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Abstract

This bachelor’s thesis is an exposition of the articles Facets of Descent I and III by G. Janelidze
and W. Tholen on descent theory. We start by studying the preliminary theory of monads and the
Barr–Beck theorem. Then, we develop the monadic approach to descent theory and the approach via
Grothendieck fibrations. Finally, we give an elementary approach to the classical descent problem
for modules and algebras.
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1 Introduction

In the abstract context of fibered categories, Grothendieck [Gro59], [Gro70] developed descent the-
ory. (An exposition on Grothendieck’s work in English is [Vis07].) The general problem of descent is
base change and how to compensate for the loss of information by determining the (effective) descent
morphisms. For commutative rings, the classical question is as follows:

Question 1.1. Let p : R→ S be a homomorphism of commutative rings. Given a S-module N , what
data on N determines an R-module M , together with an isomorphism of S-modules M ⊗R S ∼= N?

Reformulated in the language of monads, Grothendieck [Gro59] answered Question 1.1 with the following
theorem:

Theorem (Theorem 4.1). For a homomorphism p : R → S of commutative rings, the extension-of-
scalars functor S⊗R (−) : RMod→ SMod is comonadic whenever p makes S a faithfully flat R-module.

Janelidze and Tholen [JT04] gave a stronger answer than Grothendieck to Question 1.1 via a significant
contribution of Mesablishvili [Mes00]:

Theorem (Theorem 4.15). A homomorphism p : R → S of commutative rings is an effective descent
morphism if and only if it is a pure morphism of R-modules.

The authors of [JT04] note the obvious monadic connection between Grothendieck’s theorem by applying
the Barr–Beck theorem. However, monads were not “popular” at the time. Although Bénabou and
Roubaud [BR70] explicitly described the monadic approach, neither Grothendieck nor anyone else at
his school used the approach.

A monad is by itself a natural construction that has had many names throughout history. After
their period as a “standard construction,” they were named a triple which is not very explicit but
allowed them to be studied. Specifically, Huber [Hub61] first discovered that every adjoint pair gives
rise to a monad (proved here as Theorem 2.3). Then, both Kleisli [Kle65] and Eilenberg–Moore [EM65]
proved the converse independently (proved here as Theorem 2.7). Sometime after, the breakthrough
for monads was the Barr–Beck theorem [Bec67]. In particular, the Barr–Beck theorem was very useful
because it was “easy” to give variations of the theorem. A graduate student W. Butler (unpublished)
established 64 theorems on adjoint pairs and monads. Later, J. Power [Pow72] published these results
in his doctoral thesis.

As alluded to, the Barr–Beck theorem gave access to a stronger result than Grothendieck’s Theorem
4.1. Indeed, the theory developed by Janelidze and Tholen [JT94] bases itself on the sheaf theoretic
connection of Grothendieck’s descent and monadic descent. Moreover, applying the Barr–Beck theorem
to the adjoint situation between base-extension and base-restriction of topological bundles inspired the
generalization of determining descent morphisms of arbitrary categories with pullbacks and coequalizers.
There is a complete characterization of topological descent by one of the authors in [RT94].

The surprising discovery in [JT94] is that all the definitions of the categorical approach of monads
survived the abstraction to (bi)fibered categories. In other words, the Barr–Beck theorem remained im-
portant for characterizing descent morphisms. Specifically, the definitions of monadic descent survived
within a bifibered category over a category with pullbacks that satisfied the Beck–Chevalley condition.
This discovery within (bi)fibered categories gave rise to the stronger Theorem 4.15.

Descent theory has become very useful in the modern era, in particular, within homotopy theory and
algebraic geometry. For example, Lurie [Lur11] has given many “higher” categorical descent results,
and he recently gave an extension of the Barr–Beck theorem to stable ∞-categories [Lur17, Theorem
4.7.3.5].

1.1 Contents

In the context of this thesis, we will develop descent theory following the works of [JT94] and [JT04];
that is, monadic descent, descent theory with respect to fibrations and descent for rings and algebras
as a special case. We will not follow the works of Grothendieck.

The first section follows [BW85] with a couple of detours within [JT04]. We first define and fix
some notation before we study the properties of a monad. The constructions of Eilenberg–Moore is
of particular importance because it introduces the canonical comparison functor to the category of
Eilenberg–Moore algebras. We dedicate an entire “bonus” subsection to emphasize monads as general-
ized rings based on the example of a monad on the category of Abelian groups. Next, we recall a few
results of coequalizers and develop the necessary tools to prove the Barr–Beck theorem. Finally, we give
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the Barr–Beck theorem, which states criteria for whenever a functor is monadic, or rather, whenever
the comparison functor is an equivalence of categories. Then, we give a few variations of the theorem
that will be useful for our final section on descent for modules and algebras.

The second section introduces monadic descent theory and descent theory with respect to fibrations
directly following [JT94]. We start in the subsection of monadic descent theory, where we state the
question of descent in terms of a slice category and attempt to gain intuition from topological descent as
we move forward. We define the category of descent data and deduce that the pullback functor can be
lifted to a comparison functor (in the sense of Eilenberg–Moore) to the descent category. In particular,
we characterize when this comparison functor is an equivalence of categories. We conclude monadic
descent theory by a methodology on how to approach “difficult” categories and an interesting corollary
to our work on torsion-free abelian groups. In the subsection on descent theory with respect to fibrations,
we start by carefully developing the notions of a (Grothendieck) fibration. Then, we define the category
of descent data with respect to a fibration. In a similar manner to monadic descent, we determine
a comparison functor to the new descent category. Finally, we observe a bijective correspondence
between the descent data for monadic descent and descent with respect to a (bi)fibration. Specifically,
the category of descent data with respect to a (bi)fibration is isomorphic to the category of Eilenberg–
Moore algebras if the (bi)fibration satisfies the Beck–Chevalley condition. Therefore, the effective
descent morphisms with respect to a (bi)fibration are precisely those of monadic descent.

The third section considers a special case of descent theory: descent for rings and algebras, fol-
lowing [JT04]. First, we define the extension-of-scalars functor and the restriction-of-scalars functor.
Then, we determine that the extension-of-scalars functor is comonadic whenever the underlying ring
homomorphism is a pure morphism of both bimodules and modules by applying the Barr–Beck theorem
and using some “homological algebra methods.” Afterward, for a ring homomorphism of commutative
rings, we find that the extension-of-scalars functor for modules is comonadic if and only if the induced
extension-of-scalars functor for algebras is comonadic. In other words, the results can be further gener-
alized to various types of algebras. Finally, by observing that a bifibration of the category of all modules
of commutative rings over the category of commutative rings satisfies the Beck–Chevalley condition, we
conclude with Theorem 4.14 that characterizes descent for the various types of algebras where Theorem
4.15 is a special case.

In the appendix, there is a recollection of the categories considered in this thesis.

1.2 Prerequisites

The thesis assumes the reader is well-acquainted with category theory; functors, natural transforma-
tions, equivalences of categories. Furthermore, the reader should be familiar with basic homological
algebra, such as the Hom-tensor adjunction and exact sequences.

1.3 Conventions

� For any pair of categories C and D, denote by CD the functor category whose objects are functors
D → C, and whose morphisms are natural transformations.

� The category Cat is the (2)-category of locally small categories.
� A projection map is a map denoted pri :

∏
kXk → Xi. The index i denotes which “component” (of

the object
∏
kXk) the map is projecting. In case where there are two indices i and j, the projection

map is projecting the product of those objects with indices i and j; that is, pri,j :
∏
kXk →

Xi ×Xj . In particular, pri,j 6= prj,i where the latter is a map prj,i :
∏
kXk → Xj ×Xi.

� A ring is always unital unless we specify it without a unit.
� A module will always mean a left module unless we specify it as a right module.
� For a ring R, the category of left R-modules is denoted by RMod, and the category of right
R-modules is denoted by ModR.

1.4 Acknowledgements

I wish to thank my supervisor Drew Heard for his patient guidance and advice throughout the writing of
this thesis. In particular, I would like to express my appreciation for him sharing his time so generously.

2



2 Monadicity

A monad is an abstraction of algebraic structures that occur very naturally in algebraic contexts. In
light of this, the first subsection will define and explore why they appear so naturally. Moreover, it will
attempt to shed light on why they are of interest in algebraic contexts.

2.1 Monads

Definition 2.1. A monad on a category C consists of
� an endofunctor T : C → C;
� a unit natural transformation η : idC → T ;
� a multiplication natural transformation µ : T 2 → T ;

so that the diagrams

T 3 T 2

T 2 T,

Tµ

µT µ

µ

and
T T 2 T

T

Tη

µ

ηT

commute in CC . Denote by T = (T, η, µ) the monad on C.

This definition is similar to that of monoids, unital rings, and k-algebras. Indeed, they are all examples
of monoids in a monoidal category. Although, this observation is far more abstract than what is needed
to appreciate monads.

Example 2.2. 1. Let M be a monoid and define T : Set→ Set by X 7→M×X. Let ηX : X →M×X
take x 7→ (idM , x) and µX : M ×M ×X →M ×X take (m,n, x) 7→ (mn, x). Then T = (T, η, µ)
defines a monad on Set.

2. In a similar manner, let R be a commutative ring and A an associative unitary R-algebra. Then
there is a monad on the category ModR of R-modules taking M 7→ A⊗M .

These examples of monads share some similarities to an adjunction. Specifically, the unit and multipli-
cation map of the monad is similar to the unit and counit of an adjunction. This observation led Huber
to suspect and prove:

Theorem 2.3. [BW85, Chapter 3.1, Theorem 1] Let U : B → C have a left adjoint F : C → B with
adjunction unit η : idC → UF and counit ε : FU → idD. Then T = (UF, η, UεF ) is a monad on C.

Proof. By the triangle identities of the adjunction, the unit evidently remains the unit of the monad.
To check that UεF satisfies the multiplication map, first note that ε is natural. Then, the diagram

FUX X

FUY Y

FUf

εX

f

εY

commutes. Choose X = FUY and f = εY , and apply U to the diagram, then UεF satisfies the
multiplication map.

This theorem gives us access to a large family of monads by considering the family of “free” and
“forgetful” adjunctions (see [Rie16, Example 5.1.4 and 5.1.5] for more details).

Example 2.4. 1. The free-forgetful adjunction between Set and RMod induces the free R-module
monad R[−] : Set→ Set given by the set R[A] of finite formal R-linear combinations of elements
of A. Two special cases of this monad are the free abelian group monad and the free vector space
monad.

2. The free-forgetful adjunction between Set and Grp induces the free group monad that sends a set
A to the set F (A) of finite words in the letters a ∈ A together with formal inverses a−1.

3. The Giry monad on the category Meas of measurable spaces sends a measurable space A to the
probability measures on A.

There is also the dual of the monad.

Definition 2.5. A comonad on a category B is a monad on Bop. Explicitly, a comonad on a category
B consists of
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� an endofunctor G : B → B;
� a counit natural transformation ε : G→ idB;
� a comultiplication natural transformation δ : G→ G2;

so that the diagrams

G3 G2

G2 G,

Gδ

δG

δ

δ and
G G2 G

G

Gε εG

δ

commute in BB. Denote by G = (G, ε, δ) the comonad on B.

Explicitly, the dual statement of Huber is also true.

Proposition 2.6. [BW85, Chapter 3.1, Proposition 2] Let U : B → C have a left adjoint F : C → B
with adjunction unit η : idC → UF and counit ε : FU → idB. Then G = (FU, ε, FηU) defines a comonad
on C.

The converse statements are true too.

Theorem 2.7. [BW85, Chapter 3.2, Theorem 1] Let T = (T, η, µ) be a monad on C. Then there is a
category B and an adjoint pair F : C → B, U : B → C where F is left adjoint to U such that T = UF ,
η : idC → UF = T is the unit and multiplication µ = UεF where ε is the counit of the adjunction.

Dually, let G = (G, ε, δ) be a comonad on B. Then there is a category C and an adjoint pair
F : C → B, U : B → C where F is left adjoint to U such that G = FU , ε : G = FU → idC is the counit
and comultiplication δ = FηU where η is the unit of the adjunction.

Remark 2.8. We give a proof of Theorem 2.7 later by using the Eilenberg–Moore constructions, but
we prefer to introduce the construction separately first. There is an alternative proof by Kleisli [Kle65],
or, as further reading in [BW85, Chapter 3.2, Theorem 1].

The following are the constructions by Eilenberg–Moore [EM65].

Definition 2.9. Consider a monad T = (T, η, µ) on C. A T-algebra is a pair (A,α) where A is an
object of C and α : TA→ A is a morphism of C such that the following diagrams

T 2A TA

TA A,

Tα

µA α

α

and

A TA

A

ηA

α

commute. The morphism α is called the structure map of the algebra. Often the category CT is referred
to as the category of Eilenberg–Moore algebras.

Definition 2.10. Consider a monad T = (T, η, µ) on C. The category of T-algebras is denoted by CT,
and consists of

(i) objects that are T-algebras;
(ii) morphisms f : (A,α) → (B, β) is a morphism f : A → B in C that are T-linear; that is, the

following diagram

TA TB

A B

α

Tf

β

f

commutes.

Definition 2.11. Consider a monad T = (T, η, µ) on C. The free-algebra functor FT : C → CT is given
by

FTA := (TA, µA), FT(f : A→ B) := (Tf : TA→ TB)

for an object A ∈ C and a morphism f : A → B in C. It is left adjoint to the forgetful functor
UT : CT → C, which forgets the structure map. This adjunction is often referred to as the Eilenberg–
Moore adjunction. The unit of the adjunction is η : idC → UTFT = T is the unit of the monad T,
whereas the counit εT : FTUT → idCT is given for every T-algebra (A, a) by εT(A,a) = a.

4



The dual of this construction is as follows.

Definition 2.12. Consider a comonad G = (G, ε, δ) on C. A G-coalgebra is a pair (A,α) where A is
an object of C and α : A→ GA is a morphism of C such that the following diagrams

T 2A TA

TA A,

Gα

δA

α

α and

A TA

A

εA

α

commute. The arrow α is called the (co)structure map of the coalgebra.

Definition 2.13. Consider a comonad G = (G, ε, δ) on C. The category of G-coalgebras is denoted by
CG. It consists of

(i) objects that are G-algebras;
(ii) morphisms f : (A,α) → (B, β) is a morphism f : A → B in C that are G-linear; that is the

following diagram

GA GB

A B

Gf

α

f

β

commutes.

Definition 2.14. Consider a comonad G = (G, ε, δ) on C. The free-coalgebra functor FG : C → CG is
given by

FGA := (GA, δA), FG(f : A→ B) := (Gf : GA→ GB)

for an object A ∈ C and a morphisms f : A → B in C. It is left adjoint to the forgetful functor
UG : CG → C, which forgets the (co)structure map. This adjunction is often referred to as the co-
Eilenberg–Moore adjunction. The counit of the adjunction ε : UGFG → idC is the counit of G, whereas
the unit ηG : idCG → FGUG is given for every G-coalgebra (A,α) by ηG(A,α) = α.

Proof of Theorem 2.7. It is sufficient to prove the Eilenberg–Moore adjunction by considering the map

ϕ : HomCT((UFC, µC), (C
′
, γ
′
))→ HomC(C,C

′
)

of Hom-sets. Clearly ϕ maps a morphism h : UFC → C
′

of algebras to h ◦ ηC , and the inverse ϕ−1

maps a morphism g : C → C
′

to γ
′ ◦ UFg. Therefore ϕ is necessarily an isomorphism. It remains to

check that the unit and counit form the monad, however by construction, this follows from Theorem
2.3.

To summarize, there is an adjunction if and only if there is a (co)monad. This result is much more
important than what it appears to be. When studying the relationship between two categories, a first
step could be to check if there is an adjunction. Thus, in such cases, the monad appears quite naturally.
In other words, if there is an adjunction, or a monad, the next question to consider is:

Question 2.15. How can a monad characterize the relationship between two categories?

The construction of the category Eilenberg–Moore algebras gives an answer to Question 2.15 by the
following definition.

Definition 2.16. Consider the adjunction F : C → B, U : B → C where F is left adjoint to U . The
Eilenberg–Moore comparison functor is the functor Φ: B → CT given by

ΦT(B) := (UB,UεB), Φ(f : A→ B) := (Uf : UA→ UB).

Dually, there is a similar co-comparison functor,

ΦG(B) := (FB,FηB), ΦG(f : A→ B) := (Ff : FA→ FB).

Diagrammatically,

5



B CT.

CG C

FG

U

ΦT

UTUG

F

ΦG

F T

Perhaps surprisingly, the pursuit of this thesis is to determine when this comparison functor is
full and faithful or an equivalence (or even an isomorphism) by only studying the adjunction. The
usefulness is if, for example, the comparison functor an isomorphism of categories, then the category of
the domain in the right adjoint has an algebra structure as described above, and many results can be
derived thereof.

2.2 Monads as Generalized rings

The following subsection aims to generalize the observations of Example 2.19. In a similar manner to
[JT04], the reader who is not familiar with monoidal categories can safely skip forward to Example 2.19.
Alternatively, see [Sch03, Sections 2.1 and 2.2] for a thorough introduction to what they call (associative)
bifunctors or functors of C-categories, and what we will call lax actions to keep the notation consistent
with [JT04].

Definition 2.17. Let C be a monoidal category, and let X be any category be equipped with a lax
action. A lax action is a functor

• : C × X → X

satisfying the usual action axioms up to specified natural morphisms γ : A • (B • X) → (A ⊗ B) • X
and θ : X → 1 • X (where 1 is the identity object for the tensor product ⊗ in C) satisfying suitable
coherence conditions. The lax action is called (strict) strong if γ and θ are (isomorphisms) identity
morphisms.

Definition 2.18. Given a lax action • : C × X → X of a category X acting on a monoidal category C,
and a monoid R = (R, e,m) in C, denote by XR the category of R-actions in X whose objects (X,h)
are pairs where X is an object in X and h : R •X → X is a morphism making the diagram

R • (R •X) (R⊗R) •X R •X X.

R •X X

idR•h

γ m•idX

h

(e•idX)θ

idX

h

(1)

commute in X .

The idea is to generalize the monoid actions of a monoidal category; then, it will follow that rings and
modules could be considered a special case of monads and algebras.

Table 1 is a collection of standard examples of this process, and the table originates from [BJK05,
Examples 2.2].

The examples of Table 1 show that algebras over monads are monoid actions. However, the converse
is also true:

(i) a lax action C × X → X of a monoidal category C can be presented as a monoidal functor
C → End(X );

(ii) a monoid R in C can be presented as a monoidal functor 1→ C;
(iii) the composite 1 → C → End(X ) determines a monoid in End(X ), and hence a monad on X by

row (f);
(iv) the algebras over that monad are the sameR-actions in X with respect to the lax action C×X → X .

This “logical equivalence” between monoids in monoidal categories and monads makes it possible to
present descent theory for modules in Section 4 in either the language, “monoidal” or “monadic.” To
no surprise, we opted for the latter.

Example 2.19. Every ring R determines a monad on the category Ab of abelian groups, whose algebras
are R-modules. This observation can be deduced from the Table 1, or directly: An algebra is an abelian
group A equipped with a homomorphism · : R ⊗Z A→ A satisfying a pair of axioms. By the universal
property of the tensor product, this homomorphism encodes a Z-bilinear map (r, a) 7→ r ·a : R×A→ A
which defines “scalar multiplication.” The commutative diagram

6



Table 1: Standard examples of monoid actions and their algebra structure.
C = (C,⊗) X A •X monoids in C R-actions in X

(a) (Sets, ×) X = C A×X ordinary monoids R-sets

(b) (Topological spaces, ×) X = C A×X topological monoids topological
spaces
equipped with
a continuous
R-action

(c) (Abelian groups, ⊗) X = C A⊗X rings R-modules

(d) (K-modules, ⊗K),
where K is a
commutative ring

X = C A⊗K X (associative)
K-algebras

R-modules

(e) (Abelian monoids, ⊗) X = C A⊗X semi-rings R-semimodules

(f) (End(X ), ◦), the category
of endofunctors of an
arbitrary category X ;
◦ is the composition
of endofunctors

X = X A(X) monads on X R-algebras

(g) (C, +), where C is an
arbitrary category with
finite coproducts

X = C A+X every object in C
has a unique
monoid structure

pairs (X,h)
where
h : R→ X is
a morphism
in C

R⊗Z (R⊗Z A) R⊗Z A A

R⊗Z A A

R⊗Z·

µA

·

ηA

idA

·

ensures that 1 · a = a and r · (r′ · a) = (rr
′
) · a (associative and unital). Therefore, the algebra for the

monad R⊗Z − on Ab is precisely an R-module.

2.3 Monadicity

Definition 2.20. A functor U : B → C with left adjoint is (premonadic) monadic if the Eilenberg–
Moore comparison functor is (fully faithful) an equivalence of categories.

This definition is precisely what monadic descent theory characterizes. Therefore, some authors
might say U is of descent type if U is premonadic, and of effective descent type if U is monadic. First,
note the simple result from its definition.

Proposition 2.21. [BW85, Chapter 3.3, Proposition 1] Any monadic functor reflects isomorphisms.

Proof. Since equivalences of categories reflect isomorphisms, it is sufficient to show that for any monad T
on a category C, the underlying functor UT : CT → C reflects isomorphisms. Suppose f : (A,α)→ (B, β)
is such that f : A→ B is an isomorphism in C. Let g = f−1, then we must show that the diagram

TB TA

B A

Tg

β α

g

commutes. A diagram chase gives:

α ◦ Tg = g ◦ f ◦ α ◦ Tg = g ◦ β ◦ Tf ◦ Tg = g ◦ β ◦ T (idB) = g ◦ β.
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To state the Barr–Beck theorem and its variations, we must recall some background information.

Definition 2.22. A parallel pair f, g : A⇒ B in a category, is a pair of morphisms that share the same
domain and codomain. The parallel pair (f, g) is said to be contractible or split if there is a morphism
t : B → A such that f ◦ t = idB , and g ◦ t ◦ f = g ◦ t ◦ g.

Definition 2.23. A coequalizer is contractible if it consists of morphisms and objects as in the diagram

A B C
f

g

t

h

s

for which
(i) f ◦ t = idB ,

(ii) g ◦ t = s ◦ h,
(iii) h ◦ s = idC , and
(iv) h ◦ f = h ◦ g.

Eventually, we can state that any Eilenberg–Moore algebra is a coequalizer of a parallel pair which
becomes contractible upon applying UT.

Proposition 2.24. [BW85, Chapter 3.3, Proposition 2]
(i) Any contractible coequalizer is a coequalizer.

(ii) A contractible coequalizer is an absolute colimit ; that is, it is preserved by every functor.
(iii) If there is a coequalizer of a contractible parallel pair, then it is necessarily a contractible coequal-

izer.

Proof. (i) The induced map of the universal property is constructed by composing with the contrac-
tion, and its uniqueness follows since the coequalizer map is a split epimorphism.

(ii) Since a functor preserves composition and identities, and a coequalizer remains a coequalizer
under the image of any functor, the statement follows.

(iii) By using the contractibility of the parallel pair and that the coequalizer map is an epimorphism,
the claim follows immediately.

In addition to being an absolute colimit, by a simple observation of retracts of contractible pairs,
note the following corollary.

Corollary 2.25. [JT04, Corollary 1.3] Let B and C be any category, τ : ϕ → Ψ a split epimorphism
of functors ϕ, Ψ : B → C, and (f, g) a pair of parallel morphisms in B. Then if (ϕf, ϕg) is contractible,
then (Ψf, Ψg) is contractible too.

Proof. Follows by using the commutative diagram

ϕA ϕB

ΨA ΨB.

τ(ϕA)

ϕf

ϕg

τ(ϕB)a

Ψf

Ψg

b

in C.

Definition 2.26. Consider a functor U : B → C. A U -contractible coequalizer pair is a pair of morphisms
f, g : A⇒ B in B for which there exists a contractible coequalizer

UA UB C
Uf

Ug

t

h

s

in C.

Proposition 2.27. [BW85, Chapter 3.3, Proposition 3] Let U : B → C be monadic, and f, g : A⇒ B
be a U -contractible coequalizer pair. Then the pair (f, g) has a coequalizer h : B → C in B, and

UA UB UC
Uf

Ug

Uh

8



is a coequalizer in C.

Proof. Let B = CT for the induced T = (T, η, µ), then consider a UT-contractible pair

(A,α) (B, β)
f

g

in CT with contractible coequalizer

A B C
f

g

t

h

s

in C. Also, consider the diagram

T 2A T 2B T 2C

TA TB TC

A B C

Tα µA

T 2f

T 2g

Tβ µC

T 2h

Tγ µ
C
′′

α

Tf

Tg

β

Th

γ∃

f

g h

(2)

in C. By Proposition 2.24(ii) all the rows of (2) are contractible coequalizers. The algebra structure
maps α and β define the morphism γ; note that h ◦ β coequalizes the pair (Tf, Tg), thus, the universal
property of coequalizers defines the map γ. The obvious commutative diagrams imply that (C, γ) is
a T-algebra by canceling the epimorphisms of the coequalizer maps. It follows by a similar argument
that h : (B, β)→ (C, γ) is a coequalizer of the pair f, g : (A,α) ⇒ (B, β) in CT.

Remark 2.28. This proof has actually showed that any Eilenberg–Moore algebra is a coequalizer of a
parallel pair which becomes contractible upon applying UT

Corollary 2.29. [BW85, Chapter 3.3, Proposition 4] Let T be a monad on a C. Then for any (A,α)
in CT,

(T 2A,µTA) (TA, µA)
µA

TA
(3)

is a U -contractible pair whose coequalizer in CT is (A,α).

Corollary 2.30. [BW85, Chapter 3.3, Corollary 5] Consider the adjunction

B C
F

U

where F is left adjoint to U , then for any object B in B,

FUFUB FUB
εFUB

FUεB
(4)

is a U -contractible coequalizer pair.

These results have essentially brought about a connection between coequalizers, monadicity, and
adjunctions. It not trivial that a functor preserves any coequalizer, although any functor preserves a
contractible coequalizer. Yet, if the functor U : B → C is monadic, or even if there is an adjunction with
left adjoint F , simply the existence of a U -contractible coequalizer pair implies there is a coequalizer
in B (not necessarily contractible). In other words, there is a type of “lift” of coequalizers through U .
Studying these lifts with the Eilenberg–Moore category and monadic functors will ultimately lead us
to the Barr–Beck theorem.

The following definitions and lemmas precede the Barr–Beck theorem.

Definition 2.31. Let f : A→ B be a morphism in a category.
(i) f is a regular monomorphism if it is the equalizer of some parallel pair of morphisms B ⇒ C;

9



A B C
f

(ii) f is a regular epimorphism if it is the coequalizer of some parallel pair of morphisms X ⇒ A;

X A B.
f

Lemma 2.32. [BW85, Chapter 3.3, Lemma 6 and Corollary 7] Consider the adjunction

B C
U

F

where F is left adjoint to U , and it induces a monad T on C.
(i) The unit ηC is a regular monomorphism for all objects C of C if and only if the diagram

C TC T 2C
ηC ηTC

TηC
(5)

is an equalizer for every object C of C.
(ii) Dually, the counit εB is a regular epimorphism for every object B of B if and only if the diagram

T 2B TB B
εTB

TεB

εB (6)

is a coequalizer for every object B of B.

Proof. We will prove (i). If (5) is an equalizer, then ηC is a regular monomorphism. Suppose that ηC
is a regular monomorphism, then there is some equalizer

C TC Y
ηC f

g

in C. It is sufficient to check, by the universal property of an equalizer, that some morphism w : X → TC
equalizes the pair (f, g) if and only if it equalizes the pair (ηTC , TηC). The “if” direction follows again
by the universal property of the equalizer. In the “only if” direction, first note that the contractibility
of the pair (TηTC , T

2ηC) implies Tw : TX → TC equalizes (TηTC , T
2ηC). Then by the naturality of η,

the following diagram

X TC Y

TX T 2C TY

w

ηX ηTC

f

g

ηY

Tw

Tf

Tg

commutes in C. In particular, f ◦ w = g ◦ w because ηY is a (regular) monomorphism.

Lemma 2.33. [BW85, Chapter 3.3, Lemma 8] For all objects B and B
′

of B, there is an isomorphism

HomB(FUB,B
′
) ∼= HomCT(ΦFUB,ΦB

′
)

of Hom-sets, where Φ: B → CT is the comparison functor.

Proof. The statement follows the chain of isomorphisms:

HomB(FUB,B
′
) ∼= HomC(UB,UB

′
)

∼= HomC(UB,U
T(UB

′
, UεB′ ))

∼= HomCT(FT(UB), (UB
′
, UεB′ ))

∼= HomCT((TUB, µUB), (UB
′
, UεB′ ))

∼= HomCT((ΦFUB,ΦB
′
)

In other words, this lemma says that the comparison functor Φ is full and faithful on morphisms
from free objects. The next result by Beck follows this observation.

Theorem 2.34. [BW85, Chapter 3.3, Theorem 9] The comparison functor Φ: B → CT is full and
faithful if and only if εB is a regular epimorphism for all objects B of B.

Equivalently, the right adjoint U : B → C is premonadic if and only if the counit εB of the adjunction
is a regular epimorphism for all objects B in B.
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Proof. Since UεB is a structure map of the algebra (UB,UεB) in CT. Further, by Corollary 2.29, UεB
is the coequalizer of parallel pair with domain in the image of FT, hence, in the image of Φ. Since
Φ(εB) = UεB , if Φ is full and faithful, then εB is a regular epimorphism (or rather the coequalizer of
the underlying parallel pair).

Conversely, suppose εB is a regular epimorphism. If f, g : B ⇒ B
′

is a parallel pair in B, and
Uf = Ug, then FUf = FUg and the diagram

FUB FUB
′

B B
′

εB

FUf

FUg
ε
B
′

f

g

commutes in B. Since εB is an epimorphism, then f = g, and, hence, Φ is faithful. Moreover, by
Corollary 2.30 and Lemma 2.32, (6) is a U -contractible coequalizer diagram. Since UT ◦ Φ = U , the
image of (6) under Φ is a UT-contractible coequalizer diagram. Therefore, the following diagram

HomB(B,B
′
) HomB(FUB,B

′
) HomB(FUFUB,B

′
)

HomCT(ΦB,ΦB
′
) HomCT(ΦFUB,ΦB

′
) HomCT(ΦFUFUB,ΦB

′
)

commutes (in Set). The rows are equalizers of Hom-sets that are computed in their denoted categories,
and the vertical morphisms are those induced by the functor Φ. In particular, by Lemma 2.33, the
middle and the right vertical morphisms are isomorphisms. Thus, the left vertical morphism is an
isomorphism too. Hence, Φ is faithful.

2.4 The Barr–Beck theorem and variations

The Barr–Beck theorem is a powerful tool and it gives a precise criterion for monadicity. It applies
naturally to contexts of monoidal categories acting on another category, but as will be shown in the
next section, it is widely applicable in the cases of adjunctions.

Theorem 2.35. [BW85, Chapter 3.3, Theorem 10] The functor U : B → C is monadic if and only if
(i) U has a left adjoint F ;

(ii) U reflects isomorphisms;
(iii) B has all coequalizers of U -contractible coequalizer pairs and U preserves them.

Proof. By Proposition 2.21 and Proposition 2.27 the “if” direction follows directly.
In the “only if” direction, we know that (4) is a U -contractible pair. Then by (iii) it has a coequalizer

B
′
. Moreover, since ε is a natural transformation, εB coequalizes (4). Therefore there is a morphism

f : B
′ → B making the diagram

FUFUB FUB B
′

B

εFUB

FUεB

εB
f

commute in B. Since UεB is a coequalizer of the image of (4) under U , Uf is an isomorphism. Thus,
f is an isomorphism, and εB is a regular epimorphism such that Φ is premonadic by Theorem 2.34.

Next, for any algebra (C, γ) in CT, we must find an object B in B such that Φ(B) ∼= (C, γ). Note
that the image of the diagram

FUFC FC
Fγ

εFC

under Φ is (3); that is, it is a U -contractible coequalizer. Therefore, by assumption, there is a coequalizer
B of the pair (Fγ, εFC) such that the diagram

UFUFC UFC UB
UFγ

UεFC

is a coequalizer. By Corollary 2.29, this last diagram is the image under UT of a coequalizer diagram
in CT with coequalizer (C, γ). Since UT reflects coequalizers, and UT ◦ Φ = U , we conclude that
Φ(B) ∼= (C, γ).
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There is an important version of the Barr–Beck theorem: the split monadicity theorem. We will
generalize it for our purposes in the section on descent for rings and algebras.

Theorem 2.36. [JT04, Theorem 2.2] The functor U : B → C is monadic if and only if
(i) U has a left adjoint F ;

(ii) the counit of the adjunction FU → idA is a split epimorphism.

Proof. If the counit ε : FU → idA is a split epimorphism, then condition Theorem 2.35(iii) is trivial.
Suppose the pair (Uf,Ug) is contractible, then so is (FUf, FUg), and then by Corollary 2.25 applied
to ε, (f, g) is contractible too. Therefore, every functor preserves the coequalizer of the pair (f, g).

Additionally, Theorem 2.35(ii) becomes trivial because having ζ : idA → FU with εζ = idA gives
that if U(f : A→ B) is invertible, then f is invertible with f−1 = εAF (Uf)−1ζB .

Remark 2.37. The split monadicity theorem is actually derived from a more general theorem by Paré.
However, we require a different type of generalization; suppose there is an additional functor H such
that Hε : HFU → H is a split epimorphism. Then, we only require (Hf,Hg) to be contractible, and
to conclude that U preserves the coequalizer of (f, g), there must be a “connection” between H and U .
The following theorem formalizes this connection.

Theorem 2.38. [JT04, Theorem 2.3] A functor U : B → C is monadic if and only if
(i) U has a left adjoint F ;

(ii) U reflects isomorphisms;
(iii) there exists a commutative diagram

B C

X Y

H

U

H
′

U
′

(7)

of functors such that;
(a) Hε : HFU → H is a split epimorphism;
(b) B has all coequalizers of U -contractible coequalizer pairs and H preserves them;
(c) H

′
reflects isomorphisms.

Proof. By Theorem 2.35 it suffices to check condition Theorem 2.35(iii) on U . Let

A B C
f

g

h (8)

be the coequalizer diagram of (f, g), and assume (Uf,Ug) is contractible. By (a) the image of (8) under
H is a coequalizer diagram. Moreover, by Corollary 2.25 applied to Hε with (Hf,Hg) as a retract
of (HFUf,HFUg), (Hf,Hg) is contractible and therefore a contractible coequalizer diagram. Since
contractible coequalizer diagrams are absolute colimits, it must be that the image of (8) under U

′
H

is a coequalizer diagram. Additionally, since U
′
H = H

′
U , the same is true for the image under H

′
U .

Next, consider the coequalizer diagram

UA UB Z
Uf

Ug

p
(9)

of (Uf,Ug). Since (Uf,Ug) is contractible, the image of (9) under H
′

is a coequalizer diagram.
Moreover, since the image of (8) under H

′
U is a coequalizer diagram, the image of the universal

canonical morphism H
′
δ : Z → UC making the diagram

H
′
UA H

′
UB H

′
Z

H
′
UC

H
′
Uf

H
′
Ug

H
′
h

H
′
p

H
′
δ

commute is an isomorphism. Then since H
′

reflects isomorphisms, the image of (8) under U is a
coequalizer diagram, as desired.

In the other direction, choose H = U and H
′

= U
′

= idC and apply Theorem 2.35.
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Remark 2.39. From the “only if” direction of the proof, Theorem 2.38 contains Theorem 2.35. Ad-
ditionally, it contains Theorem 2.36 by using H = idB, H

′
= idC and U

′
= U . Finally, Theorem 2.38

could equivalently be considered as a corollary since conditions Theorem 2.38(i) and (iii) imply the
condition Theorem 2.35(iii).

There is also a similar lemma to that of Theorem 2.38.

Lemma 2.40. [JT04, Lemma 2.5] A functor U : B → C is monadic if and only if
(i) U has a left adjoint F ;
(ii) there exists a commutative diagram

B C

X Y

H

U

H
′

U
′

of functors such that;
(a) U

′
is monadic;

(b) H preserves all coequalizers;
(c) H

′
reflects isomorphisms.

Proof. The proof is similar to Theorem 2.38.

3 Descent Theory

These subsections will follow G. Janelidze and W. Tholen [JT94]. The first section considers the general
question of descent in any category C and simultaneously treats the case of topological descent theory via
Grothendieck’s idea of descent. In fact, the story is better with topological intuition as its framework.
The second subsection concerns itself with (Grothendieck) fibrations and how monadic descent theory
survives the abstraction to bifibered categories. Indeed, the authors of [JT94] write that it is surprising
that all the definitions survive the abstraction.

3.1 Monadic descent theory

Assume for the remainder of this section that the conditions of the following construction are true.
Let C be a category with pullbacks, and let E be a class of morphisms in C closed under composition
with isomorphisms. For an object B in C, consider the full subcategory E(B) of the slice category C/B
with objects in E. The general aim of descent theory is to study the objects and morphisms of the
category E(B) in terms of objects in the category E(E) which comes equipped with additional algebraic
structure, so-called, descent data.

Example 3.1. If C = Top, then the fixed topological space B is the “base” space, and E is a class of
continuous functions that are closed under composition with homeomorphisms. The full subcategory
E(B) of Top/B is the category of E-bundles over B. Moreover, E is the “extension” space of B. In
other words, topological descent theory poses the following question:

Question 3.2. How and when can the E-bundles over B be described by the E-bundles over E?

Assume for the remainder of this section that E is stable under pullback along p : E → B (see
Remark 3.9), and for any object (C, γ) in E(E) let

E ×B C C

E B

pr1

pr2

p◦γ

p

(10)

be the pullback in C of p ◦ γ along p. (Stability means precisely that if p ◦ γ is in E, then pr1 is in E
too.)

Example 3.3. If C = Top, let p : E → B be a continuous map, and let (C, γ) be an E-bundle over E,
then the fiber product is analogous to the pullback (10). Explicitly, the fiber product is given by

E ×B C = {(x, c) : p(x) = p ◦ γ(c)},
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and it is considered a subspace of the topological product E × C. Furthermore, there is additional
structure related to the fiber product: for all points x, y ∈ E with p(x) = p(y) there is a canonical
embedding

ix,y : γ−1 → E ×B C, c 7→ (x, c),

where E ×B C is considered the join of the fibers γ−1y or rather the union of the subspaces ix,y(γ−1y).

Definition 3.4. The category
DesE(p)

of descent data (relative to a morphism p : E → B) consists of:
(i) objects that are triples (C, γ, ξ), where (C, γ) is an object in E(E) and ξ : E ×B C → C is a

morphism in C such that the diagrams

C E ×B C

C E

〈γ,idC〉

idC pr1
ξ

γ

(11)

E ×B (E ×B C) E ×B C

E ×B C C

idE×Bξ

idE×Bpr2 ξ

ξ

(12)

commute;
(ii) morphisms h : (C, γ, ξ) → (C

′
, γ
′
, ξ
′
) are morphisms h : (C, γ) → (C

′
, γ
′
) in E(E) that are com-

patible with the descent data; that is, such that the diagram

E ×B C E ×B C
′

C C
′

idE×Bh

ξ ξ
′

h

(13)

commutes.

Example 3.5. If C = Top, then the descent data for an E-bundle (C, γ) over E (relative to the
continuous map p : E → B) is given by a family of continuous maps

ξx,y : γ−1x→ γ−1y

for points x, y ∈ E with p(x) = p(y) such that the following conditions hold:
(i) xix,x = idγ−1x for each x ∈ E,
(ii) ξx,z = ξy,z ◦ ξx,y for each x, y, z ∈ E with p(x) = p(y) = p(z)
(iii) the unique map ξ : E ×B C → E ×B C, which makes all diagrams

γ−1x γ−1y

E ×B C E ×B C

iy,x

ξx,y

ix,y

ξ

commute, is continuous. Explicitly,

ξ(y, c) = (x, ξx,y(c))

with x = γ(c).
Conditions (i) and (ii) represent functoriality and (iii) represent gluing. Note that ξy,x ◦ ξx,y = idγ−1x,

thus, ξx,y is a homeomorphism. Thus, ξ
−1

= ξ and ξ is a homeomorphism too. Usually,

ξ : E ×B C → E ×B C

is referred to as descent data for a space (C, γ) over E.
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Remark 3.6. There is nothing pathological when discussing ξ as the descent data, although it is
defined as an algebra structure ξ : E ×B C → C in the general sense of the category DesE(p) of descent
data. As in [JT94], it is possible to explicitly define a bijective correspondence (ξ ↔ ξ) between descent
data ξ (as given an algebra structure) and the descent data ξ (as above).

If we are given descent data ξ : E ×B C → E ×B C, define

ξ := pr2 ◦ ξ : E ×B C → C

to obtain descent data in terms of algebra structure. In the other direction, if there is descent data
ξ : E ×B C → C, define

ξ := 〈γ ◦ pr2, ξ〉 : E ×B C → E ×B C,

as the morphism induced by the pair (γ ◦ pr2, ξ) in the pullback diagram

E ×B C

E ×B C C

E B.

ξ

γ◦pr2

ξ

pr2

pr1 p◦γ

p

In particular, observe that pr1 ◦ ξ ◦ ξ = pr1, and with (12), pr2 ◦ ξ ◦ ξ = pr2. Thus, ξ ◦ ξ = idE×BC , and
ξ is an involution.

Example 3.7. Let (Ui)i∈I be an open cover of a base space B. Consider the induced map p : E → B of
the topological sum E =

∐
i∈I Ui that is the identity map on each summand so that E = {(b, i) : b ∈ Ui}

with p(b, i) = b. Then, descent data for a space (C, γ) over E is given by maps

ξ(b,i),(b,j) : γ−1(b, i)→ γ−1(b, j)

for b ∈ Ui ∩ Uj . Gluing ξ along b give maps,

ξi,j : γ−1
i (Ui ∩ Uj)→ γ−1

j (Ui ∩ Uj)

for i, j ∈ I, and γi : γ
−1(Ui)→ Ui, is the restriction of γ with Ui considered a subspace of E.

Example 3.8. If C = Top, then E-bundles over E are equipped with descent data for the objects

(C, γ, ξ) of the category DesE(p). A morphism h : (C, γ, ξ) → (C
′
, γ
′
, ξ
′

) in DesE(p) is a morphism
h : (C, γ)→ (C

′
, γ
′
) of E-bundles over E such that it is compatible with descent data:

h(ξx,y(c)) = ξ
′

x,y(h(c)) (14)

for each x, y ∈ E with p(x) = p(y) and c ∈ γ−1x. Condition (14) is equivalent to

(idE ×B h) ◦ ξ = ξ ◦ (idE ×B h).

Remark 3.9. The central construction within these examples and definitions is the pullback. Indeed,
note that the pullback of any object (A,α) in E(B)

E ×B A A

E B

pr1

pr2

α

p

(15)

induces the object (E×BA,pr1) in E(E) precisely if E is stable under pullback along p. Indeed assuming
that E is stable under pullback will generalize this operation.

Definition 3.10. The functor

p∗ : E(B)→ E(E), (A,α) 7→ (E ×B A,pr1)

(with respect to a morphism p : E → B) is called the pullback functor. Moreover, it sends a morphism
f to idE ×B f .
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Note 3.11. The object p∗(A,α) comes equipped with canonical descent data:

idE ×B pr2 : E ×B (E ×B A)→ E ×B A.

Thus, we can lift the pullback functor as follows.

Definition 3.12. The functor

ΦpE : E(B)→ DesE(p), (A,α) 7→ (E ×B A,pr1, idE ×B pr2) (16)

such that the diagram

E(B) DesE(p)

E(E)
p∗

Φp
E

Up

commutes, where Up is the obvious forgetful functor. The functor ΦpE is called the comparison functor.

Example 3.13. If C = Top, then the E-bundle p∗(A,α) (over E) comes equipped with canonical descent
data:

ϕx,y : pr−1
1 x→ pr−1

1 y

for x, y ∈ E. Thus, ϕ : E ×B (E ×B A)→ E ×B (E ×B A) is the involution (y, (x, a)) 7→ (x, (y, a)).
Hence, the comparison functor

ΦpE : E(B)→ DesE(p)

is given by (A,α) 7→ (E ×B A,pr1, ϕ).

The comparison functor allows us to characterize the descent question as follows.

Definition 3.14. Let C be a category with pullback and let p : E → B be a morphism in C. Let E be a
class of morphisms in C closed under composition with isomorphisms and stable under pullback along
p. The morphism p is said to be E-descent if ΦpE is full and faithful, and it is an effective E-descent
morphism if ΦpE is an equivalence of categories.

This definition says that a morphism p : E → B is E-descent if any morphism f : (A,α) → (A
′
, α
′
)

is completely described by morphisms

h : (E ×B A,pr1, idE ×B pr2)→ (E ×B A
′
,pr

′

1, idE ×B pr
′

2)

such that h = idE ×B f (compatible with descent data). A morphism p : E → B is effective E-descent
if, in addition, up to isomorphism, objects (C, γ, ξ) in DesE(p) are of the form (E×BA,pr1, idE×B pr2).

However, there is a caveat to this definition. The fundamental application of monads is only available
if there exists a left adjoint to p∗. It follows that the adjunction induces a monad on the category E(E),
and the Barr–Beck theorem will be applicable. The following condition will ensure the existence of such
a left adjoint.

Lemma 3.15. If the class E is stable under composition with p from the left ; that is, if γ ∈ E, then
p ◦ γ ∈ E. Then the functor p∗ : E(B)→ E(E) has a left adjoint

p! : E(E)→ E(B), (C, γ) 7→ (C, p ◦ γ).

Therefore, assume that the class E is stable under composition with p from the left. It follows that
the pair of adjoint functors p! a p∗ induces a monad Tp on E(E), and the Eilenberg–Moore category
E(E)T

p

is exactly by construction the category DesE(p) of descent data. Hence, if the reader did not
already guess it, the following proposition follows under this assumption.

Proposition 3.16. If E is closed under composition with p from the left, then DesE(p) is exactly the
Eilenberg–Moore category of the monad induced by the adjunction p! a p∗, and p is an (effective)
E-descent morphism if and only if p∗ is premonadic (monadic).
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Remark 3.17. If the assumption that E is closed under composition with p from the left is removed,
Proposition 3.16 might fail. That is, there are classes E of morphisms in C such that p is not effective
for E-descent, although the functor p∗ is monadic. Note the following example.

If C = Top, consider the class Ec of closed-subspace embeddings in Top. Let X be a set with two
points, let E be the space with the discrete topology on X, let B be the space with the indiscrete
topology, and let p : E → B be the identity map. Note that up to categorial equivalence, Ec(E) is the
partially ordered powerset of X, and Ec(B) is the 2-element chain. By inspection, the category DesE(p)
is equivalent to Ec(E), and hence, not equivalent to Ec(B), despite p∗ being monadic.

This proposition gives many opportunities to exploit the various variations of the Barr–Beck theorem.
The first step is to determine which coequalizers must exist in the category C as this is an often
overlooked assumption of the Barr–Beck theorem. Thus, we give the following definition:

Definition 3.18. Denote by E∗(p) the class of all morphisms which are pullbacks of p along a morphism
in E; that is all morphism pr2 of every pullback diagram (15) with α ∈ E, and the composites with iso-
morphisms. The morphism p is an E-universal regular epimorphism if the class of regular epimorphisms
contains E∗(p).

Therefore, assume, in addition, that C has coequalizers of parallel pairs of morphisms in E∗(p).

Proposition 3.19. The morphism p is an E-descent morphism of C if and only if p is an E-universal
regular epimorphism of C. The E-descent morphism p is effective, if E is right cancellable with respect
to those regular epimorphisms of C which are coequalizers of the morphisms in E∗(p) over B, and if
these coequalizers are stable under pullback along p.

Proof. By Theorem 2.34, the the functor Φp is full and faithful if and only if the counits of the adjunction
p! a p∗ are regular epimorphisms in E(B). Yet, the counits are given by the projections pr2 in a pullback
diagram (15) with α ∈ E. This proves the first assertion (with Remark 3.20 in mind).

For the second assertion, for every (C, γ, ξ) in DesE(p) construct the coequalizer

E ×B C C Q.
pr2

ξ

q
(17)

Also note that both pr2 and ξ = pr2 ◦ ξ belong to E∗(p). By the universal property of the coequalizer,
there exists a unique morphism δ : Q→ B

E ×B C C Q

B

pr2

ξ

q

p◦γ
δ

such that δ ◦ q = p ◦ γ. Thus, by the right cancellability of E, δ lives in E(B). Therefore, define

Ψp
E : DesE(p)→ E(B), (C, γ, ξ) 7→ (Q, δ)

as the left adjoint to ΦpE. Finally, by the Barr–Beck theorem, the unit of the adjunction Ψp
E a ΦpE is an

isomorphism if and only if p∗ preserves the coequalizer (17).

Remark 3.20. There is a nontrivial technical detail omitted in this proof. Specifically, we have not
shown that the treatment of the regular epimorphisms in E(B) are the same as those in C. This
statement follows [JT94, Theorem 3.6], but we will not investigate descent theory with respect to
fibrations in such detail.

Note 3.21. Further characterizations could be made for C = Top. By constructing a left adjoint
similarly to the proof of Proposition 3.19, it is possible to show that the class of regular epimorphisms
coincides with the class of quotient maps [JT94, Corollary 1.8]. However, characterizing topological
descent maps has served its purpose. Yet, the key theorems of descent theory of topological spaces
are [JT94, Proposition 1.6, and Theorem 1.10]. Moreover, for those interested, W. Tholen with J.
Reiterman [RT94] wrote up a complete characterization of effective descent of topological spaces.

In the literature, if E is the class of all morphisms in C, then one speaks of (effective) global-descent.
Indeed, in this case, it is trivial that the class closed under composition with p from the left. Therefore,
Proposition 3.19 has the following corollary:
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Corollary 3.22. A morphism p is a global-descent morphism if and only if p is a universal regular
epimorphism. A global-descent morphism p : E → B is an effective global-descent morphism if the
coequalizer of every parallel pair of universal regular epimorphisms over B exists and is stable under
pullback along p.

Remark 3.23. The preservation of coequalizers is guaranteed if p∗ has a right adjoint.

This corollary says that if our category with pullbacks and coequalizers is locally cartesian closed,
then the effective descent morphisms are exactly the (necessarily universal) regular epimorphisms. In
particular, it allows us to develop a workaround to study (effective) descent morphisms in an arbitrary
category (that may not satisfy all the stated conditions).

Consider two classes E0 and E1 of morphisms in a category with pullbacks, both stable under
pullback along p : E → B and under composition with isomorphism. Assume that E0 ⊆ E1.

Proposition 3.24. E1-descent for p implies E0-descent for p. The effective E1-descent morphism p
is an effective E0-descent morphism if and only if the following conditions hold: for every pullback
diagram

E ×B A A

E B,

pr1

pr2

α

p

pr1 ∈ E0 and α ∈ E1 implies α ∈ E0.

Proof. The first assertion follows that ΦpE0
: E0(B)→ DesE0(p) is just the restriction of ΦpE1

.
For the other assertion, let p be an effective E1-descent morphism, then it suffices to show that ΦpE0

is
an equivalence of categories. By the first assertion, the functor ΦpE0

is full and faithful. Since p is effective,
for every object (C, γ, ξ) in DesE0

(p), there is an object (A,α) in E1(B) such that ΦpE1
(A,α) ∼= (C, γ, ξ).

Hence, p∗(A,α) ∼= (C, γ) in E0(E) implies (A,α) in E0(B), and ΦpE0
(A,α) ∼= (C, γ, ξ).

In the other direction, ΦpE0
must be an equivalence of categories. If from in the pullback diagram,

pr1 ∈ E0 with (A,α) ∈ E1(B), then ΦpE1
(A,α) is in DesE0

(p). Hence, there is an object (A
′
, α
′
) in E0(B)

such that
ΦpE1

(A,α) ∼= ΦpE0
(A
′
, α
′
) ∼= ΦpE1

(A
′
, α
′
),

and it follows (A,α) ∼= (A
′
, α
′
) in E0(B).

This proposition gives us direct access for the next two cases:

Corollary 3.25. (i) For a C with pullbacks and E stable under pullback along the effective global-
descent morphism p of C, p is an effective E-descent morphism if and only if in every pullback
square

E ×B A A

E B,

pr1

pr2

α

p

pr1 ∈ E implies α ∈ E.
(ii) For D with pullbacks and C a full subcategory closed under pullbacks in D, a morphism p of C

which is an effective global-descent morphism in D is also an effective global-descent morphism in
C if and only if in every pullback square

E ×B A A

E B,

pr1

pr2

α

p

of D, E ×B A in C implies A in C.

The first part Corollary 3.25(i) is useful when the effective global-descent morphism in a category
C is known, and the effective descent morphism with respect to some subclass E of morphisms is of
interest.
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The second part Corollary 3.25(ii) is useful when our category C is embedded in a larger category D
where effective descent morphisms are easily characterized. Specifically, if D is locally cartesian closed
or exact, see for example [JT94, Theorem 2.5] and [JT94, Corollary 2.5]. In other words, descent theory
is easier in these types of categories, and the workaround is to fully embed the “difficult” category into
these “nice” categories, and interpret the results thereof. Applications of these procedures are in the
following examples.

Example 3.26. The following are examples of regular categories in which regular epimorphisms may
fail to be effective for descent.

(i) Consider the full subcategory C of semigroups which have at most one idempotent element. It
is closed under products and sub-semigroups. Hence, it is finitely complete and has (regular-
epimorphism, monomorphism)-factorizations, and the regular epimorphisms are, as in the cate-
gory D of all semigroups, stable under pullback. That is, C is a regular category. The regular
epimorphism p : E → 1 where E is a non-empty semigroup without any idempotents is an effective
descent morphism of D, but by Corollary 3.25, not of C.

(ii) Consider C as the regular-epi-reflective subcategory of the category Ab of abelian groups. Assume
for a fixed natural number n ≥ 2 that the abelian groups satisfy the property

n2x = 0 =⇒ nx = 0. (18)

The regular epimorphism p : Z→ Z/nZ (in Ab) fails to be effective for descent in C. Namely, let
A = Z/n2Z, B = Z/nZ and P = Z×B A, then consider the pullback diagram

P A

Z B.

pr1

pr2

α

p

Then P satisfies (18), but A does not. In fact, for (a, b) ∈ P with n2(a, b) = 0, then a = 0, and
therefore α(b) = p(a) = 0. Hence, b = nk + n2Z with k ∈ Z, and thus, nb = 0 in A.

Now that we have seen a couple of ways the workaround does not work, there are cases where you
receive something useful.

Corollary 3.27. In the category C of torsion-free abelian groups, every surjective homomorphism is
an effective descent morphism.

Proof. Let B,E and E ×B A be torsion free, and consider the pullback diagram

E ×B A A

E B.

pr1

pr2

α

p

For any a ∈ A such that na = 0 and n 6= 0. It follows, nα(a) = 0, and since B is torsion-free, α(a) = 0.
Hence, (0, a) ∈ E×BA, and n(0, a) = 0. Finally, since E×BA is torsion-free, it must be that (0, a) = 0,
and thus a = 0.

Note 3.28. A step further follows by noting that all these results have exclusively considered the
adjunction

p! a p∗ : E(B)→ E(E).

However, there are cases where the left adjoint to p∗ is not given by composition with p from the
left. Indeed, one such workaround is by constructing a factorization system (D,E); that is, every
morphism f factors as αq with q ∈ D and α ∈ E, satisfying certain criteria. Then, the construction of
the left adjoint is completed by factorizing p ◦ γ, then extending our previous constructions using the
factorization system. Yet, this note ends the journey of monadic descent theory in this thesis.

3.2 Descent theory with respect to fibrations

Before we state many definitions, it is worth noting that fibrations are often thought of as “nice”
projections, and an abstraction of the pullback. This intuition is clearer given the examples given after
the definitions.
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Also, have in mind that our goal with this section is to show how the Beck–Chevalley condition
applies in the context of bifibered categories, and not to get stuck in the technicalities that comes with
this abstraction. In particular, this discovery will neatly tie the next section on monadic descent theory
for rings and algebras to the first section on monadic descent theory.

Let P : E → C be an arbitrary functor, and let p : E → B be a morphism in C.

Definition 3.29. The fiber E(B) := P−1(B) of P at B is the (non-full) subcategory of E whose objects
are in P−1(B) (that is, those objects A in E with PA = B) and whose morphisms f : A → A

′
satisfy

P (f) = idB .

Definition 3.30. Let A be an object in E(B), a pair (C, c) with C ∈ E(E) and c : C → A a morphism
in E with Pc = p is called a P -lifting of p at A.

Definition 3.31. A morphism c : C → A in E is called P -cartesian if it is a terminal P -lifting of Pc at
A; that is for any morphism d : D → A in E , and any q : PD → PC with Pc ◦ q = Pd, there is a unique
morphism g : D → C with c ◦ g = d and Pg = q,

D C PD PC

A PA.

∃!g

d
c

q

Pd
Pc

Definition 3.32. A functor P : E → C is called a (Grothendieck) fibration if for any morphism p : E → B
in C and every object E(B) there is a cartesian lifting (p∗X,ϑpX) over p at X.

Definition 3.33. The inverse-image functor along p

p∗ : E(B)→ E(E)

assigns the cartesian lifting of p at A. Explicitly, for every object A in E(B) there is a cartesian lifting
(p∗A, ϑpA) of p at A

p∗A A

E B.

P

ϑpA

p

In other words, it assigns the domain of p in the cleavage (above p) whose codomain is A. The cleavage
is the functor

ϑp : JE ◦ p∗ → JB

where JE : E(E) → E and JB : E(B) → E are the inclusion functors, with Pϑp as the constant natural
transformation (given by Pϑp = ∆p : ∆E → ∆B).

Definition 3.34. A functor P : E → C is a (cloven) fibration if every morphism p : E → B admits a
(specified) cartesian lifting at every object A in E(B).

Remark 3.35. The inverse-image functor (−)∗ : Cop → Cat

B E(B)

E E(E)

p∗p

defines a pseudo-functor since there are uniquely determined natural equivalences

iB : idE(B) → (idB)∗, and jp,q : q∗p∗ → (pq)∗

such that
ϑidB

◦ JBiB = idJB , P (JB ◦ iB) = ∆idB ,

and
ϑpq ◦ JX ◦ jp,q = ϑp ◦ ϑqp∗, PJXjp,q = ∆idX

for all p : E → B and q : X → E in C by the definition of cartesian lifting.
In particular, this observation implies (−)∗ : Cop → Cat is a C-indexed category. Therefore, one

could equivalently describe the descent problem in C-indexed categories such as in [JT97].
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Remark 3.36. The condition of the fibration being cloven could be thought of as a choice of a single
cartesian lifting determined by the cleavage. Conversely, if one assumes the axiom of choice, then every
fibration is cloven. The following examples illustrate this.

Example 3.37. 1. For every category C, the identity functor idC is a fibration.
2. Let C be a category and let E be a class of morphisms in C. The slice category E(C) for C in C

as considered in the very beginning of Section 3 can be interpreted as the fibers of the codomain
functor

PE : E2 → C,

where E2 is the category whose objects are all morphisms in E and whose morphisms (p
′
, p) : α

′ →
α with α

′
, α ∈ E are commutative diagrams in C:

· ·

· ·
α
′

p
′

α

p

If the diagram above is a pullback, then it represents a PE-cartesian lifting morphism of E2.
However, if the class E contains all isomorphisms of C, then every PE-cartesian lifting morphism
of C is given by a pullback diagram.
Let p : E → B be a morphism in C, and suppose that for every α : A→ B in E the pullback

E ×B A A

E B.

pr1

pr2

α

p

exists in C. Then, for every (A,α) in E(B)(= E2(B)), a cartesian PE-lifting of p at (A,α) exists.
Therefore, the inverse-image functor p∗ and the cleavage ϑp are given by the choice of the pullback.
Hence, if C is a category with (chosen) pullbacks, and if E is stable under pullback, then PE is a
(cloven) fibration.

For simplicity, only the necessary definitions and observations are stated.

Definition 3.38. Let C be a category with pullbacks, p : E → B a morphism in C and P : E → C
a fibration. The descent data (C, ξ) for C in E(E) (relative to p) are given by certain morphisms

ξ̂ : p∗1 → p∗2 in E(E ×B E) such that the diagrams

p∗1C p∗2C

C

ξ̂

ϑp2
Cδ1

(19)

(pr1)∗p∗2C (pr2)∗p∗1C

(pr1)∗p∗1C (pr2)∗p∗2C

(pr)∗p∗1C (pr)∗p∗2C.

j

(pr2)∗ξ̂(pr1)∗ξ̂

j−1
1

(pr)∗ξ̂

j2

(20)

commute in C. The morphism δi : C → p∗iC is the unique morphism induced by the cartesian lifting
(p∗iC, ϑpiC) with respect to the “diagonal” morphism δ : E → E ×B E for which p1 ◦ δ = p2 ◦ δ = idE ;
that is, δi is the unique morphism such that P (δi) = δ and ϑpiC ◦ δi = idC . The morphism

pr := 〈p1pr1, p2pr2〉 : (E ×B E)×E (E ×B E)→ E ×B E

is the morphism induced by the pair (p1pr1, p2pr2), where pr1 and pr2 are given by the following pullback
diagram
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(E ×B E)×E (E ×B E) (E ×B E)

(E ×B E) E.

pr2

pr1 p1

p2

The canonical isomorphisms j and ji arise from the identities

p1pr2 = p2pr1 and pipr = pipri

for i = 1, 2 as in Remark 3.35. In particular, ξ̂ is an isomorphism (see [Pav90, Remark 44]), hence all
morphisms in (20) are isomorphisms.

Definition 3.39. The category DesE(p) of descent data (C, ξ̂) relative to p consists of

(i) descent data (C, ξ̂) with C in E(E) and ξ̂ : p∗1C → p∗2C in E(E ×B E) such that (19) and (20)
commute;

(ii) morphisms h : (C, ξ̂)→ (C
′
, ξ̂
′
) are morphisms h : C → C

′
in E(E) such that

p∗1C p∗1C
′

p∗2C p∗2C
′

p∗1h

ξ̂ ξ̂
′

p∗1h

(21)

commutes.

Note 3.40. For any A ∈ E(B), p∗A comes equipped with canonical descent data

ϕ̂ = (j−1
p,p2A)(jp,p1A) : p∗1p

∗A→ p∗2p
∗A.

Hence, p∗ can be lifted to the comparison functor Φp : E(B)→ DesE(p) by A 7→ (p∗A, ϕ̂), which makes
the diagram

E(B) DesE(p)

E(E)

Φp

p∗ Up

commute. (The functor Up is the obvious forgetful functor.)

The next definition is in accordance with Grothendieck [Gro59].

Definition 3.41. Let P : E → C be a fibration with C a category with pullbacks. A morphism p : E → B
in C is an (effective) E-descent morphism if Φp is full and faithful (an equivalence of categories).

Definition 3.42. A functor P : E → C is a (cloven) bifibration is both P and P op : Eop → Cop are
(cloven) fibrations.

Dually to the inverse image functor and the cleavage there are the following definitions.

Definition 3.43. The direct image functor along p

p! : E(E)→ E(B)

and the co-cleavage
δp : JE → JBp!

that act as the inverse image functor and cleavage to the fibration P op.

Example 3.44. The fibration PE is a bifibration. It is a fibration by Example 3.37 (2), and to see
that it is an opfibration, note that for any p : E → B in C, and any object (C, γ) in E(E)(= E2(E)), an
opcartesian lifting over p at x is given by

(idC , p) : γ → p ◦ γ

that is,
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C C

E B

E B

γ

idC

p◦γ

p

PE

p

Therefore if P : E → C is a bifibration, it gives rise the adjunction p! a p∗ as in the diagram

E(B) E(E).
p∗

p!

Furthermore, the unit and counit of the adjunction are given by the (unique) natural transformations

ηp : idE(E) → p∗p! and εp : p!p
∗ → idE(B),

respectively, with (ϑpp!)(JEηp) = δp and (JBεp)(δpp
∗) = ϑp. Moreover, by considering the kernelpair

(p1, p2) of p, there is the Beck transformation

βp : (p2)!p
∗
1 → p∗p! with (JEβp)(δp2p

∗
1) = (JEηp)ϑp1 .

The bifibration P satisfies the Beck–Chevalley condition for p if βp is a natural equivalence. Formally,
the Beck–Chevalley condition is defined as:

Definition 3.45. Consider the commutative diagram

S D

E B

ϕ

ψ q

p

(22)

in C, then any bifibration P : E → C has the Beck–Chevalley property if the natural transformation

β : ϕ!ψ
∗ → q∗p!

is an isomorphism for every pullback square (22) in C.

For the bifibration P = PE, there is a bijective correspondence between the descent data ξ̂ and the
descent data ξ given in Definition 3.4 so that DesE2(p) is isomorphic to DesE(p). Moreover, Proposition
3.16 gives criteria for when the category of descent data is the category of Eilenberg–Moore algebras.
Further, if any bifibration P : E → C satisfies the Beck–Chevalley condition for p, then βp is a natural

equivalence, and therefore there is a bijective correspondence between (ξ̂)] : (p2)!p
∗
1C → C and the

algebra structure ξ : p∗p!C → C obtained by the monad induced by p! a p∗:

(p2)!p
∗
1C p∗p!C

C

βpC

(ξ̂)] ξ

where (ξ̂)] = (εp2C)((p2)!ξ̂). This (essentially) shows the bijective correspondences (ξ̂ ↔ ξ) for any
bifibration satisfying the Beck–Chevalley condition along p.

Theorem 3.46. [BR70] Let P : E → C be a bifibration with C a category with pullbacks. For a
morphism p : E → B in C such that the Beck–Chevalley condition is satisfied for p, the category DesE(p)
of descent data is isomorphic to the category of Eilenberg–Moore algebras of the monad induced by the
adjunction p! a p∗. Therefore p is an (effective) E-descent morphism if and only if p∗ is premonadic
(monadic).

There is an explicit proof of the above theorem by J. Bénabou and J. Roubaud [BR70] and Beck (un-
published). The above theorem corresponds to how the monadic characterization of descent translates
to the abstract context of bifibered categories satisfying the Beck–Chevalley condition.
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4 Monadic Descent Theory for Rings and Algebras

The goal of this section is to follow the development of [JT04] on the classical descent problem for
modules and algebras. In particular, to characterize the analogue of the change-of-base functor for
modules and algebras, the extension-of-scalars functor. Moreover, the descent theory with respect to
fibrations gives rise to a stronger theorem than what could be characterized in a classical sense.

The classical theorem given by Grothendieck in [Gro59] is formulated as follows:

Theorem 4.1. For a homomorphism p : R→ S of commutative rings, the extension-of-scalars functor
S ⊗R (−) : RMod→ SMod is comonadic whenever p makes S a faithfully flat R-module.

However, at the time of Grothendieck’s discovery, the obvious monadic connection was not present
(recall that Grothendieck did consider the questions of descent in fibered categories), and in the later
decades it was overlooked much because both the theory of monads and descent were not very “popular”
independently of one another. That being said, by the works [BR70], and in the later decades [JT94],
[JT97] and [JT04], there is a clear approach to the descent questions. In the case for modules and
commutative rings, [JT04] found an even stronger result.

Theorem (Theorem 4.15). For a homomorphism p : R → S of commutative rings, the extension-of-
scalars functor S⊗R (−) : RMod→ SMod is comonadic if and only if p is a pure morphism of R-modules
(see Definition 4.7).

Notably, they derived this result from a more general and stronger result (Theorem 4.14) that applies
to most types of algebras, unital or not, associative or not, commutative or not, Lie, Jordan, differential,
etc. that satisfy a certain property.

Note 4.2. With the observations of Section 2.2 on monads as generalized rings it could be shown that
the induced change-of-base functor for a morphism between monads mimics the situation for a morphism
of rings. This result is found by explicitly stating the adjunction situation between the change-of-base
functor and its left adjoint. Thus, one would attain a result in a monoidal category see [JT04, Theorem
4.1 and Corollary 4.2]. However, for our purposes this is an unnecessary detour of abstraction that can
be skipped. Indeed, we will find a theorem that is not in general valid in an abstract monoidal category.

4.1 Comonadicity for ordinary modules

Definition 4.3. Let p : R→ S be a morphism in the category Rng of rings. Define the functors

RMod SMod
ep

ρp

by
ρp(M) = M and ep(N) = S ⊗R N

for M ∈ SMod and N ∈ RMod. The functor ρp is called the restriction-of-scalars functor (by sending
the action ·s to ·r) and ep is called the extension-of-scalars functor. These functors define an adjunction
ρp a ep with unit and counit given by

ηN : N → S ⊗R N, n 7→ 1⊗ n
εM : S ⊗RM →M, m⊗R s 7→ ms

for all M ∈ SMod and N ∈ RMod.

Remark 4.4. The adjunction of Definition 4.3 could equivalently be defined for any morphism p : R→
S in any category of algebraic objects.

Recall first that Q/Z is an injective cogenerator in the category Ab of abelian groups (see for example
[KS06, Chapter 5.2]). If M is a left R-module, then it is a bimodule RModZ. Thus, the right R-module
structure on HomZ(M,Q/Z) is given by hr : m 7→ h(rm). Hence, there is a (representable) functor

E : (RMod)op → ModR, M 7→ HomZ(M,Q/Z).

Note the following proposition as a corollary to [Rot09, Lemma 3.53].

Proposition 4.5. The functor E : (RMod)op → ModR is exact.

24



Proof. Clearly E is an additive functor, then it suffices to show that if the sequence of left R-modules

A B Cα β
(23)

is exact if and only if the sequence

C∗ B∗ A∗
β∗ α∗ (24)

is exact, where A∗ = HomZ(A,Q/Z) (similarly for B and C) and Eα = α∗ (similarly for β).
In the one direction, if the sequence (23) is exact, then since Q/Z is an injective cogenerator, the

contravariant functor HomZ(−,Q/Z) is exact. Therefore, the sequence (24) must be exact.
In the other direction, first let if the sequence (24) is exact, then we must first show that im α ⊆ ker β.

If x ∈ A and αx /∈ ker β then since there are no nonzero x that can kill all of Q/Z, there is a map
f : C → Q/Z with fβα(x) 6= 0. Thus, f ∈ C∗ and fβα 6= 0 contradicting the hypothesis that α∗β∗ = 0.

Next, we must show that ker β ⊆ im α. Let y ∈ ker β with y /∈ im α. Then since y+im α is a nonzero
element, there is a map g : B/im α → Q/Z with g(y + im α) 6= 0. If v : B → B/im α is the natural
map, define g

′
= gv ∈ B∗. Note that g

′
(y) = gv(y) = g(y + im α) 6= 0. It follows, g

′
(im α) = {0} such

that 0 = g
′
α = α∗(g

′
) and g

′ ∈ ker α∗ = im β∗. Thus, g
′

= β∗(h) for some h ∈ C∗; that is, g
′

= hβ.
Hence, g

′
(y) = hβ(y) which is a contradiction since g

′
(y) 6= 0, while hβ(y) = 0, because y ∈ ker β.

Lemma 4.6. For a ring homomorphism p : R→ S, the extension-of-scalars functor

S ⊗R (−) : RMod→ SMod

is comonadic whenever it reflects isomorphisms and the map

HomZ(p,Q/Z) : HomZ(S,Q/Z)→ HomZ(R,Q/Z) (25)

is a split epimorphism of (R,R)-bimodules.

Proof. The idea of the proof is to use Theorem 2.38 as follows:
� B = (RMod)op, the opposite category of R-modules;
� C = (SMod)op;
� U : B → C the dual of the extension-of-scalars functor S ⊗R (−) : RMod→ SMod;
� F : C → B is thus the dual of the restriction of scalars functor;
� X = ModR, the category of right R-modules;
� Y = Ab, the category of abelian groups;
� H : B → X defined by H(B) = HomZ(B,Q/Z) with the right R-module structure on

HomZ(B,Q/Z) defined by (hr)(b) = h(rb); of course the only reason for using Q/Z here is that it
is an injective cogenerator in Ab;

� U
′
: X → Y defined by U

′
(X) = HomR(S,X) (considering HomR(S,X) just an an abelian group

of course);
� H

′
: C → Y defined by H

′
(C) = HomZ(C,Q/Z).

Then observe:
1. For each R-module B, there are canonical isomorphisms using the Hom and ⊗ adjunction:

HomR(S,HomZ(B,Q/Z)) ∼= HomZ(S ⊗R B,Q/Z) ∼= HomR(B,HomZ(S,Q/Z))

where the first HomR is used for the right R-module homomorphisms, while the second is used
for the left ones, assuming that HomZ(B,Q/Z) is considered as an R-module via (rh)(s) = h(sr).
In particular, the first isomorphism tells us that in this case diagram (7) commutes (up to an
isomorphism).

2. Since the forgetful functor from the category of modules (over any ring) to Ab is monadic it
reflects isomorphisms by Theorem 2.21. The forgetful functor is also exact1, and by Proposition
4.5, the functors H and H

′
are exact. Since Q/Z is an injective cogenerator in Ab, H and H

′

must necessarily reflect isomorphisms too.
3. If (25) is a split epimorphism of (R,R)-bimodules (= R⊗Rop-modules), then each

HomZ(εB ,Q/Z) : HomZ(S ⊗R B,Q/Z)→ HomZ(B,Q/Z) (26)

1It has both a left adjoint and a right adjoint, therefore it is actually “stronger” than exact because it preserves all
limits and colimits.
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is a split epimorphism of right R-modules. Note that (up to natural isomorphism) (26) can be
rewritten as

HomZ(p⊗R B,Q/Z) : HomZ(S ⊗R B,Q/Z)→ HomZ(R⊗R B,Q/Z)

and then as

HomR(B,HomZ(p,Q/Z)) : HomR(B,HomZ(S,Q/Z))→ HomR(B,HomZ(R,Q/Z))

and therefore the splitting (26) is natural in B.
Thus, whenever S ⊗R (−) reflects isomorphisms and (25) is a split epimorphism of (R,R)-bimodules,
all assumptions of Theorem 2.38 are satisfied.

In fact, there is a more precise formulation of the above lemma. First note the next definition.

Definition 4.7. A morphism f : M →M
′

in RMod is pure if for any N in RMod,

idN ⊗R f : N ⊗RM → N ⊗RM
′

is a monomorphism.

Then we obtain the (corrected) theorem of Caenepeel [Cae04] that was an adoption of the new
arguments of Mesablishvili in [Mes00].

Theorem 4.8. For a ring homomorphism p : R→ S, consider the following conditions:
(i) p a pure morphism of (R,R)-bimodules;

(ii) the extension-of-scalars functor S ⊗R (−) : RMod→ SMod is comonadic;
(iii) p is a pure morphism of right R-modules.

Then, (i) =⇒ (ii) =⇒ (iii).

Proof. First observe that if the homomorphism (25) of Lemma 4.6 is a split epimorphism of (R,R)-
bimodules, then by the Yoneda Lemma, this holds if and only if

HomR(B,HomZ(p,Q/Z)) : HomR⊗Rop(B,HomZ(S,Q/Z))→ HomR⊗Rop(B,HomZ(R,Q/Z))

is surjective for every (R,R)-bimodule B. Next, the canonical isomorphism

HomZ(B ⊗R⊗Rop S,Q/Z) ∼= HomR⊗Rop(B,HomZ(S,Q/Z))

says that the desired split property holds if and only if

B ⊗R⊗Rop p : B ⊗R⊗Rop R→ B ⊗R⊗Rop S

is a monomorphism for every R module B; that is, if and only if p : R → S is a pure morphism of
(R,R)-bimodules.

Recall that a right adjoint functor reflects isomorphisms if and only if all components of the counit
of adjunction are extremal epimorphisms; that is, if the counit ε can be factorized as ε = m◦g where m
is a monomorphism, then m is an isomorphism. Note that the extremal epimorphisms in (RMod)op are
precisely the monomorphism in RMod, and these components can be presented as p⊗R B : R⊗R B →
S ⊗R B. It follows, the condition that the extension-of-scalars functor reflects isomorphisms in Lemma
4.6 is equivalent to p begin pure as a right R-module homomorphism implying the comonadicity of
S ⊗R (−). Finally, comonadicity implies the reflection of isomorphisms.

This result is more general than [Mes00] that only proved the case for commutative rings. In
particular, we state [Mes00, Proposition 2 and 3] as the following corollary.

Corollary 4.9. For a homomorphism p : R → S of commutative rings, the following conditions are
equivalent:

(i) p is a pure morphism of R-modules;
(ii) the extension-of-scalars functor S ⊗R (−) : RMod→ SMod is comonadic.
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4.2 Comonadicity for algebras

Next is an important generalization from Lemma 2.40.

Theorem 4.10. For a homomorphism p : R→ S of commutative rings, the extension-of-scalars functor

S ⊗R (−) : RMod→ SMod

is comonadic if and only if the induced extension-of-scalars functor

S ⊗R (−) : RAlg→ SAlg

is comonadic for any of the following kinds of algebras:
(i) arbitrary (not necessarily associative or commutative) algebras, with or without 1;

(ii) associative algebras, with or without 1;
(iii) (associative and) commutative algebras, with or without 1;
(iv) Lie algebras;
(v) Jordan algebras;
(vi) differential algebras.

Proof. In the one direction, for a morphism p : R→ S of commutative rings, Lemma 2.40 says that the
comonadicity of the extension-of-scalars functor for modules implies the same property for algebras.
Indeed, consider the diagram

(RAlg)op (SAlg)op

(RMod)op (SMod)op

(S⊗R(−))op

(S⊗R(−))op

where the vertical arrows are the (duals of the) forgetful functors from algebras to modules.
For example, a Lie algebra over a commutative ring R is an R-module L together with an R-bilinear

map [ , ] : L×L→ L satisfying a pair of axioms. In this case, the forgetful functor forgets the R-bilinear
map. Similarly, for all the other listed algebras.

In the other direction, apply Lemma 2.40 to the diagram

(RMod)op (SMod)op

(RAlg)op (SAlg)op

(S⊗R(−))op

(S⊗R(−))op

where the vertical arrows are the functors carrying modules M to
1. M equipped with the zero multiplication if our algebras are not required to have 1;
2. the semidirect product of M with the ground ring (either R or S).

Remark 4.11. Theorem 4.10 could easily be extended from rings to monoids in a monoidal category.
In particular, since commutativity is involved, those monoidal categories should at least be symmetric
(or at least braided). For example, for a commutative ring R, a Lie algebra is an object in a symmetric
monoidal R-linear category (satisfying a pair of axioms).

4.3 Comonadicity to (Co)descent

To tie comonadicity and (co)descent together, note the following definition and example.

Definition 4.12. Denote by M the category of all modules with objects as pairs (R,M) where R is a
commutative ring and M is a module in RMod, and morphisms as pairs (f, ϕ) : (R,M)→ (S,N) where
f : R→ S is a morphism in CRng and ϕ : M → S ⊗R N is a morphism in RMod.

Example 4.13. The canonical forgetful functor P : M→ CRng given by

(R,M) 7→ R, (f, ϕ) 7→ f

is defines a bifibration
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(R,M) (S,N)

R S = P (R,M).

P

(p,ϕ)

p

In fact, the inverse image functor is the pair p∗ = (p, ep) : (R,RMod)→ (S, SMod) and direct image
functor is the pair p! = (pop, ρp) : (S, SMod) → (R,RMod) where ρp a ep is the adjunction between
restriction-of-scalars functor and the extension-of-scalars functor, respectively.

It is clear that the basic (bi)fibration over a category C with pullbacks satisfies the Beck–Chevalley
condition. In other words, for every pullback square

D E

F B

t

s

q

p

the canonical morphism between the two composites in the diagram

C/D C/E

C/F C/B

s!

t∗

p!

q∗

is an isomorphism. Equivalently, for every pair (C, γ) in C/E, there is an isomorphism

(E ×B F )×F C ∼= E ×B C. (27)

When C is the opposite category CRngop of commutative rings, then the isomorphism (27) becomes

(E ⊗B F )⊗F C ∼= E ⊗B C,

which holds for every F -module C, and has nothing to do with any multiplication on C. Hence, the
bifibration

Mop → CRngop

satisfies the Beck–Chevalley condition. The same holds true for any of the algebras listen in Theorem
4.10. Therefore, Theorem 4.10 becomes:

Theorem 4.14. A homomorphism p : R → S of commutative rings is an effective descent morphism
with respect to any bifibration of modules or algebras from Theorem 4.10 if and only if the extension-
of-scalars functor S ⊗R (−) : RMod→ SMod is comonadic.

Hence, Corollary 4.9 becomes:

Theorem 4.15. A homomorphism p : R→ S of commutative rings is an effective descent morphism if
and only if it is a pure morphism of R-modules.

Remark 4.16. The basic fibration for the opposite category of commutative rings is among those that
occur in Theorem 4.14. Therefore, descent theory of modules and commutative rings is a special case
of global-descent theory.

A Types of Categories

A.1 Comma Categories

Definition A.1. If F : C → E and G : D → E are functors, the comma category F ↓ G consists of the
following datum:

� Objects are triples (c, d, α) where c ∈ C, d ∈ D and α : f(c)→ g(d) is a morphism in E ,
� Morphisms from (c1, d1, α1) to (c2, d2, α2) are pairs (β, γ), where β : c1 → c2 and γ : d1 → d2 are

morphisms in C and D, respectively, such that the diagram

F (c1) F (c2)

G(d1) G(d2)

α1

F (β)

α2

G(γ)
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commutes.
� Composition of morphisms (β, γ) and (β

′
, γ
′
) is given on components by composition in C and D;

that is, the diagram

F (c1) F (c2) F (c3)

G(d1) G(d2) G(d3)

α1

F (β)

α2

F (β
′
)

α3

G(γ) G(γ
′
)

commutes.

There is an important special case of a comma category which will be useful for our discussion.

Definition A.2. Let C be a category. The slice category C/x of C over an object x ∈ C consists of the
following datum:

� Objects are pairs (c, γ) for an object c ∈ C and morphism γ : c→ x in C,
� Morphisms f : (c, γ)→ (c

′
, γ
′
) in C/x is given by a morphism f : c→ c

′
in C such that the diagram

c c
′

x

f

γ γ

commutes.

Remark A.3. Explicitly, if F is the identity functor of C and G is the inclusion of an object x ∈ C,
then F ↓ G is the slice category C/x.

A.2 Monoidal Categories

Definition A.4. A monoidal category is a category C consisting of the following datum:
� A functor ⊗ : C × C → C called the tensor product.
� An object 1 ∈ C called the tensor unit.

� A natural isomorphism a : ((−)⊗ (−))⊗ (−)
'−→ (−)⊗ ((−)⊗ (−)) with components of the form

ax,y,z : (x⊗ y)⊗ z → x⊗ (y ⊗ z) called the associator.

� A natural isomorphism λ : (1 ⊗ (−))
'−→ (−) with components of the form λx : 1 ⊗ x → x called

the left unitor.

� A natural isomorphism ρ : (−)⊗ 1 '−→ (−) with components of the form ρx : x⊗ 1→ x called the
right unitor.

such that the diagrams commute, for all objects involved:
� The triangle identity (not the triangle identities of an adjunction):

(x⊗ 1)⊗ y x⊗ (1⊗ y)

x⊗ y

ax,1,y

ρx⊗1y 1x⊗y

� The pentagon identity :

(w ⊗ x)⊗ (y ⊗ z)

((w ⊗ x)⊗ y)⊗ z w ⊗ (x⊗ (y ⊗ z))

(w ⊗ (x⊗ y))⊗ z w ⊗ ((x⊗ y)⊗ z)

aw,x,y⊗z

aw,x,y⊗idz

aw⊗x,y,z

aw,x⊗y,z

idw⊗ax,y,z

Definition A.5. A braided monoidal category is a monoidal category C equipped with a natural iso-
morphism

Bx,y : x⊗ y → y ⊗ x

called the braiding, such that the diagrams
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(x⊗ y)⊗ z x⊗ (y ⊗ z) (y ⊗ z)⊗ x

(y ⊗ x)⊗ z y ⊗ (x⊗ z) y ⊗ (z ⊗ x)

Bx,y⊗idz

ax,y,z Bx,y⊗z

ay,z,x

ay,x,z idy⊗Bx,z

and

x⊗ (y ⊗ z) (x⊗ y)⊗ z z ⊗ (x⊗ y)

x⊗ (z ⊗ y) (x⊗ z)⊗ y (z ⊗ x)⊗ y

idx⊗By,z

a−1
x,y,z Bx⊗y,z

a−1
z,x,y

a−1
x,z,y Bx,z⊗idy

commute for all objects x, y, z, where ax,y,z : (x⊗ y)⊗ z → x⊗ (y ⊗ z) denotes the components of the
associator of (C,⊗).

Definition A.6. A symmetric monoidal category is a braided monoidal category for which the braiding

Bx,y : x⊗ y → y ⊗ x

satisfies the condition
By,x ◦Bx,y = idx⊗y

for all objects x, y.

A.3 Reflective subcategory

Definition A.7. A full subcategory i : C ↪→ D is reflective if the inclusion functor i has a left adjoint
T :

(T a i) : C D
i

T

The left adjoint T is called the reflector.

Then, we can define categories depending on the units the adjunction:

Definition A.8. Let C be a reflective category of D with

(T a i) : C D
i

T

If the unit of the reflector is
1. a monomorphism, then C is a mono-reflective category
2. an epimorphism, then C is an epi-reflective category

A.4 Regular categories

Definition A.9. A category C is regular if
1. it is finitely complete; C admits all finite limits.
2. the kernel pair

d×c d d

d c

pr2

pr1

f

f

of any morphism f : d→ c admits a coequalizer d×c d⇒ d→ coeq(pr1,pr2)
3. regular epimorphisms are stable under pullback along any morphism.

Equivalently,

Definition A.10. A regular category is a finitely complete category with pullback-stable (regular-
epimorphism, monomorphism)-factorizations; in the sense of the smallest monic through which a mor-
phism factors.

Then, we can construct the following category:

Definition A.11. A regular-epi-reflective category is both regular and epi-reflective.
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Groupe Fondamental (SGA 1). Lecture Notes in Mathematics 224, Springer, Berlin (1970),
pp. 145–194.

[Hub61] P. Huber. “Homotopy theory in general categories”. In: Math. Annalen 144 (1961), pp. 361–
385.

[JT04] G. Janelidze and W. Tholen. “Facets of Descent III: Monadic Descent for Rings and Alge-
bras”. In: Applied Categorical Structures 12 (2004), pp. 461–477.

[JT94] G. Janelidze and W. Tholen. “Facets of descent, I”. In: Applied Categorical Structures 2
(1994), pp. 245–281.

[JT97] G. Janelidze and W. Tholen. “Facets of descent, II”. In: Applied Categorical Structures 5
(1997), pp. 229–248.

[Kle65] H. Kleisli. “Every standard construction is induced by a pair of adjoint functors”. In: AMS.
Vol. 16, No. 3 (1965), pp. 544–546.

[KS06] M. Kashiwara and P. Schapira. Categories and Sheaves. Springer-Verlag, Berlin, Heidelberg,
2006.

[Lur11] J. Lurie. Derived Algebraic Geometry XI: Descent Theorems. 2011. url: https://www.math.
ias.edu/~lurie/papers/DAG-XI.pdf.

[Lur17] J. Lurie. Higher Algebra. 2017. url: https://www.math.ias.edu/~lurie/papers/HA.pdf.

[Mes00] B. Mesablishvili. “Pure morphisms of commutative rings are effective descent morphisms for
modules – a new proof”. In: Theory Appl. Categ, 7 (2000), pp. 38–42.
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