 01 02 10 11 12 20 21 22

T
|
0 1 2
| | |

Figure 1.5: The development of the infinite complete tree associated with a different construction of the
Cantor set.

15
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1.2 The Cantor Metric Spaces C

1.2.1 Metric Spaces

As we are now familiar with the Cantor set, we can progress towards forming the Cantor space €.
The Cantor space is, as we will see, essentially the Cantor set with additional structure added. The
Cantor set is, as mentioned, a subset of the real line R. On the real line we have a notion of length,
which gives a length measure on the Cantor set as a subset of R. The length measure is what we
call a metric. However, if given a metric on a set, the metric must satisfy a few conditions if both
the metric and the set are to be considered a metric space when viewed together. For more details
on this section, the reader is referred to chapter 3 of Abbott (2015).

Definition 1.12. Let X be a non-empty set, and let d be amap d : X XX — R hereby referenced as
the metric. A metric space M is the set X together with a metric d, noted (X, d), where d satisfies
all the following conditions

« d(x,y) > 0 where d(x,y) =0 if and only if x = v,
« d(x,y) =d(y,x) forall x,y € X,
e« d(x,z) <d(x,y)+d(y,z) forall x,y,z € X.

Example 1.13. The real line R is an example of a metric space with the metric given by the absolute
difference d(a, b) = |a — b|. It can easily be seen that d satisfies the two first conditions. If given
a,b € X the only case where d(a,b) = 0 is if a = b, otherwise d(a,b) > 0. Furthermore, the
distance is symmetric for all a, b € R due to the absolute value. The triangle inequality also holds
asforalla,b,c € R.

Before we define the Cantor metric space and prove some of its distinctive properties, we need a
better understanding of both the subsets of R themselves and their attributes. Nevertheless, what
follows is one of the most important theorems of R going forward.

Definition 1.14. Given a metric a metric space (X, d), a sequence (ax),, € X is a Cauchy sequence
if there for any real number r > 0, exist N € N such that for all positive integers m,n > N

d(a,,anm) <r.

Definition 1.15. Given a metric space M = (X, d). The metric space is complete if every Cauchy
sequence in X converges to an element in X.

Example 1.16. A great example is the well-known result that the real line R is a complete metric
space, as it can easily be shown that every Cauchy sequence on the real line converges to an element
inR

1.2.2 Open and Closed Sets

Let us take a moment to discuss open and closed sets, as they are fundamental in the construction
going forward.

16
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Open sets

Definition 1.17. Given a metric space (X, d). For a element x € X and a real number € > 0. The
open e-ball centered at x with radius € is the subset of X

B(x;e) ={y e X | d(x,y) <e}. (1.8)

Example 1.18. Given the metric space (R, d), then the open interval (x — €; x + €) is the open ball
centered around an element of the set x with a radius of €.

Definition 1.19. Given a metric space (X, d). A subset S C X is called open if there for all elements
x € S exist subsets of open e-balls B(x;¢€) C S.

Lemma 1.20. I: The union of any collection of open sets is open.
II: The intersection of a finite collection of open sets is open.

Proof. I: Assume that we have a collection of open sets {A,}, where a € N is the number of sets in
the collection, and let U = | ¢y Ag- Given an arbitrary element a € A, C U, then, since we for all
points a € U can produce an open e-ball B C A, C U centered at a, it can be seen that B C U, and
thus U is open.

II: Assume that we have a finite collection of open sets {Ao, . ,Aﬂ}, where f € N is the number

of sets in the collection. Let V = ﬂﬁzo Ay, and given an arbitrary element a € U. Observe that a is
a member of all the open sets Ak, and we can then produce an open e-ball B € A; forall0 < k < B.
We can form a set with all of these e-balls, and we must find the smallest ball. The reason for
choosing the smallest ball is that it will be contained in all of the other balls of the set. In other
words, € = min €, .. ., €, such that B(a, €) € B(a, €). Hence, B(a,e) € V and V is open. O

Closed sets

It is equally valid to define closed sets, but first we need an understanding of limit points and
isolated points.

Definition 1.21. Given a metric space (X, d), and a subset S C X. Then, a point x € X is a limit
point of S if every open ball B(x; €) intersects S at some point other than x.

Definition 1.22. Given a metric space (X, d), and a subset S C X. Then, a point x € S is an isolated
point of S if it is not a limit point of S.

Remark 1.23. An isolated point is always a member of the set, while the same is not true for limit
points.

Definition 1.24. Given a metric space (X, d), an arbitrary element x € X, and a real number € > 0.
The closed e-ball centered at x with radius € is the subset of X

B(x;e)={y e R | d(x,y) <e}. (1.9)

Lemma 1.25. Given a complete metric space (X,d). A subset S C X is closed if and only if every
Cauchy sequence contained in S converges to a limit x in S. A closed subset of a complete metric space
is a complete subset.

Proof. Let S be a closed subset of a complete metric space M = (X, d). If we have a Cauchy sequence
(ar) in S, then (ay) is also a Cauchy sequence in X since S C X. As M is complete, then the Cauchy
sequence converges to a point x € X. It also follows from lemma 1.25 that since S is closed S = S,
then x € S. It follows then that S is complete. []

17



1 Cantor spaces €

Lemma 1.26. I: The union of a finite collection of closed sets is closed.
II: The intersection of any collection of closed sets is closed.

Proof. This proof uses some definitions that are to be defined just after. Given an index I of some
number of subsets A; C X, the generalized versions of the well know De Morgan’s laws are the
following

= m (A)°.

iel

= U (A)° and

iel

N4

iel

L

iel

Observe that if we use lemma 1.20, take the complement of both statements, and then use De
Morgan’s laws, we have proved lemma 1.26. ]

Remark 1.27. 1t is because of that latter part in the proof, that the notions of “finite” and “any
collection” for union and intersection in lemma 1.26 are converse of the statements in lemma 1.20
for open sets.

Example 1.28. The Cantor set C is closed since it is the intersection of a finite union of closed
intervals. Furthermore, as R is complete, it follows from lemma 1.25 that the closed subset C ¢ R
is complete as well.

Definition 1.29. Given a complete metric space (X, d). A subset S C X is clopen if it is closed and
open.

Remark 1.30. In standard English, it is impossible for a noun to be both open and closed simulta-
neously, they are antonyms. The mathematical view of open and closed however, is the opposite.
The fact that a set is open does not exclude the fact that it can also be closed, and vica verca. It can
very well happen that a set is both open and closed. Furthermore, if a set is not open, that does not
imply that the set must be closed. It can be neither.

Definition 1.31. Given a metric space (X, d), a subset S C X, and a set L of all the limit points of
S. The closure of S, noted as S is the following subset S C X.

S=SUL.

Remark 1.32. If S is the open interval (a, b), then S =(a,b) UL = [a, b]. Thus for a closed interval,
it is always the case that S = S, and that S is always a closed set.

Definition 1.33. Given a complete metric space (X, d), and a subset S C X. The complement of S,
noted as S¢, is the following subset 5S¢ C X.

S={aeX|ag¢S}.

Lemma 1.34. I: A set S is open if and only if its complement S is closed.
II: Conversely, a set S is closed if and only if its complement S is open.

Proof. I: Let S be an open subset S C X. If given a limit point x € S°, then every open e-ball
centered at x will contain points of S¢. It cannot happen that x € S as that would imply there exists
an e-ball B € O. From remark 1.32 one can take note that a closed set contains it all limits points,
and thus x € O°.
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Conversely, if let Q be a closed subset Q C X. Since Q is closed, we know that it contains all its
limit points, so if given a point x € Q° we know that x ¢ Q. For Q° to be open we must have an
open e-ball centered at x that does not intersect Q, such that B € Q¢ thus O° is open.

II: Given R C X, observe that (R°)° = R. Applying the observation to I, yields the wanted
results. O

Theorem 1.35. Given a metric space (X,d), and a subset S C X. Then, S is dense in X if and only if
S=X.

Definition 1.36. Given a metric space (X,d). The completion of (X, d), noted as (X.d), is a
complete metric space together with a function f: X — X such that d(f(x), f(y)) = d(x,y) for
all elements x,y € X, and f(X) = {f(x) : x € X} is a dense subset of X.

1.2.3 The Cantor Metric Space

The metric from the real line metric space R induces a metric on C to form the Cantor metric space
(C,d). Following that, recall that every element x € C can be represented by the geometric series
given in lemma 1.5, which results in the following definition. This is the beginning of what will be
a new, more formal, definition for C.

Definition 1.37. The induced metric d from R for two elements a,b € C isthemapd : CXxC — R
where d is the following

d(a,b) :d(i 23‘;”,2 ) ZM (1.10)
n=1

where ay, b, € {0,1}. (1.11)

Let us emphasize an important characteristic of what the metric d determines. Recall equation (1.8).
If given a point x € C, we can determine with the open ball B(x; €) which points y € C that are of
distance € of x. In other words, we can form an open set with all the points y that are on the same
e-length interval as x. Furthermore, recall lemma 1.5 and that the tail of the geometric series was
bound by the value of 1/3™ Where m € N is the index of iteration. It follows from this that e must
be bounded by 3n =T <€< 3m, if the following lemma is to hold.

Lemma 1.38. Given a real number e > 0, n € N, and a point x € C. For the Cantor ternary set, the
open ball centered at x with radius € = 3% determines all points y € C of distance d(x,y) < 3% of x,
if and only if the first n coefficients of x and y coincide.

Proof. Letx e C,ne N, e = 3,,, and B(x; 3,,) = {y eC|d(x,y) < 3%} Recall that x = 3777 23#,
and y = ZZ’;O 23%", and observe the following.

Z 2|xn_ i 2|Xn i 2|xn_yn|
EEr—
n=1 n=1 n=m+1 3
Head Tail

We have already proven that the tail converges to 1/3™, the same value € is bounded by. Further-
more, if the head sum to zero, then it does not matter what the tail converges to, as this will be less
than the value we have chosen for e = 1/3™. Observe that the power of m for € also determines
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the upper limit of the head. This is not incidental, as the only case for which the sum of the head is
equal to zero is if the binary sequences coincide in these positions. If they do not, then the distance
will be greater than 1/3™, and the points are not elements of the same open ball. The converse is
also true. If the first n-coefficients of x and y coincide, then that means that the head will sum to
zero. As the tail converges to 1/3™, then that means that they are elements of the same open ball.

If the head does not sum to zero, then they are not elements of the same open ball.
O

1.2.4 Properties of the Cantor Metric Space
Compact

Definition 1.39. Given a metric space (X, d), and a subset S C X. If there exists a real number
r > 0, such that d(a,b) < r for all a,b € S, then S is bounded. Furthermore, (X, d) is a bounded
metric space, if it is bounded as a subset of itself.

Definition 1.40. Given a complete metric space (X, d), and a subset S C X. Then S is compact if
every sequence in S has a converging subsequence in S.

Remark 1.41. From the the Heine-Borel theorem (Abbott, 2015) it has been shown that defini-
tion 1.40 is equivalent to the definition that S C R is compact if and only if S is closed and bounded.
(It follows from this that all compact subsets of R are closed and bounded.)

Lemma 1.42. The Cantor metric space is compact.

Proof. We showed in example 1.28 how C by its very construction is closed and complete. More-
over, C is also by its very construction bounded. Recall definition 1.39, and observe the following.
The greatest distance between two elements in C is equal to the distance between the endpoints
on the closed interval [a, b] it is constructed on. This result will always be less than a real number
b < |r|. For the Cantor ternary set constructed on the unit interval [0, 1], the distance between
two elements will always be bounded by d(a,b) < 1 < r. As C is closed and bounded, it follows
from definition 1.40 that it is compact. []

Remark 1.43. Technically we can thus say that by the very construction of C c [0,1] C R, itis
both closed and bounded, and is thus compact. [

Perfect

Definition 1.44. Given a metric space (X, d), and a subset S C X. Then S is perfect if it is closed
and no point a € S is isolated.

Remark 1.45. Closed intervals [c, d] with ¢ < d, are the most evident classes of perfect sets.
Lemma 1.46. The Cantor metric space is perfect.

Proof. Let x € C1, where C; given below is one subset of the Cantor Ternary set equation (1.4).

: ]
-1
3

Observe that there exist an x; € C N C; where x| # x, that still satisfies to be within the bound of
|x — x1] < 1/3%. Alook on figure 1.1 might further clarify this. As we iterate for each n € N and

1

C1:|:0,§ U
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1 Cantor spaces €

calculate the corresponding C,, there will always exist x, € C N C, where x,, # x, still satisfying
to be within the bound of |x — x,,| < 1/3". In other words, C cannot contain isolated points, and is
thus perfect. [

Totally Disconnected

Definition 1.47. Given a complete metric space (X, d), and two non-empty sets S,Q C X. Then
S, Q are separated if both S N Q and S N Q are empty.

Remark 1.48. The property of separated sets ensures us that the sets are non-empty and that they
do not contain the limit points of each other (i.e. disjoint).

Definition 1.49. Given a metric space (X, d). The set R C X is disconnected if R = SUQ, where both
S and Q are both non-empty and separated. If R is not disconnected, it is connected. Furthermore, R

is totally disconnected if for any two distinct points a, b € R, there exist separated sets where a € A
and b € B such that R=A U B.

Lemma 1.50. The Cantor metric space is totally disconnected.

Proof. In the construction of C, there is always some interval left after the removal ad infinitum.
However, this is only the case until we have the final resulting C, which has no intervals of any
kind. In other words, if given any two distinct points k,/ € C then there will always exist two
separate sets where k € K and ! € L, where KU L C C,, where C, C C,. ]

Remark 1.51. What we are trying to emphasize here is that, if k, [ are not in the same interval,
then it can easily be seen that they are totally disconnected as each C,, is the union of two disjoint
closed intervals. What the process of removal ad infinitum does, is that it insures that if k, l were in
the same interval in an arbitrary C,, then they would still be totally disconnected because at some
point the middle third in between them will be removed.

What is interesting, is that the proven properties of the Cantor metric space actually characterize
the Cantor set itself. We conclude this chapter with what is the main definition of a Cantor set,
and the definition we will use going forwards.

Definition 1.52. A Cantor set C is any non-empty, compact, perfect, totally disconnected metric
space.

1.2.5 Metric Spaces as Topological Spaces

Until now, we have worked with an analytical representation of the Cantor set. We are now going
to transform our problem as a subspace of R into the realm of topological spaces. As will become
apparent, we have been working with a topological space the whole time, as metric spaces are
examples of topological spaces. On top of that, the open balls, which formed open sets of the
Cantor metric space, are the open sets generating the topology on C. The resulting topological
space is one representation of the Cantor space €.

Definition 1.53. Given a set X, a topology 7, where 7 is a collection of subsets S C X that are
(by this definition) called open in X, satisfying the three following conditions.

« Both X, and @ must be in 7.

« For U a sub-collection of 7, the union of all elements in U must be in 7.
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« For U a finite sub-collection of 77, the intersection of all elements in U must be in 7.
A set with a topology, noted as (X, 77), is called a topological space.

Definition 1.54. Given a set X. A basis B for a topology 7 on X is the collection of subsets B € X
satisfying the two following conditions.

« For each element x € X there is a B € B where x € B.
e Letu € 7. If x € u then there exists a B € 8 where x € Band B C u.

Lemma 1.55. Given a set X, and a basis B for the topology 7. Then collection of the union of all
elements B € B is the topology 7 on X.

Proof. Observe that any element B € B are an element of the topology 7 . Let U be a sub collection
of 7, and choose for each element in x € U an element in B € B such that x € B. Now U = |,y B,
which is the union of elements of 8. []

Example 1.56. Given a metric space (X, d). The collection of all open e-balls is a basis for the
topology on C

B ={B(x;¢e) | x e X,e > 0}.

Homeomorphisms

In order to compare different topological spaces, we need a notion of knowing whether we can
form a structure preserving map between different topological spaces, and a notion of knowing
whether topological spaces are the same, that is, having the same topological properties.

Definition 1.57. Given two topological spaces X and Y. A function f : X — Y is continuous if for
every open set U C Y the preimage f~'(U) is an open set in X.

Definition 1.58. Given two topological spaces X and Y. Amap f : X — Y is a homoemorphism if
f is bijective, continuous, and with a continuous inverse. If there exists a homeomorphism f, we
say that X and Y are homeomorphic, written as X = Y.

Definition 1.59. A map f is an automorphism if f is a homeomorphism of the space to itself.

It is important to emphasize here that if there exists a homeomorphism between two topological
spaces, then they also “share” topological properties, in the sense that they are the same in both
spaces. Recall the properties we proved for the Cantor metric space. As a metric space is a topo-
logical space, any other topological space that is homeomorphic to the Cantor set, must also have
the same properties. As such, any topological space that is homeomorphic to the Cantor set is in
fact what we will call a Cantor space €.
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1.3 The Cantor Spaces &

Our description of the Cantor space is not especially elegant. Even though we have formed a topo-
logical space, the space has a analytic feel to it, as every element in the Cantor set is represented
by the infinite geometric series. What is elegant about the Cantor set, is that it has a very combini-
torial feel to it, and we can form a space that is simpler and more convenient for us going forward.
Recall the infinite sequences of 0’s and 1’s. They were essential in order to guide us to an element
of C. By considering the set X = {0, 1} of all infinite sequences of 0 and 1, we will show that the
topology arising from the metric topology coincides with the product topology on X where {0, 1}
is considered as a discrete space. This is the most obvious explicit example of the general case in
which we consider the product topology on the set X = {0,...,p — 1} where p > 2 a natural
number. We will now go on to establish this as our new representation of the Cantor space €.

1.3.1 Discrete Topology on Infinite Sets

Definition 1.60. Given a set X, and the collection 7 of subsets of X. If 7 contains all subsets of
X, then 7 is the largest topology on X and is referred to as the discrete topology. Any set equipped
with a discrete topology is a discrete topological space. If 7 only contains the subsets 0,X C X,
then 7 is the smallest topology on X and is referred to as the indiscrete topology. Any set equipped
with a indiscrete topology is a indiscrete topological space.

Remark 1.61. Every point x € X is an open set in the discrete topology. Thus a discrete topological
space is a space of separated isolated points.

Remark 1.62. If X is a space with the discrete topology, then every map from X to any other topo-
logical space is continuous.

The discrete topological space we are going do define is what we will call an alphabet going forward.
Additionally, a sequence in the alphabet will be referred to as a word.

Definition 1.63. Given p € N, let the set A= {0,1,2,...,p — 1} be an alphabet with n-letters.
Let the set A = {All the words of infinite length of the alphabet A}.

Given m € N, let the set A™ = {All the words of finite length m € N of the alphabet A}.

Let the set A" = | J;’_; A™ = {The union of all finite words of length m € N of the alphabet A} .

Furthermore, we define concatenation of two alphabets in the following way.

Definition 1.64. Let x € A" and y € A™ be two finite words of length n, m € N. The concatenation
of x and y, denoted x o y or for brevity as xy, is a word of length n + m.

xy=xoye A"
Remark 1.65. It is important to emphasize that in general xy # yx. The ordering is imperative.

Example 1.66. Given two finite words x € A" and y € A" such that x = xpx1x2 ... x, and
Y = Yoy1Y2 - . . Ym. The concatenation of x, y is in this case is either

XY =X0...XnYo---Ym,
YX =Y0...YnX0 ... Xm-
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If given an infinite word z € AV such that z = zpz; ... z; . . ., then the concatenation of x, z is either

XZ=XQ...XpZ0 - Zi+r-,

ZX =20 . Zieen... at the "end” of an infinite long word ...xp...x,.

Definition 1.67. If x € A" and y € A™ are two finite words of length n,m € N and m > n, we say
that x is a prefix of y, if there exists z € A™™" such that y = xz.

Remark 1.68. If x € A" a finite word of length n, and y € AY is an infinite word, then the concate-
nation is an infinite word x o y € AV,

1.3.2 Product Topology on Infinite Sets

Definition 1.69. Given the following Cartesian product of topological spaces

x=|]x

The product topology on the space X is generated by the following basis
B = {rl Ui | U; C X; is open, and U; = X; for a finite number of indices i } )

Remark 1.70. The latter requirement on U; = X; for a finite number of indices is critical when
working with infinite Cartesian products. In such a case, it is not true that open sets are unions of
open sets. We therefore let a finite number of sets be open, and let the rest be the whole space.

Let A={0,...,p — 1} be a topological space with the discrete topology, so every x € A is an open
subset. Then in A", the basis opens are what we will define as the cylinder sets. If given a finite
word w, where © € A* we define the cylinder set Z(w) as the following subset of A

Z(w) = {a) cA" xe AV |wx e AN} , (1.12)

= {all infinite words with prefix w} .

Observe that for Z(w) we let a finite number of letters be open, and let the rest be the whole
alphabet, and that this coincides with the definition of the basis for the product topology. The
product topology generated by the cylinder sets is the following

N
H{O,...,p—l}:AN:{O,...,p—l}N where p > 2.

Remark 1.71. The reason p > 2 a natural number, is to avoid the uninteresting case of words with
with only 0’s.

Union and Intersection of Cylinder Sets

Lemma 1.72. Given two distinct cylinder sets Z(w) and Z(n), with w and n being two arbitrary finite
words not necessarily of the same length n, and where y the leftover binary sequence if one word is
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contained in the other. The union of Z(w) and Z(n) is one of the following four possibilities.

Z(w) ifn = 0y,
Z(n) ifw =ny,
Z(wo...wn-1) iff nn # 0, where both are of same length n,
Z(w) U Z(n) otherwise.

Z(w) U Z(n) =

Proof. I: Let w = wg ... w, and n = g . . . , be two finite words of length n and m, and let n # m. If
w; # n; for all indices 0 < i < min {n, m}, then the cylinder sets have no coinciding words, which
is to say that either of the cylinder sets are contained in the other, and thus the union cannot be
shortened.

II: If this is not the case observe the following. If w is a prefix for 5, then we have that n = wy,
where y is the leftover sequence. Now Z(n) C Z(w), and as such Z(w) = Z(w) U Z(n). The
converse, if 7 is a prefix of w yields the same result.

III: The last case we need to check is if n = m, and where the first n — 1 positions coincide, and
then at n is different. Then we have the case that o = n¢...nn — lw, and that n = wg ... wn — 1n,,.
Then the union will be the following cylinder set Z(ng...nn —1). [

Lemma 1.73. Given two arbitrary cylinder sets Z(w) and Z(n), with w and n being two finite words
not necessarily of the same length n, and where y the leftover binary sequence if one word is contained
in the other. The intersection i of Z(w) and Z(n) is one of the following three possibilities.

Z(n) foCn ieiffn=oy,
i=Z(@)NZ@n) =y Z(w) ifnCwo ieiffw=ny,
0.

Proof. I: Let w = wq ...w, and n = 1ng . . . ny be two finite words of length n and m, and let n # m. If
w; # n; for all indices 0 < i < min {n, m}, then the cylinder sets have no coinciding words which is
to say that either of the cylinder sets is contained in the other, so the intersection must be empty.
II: The intersection is not empty only if either w is a prefix for n such that n = wy, orpisa
prefix for o such that w = 5y, where y is the leftover binary sequence. This is equivalent to the
cylinder set Z(n) C Z(w) or Z(w) C Z(n), respectively. As such Z(w) N Z(n) is either Z(w) or
Z(n), respectively. O

Lemma 1.74. Cylinder sets are clopen.

Proof. Recall that the complement of an open set is a closed set (lemma 1.34). Observe that if a
finite word w € {0,...,p — 1}", then the complement is a union of cylinder sets. As such the
cylinder sets must also be closed. []

Homeomorphic spaces

While not entirely obvious, our space {0, ...,p — 1} is in fact an equally valid representation of
a Cantor space &, as C with the topology generated by the open e-balls, i.e. {0,...,p — 1} = @.

Lemma 1.75. The map j: {0,...,p — 1} — @ is an homeomorphism of topological spaces, where
J maps a cylinder set to its equivalent e-ball.

While we will not prove that j is a homeomorphism in the general case, we will instead take on a
specific case to explicitly formulate it in the next section.
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1.3.3 The Discrete 2-Point Space {0, e

Let us study the particular case of p = 2, that is an alphabet A only consisting of two letters, and
explicitly construct the homeomorphism j between the two representations of the Cantor space.

N
[ 10,13 =10, 13",

This is the most interesting characterization for us, as the homeomorphism comes almost naturally
when considering discrete spaces of 2 points and the Cantor ternary set. This from the fact that
we have already shown that each element in the Cantor set has a unique infinite binary sequences
to represent it. Or rather, the geometric sum on the infinite binary sequence to represent it. Let us
first do some calculative examples of both the union and intersection of cylinder sets in the discrete
2-point space.

Example 1.76. A selection of calculative examples of finding the union in a special case for n = 2
of the alphabet A. Given two cylinder sets Z(w) and Z(n) the following examples of unions hold.
A look on figure 1.6 might help the reader to verify the examples below.

Z(00) U Z(01) = Z(0),
Z(00) U Z(0010) = Z(00),
Z(10) U Z(110) = Z(10) U Z(110),
Z(01) U Z(10) = Z(01) U Z(10).

Z(w)

o/ \1
oo/ \01 10/ \11
/N /N /N /N

000 001 010 011 100 101 110 111

A AT A AN AV ATYATYA

0000 0001 0010 0011 0100 0101 00110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Figure 1.6: A binary tree of all cylinder sets of words w up to length 4.

Example 1.77. A selection of calculative examples of finding the intersection in a special case
for p = 2 of the alphabet A. Given two cylinder sets Z(w) and Z(n) the following examples of
intersection hold. A look on figure 1.6 might help the reader to verify the examples below.

Z(00) N Z(01) = 0,
Z(00) N Z(0010) = Z(0010),

Z(10) N Z(110) = 0,

Z(01) N Z(10) = 0.
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Example 1.78. Given a finite word w = 01, then the complement is the following union of cylinder
sets

Z(01) = 2(00) U Z(1).

A look on figure 1.6 might further verify this.

Homeomorphic spaces

Lemma 1.79. Given the following map j: {0, 1} — €. Then j is an homeomorphism of topological
spaces. Furthermore, j(n): Z(no...nm) = B(X2, %, 1/3™).

Proof. The map j is clearly bijective. Additionally, if given a cylinder set Z (w) C {0,1} of an
infinite word with the finite prefix of length m € N, noted w = @y . .. @y, observe the following

> 2, = 20 1 )

3

Jj(Z(w)) = xi=w,YV0<i<mpy=B i
s 3i ' 3m

i=0

Now, given an element x € Zp and m > 0, we have that

> 2x; 1
B =
pary 31 3m

Then the preimage j~! of any open ball B C Zp is a clopen cylinder set Z (x) C {0, 1}, thus A is

continuous. The converse, the preimage of the inverse ( j'l) 1o j of any cylinder set Z (x) is an

open ball B, thus j_1 is continuous. As j is bijective, continuous, and j‘1 is continuous, it follows
then from definition 1.58 that j is a homeomorphism, and that {0, Wxe. O]

=Z(wgy...0n) .

Let us end this chapter with the following example on the similarities between the open sets of the
Cantor metric space and open sets of the discrete product topology.

Example 1.80. Given a binary sequence x € {0, 1}', and the following cylinder set and open balls
defined around the element.

B (j(x);1/3") = Z(x),
{yeCld(x,y) <1/3"} = {x e A",y e A" | xy € A"}.

Let the prefix be given as x = 01110. The following example illustrates the correspondence between
open balls and cylinder sets.

B(j(x);1/3%) = Z(011),
B(j(x);1/3%) = Z(01110).

and also that

B(j(x);1/3%) € B(j(x); 1/3%),
Z(01110) € Z(011).
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We want to construct structure preserving maps on the Cantor space. More specifically, we want to
construct a set of automorphisms that we name “odometers” or “adding machines”. The reason for
the naming will become apparent later on, and we focus first on the following. The name “adding
machine”, emphasizes a problem apparent with the Cantor space {0, ...,p — 1} for p > 2 we are
working in. As the name obviously suggests, the odometer performs the binary operation of addi-
tion of two elements. However, we have the inconvenience of having no notion of addition in our
current topological space. Therefore, we must create a homeomorphism over to a more convenient
topological space where the binary operation of addition is defined, that is, the topological space
of p-adic integers Zp.

2.1 Topological Groups

Definition 2.1. Given a set G. If G is closed under a binary operation * and satisfies the following
conditions, then G forms a group that we note (G, *).

« Associativity: (a*b) xc=ax* (bx*c)foralla,b,c € G.
« Identity element: There is an element e € G such that e * x = x x e for all x € G.
« Inverse: There is for each x € G an inverse a’ € G suchthata*a’ =a’ *a =e.

Definition 2.2. Let G be a set on which a group structure and a topology are given such that the
group operations of product and inverses are continuous functions. If so, G is called a topological

group.

Definition 2.3. Let p € N be a prime number. We define

N[p] :{xopo---+x,~pi|i€Nandxi€{0,~'vp_1}}’

:{inPi|xie{0,...,p—l}}.
i=0

Going forwards, we define a metric d, on N[p] such that

ap —b
dy(x,y) = dp(ag + - +anp” by + -+ bup™) = |kp—’<k|v

where k is the minimal number such that a; # bi. The completion of N[p] with the metric d, is
the topological group of p-adic integers noted as

Zp:{inPi |X,'€{O,...,p—1}}.
i=0
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Lemma 2.4. Given the following map h: {0,...,p -1} — Zp. Then h is an homeomorphism of
topological spaces. Furthermore, a prefix a = ag...am of the space {0, ..., p — 1} with length m,
then h(a) = Y520 aip'.

Proof. The map h is clearly bijective. Additionally, if given a cylinder set Z (w) C {0,...,p — 1}} of
an infinite word with the finite prefix of length m € N, noted w = wy .. . Wy, observe the following

00 oo 1
h(Z(CO)) = {ZXHP” DX = wi, VO<i< m} :B(Zwipl;ﬁ) .
n=0 i=0

Now, given an element x € Zp and m > 0, we have that

- N
1(B(inpl;p—m
i=0

Then the preimage h™! of any open ball B C Z, is a clopen cylinder set Z (x) € {0,...,p — 1},

=Z(wgy...0nm) .

thus h is continuous. The converse, the preimage of the inverse (h™1) L of any cylinder set Z (x)
is an open ball B, thus h~! is continuous. As h is bijective, continuous, and h~lis continuous, it
follows then from definition 1.58 that h is a homeomorphism, and that {0,...,p — I Zy,. O

2.2 The Generalized Odometer ¢

Given p € N a prime and q € N, we want to define a map ¢,: {0,...,p - Y= q0,...,p -1},
and show that it is an automorphism.

Definition 2.5. Let ”0” be the symbol that represents the identity element e € Zp under the binary
operation of addition.

Definition 2.6. Given a, b,0,1 € Zp, the binary operation of addition of a + b = c is defined in the
following recursive way for each position n € N of a and b.

co=(x+y)o=x0+yo+e modp where e =0,
0 ifx,—1+yp-1+e-1 <p,

chn=x+Y)p=x1+yp+& modp wheree, = .
1 ifxp_1 +yp—1+&n-1 = p.

Definition 2.7. Given an element x € Zp, the inverse of x is the element —x, where —x € zp such
that

x+(—x) =

Definition 2.8. Given g € N and a prime p € N, we define the binary operation of addition to
be the following map ¢, Zp — Zp such that ¢4(x) = x + ¢, and g{)ql(x) = x — q, for all elements

xEZp
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2 Automorphisms on the Cantor Space

Remark 2.9. To note several consecutive additions of ¢, we let n € N represent the number of times
¢ is composed with itself, and note this as

¢g:¢q0,.,o¢q:¢np Wherenpzp+...+p_
— ~————
n-times n-times

Lemma 2.10. The binary operation of addition ¢ is an automorphism ofzp.

Proof. It can clearly be seen that ¢ is bijective. Recall from definition 2.2 of a topological group,
that the binary operation and the function mapping inverses are continuous functions. As such, ¢
is an automorphism of Z,,. [

Definition 2.11. Given g € Nandaprime p € N. We define the odometer asthe map ¢4: {0,...,p - -
{0,...,p— l}N, where, for all elements x € {0,...,p — 1}N, ¢ is the following composition,

0q (x) = h™1 (g (h(x))).
Here h: {0,...,p — 1}N - ZD, and ¢ : zp - ZP is the g-addition, both defined before.

Lemma 2.12. Given three topological spaces X, Y, Z and two functions f: X — Y andg: Y — Z. If
both f and g are continuous maps, then the composition go f: X — Z is continuous.

Proof. Let the subset U C Z be open in Z. Now (g o f)"'(U) = {Vxe X |g(f(x)) eU} =
{Vx eX|xe f‘l(g_l(U))} = f~1(¢g71(U)). We know from continuity of g and f that g~ (U)
is open in Y, and f~1(g71(U)) is open in X, and thus (g o f) is continuous. O

Remark 2.13. The implication of the proof is significant. If both f and g were to be homeomor-
phisms, then the composition (g o f) is also a homeomorphism. This follows from the proof that
(go f) is continuous, that the composition of two bijections is also a bijection, and that it can easily
be proven that (g o f)~! is a composition of continuous maps, and is thus continuous.

Lemma 2.14. The odometer ¢, is an automorphism of {0, ..., p — 1.

~ Y. < N
¢ = {0’ P 1} odometer ’ {0’ P 1}
h pl
~ é ~
Zp : > Ly

Figure 2.1: alt 1: A diagram of the generalized odometer . alt2: A diagram of the odometer ¢

Proof. Given the odometer ¢ = h™'¢h. We have already proven that h is a homeomorphism in
lemma 2.4, and we know that the binary operation is an automorphism from definition 2.8. As
¢ is a composition of homeomorphisms, it must also be a homeomorphism as already proven in
lemma 2.12. []
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2 Automorphisms on the Cantor Space

2.3 The Adding Machine

We are now to demonstrate the specific case for p = 2 and g = 1, for which we will show the
elegant form the odometer takes on, and give a few calculative examples.

Definition 2.15. Given g = 1, and p = 2. Now, the the binary operation of addition is the following
map ¢ : Z2 — ZQ such that ¢1(x) = x+ 1 and ¢ L(x) = x — 1 for all elements x € Zz

Remark 2.16. The elements 1, —1 € Z; are for k € N the following
1=1+0-2"40-22+-- =1+ > 0-p"and —1=1+1-2"41-224...= > 1-p"
n=1

Remark 2.17. Since we are adding and subtracting one, we can by composition of ¢"(x) add any
number we want. The same is not not necessary true if g # 1.

Example 2.18. Let us do an example of addition in the 2-adic numbers, here showing that —x is
in fact the inverse of an arbitrary element x € Zy. For ease of understanding, the corresponding
sequence in {0, 1}*' will be written on the right side of the equality sign.

x=1+21 422423 +... = (111111111111...),
—x=14+0+0+0+0+---=(100000000000...),
x+(=x)=0+0+0+0+0+---=(000000000000...).

AsO€Zyisinfact0=0+0-2'+0-22+ ... the addition performs as expected

Example 2.19. In this example we will do an illustrative example of the adding machine when we
perform several consecutive additions. In figure 2.2 this can be seen for ¢? and gzﬁg

P \)(

{0, 1)1 - e {0, e {0,
h h h
iQ w 22

o7

Figure 2.2: A diagram of several consecutive additions of ¢ and ¢

This is however, a cumbersome way of applying the odometer a single time. As we are working
with binary sequences, then doing addition should is as easy as 0+0 = 0, 0+1 = 1,and 1+1 = 0 with
a’1” that carry over to the next addition in the sequence. Observe, that if we were to "carry out” the
addition following the aforementioned rules for the binary sequences of x and —x in example 2.18, it
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2 Automorphisms on the Cantor Space

would result in the exact same answer. We can with this clever observation redefine our odometer
to the following uncomplicated, recursive formula. Compared to our previous definition, this is
more elegant, as in addition to being much simpler, it clearly conveys the notion of self replication.

Definition 2.20. If p = 2 and g = 1, and given Z () C {0, 1}!' then we define ¢ in the following
recursive way on the prefix v = w;0" = wg . . . Wy, Where w; is an arbitrary element in the sequence,
and «’ is the following positions after w;.

lo’ ifa),'_l = O,
O0p (o) ifwiy=1for0<i<n.

¢ (wi0) = {
Lemma 2.21. The recursive formula in definition 2.20 is equivalent to the original definition 2.11 for
the odometer ¢.

Proof Let p = 2and g = 1, and Z (x) € {0,1}" is an arbitrary cylinder set with the following
prefix of length m

W=0QQ...0n=0)010 .
Let us first apply the original definition which would result in the following addition

w=wy+w -2 +wy 22+ oy -2,
1=140-2'40-22+---+0-2™

Now, from definition 2.15 one can see that the addition of wg + 1 impacts the result of w1 + 0 + €,
from the recursive formula” for e for each position. Observe I: that if wp = 1 then the addition
is equal to 0 = 2 mod 2, and we would have a carry over value of 1 = 2! in the next addition of
w1 + 0+ 21, II: If the addition is equal to 1 mod 2 then we would be done, as 1 € Zs only has a
value other than 0 (not 0 € Zy !) in its first position.

Now, let us apply the ¢ in the recursive way. Observe that ¢(wowi0’) = 0wie” if w9 = 1,
and the recursive formula would apply one more time resulting in ¢(w;0’). Since applying the
odometer again is the same as adding 1 = 2! as we observed in I they must be equivalent. If
@(wow10") = lw1w’, then wy = 0, and we would be done for the exact same reason as II. In other
words, the recursive formula is equivalent to the original definition. O

Example 2.22. Given o be a finite word, and two infinite sequences x,y € {0,1}" such that
x = x0x" = xox1x” and y = yoy’ = yox1y”, where the x", y’ and x”, y” represent the leftover binary
sequence.

We have the following general case for ¢!, before we let @ = 01. Recall that ¢~! performs the
addition of —1 € Zy which corresponds to the sequence —1 = 1000... in {0, 1}*".

¢ (Z(0) = {x € {0, 1} | p(x) = 0y} .

Now, ¢~ ! applied to x = 1x” yields ¢ (1x’) = 0¢ (x’) = Oy’. Furthermore, ¢! applied to x = 10x”
yields ¢ (10x”) = 0¢p (0x”) = 01¢ (x”) = 01y”. And we have that

¢ (2(01)) = {x € {0, 1}"" | p(x) = 01y},
o (Z(01)) = Z(10).
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3 Cantor minimal systems (€, 7)

3.1 Minimality

The interesting property of the Odometer ¢ is that we can iterate it for any n € Z. Owing to the
fact that it is an automorphism on &, the iterative property can be viewed as the spatial evolution
of a point x € € when we apply ¢. The field of dynamical systems is in most cases concerned with
such self-maps of spaces. The space can be a model for one configuration of the system of interest,
and the self-map (in our case, an automorphism) is the evolution of the system in space or in time.
It is here, convenient to think of time as a discrete thing rather than a continuous one.

Remark 3.1. In our case where ¢ is an automorphism, we have a continuous inverse. A consequence
of this is that our system is reversible, which is to say, without giving a formal definition, that we
can travel backwards in “time”.

We will restrict our attention to minimal systems of the Cantor space. That is to say, systems of a
chaotic nature, where the automorphisms ¢: € — & are minimal. While we will provide a formal
definition later, the intuition behind minimality is that it guarantees that the system of interest has
a certain amount of complexity. Minimality in the general sense, is a restriction on the self-map,
such that no point x € & is mapped onto itself by repeated iterations, and that x can be everywhere
in the space. However, and this is of utmost importance to emphasise, the intuitive definition of
minimality in the sense that x can be everywhere, can never happen for us. Take note that we
are applying the odometer ¢ a countable amount of times, as the power is indexed by n € Z. If it
were true that x could be everywhere, then it would suggest that € is countable. This cardinality
problem we have proven can never happen (lemma 1.11). In spite of that, we have defined our
topological space in such a way that its not necessary to be everywhere. This way of localising to a
cylinder with a finite length prefix is the notion that we are going to use when we define minimality
for €. For more details on this section, the reader is referred to (Putnam, 2018).

Remark 3.2. It is also worth emphasizing, as it is as a consequence of the intuition on that a point
can be everywhere in the space by applying ¢ repeatedly, that it is impossible to study the system
by dividing it into smaller parts. In our case, this would be that x is moved as close as we want to
everywhere, and therefore, a minimal system of the Cantor space is also irreducible.

Definition 3.3. A Cantor system is (¢, T), where € is the Cantor space, with an automorphism
T:¢—>6%.

Definition 3.4. Given a Cantor system (%, T). The orbit of an element x € € is the following
subset of €,

{T"(x) | n € Z}.

Remark 3.5. Take note of the wording. A nice analogy is that, as T moves the point x around in the
space, one can view the resulting subset as the “final” orbit (i.e movement) of a planet x in a solar
system.
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3 Cantor minimal systems (€, T)

Definition 3.6. Given a Cantor system (¢, T). A point x € € is a cyclic point, if there exist an
integer n # 0 such that T"(x) = x.

Definition 3.7. Given a Cantor system (%, T). The orbit of an element x € € is dense, if there for
all y € € and a real number € > 0, there exists n € Z such that

d(T"(x),y) <e.

Remark 3.8. The property of being dense guarantees you to be very very close or equal as seen in
figure 3.1.

Figure 3.1: An illustration of a dense self-map T"x from definition 3.7

Definition 3.9. Given a Cantor system (%, T). The automorphism T is minimal if every orbit is
dense.

Remark 3.10. As we are never to reach another point in the cantor space exactly, the best we can
do is guarantee that we are within some radius € of another element, which is to say that the prefix
of x coincides with the prefix of y for a finite number of positions. What minimality guarantees us
is that x can be as close as we want to every other point in €.

Definition 3.11. A Cantor minimal system (¢,T), is a Cantor system, where T : € — % is a
minimal automorphism.

Now, the interesting automorphisms for us are the odometer that we defined in the last chapter.
What we are interested in knowing is when the odometers in general are minimal.

Lemma 3.12. The generalised odometer ¢ as stated in definition 2.11, is minimal if and only if p and
q are relatively prime.

Proof. Given p,q € N, two points x,y € €, and the automorphism ¢: € — €. It is well known
from number theory that if p and g are to be relatively prime, then the gcd (p, q) = 1. Furthermore,
assume ¢ to be minimal. That is, given n € N, when is d(¢(x),y) < 1/3", which we have shown is
the same as asking when the first n positions of the prefix of x and y coincide.

To show this, we will define the map II: Zp — Z/p"Z, such that 3>, amp™ — Z”m_:lo amp™
mod (2"), where the latter is the a cyclic group. Observe that II is a surjective map, as we are
killing everything greater or equal to p" due to the mod reduction in the cyclic group (as such
elements in ip are going to have the same result in Z/p"Z after the reduction).

Observe from figure 3.2 that the two cases for addition should result in the same result. In other
words, given x € Z,, apply ¢x = x + g, then apply II(x + q). This result should be equivalent to
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3 Cantor minimal systems (€, T)

x €Z, S Z/p"Z
‘P\[ 4
Zy 1 > Z/p"Z

Figure 3.2: A commutative diagram over addition of the odometer

applying I1(x) first, and then apply ¢(II(x)) = II(x) + g. If ¢ is to be minimal, then it should be
able to generate every element in Zp. If it is not able to generate every element, then ¢ will not
satisfy definition 3.7 of being dense, as there will be some “coefficients” ¢ will never generate, i.e
being close to. The only case where ¢ is able to generate every element in Z,, is if ged(p, q) = 1.
This is a well known fact from group theory, and as such, that is why the odometer is only minimal
when ged(p, q) = 1 is satisfied. ]

Remark 3.13. As will be highlighted in the example, the odometer has no cyclic points, yet it can
still be viewed as an extension of cyclicity in the fact that the prefixes are “cyclic” (if viewed alone).

Example 3.14. We do the following example for p = 2 and g = 3 that have gcd (p, q) = 1. Consider
the point x € {0, 1. We let x consist of a finite prefix of length m = 3 such that x = 100x’. First,
we are only interested in what is happening to the prefix of x. Observe the following for the

odometer ¢": {0, I -, {0, 1}, where n € Z.

7:100 22 001 225 111 2 010 22 101 22 000 22 110 225 011 2 100,

In the process of adding 3, we are visiting” every other possible combination of 0 and 1 of the
8 in total, until ¢®(100) = 100, which is what we started with. In other words, when we only
consider the prefix, we find that it is a "cyclic point”. If we consider the whole word x, we would
pass through every possible combination of 0 and 1, and have that ¢"(x) # x for all n € N except
n = 0. In other words, x would never be a cyclic point. Since we would pass through every possible
combination of 0 and 1, we would also have that ¢ is dense, as we for any radius €, would have that
¢"(x) at some point would be "close” to a point y € {0, 1}*. That is to say, that the first k positions
of both points would at some “time” n, coincide.
Now, let us consider the same prefix, but for p = 2 and g = 2 that have ged (p, q) = 2.

7:100 22 110 22 101 22 111 23 100,
7:010 23 001 23 011 23 000 23 010.

In the process of adding 2, we can never “visit” every possible combination of 0 and 1. We need
two different starting positions in order to demonstrate all 8 combinations. The same observation
for a cyclic point are the same as above. However, when considering the whole word x, then the
property of a dense automorphism is not true, as we could find radius’s € that x would never be
within. That is to say, that the first k positions of ¢"(x) and y, never would coincide for any value
of n.

Remark 3.15. Observe that if €, T has a cycle, then it cannot be minimal.
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3 Cantor minimal systems (€, T)

3.2 Bratteli-Vershik diagram (V E)

In the latter chapter we highlighted one way in which we can construct automorphisms on the
Cantor system (C,T). However, there is actually another, more general way, to construct auto-
morphisms to the cantor space. Throughout this thesis we have partly exploited the combinatorial
aspect of the Cantor set in the notion that every element x € C, can be represented with an infinite
binary sequence. In order to construct all possible automorphisms, we are to transfer the Cantor
dynamical system into a purely combinatorial object, and represent it as a Bratteli diagram.

Vi

Eq

V4 ([ J

Figure 3.3: A Bratteli diagram

Definition 3.16. Given a natural number n > 1, a Bratteli diagram (V,E) is a diagram with the
following three properties. First, V is an infinite sequence V...V, ... of finite, non-empty, pair-
wise disjoint (totally disconnected??) sets, that is Vy = {vp}, V1 = {o1,...,} etc, called vertices.
Second, E is an infinite sequence Ey...E, ... of finite, non-empty, pairwise disjoint sets, that is
Eo = {eo,...,}, E1 = {e1,...,} etc, called edges. Thirdly, it consists of two maps: A source map
s: E, — V,_1, where s~! ({0}) is non-empty for all v in U,5oV,. And a range map r: E, — V,,
where r~ ({v}) is non-empty for all v in Up>1V,.

Remark 3.17. It can help to think of a Bratteli diagram as a directed graph with no sinks, and no
sources other than the single vy. That is what the latter restrictions on the inverses of both the
source and range maps insures.

Definition 3.18. Given a Bratteli diagram (V,E), and 0 < m < n. The set of all finite paths from
Vin to Vy,, denoted as Py, p, is the following

Pm7n:{(Pm+17pm+27~~aPn) |pi€Eiam<isna andr(Pi) :S(Pi+1)am<i<n}-
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3 Cantor minimal systems (€, T)

The set of all infinite paths beginning at Vy = {0g}, denoted as p, is the following

Pg ={(p1,p2,...) | px € Ex, and r (pr) = s (pr+1) ,k > 1}.

Remark 3.19. It is worth emphasizing the latter requirement that the range map for a path py must
equal the source map of the next path pr,;. That way the path consists of a single edge when
traversing from one vertex to the next, and they are all connected.

However, not every Bratteli diagram can be used to find minimal systems of the Cantor space.
Going forward we are going to consider a special type of Bratteli diagrams that are primitive. All
examples are illustrated in figure 3.4.

Definition 3.20. Given n € N. Let (E, V) be a Bratteli diagram, such that for all n the |o,| = k. We
define the transition matrix at the n’th-level to be the following M, € Mixj (N), where

M, (i, j) = #arrows in E, fromi € V,_j to j € V,,.

Definition 3.21. A Bratteli diagram is stationary if M,, = M,, for all n, m € N. Furthermore, we let

M, = Mg.
Definition 3.22. Given a transition matrix Mg. Then Mg is primitive if there exists n € N such
that the matrix Mg = Mg - - - - - Mg has no zero entries.
—_———
n-times

Example 3.23. What follows are three examples of the transition matrix Mg, where the first two
considered primitive, and the latter is not.

e @, o[l 1o
E = ) E = ’ E = .
—_— 11 01

for figure 3.4a

for figure 3.4c for figure 3.4c

Observe that the latter one is an example of a bratteli diagram that only consists of two points.
Definition 3.24. A stationary Bratteli diagram is simple if M is primitive and not equal to (1).

Going forwards, we are now to define a topology on Pr of a simple Bratteli diagram, such that
if given a finite path e ... e, that start at vg, then we define the cylinder set such that the prefix
® = eq...e, and the corresponding cylinder set is the following clopen set

Z(w)={wx€ePg|w=ey...enx € Pg},
= {all infinite paths with prefix w} .

The topology on P is the one that is generated by the cylinder sets, and as shown in (Putnam, 2018)
this topological space actually satisfies what we had earlier; It’s compact, totally disconnected, and
does not contain any isolated points. In other words, P is a Cantor space.

However to construct all an automorphism that is equivalent to what we had earlier, we must
introduce an order to all the edges in the Bratteli diagram. The ordering is important as it allows
us to compare paths on the diagram.

Definition 3.25. An ordered Bratteli diagram (V, E, >) is a Bratteli diagram (V, E) with order >
on E such that two edges e, e’ € E are comparable if and only if r(e) = r(e’). Additionally, two
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3 Cantor minimal systems (€, T)

finite paths y = e;...e, and p = fi ... f, are comparable if r(y) = r(p) using the lexicographic
order.

Definition 3.26. If (V,E, >) is a simple ordered stationary Bratteli diagram, then there exist a
unique Xyqx = g1 ... where a € E,,, and a unique Xy,in = fof1 ... where f € Epip.

Definition 3.27. Given a simple ordered stationary Bratteli diagram (V, E, >) and a set of all the
infinite paths P of the diagram. We define the map T: Py — Pg, named the Vershik transformation,
to be the unique minimal path such that T(Xynax) = T (Xmin) and T(x) = y(x,+1)x,4+1 where x,, € E;,
and at least one xx ¢ E,0x Where k is the smallest such integer. Then T(x) = (y1y2... yx—1(ex +
1)éexs1 - -.), where e + 1 is the successor of the edge in the lexicographic ordering, and f is the
minimal path to e; + 1.

Example 3.28. Given a sequence x € {0,1}" where x = 1110011x’ and x” is the leftover binary
sequence. Now we apply T on x, and get the following

T(x) = T(1110011x") = 000(0 + 1) 011x" = 000101 1x’.

Observe that k = 4 is the smallest integer ex ¢ E,qx. Now, given q = 1 (we still have p = 2 from
{0,1}"), and let the odometer ¢ be applied to the prefix of x.

@1(1110011) = 0¢1(110011) = 00¢; (10011) = - - - = 0001011.

Which is the exact same sequence!

Example 3.29. Two other Vershik transformations are shown illustrative for figure 3.5, in fig-
ure 3.6. Observe that the section 3.2 show the most clear equivalence with {0, 1.

We conclude this thesis with what is the main result of this chapter. We have seen that by con-
structing equivalent simple ordered Bratteli diagrams to the discrete p-point product topology, we
have a more general way to construct all the autmorphisms of the Cantor space. This equivalence
also allows us to apply results from the field of Bratteli diagrams to the dynamical system of study,
and vica verca.
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®
®
®
[ ]
(a) Stationary — Primitive — Simple (b) Stationary — Primitive — Not simple
® ®
[ ] [ ]
(c) Stationary — Not primitive — Not simple (d) Not stationary — Not primitive — Not simple
®
(e) Stationary — Primitive — Simple (f) Not a Bratteli diagram

Figure 3.4: Illustrated here are 5 Bratteli diagrams (a-e), and one non-Bratteli diagram (it has a sink and two
sources). Observe that all Simple Bratteli diagrams. Furthermore, a Bratteli diagram should not be confused
with a tree from graph theory, as they are two distinct mathematical objects. This is best exemplified in
subfigure d) which, as we have seen, is a valid representation of the Cantor space if the illustration was of a
binary tree. As a Bratteli diagram it is not a valid “representation” in the same sense. In our case, a Bratteli
diagram is used to illustrate properties of Cantor minimal systems, and d) is not a diagram of a Cantor minimal
system.
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0 1
0 1
0 1
0 1

Figure 3.5: The maximal edges E,x in red, and the minimal edges Ei, in green for two simple Bratteli
diagrams
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-< ° Y
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0 ) 1 |
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/ |

Figure 3.6: The Vershik transformation applied to the path in blue results in the orange path. In the edges
where the paths overlap, the orange is dashed.
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