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1 Introduction
The goal of this thesis is to develop some tools including Hochschild cohomology,
filtered and graded algebras and algebraic deformation theory in order to take
a conceptual approach to proving the Poincare-Birkoff-Witt(PBW) theorem.
The thesis will follow the proof of a generalized version of the theorem given in
[BG96] and [Wit19].
In order to read the thesis some knowledge of homological algebra is required.
Throughout the thesis we will be working over an arbitrary field denoted K,
elements of which will usually be referred to as k. All tensor products are taken
over K unless otherwise specified. If tensor products are unfamiliar then the
tensor product of vector spaces may simply be thought of as the vector space
with the cartesian product of bases as basis.

Theorem 1.1 (The Classical PBW theorem). Given a Lie algebra L over a
field K, the associated graded of its universal enveloping algebra denoted U(L)
is isomorphic to the symmetric algebra generated by L denoted S(L).

The new version of the proof provides some interesting context to the theorem.
It shows that for finite dimensional Lie algebras that up to some classification
of algebras the universal algebras are "close" to the symmetric algebra. With
some more theory it is possible to prove that this closeness is equivalent to the
bracket satisfying the Jacobi identity.
The thesis will be organized as follows: first the concepts used in the statement
of the theorem will be introduced. Then we will introduce some new tools and or
concepts among which are Hochschild cohomology, filtered and graded algebras
and algebraic deformations, which we will then use to prove the theorem.

1.1 Tensor algebra
A tensor algebra of a vector space V, denoted T(V) is the space

⊕∞
i=0 V

⊗n With
multiplication given by concatenating elements with a tensor.

1.2 Symmetric algebra
The symmetric algebra of a k-vector space V, commonly denoted as S(V) is
defined as follows.

S(V ) =
T (V )

(x⊗ y − y ⊗ x)

Lemma 1.1. Given a vector space V with basis B we have the following algebra
isomorphism, which can be constructed by sending the basis elements of v to
themselves and then extending multiplicitatively and additively.

S(V ) ' K[B]
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1.3 Exterior algebra
The exterior algebra of a vector space V denoted Λ(V ) is defined as

Λ(V ) =
T (V )

(x⊗ x)

It is common to use ∧ instead of tensors between the indices of the elements of
this algebra.
The algebra is anticommutative, which means that

∧
σ(vi) = sign(σ)

∧
vi.

Where here σ is some permutation taken from the symmetric group on n letters.
Due to this a basis for this algebra is given by imposing some total order on the
basis of V and then ordered sequences of basis elements of V becomes a basis
for Λ(V ).
Λn(V ) denotes the vector subspace that is the image of V ⊗n. That is wedges
of length n.

1.4 Lie algebra
Definition 1.1 (Lie algebra). A Lie algebra over a field k is a k- vector space
together with a multiplication (not necessarily associative) often denoted as a
bracket [, ] such that the bracket is anti-symmetric and bilinear over k and sat-
isfies the following permutation equation, known as the jacobi identity.

[a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0

The morphisms in the category of k-Lie algebras are k- homomorphisms that
respect the bracket.

Example 1.1 (Trivial example). Given any k-vectorspace it can be made into
a k-Lie algebra trivial by choosing the bracket [a, b] = 0

Example 1.2 (Associative algebras). Given an assoicitive k-algebra A, We can
make A into a k-Lie algebra by considering the bracket [a, b] = ab−ba, this gives
us a forgetfull functor from the category of associative k-algebras to the category
of k-Lie algebras.

1.4.1 Universal enveloping algebra

We can find an adjoint to the forgetfull functor from the category of associative
k-algebras to the category of Lie algebras. This functor called the universal
enveloping algebra of a Lie algebra L denoted U(L) can be described explicitly
as follows.

U(L) =
T (L)

(a⊗ b− b⊗ a− [a, b])

With morphisms being given on the degree one element and extended multi-
plicatively to the rest of the algebra.
To see that this is an actual adjoint to the forgetfull functor we may observe the
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existence of a unit counit adjunction with injection of L into Lie(U(L)), denoted
ηL as unit and mapping the degree one elements to themselves with evaluation
of multiplication on the higher degree elements from U(Lie(A)) to A denoted
εA as co-unit. Note that the last map is well defined since the relations we have
modded out of the tensor algebra also exists in A.
In order to show that this is a unit-co unit pair we need to show that IdU(L) =
εU(L) ◦ U(ηL) and IdLie(A) = Lie(εA) ◦ ηLie(A).

εU(L) ◦ U(ηL) : U(L) U(Lie(U(L))) U(L)
U(ηL) εU(L)

Since this is a map on the universal enveloping algebra of L it is enough to
see what happens on generators, that is, elements of L. It is immoderate to see
that the elements of L are sent to themselves over this composition, since both
maps are defined by sending L to itself and extending. This means that the
composition is equal to the identity.

Lie(εA) ◦ ηLie(A) : Lie(A) Lie(U(Lie(A))) Lie(A)
ηLie(A) Lie(εA)

Again this can be seen to be the identity by sending the elements of A over the
two morphisms, noting that neither changes the elements of A.

2 New tools/concepts

2.1 Filtered and graded algebras
2.1.1 Graded algebras

In this thesis we will only consider algebras graded by integers. A graded al-
gebra A is then a k-algebra with a decomposition into a direct sum over the
integers A '

⊕
z∈ZAz as a vector space with the additional requirement that

An · Am ⊆ Am+n. A homogeneous element is defined as an element that is
contained in a single summand. The index of a summand is commonly refered
to as the degree. The degree of an element is usually considered to be the index
of the biggest summand on which the projection of the element is non-zero.
The canonical example of a graded algebra is a polynomial ring over a field.
Another good example is a tensor algebra. A graded algebra modulo an ideal
generated by a collection of homogeneous elements is again a graded algebra.

We can also have two simultaneous gradings on an algebra, this is called a
bi-grading and there is nothing surprising about it. It consists of a decomposi-
tion of A '

⊕
(z1,z2)∈Z×ZA(z1,z2) such that A(z1,z2) · A(z3,z4) ⊆ A(z1+z3,z2+z4).

Again a natural example is the polynomial algebra over a tensor algebra.
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Definition 2.1 (Homogeneous ideal). A homogeneous ideal of a graded algebra
A is an ideal such that every element of the ideal can be factored into a sum of
homogeneous element.
Note that this is equivalent to being generated by a set of homogeneous elements.

2.1.2 Filtered algebras

A filtered algebra is an algebra B with a set of sub-vectorspaces {Uz} for
each integer such that Un ⊆ Un+1 and Un · Um ⊆ Un+m and ∪z∈ZUz = B.
A graded algebra can be considered as a filtered algebra by letting Un =⊕

i∈Z|i≤nAi. A natural example of filtered algebras are graded algebras mod-
ulo a non-homogeneous ideal. These algebras will no longer be graded, however
they will be filtered. With Un = p(

⊕
i∈Z|i≤nAi) where p is the projection onto

the quotient. Note that since p is surjective this is exhaustive and since p is a
homomorphism it satisfies the multiplication criterion.

2.1.3 Associated graded algebra

Since we can go from graded algebras to filtered algebras it is natural to ask if
we can go the other way. The answer to this question is the associated graded
algebra. The associated graded algebra of a filtered algebra is defined as the vec-
tor space

⊕
z∈ZAz where Az = Uz

Uz−1
with multiplication given on homogeneous

elements by (uz+Uz−1)·(un+Un−1) = uz ·un+uz ·Un−1+Uz1 ·un+Uz−1 ·Un−1 =
uz · un + Un+z−1.

2.1.4 Associated graded morphism

Given a morphism of filtered algebras φ : A→ B that respects the filter, there
is a natural definition of the associated graded morphism. Gr(φ) : Gr(A) →
Gr(B) defined on homogeneous elements as (φ)(ai + Ui−1) = φ(ai) + φ(Ui−1))
This is well defined since Ui−1 maps into U ′i−1.

2.1.5 Graded modules

Given a graded algebra A, we can define graded modules over the algebra.

Definition 2.2 (Graded module). A graded module M over an algebra A is a
A module with a decomposition M '

⊕
z∈ZMz as vector spaces and such that

An ·Mz ⊆Mn+z

Given a grading on an algebra A we can define a grading on the tensor product
A⊗n by letting

A⊗nz =
⊕

(αj)n1 |
∑n

i=1 αj=z

n⊗
j=1

Aαj
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This means that for a sequence of homogeneous elements deg(
⊗n

j=1 aj) =∑n
j=1 deg(aj) similar to how degrees are usually defined in multivariable poly-

nomial rings.

Given a graded algebra A, we can define what is know as the category of graded
modules where the objects are graded modules and the hom sets are defined as
follows.

Definition 2.3 (Graded Hom).

HomA,Gr(M,N) =
⊕
z∈Z

HomA(M,N)z =
⊕
z∈Z
{f ∈ HomA(M,N) | f(M)i ⊆ Ai+z∀i}

Note that this usually isn’t the same as HomA(M,N) since it is a direct sum,
not a direct product. It is only a very nice canonical subspace.
We can then define homogeneous morphisms of degree n to be morphisms con-
tained in HomA(M,N)n.

2.2 Hochschild cohomology
Note that this entire section about Hochschild cohomology will be very analo-
gous to simplicial cohomology as usually taught in algebraic topology 1.

2.2.1 Ae

Given a k algebra A we define an algebra called the enveloping algebra by
Ae = A⊗k A with multiplication defined as (a⊗ b) · (c⊗ d) = (a · c)⊗ (d · b)
The big advantage with this algebra is that it simplifies language as a left Ae
module is equivalent to an A-bimodule. To see this take an A bi-module M and
define M as a left Ae module by defining (a ⊗ b)m = a(mb) = (am)b = amb.
observe that this is a left Ae module since (c⊗ d)

(
(a⊗ b)m

)
= (c⊗ d)(amb) =

cambd = (ca⊗ bd)m
Given a left Ae module M define M as a a bi-module by defining am = (a⊗1)m
and mb = (1 ⊗ b)m. To see that this is infact an A bi-module observe the
following equation.

(am)b = (1⊗b)
(
(a⊗1)m

)
=
(
(1⊗b)(a⊗1)

)
m = (a⊗b)m = (a⊗1)(1⊗b)m = a(mb)

Now we observe that these two processes are mutually inverse.
We now observe that A is an Ae module since it is a bimodule over itself.
Further we can define A⊗kn to be an Ae module by defining multiplication as
(a⊗ b)(a1 ⊗ · · · ⊗ an) = (aa1 ⊗ · · · ⊗ anb)

2.2.2 Definition

The n-th Hochschild cohomology of a k-algebra A is defined as HHn(A) =
ExtnAe(A,A)
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2.2.3 The bar complex

The bar complex is our complex of choice for calculating the Hochschild chomol-
ogy of an algebra A. using this complex gives us clear interpertations of the
Hochschild cohomology.
The bar complex is defined as follows Bn = A⊗n+2 and dnB : Bn → Bn−1 with
dnB(a0 ⊗ · · · ⊗ an+1) =

∑n
i=0(−1)i(

⊗i−1
j=0 aj)⊗ ai · ai+1 ⊗ (

⊗n+1
j=i+2 aj).

. . . A⊗k A⊗k A A⊗k A 0

A

d2B d1B

π

In order to see that this is an exact sequence of projective Ae modules we first
observe that A⊗n is a free Ae module by first choosing a basis B for A⊗n−2 as
a k vector space, and then observing that {1 ⊗ B ⊗ 1} becomes a Ae basis of
A⊗n.
Next we observe that

di−1B diB(a1 ⊗ · · · ⊗ an+1) = di−1B

( n−1∑
i=1

(−1)i(

i−1⊗
j=1

aj)⊗ ai · ai+1 ⊗ (

n⊗
j=i+2

aj)

)

=

n−2∑
k=1

n−1∑
i=1

(−1)i+k(

i−1⊗
j=1

aj)⊗ ai · ai+1 ⊗ (

n⊗
j=i+2

aj)

=

n−2∑
k=1

n−1∑
i=1

(−1)i+k(i, k)(

n⊗
j=1

aj)

Here the touple (i,k) refers to first collapsing the ith tensor, then the kth tensor
of the resulting complex. Now we note that if k < i first collapsing the ith
tensor, then the kth tensor gives the same result as first collapsing the kth
tensor then collapsing the i-1st tensor.The only difference is that these two will
have opposite signs in the sum above, and therefore cancel. These pairs exhaust
the sum, therefore di−1di = 0 and hence this is a complex.
To see that it is exact we note that calculating homology of the complex as a
Ae complex is the same as calculating the homology as a k-complex. Then we
see that the identity map on the complex is homotopic to the zero map as a
k-complex by the homotopy hn : A⊗n+2 → A⊗n+3⊗n+1

j=0 aj−→1⊗
⊗n+1

j=0 aj

.

We verify that this is a nullhomotopy of the identity map with the following
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equation.

(dn+1hn + hn−1d
n)(

n+1⊗
j=0

aj) = dn+1(1⊗
n+1⊗
j=0

aj) + 1⊗
( n∑
i=0

(−1)i(

i−1⊗
j=0

aj)⊗ ai · ai+1 ⊗ (

n+1⊗
j=i+2

aj)
)

= 1 · a0 ⊗
n+1⊗
j=1

aj +

n∑
i=0

(−1)i+1(1⊗
i−1⊗
j=0

aj)⊗ ai · ai+1 ⊗ (

n+1⊗
j=i+2

aj)

+

n∑
i=0

(−1)i(1⊗
i−1⊗
j=0

aj)⊗ ai · ai+1 ⊗ (

n+1⊗
j=i+2

aj)

=

n+1⊗
j=0

aj

2.2.4 Rewriting the Hochschild cohomology/bar complex

2.2.5 Writing out the Hochschild cohomology

Note first that HomAe(A⊗n+2, A) ' Homk(A⊗n, A) as k modules by the two
mutually inverse morphisms given below

fn : HomAe(A⊗n+2, A) −−−−−−−−−−→ Homk(A⊗n, A)

φ−−−−−−−−−−−−−−−−−−→
[
(a1⊗···⊗an)→φ(1⊗a1⊗...an⊗1)

]
f−1n : Homk(A⊗n, A) −−−−−−−−−−→ HomAe(A⊗n+2, A)

φ−−−−−−−−−−−−−−−−−−→
[
(a0⊗···⊗an+1)→(a0⊗an+1)φ(a2⊗...an−1)

]
Using these isomorphisms the differentials we also get a new version of the
differentials fn−1 ◦ dn∗ ◦ f−1n = dn∗k : Homk(A⊗n, A)→ Homk(A⊗n−1, A)
Here dn∗ refers to precomposition with dn.
By calculating concretely we get the following description.

dn∗k (f)(

n⊗
i=1

ai) = a1·f(

n⊗
j=1

ai)+

n−1∑
i=1

(−1)if(

i⊗
j=1

aji·ai+1

n⊗
j=i+2

ai)+(−1)nf(

n−1⊗
i=1

ai)·an

From now on this is the way we will study the Hochschild cohomology. The
differential will be referred to as d∗ instead of dn∗k for simplicity reasons. The
degree will always be implicit.
This way of looking at Hochschild cohomology simplifies some calculation and
also makes it possible to find some very concrete realisations of Hochschild
cohomology. However, the original formulation in terms of bimodule homology
really is the one that links this construction to the structure on A in a meaning
full way.
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2.2.6 Gerstenhaber bracket

This section presents selected concepts from [M; Ger63]

Definition 2.4 (I-th composition). Given f ∈ Homk(A⊗n, A) and g ∈ Homk(A⊗m, A)
with i ≤ n the ith composition is defined as follows.

f ◦i g(

n+m−1⊗
j=1

aj) = f(

i−1⊗
j=1

aj ⊗ g(

i+m−1⊗
j=i

aj)⊗
n+m−1⊗
j=i+m

aj)

Definition 2.5 (Ring product). Given f ∈ Homk(A⊗n, A) and g ∈ Homk(A⊗m, A)
the ring product is defined as follows.

f◦g(

n+m−1⊗
j=1

aj) =

m∑
i=1

(−1)(m−1)(i−1)f◦ig(

n+m−1⊗
j=1

aj) =

m∑
i=1

(−1)(m−1)(i−1)f(

i−1⊗
j=1

aj⊗g(

i+m−1⊗
j=i

aj)⊗
n+m−1⊗
j=i+m

aj)

The ring product distributes over addition since the ith-composition does so
due to distrubutivuty of tensor products. The ring product is however not
associative.
Note that the notation is well defined since in the case that the two morphisms
are composable the ring product is the composition of the morphisms.

Definition 2.6 (Gerstenhaber bracket). Given f ∈ Homk(A⊗n, A) and g ∈
Homk(A⊗m, A) the Gerstenhaber bracket is defined as follows.

[f, g] = f ◦ g − (−1)(m−1)(n−1)g ◦ f

A useful consequence of this definition is that the differential d∗ be realised
as [−, π]

Lemma 2.1. Given f ∈ Homk(A⊗n, A) and g ∈ Homk(A⊗m, A) then

d∗(f ◦ g) = (−1)m−1d∗(f) ◦ g + f ◦ d∗(g) + (−1)m−1((−1)nmf · g − g · f)
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Proof.

d∗k(f ◦ g)(

m+n⊗
j=1

aj) = a1(

m∑
i=1

(−1)(m−1)(i−1)f(

i−1⊗
j=1

aj+1 ⊗ g(

i+m−1⊗
j=i

aj+1)⊗
n+m−1⊗
j=i+m

aj+1))

(1)

+

m∑
i=1

(−1)(m−1)(i−1)
i−1∑
s=1

(−1)sf(

s−1⊗
j=1

aj ⊗ as · as+1 ⊗
i−1⊗

j=s+2

aj+1 ⊗ g(

i+m−1⊗
j=i

aj+1)⊗
n+m−1⊗
j=i+m

aj+1)

(2)

+

m∑
i=1

(−1)(m−1)(i−1)
i+m−1∑
s=i

(−1)sf(

i−1⊗
j=1

aj ⊗ g(

s−1⊗
j=i

aj ⊗ as · as+1 ⊗
i+m−1⊗
s+1

aj+1)⊗
n+m−1⊗
j=i+m

aj+1)

(3)

+

m∑
i=1

(−1)(m−1)(i−1)
n+m−1∑
s=i+m

(−1)sf(

i−1⊗
j=1

aj ⊗ g(

i+m−1⊗
j=i

aj)⊗
s⊗

j=i+m

⊗as · as+1 ⊗
n+m−1⊗
j=s+1

aj+1)

(4)

+ (−1)n+m
m∑
i=1

(−1)(m−1)(i−1)f(

i−1⊗
j=1

aj ⊗ g(

i+m−1⊗
j=i

aj)⊗
n+m−1⊗
j=i+m

aj) · an+m (5)

f ◦ d∗(g)(

m+n⊗
j=1

aj) =

n∑
i=1

(−1)(m)(i−1)f(

i−2⊗
j=1

aj ⊗ ai−1 · g(

i+m−1⊗
j=i

aj)⊗
n+m⊗
j=i+m

aj)

(6)

+

n∑
i=1

(−1)(m)(i−1)
i+n−1∑
s=i

(−1)s−i+1f(

i−1⊗
j=1

aj ⊗ g(

s−1⊗
j=i

aj ⊗ as · as+1 ⊗
i+m−1⊗
s+1

aj+1)⊗
n+m−1⊗
j=i+m

aj+1)

(7)

+
n∑
i=1

(−1)(m)(i−1)(−1)if(

i−1⊗
j=1

aj ⊗ g(

i+m−1⊗
j=i

aj) · ai+m
n+m⊗

j=i+m+1

aj) (8)
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d∗(f) ◦ g(

m+n⊗
j=1

aj) (9)

= g(

n⊗
j=1

aj)f(

i+m⊗
j=n+1

aj) (10)

+ a1(

m∑
i=1

(−1)(m−1)(i)f(

i−1⊗
j=1

aj+1 ⊗ g(

i+m−1⊗
j=i

aj+1)⊗
n+m−1⊗
j=i+m

aj+1)) (11)

+

m∑
i=1

(−1)(m−1)(i)
i−1∑
s=1

(−1)sf(

s−1⊗
j=1

aj ⊗ as · as+1 ⊗
i−1⊗

j=s+2

aj+1 ⊗ g(

i+m−1⊗
j=i

aj+1)⊗
n+m−1⊗
j=i+m

aj+1)

(12)

+

m∑
i=1

(−1)(m−1)(i)(−1)i−1f(

i−2⊗
j=1

aj ⊗ ai−1 · g(

i+m−1⊗
j=i

aj)⊗
n+m⊗
j=i+m

aj) (13)

+

m∑
i=1

(−1)(m−1)(i−1)(−1)if(

i−1⊗
j=1

aj ⊗ g(

i+m−1⊗
j=i

aj) · ai+m ⊗
n+m⊗
j=i+m

aj+1) (14)

+

m∑
i=1

(−1)(m−1)(i−1)
n+m−1∑
s=i+m

(−1)s−m+1f(

i−1⊗
j=1

aj ⊗ g(

i+m−1⊗
j=i

aj)⊗
s⊗

j=i+m

⊗as · as+1 ⊗
n+m−1⊗
j=s+1

aj+1)

(15)

+ (−1)n
m∑
i=1

(−1)(m−1)(i−1)f(

i−1⊗
j=1

aj ⊗ g(

i+m−1⊗
j=i

aj)⊗
n+m−1⊗
j=i+m

aj) · an+m (16)

+ (−1)(n+1)+(n+1)(m−1)f(

n⊗
j=1

aj)g(

n+m⊗
j=n+1

aj) (17)

Now we note that
(1) = (−1)m−1(11)
(2) = (−1)m−1(12)
(4) = (−1)(m−1)(15)
(5) = (−1)(m−1)(16)
(3) = (7).

Further we see that the rest cancel out, ie.
(−1)m−1(13) + (6) = 0
(−1)m−1(14) + (7) = 0
(−1)m−1(10)− (−1)m−1g · f = 0
(−1)m−1(17) + (−1)m−1(nm)f · g = 0
Verifying this comes down to counting signs since the expressions are otherwise
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identical.

Lemma 2.2. Given f ∈ Homk(A⊗n, A) and g ∈ Homk(A⊗m, A) then

d∗k[f, g] = (−1)m−1[d∗(f), g] + [f, d∗(g)]

Proof.

d∗k[f, g] = d∗(f ◦ g)− (−1)(m−1)(n−1)d∗(g ◦ f)

= (−1)m−1d∗(f) ◦ g + f ◦ d∗(g) + (−1)m−1((−1)nmf · g − g · f)

− (−1)(m−1)(n−1)((−1)n−1d∗(g) ◦ f + g ◦ d∗(f) + (−1)n−1((−1)nmg · f − f · g))

= (−1)m−1d∗(f) ◦ g + f ◦ d∗(g))

− (−1)(m−1)(n−1)((−1)n−1d∗(g) ◦ f + g ◦ d∗(f))

= (−1)m−1[d∗(f), g] + [f, d∗(g)]

2.2.7 Graded cohomology

Given that A is a graded algebra we can define a grading on Ae and A⊗n+2 by
the tensor product grading. This makes A⊗n+2 a graded module over Ae. We
can then define HomGr,Ae(A⊗n+2, A) and HomAe(A⊗n+2, A)z which we can
translate to defining Homk(A⊗n, A)z.
Note that HomGr,Ae(A⊗n+2, A) will only be a subspace of HomAe(A⊗n+2, A).

Lemma 2.3. Given two homogeneous morphisms f ∈ Homk(A⊗n, A)l g ∈
Homk(A⊗m, A)p then f ◦ g ∈ Homk(A⊗n+m−1, A)l+p

Proof. It is enough to show f◦ig ∈ Homk(A⊗n+m−1, A)l+p∀i sinceHomk(A⊗n+m−1, A)l+p
is closed under addition and multiplication from k.

f ◦i g(A⊗n+m−1z ) = f ◦i g(
⊕

(αj)
n+m−1
1 |

∑n+m−1
j=1 αj=z

n+m−1⊗
j=1

Aαj
)

=
∑

(αj)
n+m−1
1 |

∑n+m−1
j=1 αj=z

f ◦i g(

n+m−1⊗
j=1

Aαj )

=
∑

(αj)
n+m−1
1 |

∑n+m−1
j=1 αj=z

f(

i−1⊗
j=1

Aαj ⊗ g(

i+m−1⊗
j=i

Aαj )⊗
n+m−1⊗
j=i+m

Aαj )

⊆
∑

(αj)
n+m−1
1 |

∑n+m−1
j=1 αj=z

f(

i−1⊗
j=1

Aαj ⊗Ap+∑i+m−1
j=i αj

⊗
n+m−1⊗
j=i+m

Aαj )

⊆
∑

(αj)
n+m−1
1 |

∑n+m−1
j=1 αj=z

Al+p+
∑
j=1n+m−1

= Al+p+z
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2.3 Koszul complex and symmetric algebra
In this section we want to construct a nice resolution of S(L). This will be fairly
easy when L is finite dimensional, to consider the infinite dimensional case we
will need some technical homological lemmas.
The complex constructed in the finite case is an application of the more general
theory of Koszul complexes, however knowledge of this theory is not necessary
for doing this construction.

2.3.1 Some homological algebra on tensor product of complexes

Given two complexes P and Q of A modules we define the tensor product bi-
complex as follows.

. . . P4 ⊗A Q3 P3 ⊗A Q3 P2 ⊗A Q3 P1 ⊗A Q3 P0 ⊗A Q3

. . . P4 ⊗A Q2 P3 ⊗A Q2 P2 ⊗A Q2 P1 ⊗A Q2 P0 ⊗A Q2

. . . P4 ⊗A Q1 P3 ⊗A Q1 P2 ⊗A Q1 P1 ⊗A Q1 P0 ⊗A Q1

. . . P4 ⊗A Q0 P3 ⊗A Q0 P2 ⊗A Q0 P1 ⊗A Q0 P0 ⊗A Q0

d3P⊗1

1⊗d2Q

d2P⊗1

1⊗d2Q

d1P⊗1

1⊗d2Q

d0P⊗1

1⊗d2Q 1iQ

d3P⊗1

1⊗d1Q

d2P⊗1

1⊗d1Q

d1P⊗1

1⊗d1Q

d0P⊗1

1⊗d1Q 1iQ

d3P⊗1

1⊗d0Q

d2P⊗1

1⊗d0Q

d1P⊗1

1⊗d0Q

d0P⊗1

1⊗d0Q 1iQ

d3P⊗1 d2P⊗1 d1P⊗1 d0P⊗1

We want to extend this to defining a tensorproduct n- complex and its total
complex. The tensorproduct n-complex

⊗n
j=1 P

j is then defined by associating
to every element (ai)

n
i=1 ∈ Zn the module

⊗n
i=1 P

j
ai with maps given by tensor-

ing the identity map with the differential in the direction j for every direction.
The Total complex of the n-complex can then defined as

ToT (

n⊗
j=1

P j)m =
⊕

(ai)ni=1∈Zn|
∑
ai=m

n⊗
j=1

P jai
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with differential given on components as
n⊗
j=1

P jai →
k−1⊗
j=1

P jai ⊗P
k
ak−1⊗

n⊗
j=k+1

P jai =

n∏
j=k+1

(−1)ai
k−1⊗
j=1

1jai ⊗ d
k
ak
⊗

n⊗
j=k+1

1jaj

Lemma 2.4. Given n complexes then

Tot(

n⊗
j=1

P j) = Tot(Tot(

n−1⊗
j=1

P j)⊗ Pn)

Proof.

Tot(

n⊗
j=1

P j)m =
⊕

(ai)ni=1∈Zn|
∑
ai=m

n⊗
j=1

P jai

=
⊕

k+s=m

⊕
(ai)

n−1
i=1 ∈Zn−1|

∑
ai=k

n−1⊗
j=1

P jai ⊗ P
n
s

= Tot(Tot(

n−1⊗
j=1

P j)⊗ Pn)

The differential given on components can similarly be seen to be identical.

Lemma 2.5 (colimits of chain complexes). Given a direct system of Chain
complexes Cj, if there exists a colimit of the induced direct system on the ith
component of the chain complexes for every i then there exists a colimit of
the direct system of chain complexes given by the point-wise direct limit with
morphisms uniquely induced by the universal property of the colimit.

Proof. First we need to see that this is in fact a chain complex. The morphisms
Lim
−→

(dj)i : Lim
−→

(Cj)i → Lim
−→

(Cj)i−1 are uniquely induced as factoring the col-
lection of maps (dj)i : (Cj)i → (Cj)i−1 → Lim

−→
j∈J

(Cj)i−1 trough Lim
−→
j∈J

(Cj)i.

Therefore the composition Lim
−→

di−1 ◦ Lim−→ di has to be given by the composi-
tion of these two collection of maps, but this composition is 0 on every term so
the uneqely induced map has to be the zero map. Hence it is a chain complex.
Now we have to verify that for any other chain complex C such that we have a
system of morphisms for every Cj we have a unique factoring trough the pro-
posed colimit.
Suppose we have a chain complex C together with a collection of chain mor-
phisms φj : Cj → C that commute with the inclusions. Then by considering the
ith term of each complex we get a collection of morphisms (φj)i : (Cj)i → Ci
which then factors trough Lim

−→
j∈J

(Cj)i.

To see that this is a chain homomorphism we need to demonstrate that

dCi ◦ Lim−→
j∈J

(φj)i = Lim
−→
j∈J

(φj)i−1 ◦ Lim−→
j∈J

(.j)i

13



dCi ◦ Lim−→
j∈J

(φj)i = Lim
−→
j∈J

(dCi ◦ (φj)i)

But (dCi ◦ (φj)i) = ((φj)i−1 ◦ dji ) for every j which by using the uniqueness of
the factorization trough the limit and the functoriality of colim gives us the
following equality.

Lim
−→
j∈J

(dCi ◦ (φj)i) = Lim
−→
j∈J

((φj)i−1 ◦ dji ) = Lim
−→
j∈J

(φj)i−1 ◦ Lim−→
j∈J

(.j)i

The only thing left to prove is that this factorization is unique, however this
follows from that any factorization would induce a factorization on terms which
then have to be unique.

Definition 2.7. A poset-diagram here taken to be a diagram looking like the
diagram of inclusions of subsets in a set. That is it is a diagram consisting of
monomorphisms where every two objects have an object they both map into and
there is at most one map between each object.

This definition might or might not coincide with what is usually defined as a
direct system. However I could not find a precise definition of a direct system.

Lemma 2.6. Colimits commute with colimits.

Proof. The proof goes by using universal properties. Assume we have a diagram
J consisting of diagrams Ij . Then the object Lim

−→
j∈J

(Lim
−→

Ij) satisfies the universal

property of Lim
−→

(Lim
−→
j∈J

Ij). This can be seen by reducing to a colimit of all objects

in the diagram of diagrams.

Lemma 2.7 (Kernels commute with colimits on poset diagrams). Kernels com-
mute with colimits on poset diagrams in vec(K).

Proof. We start by assuming we have a poset diagram J of φj : Aj → Bj . We
have a injective map denoted f, from the colimit of the kernels to the kernel
in the colimit induced by the universal property of the colimit of the kernel.
We just need to show that this is an isomorphism. Colimits in vec(K) can be
identified as direct sum modulo the relations induced by the morphisms. Then
given an element a in Ker(Lim

−→
j∈J

φj) it is an element in
⊕
Aj/(i(b)−b) so we can

find a representative contained in a finite number of the summands. Since we
have a poset diagram we have a object denoted s in the diagram containing all
of these summands. Then letting i denote the inclusion in the comlimit since
i(φs(a)) = Lim

−→
j∈J

φj(i(a)) = 0 and i is injective we have φs(a) = 0. Then a can be

seen as an element in the colimit of the kernels and hence the map f is surjective,
hence an isomorphism.
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Lemma 2.8 (Commutativity of homology). Homology commutes with direct
limit on poset diagrams.

Proof. Homology is defined by kernels and images and since kernels and images
commute with direct limit homology commutes with direct limit.

2.3.2 Construction of the resolution

Definition 2.8. Given a totally ordered set B we define the direct system of
k[Bi] where Bi are all finite subsets of B with the inherited total order. The
morphisms in this direct system are defined to be the extension of the inclusions
on the sets Bi.

Consider the complex of vector spaces over K given below

K[x]⊗K[x] K[x]⊗K[x] K[x] 0
x⊗1−1⊗x

This complex is exact by the following null homotopy.

s0(xi ⊗ xj) = −
j∑
l=1

xi+j−l ⊗ xl−1

s−1(xi) = xi ⊗ 1

Then we have the following resolution of K[x] denoted by P [x]

K[x]⊗K[x] K[x]⊗K[x] 0
(x⊗1−1⊗x)·

Now we will construct the complex we wanted. Let L be our Lie algebra. Let
B be a set of basis vectors as a K- vector space with some total order. Now
we may consider the complex M = Tot(

⊗
b∈Bi

P [b]) with tensoring over K for
every finite subset Bi of B. Then we may construct a direct system of these by
extending the inclusions B′ ⊂ B̃ as i : Tot(

⊗
b∈B′ K[b])n → Tot(

⊗
b∈B̃K[b])n

given on components as
⊗

b∈B′ P [b]ib →
⊗

b∈B′ P [b]ib ⊗
⊗

b∈B̃\B′ 1P [b]0 . is a
chain complex homomorphism by construction of the total complex. In addition
the composition of two of these inclusions is again such an inclusion, and since
we can always take the union of two finite sets this gives us a direct system of
cochain complexes.
Note also that each summand of each term in the complex can be considered to
be isomorphic toK[B′]e by reordering terms in the tensor product. Further each
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the summands ("directions") are each multiplication by an element of K[B′]e,
making it a K[B′]e module homomorphism. and since sum of homomorphisms
are again homomorphisms the complex is a free K[B′]e complex.

Theorem 2.1 (Kunneth theorem). Given a field K and two chain complexes
of vector spaces then for each n ∈ N there is an isomorphism⊕

m∈Z
Hm(C)⊗Hn−m(C ′) ' Hn(Tot(C ⊗ C ′))

Proof. Assume we have two complexes C and C’.
We first prove the theorem in the case that one of the complexes has zero
differentials.
Let Ci denote the complex with Ci in the ith position and zero elsewhere then
Hn(Tot(Ci ⊗ C ′)) ' Hn(Ci ⊗ C ′) ' Ci ⊗Hn−i(C

′).
Where the secound term refers to tensoring evry component with Ci
Since the all differentials are zero we may decompose C '

⊕
i Ci then using the

above formula

Hn(Tot(C ⊗ C ′)) ' Hn(Tot((
⊕
i

Ci)⊗ C ′))

' Hn(Tot(
⊕
i

Ci ⊗ C ′))

'
⊕
i

Hn(Tot(Ci ⊗ C ′))

'
⊕
i

Ci ⊗Hn−i(C
′)

Since we are working over vectorspaces, everything splits this means we can
decompose Cn ' im(dn) ⊕ Hn ⊕ im(dn−1) then since the differentials do not
interact with Hn for any n we may factor out this complex leaving us with a
direct sum of complexes H which consists of the nth homology with zero differ-
enetials and C/H wich is an exact complex consisting of the remaining terms.
We do the same decomposition for C’.

Hn(Tot(C ⊗ C ′)) ' Hn(Tot((H ⊕ C/H)⊗ (H ′ ⊕ C ′/H ′)))
' Hn(Tot(H ⊗H ′ ⊕H ⊗ C/H ′ ⊕ C/H ⊗H ′ ⊕ C/H ⊗ C ′/H ′))
' Hn(Tot(H ⊗H ′))⊕Hn(Tot(H ⊗ C/H ′))
⊕Hn(Tot(C/H ⊗H ′))⊕Hn(Tot(C/H ⊗ C ′/H ′))
' Hn(Tot(H ⊗H ′))

'
⊕
m∈Z

Hm(C)⊗Hn−m(C ′)

Here the second to last isomorphism is archived by using that C/H and C ′/H ′
are zero on homology and that tensoring with zero is zero.
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In addition in the case of the direct system described above the only nonzero
homology becomes the 0th homology which then is

⊗
b∈B′ K[b] with the mor-

phisms on homology induced from the inclusion morphism B′ ⊆ B̃ as
id⊗

⊗
b∈B̃\B′ 1b :

⊗
b∈B′ K[b]→

⊗
b∈B′ K[b]⊗

⊗
b∈B̃\B′ K[b]. That this is the

induced morphism follows from that the isomorphism of homologies proved in
the kunneth theorem i acheived by direct sum decomposistion, therefore the
induced morphism on hommology is the restriction of the inclusion morphism
on the complex.

But the colimit along these inclusion morphisms on homology becomes Lim
−→

B′∈B

H0(P [B′]) =

Lim
−→

B′∈B

K[B′] = K[B] since we have a cannonical inclusion map of each K[B′] into

K[B] and because every element of K[B] lies in some k[B′] since an element
can only use a finite number of variables knowing what a morphism is on every
K[B′] is equivalent to knowing what it does on every element of K[B].

Therefore since

H0(Lim
−→

B′∈B

P [B′]) ' Lim
−→

B′∈B

H0(P [B′]) ' K[B]

and the rest of the homologies become zero by the same argument we have that
Lim
−→

B′∈B

P [B′] provides a free resolution over K of S(V ) ' K[B].

We will now rewrite this resolution so that it resembles the bar resolution.
Given a finite totally ordered set B and V as the K-vectorspace with B as basis
let En = K[B] ⊗ Λn(V ) ⊗ K[B]. Then we have the following isomorphism
denoted φ.

En 'K[B]e Tot(
⊗
b∈B

K[b])n =
⊕

(ab)b∈B |ab∈{0,1}

⊗
b∈B

(K[b]⊗K[b])ab

Which is given by sending 1 ⊗
∧
b∈B′ b ⊗ 1 to

⊗
b∈B(1 ⊗ 1)ab for any subset

B’ of B of order n, where the wedge is taken with the order induced on B’ by
the order on B; and ab is 1 if b ∈ B′ and 0 otherwise. This map is then both
injective and surjective since we are sending basis elements to basis elements of
free K[B]e modules in a 1 to 1 correspondence.
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The differential under this isomorphism is then given by

d(1⊗
∧
b∈B′

b⊗ 1) = φdφ−1(1⊗
∧
b∈B′

b⊗ 1)

= φd(
⊗
b∈B

(1⊗ 1)ab)

= φ
∑
b′∈B

⊗
b∈B\b′

(1⊗ 1)ab ⊗ db
′

ab′
(1⊗ 1)

∏
b<b′|b∈B

(−1)ab

= φ
∑
b′∈B′

⊗
b∈B\b′

(1⊗ 1)ab ⊗ (b′ ⊗ 1− 1⊗ b′)
∏

b<b′|b∈B

(−1)ab

+ φ
∑

b′∈B\B′

⊗
b∈B\b′

(1⊗ 1)ab ⊗
∏

b<b′|b∈B

(−1)ab0

= φ
∑
b′∈B′

⊗
b∈B\b′

(1⊗ 1)ab ⊗ (b′ ⊗ 1− 1⊗ b′) ·
∏

b<b′|b∈B′
(−1)

=
∑
b′∈B′

∏
b<b′|b∈B′

(−1)φ(
⊗
b∈B\b′

(1⊗ 1)ab ⊗ (b′ ⊗ 1− 1⊗ b′))

=
∑
b′∈B′

∏
b<b′|b∈B′

(−1)φ
( ⊗
b∈B\b′

(1⊗ 1)ab ⊗ (b′ ⊗ 1)

−
⊗
b∈B\b′

(1⊗ 1)ab ⊗ (1⊗ b′)
)

=
∑
b′∈B′

∏
b<b′|b∈B′

(−1)
(
b′ ⊗

( ∧
b∈B′\b′

b
)
⊗ 1− 1⊗

( ∧
b∈B′\b′

b
)
⊗ b′)

2.3.3 The colimit complex

The inclusion morphisms in the direct system coming from B̃ ⊆ B′ then becomes
the cannoncical inclusions = K[B̃]⊗Λn(V (B̃))⊗K[B̃]→ K[B′]⊗Λn(V (B′))⊗
K[B′] under φ.
Then the colimit of these for the direct system of subsets of B can be seen to be
K[B]⊗Λn(V (B))⊗K[B] due to the existence of a natural inclusion morphism
and every element being described by only a finite number of elements in B.
This means that we may identify the colimit complex with an identical complex
where the differential is still identical as earlier since whenever we apply it on
an element we are essentially applying it in the module described by some finite
subset of B.

2.3.4 As a subcomplex of the bar complex

Now we will inject this resolution in the bar resolution. We will do this by a
map ψ : K[B] ⊗

∧n
(V (B)) ⊗K[B] → K[B]⊗n+2 wich acts on basis elementes

as ψ(1⊗ (
∧
b∈B′ b)⊗ 1) =

∑
σ∈Sn

sign(σ) · 1⊗
⊗

b∈B′ σ(b)⊗ 1. Here we by Sn
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mean the symmetric group on n letters. We need to verify that this is a chain
map, that it is injective and identify its image.
To demonstrate that it is injective we recall that then tesor product of a collec-
tion of vectorspaces can be identified with the vectorspace with the cartesean
product as of the bases of the vectorspaces as a basis. Then by the following
calculation we see that a K[B]e linear combination with nonzero coefficents of
the basis elements our domain is sent to a K[B]e linear combination of basis
elements of our target, meaning that they are nonzero, making the map incjec-
tive.

ψ(

m∑
i=1

(pi(B)⊗ qi(B)) · (1⊗ (
∧
b∈Bi

b)⊗ 1)) =

m∑
i=1

(pi(B)⊗ qi(B)) · ψ((1⊗ (
∧
b∈Bi

b)⊗ 1))

=

m∑
i=1

(pi(B)⊗ qi(B))
∑
σ∈Sn

sign(σ) · 1⊗
⊗
b∈Bi

σ(b)⊗ 1)

=

m∑
i=1

∑
σ∈Sn

(pi(B)⊗ qi(B)) · sign(σ) · 1⊗
⊗
b∈Bi

σ(b)⊗ 1)

We now demonstrate that it is a chain map

ψ(d(⊗(
∧
b∈B′

b)⊗ 1))

= ψ(
∑
b′∈B′

∏
b<b′|b∈B′

(−1)
(
b′ ⊗

( ∧
b∈B′\b′

b
)
⊗ 1− 1⊗

( ∧
b∈B′\b′

b
)
⊗ b′))

=
∑
b′∈B′

∏
b<b′|b∈B′

(−1)
(
ψ(b′ ⊗

( ∧
b∈B′\b′

b
)
⊗ 1− 1⊗

( ∧
b∈B′\b′

b
)
⊗ b′)

)
=
∑
b′∈B′

∏
b<b′|b∈B′

(−1)
( ∑
σ∈Sn−1

sign(σ)(·b′ ⊗
⊗

b∈B′\b′
σ(b)⊗ 1− 1⊗

⊗
b∈B′\b′

σ(b)⊗ b′)
)

d(ψ(⊗(
∧
b∈B′

b)⊗ 1)) = d(
∑
σ∈Sn

sign(σ) · 1⊗
⊗
b∈B′

σ(b)⊗ 1)

=

n+1∑
j=1

(−1)j∂j(
∑
σ∈Sn

sign(σ) · 1⊗
⊗
b∈B′

σ(b)⊗ 1))

=
∑
σ∈Sn

sign(σ) ·
⊗
b∈B′

σ(b)⊗ 1

+

n∑
j=2

(−1)j∂j(
∑
σ∈Sn

sign(σ) · 1⊗
⊗
b∈B′

σ(b)⊗ 1))

+ (−1)n
∑
σ∈Sn

sign(σ) ·
⊗
b∈B′

σ(b)

Here ∂j is the map collapsing the j’th tensor.
We may decompose Sn into two disjoint sets S+

n andS−n , the set of positive sign
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elements and the set of negative sign elements. Then for any i between 1 and
n−1 we may find a bijection between the two disjoint sets given by postcompos-
ing a permutation with the permutation (i, i+ 1) that is the permutation that
switches the ith and the i+1th component. This is a bijection whose inverse is
itself.

n∑
j=2

(−1)j∂j(
∑
σ∈Sn

sign(σ) · 1⊗
⊗
b∈B′

σ(b)⊗ 1))

=

n∑
j=2

(−1)j∂j(
∑
σ∈S+

n

1⊗
⊗
b∈B′

σ(b)⊗ 1))− 1⊗
⊗
b∈B′

(j − 1, j) ◦ σ(b)⊗ 1))

=

n∑
j=2

(−1)j(
∑
σ∈S+

n

∂j(1⊗
⊗
b∈B′

σ(b)⊗ 1)− ∂j(1⊗
⊗
b∈B′

((j − 1, j) ◦ σ)(b)⊗ 1))

=

n∑
j=2

(−1)j(
∑
σ∈S+

n

0)

Where the cancellation in the last step occurs due to collapsing the jth ten-
sor that is the j-1th tensor in the of the terms we permute, and since K[B] is
commutative we then get that the first and second summand become identical
except for the sign.

Next we may decompose Sn into n disjoint sets, each consisting of the permu-
tations that sends the ith element to the first position, we denote these by Sin.
We may then by composing with the permutation (1, i) identify each of these
sets with the subgroup given by keeping the first element fixed, this subgroup
is then canonically isomorphic to Sn−1. However the identification of each set
with the subgroup will not respect the sign, it will be of by the sign

sign(1, i) =
∏

0<j<i

sign(j, j + 1) =
∏

0<j<i

(−1) = (−1)i

We may decompose similarly into the sets sending the ith element to the last
position the sign the idetification of these sets to Sn−1 then becomes

sign(1, n) =
∏

i≤j<n

sign(j, j + 1) =
∏

i≤j<n

(−1) = (−1)n−i
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∑
σ∈Sn

sign(σ) ·
⊗
b∈B′

σ(b)⊗ 1(−1)n
∑
σ∈Sn

sign(σ) ·
⊗
b∈B′

σ(b)

=
∑
b′∈B′

( ∏
b<b′|b∈B′

(−1)
∑

σ∈Sn−1

sign(σ) · b′ ⊗
⊗

b∈B′\b′
σ(b)⊗ 1

(−1)n
∏

b′<b|b∈B′
(−1) ·

∑
σ∈Sn−1

sign(σ) ·
⊗

b∈B′\b′
σ(b)⊗ b′

)

=
∑
b′∈B′

( ∏
b<b′|b∈B′

(−1)
∑

σ∈Sn−1

sign(σ) · b′ ⊗
⊗

b∈B′\b′
σ(b)⊗ 1

(−1)n
∏

b≤b′|b∈B′
(−1) ·

∏
b≤b′|b∈B′

(−1) ·
∏

b′<b|b∈B′
(−1) · ·

∑
σ∈Sn−1

sign(σ) ·
⊗

b∈B′\b′
σ(b)⊗ b′

)

=
∑
b′∈B′

( ∏
b<b′|b∈B′

(−1)
∑

σ∈Sn−1

sign(σ) · b′ ⊗
⊗

b∈B′\b′
σ(b)⊗ 1

(−1)n · (−1)n
∏

b≤b′|b∈B′
(−1) ·

∑
σ∈Sn−1

sign(σ) ·
⊗

b∈B′\b′
σ(b)⊗ b′

)

=
∑
b′∈B′

( ∏
b<b′|b∈B′

(−1)
∑

σ∈Sn−1

sign(σ) · b′ ⊗
⊗

b∈B′\b′
σ(b)⊗ 1

−
∏

b<b′|b∈B′
(−1) ·

∑
σ∈Sn−1

sign(σ) ·
⊗

b∈B′\b′
σ(b)⊗ b′

)

We may now combine all of this to find that ψ is a chain complex homomor-
phism.
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ψ(d(⊗(
∧
b∈B′

b)⊗ 1))

=
∑
b′∈B′

∏
b<b′|b∈B′

(−1)
( ∑
σ∈Sn−1

sign(σ)(·b′ ⊗
⊗

b∈B′\b′
σ(b)⊗ 1− 1⊗

⊗
b∈B′\b′

σ(b)⊗ b′)
)

=
∑
σ∈Sn

sign(σ) ·
⊗
b∈B′

σ(b)⊗ 1(−1)n
∑
σ∈Sn

sign(σ) ·
⊗
b∈B′

σ(b)

=
∑
σ∈Sn

sign(σ) ·
⊗
b∈B′

σ(b)⊗ 1

+

n∑
j=2

(−1)j∂j(
∑
σ∈Sn

sign(σ) · 1⊗
⊗
b∈B′

σ(b)⊗ 1))

+ (−1)n
∑
σ∈Sn

sign(σ) ·
⊗
b∈B′

σ(b)

= d(ψ(⊗(
∧
b∈B′

b)⊗ 1))

2.3.5 The image of the morphism

Let A = K[B] ' T (V (B))
(x⊗y−y⊗x) and R = (a ⊗ b − b ⊗ a) ⊆ V ⊗ V . We may then

denote the image over ψ of the complex constructed in the previous section as

. . . A⊗k K ′3 ⊗k A A⊗k K ′2 ⊗k A A⊗k V ⊗k A A⊗k A 0
d4B d3B d2B d1B

We denote A ⊗K ′n ⊗ A by Kn. We immediately observe that K ′2 ' R by the
definition of ψ.

2.3.6 Elements of K ′3

Suppose we have an element in R⊗ V ∩ V ⊗R, it can be written as∑
(x⊗ y − x⊗ y)⊗ z =

∑
x⊗ y ⊗ z − x⊗ y ⊗ z

=
∑

c⊗ (a⊗ b− b⊗ a)

=
∑

c⊗ a⊗ b− c⊗ b⊗ a
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Then

∀x⊗ y ⊗ z ∃ c⊗ a⊗ b s.t x⊗ y ⊗ z = c⊗ a⊗ b
=⇒ ∃c′ ⊗ a′ ⊗ b′ = −a⊗ c⊗ b

=⇒
∑

c⊗ a⊗ b− c⊗ b⊗ a

=
∑

e⊗ f ⊗ g − f ⊗ e⊗ g − e⊗ g ⊗ f + f ⊗ g ⊗ e+ g ⊗ e⊗ f − g ⊗ f ⊗ e

This is precisely an element ofK ′3. Similar identifications may be made in higher
degrees, but they are not necessary for this thesis.

2.3.7 A projection commuting with the differential

Since Kn is a free Ae submodule of Bn we may factor Bn ' Kn⊕Cn where Cn is
some free Ae module. We may then lift the identity map on A⊗A to the identity
on Kn and some map cn on Cn giving us a chain map n = [cn, 1] : B → K. The
reason we may do this lift is that K is exact, meaning each differential is epi on
the kernel of the next and that Cn is free and therefore projective. This then
becomes a chain map.

C3 ⊕A⊗k K ′3 ⊗k A C2 ⊕A⊗k K ′2 ⊗k A C1 ⊕A⊗k V ⊗k A A⊗k A

A⊗k K ′3 ⊗k A A⊗k K ′2 ⊗k A A⊗k V ⊗k A A⊗k A

d3B

[c3,id]

d2B

[c2,id]

d1B

[c1,id] 1

d3B d2B d1B

On B2 this gives us a map p : A⊗A→ R such that p◦ i = idR for i the inclusion
i : R→ A⊗A

2.4 Ith order Algebraic deformations
Definition 2.9 (algebraic deformation). An i-th order algebraic deformation
of a algebra A is an associative algebra structure on the K[t] module A[t] such
that t is in the center and A[t]/(t) ' A.

Definition 2.10 (I-th order algebraic deformation). An i-th order algebraic de-
formation of a algebra A is an associative algebra structure on the k[t]

(ti) module
A[t]
(tn) such that t is in the center and A[t]

(t) ' A.
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There is a more general notion of an degree n algebraic deformation. What here
is referred to as a I th order algebraic deformation is in fact a degree 2- ith order
algebraic deformation. For example the algebraic deformations used to define
the tangent space in algebraic geometry are 1.st order degree 1 deformations.

2.4.1 Observations about algebraic deformations

We note that for any deformation (A[t]
tn , ?) the multiplication is entirely deter-

mined by its value on the elements of A due to the following equation.

(

m∑
i=0

ait
i) ? (

s∑
j=0

bjt
j) =

(n,s)∑
i=0,j=0

ai ? bj ? t
i+j

Further we note that the multiplication is a k-linear map ? : A ⊗ A −→
A[t]/t(n) =

∑n−1
i=0 At

i. So that we may decompose it into n maps called µi

for i between 0 and n-1. Then the requirement that A[t]
(t) ' A implies that µ0 is

just the multiplication in A.
All of this also holds for an algebraic deformation.

2.4.2 Requirements on µi

The associativity of the (ith order) algebraic deformation imposes some restric-
tion on the choice of µi, we will now see a reformulation of this requirement.

a ? (b ? c) =

∞∑
i=0

a ? µi(b⊗ c)ti =

∞∑
j=0

∞∑
i=0

µj(a⊗ µi(b⊗ c))ti+j

= (a ? b) ? c =

∞∑
i=0

µi(a⊗ b) ? cti =

∞∑
j=0

∞∑
i=0

µj(µi(a⊗ b)⊗ c))ti+j

Note that summing to infinity is well defined even in the case of an algebraic
deformation since only finitely many of the terms will be nonzero due to the
assumption that the multiplication is well defined on A[t].
Now separating powers of t and using that multiplication by t is injective for
all elements of degree less than n we get that the following holding for all n is
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equivalent.
n∑
i=0

µi(µn−i(a⊗ b)⊗ c)) =

n∑
i=0

µi(a⊗ µn−i(b⊗ c))

m
n−1∑
i=1

µi(µn−i(a⊗ b)⊗ c))− µi(a⊗ µn−i(b⊗ c))

= µ0(a⊗ µn(b⊗ c))− µ0(µn(a⊗ b)⊗ c)) + µn(a⊗ µ0(b⊗ c))− µn(µ0(a⊗ b)⊗ c))
= a · µn(b⊗ c)− µn(a⊗ b) · c+ µn(a⊗ b · c)− µn(a · b⊗ c))
= d3∗k (µn)(a⊗ b⊗ c)

Note that every step of this argument is an equivalence and that the associa-
tivty is the only problem we have to solve if we want to extend a order (n-1)
deformation to a order n deformation by adding a µn. We therefore name∑n−1
i=1 µi(µn−i(a⊗ b)⊗ c)) =

∑n−1
i=1 µi ◦ µn−i the (n-1)-th obstruction.

If we apply this formula to n=1 we immediately get

0 =

1−1∑
i=1

µi ◦ µn−i = d∗(µ1)

Implying that µ1 is a Hochschild 2- cocycle.

Lemma 2.9. The (n-1)th obstruction is always a Hochschild 3- cocycle.

Proof. We start by assuming that we have a n-1st order deformation. That is,
we have

∑k−1
i=1 µi ◦ µk−i = d∗(µk) for all k < n and want to extend one more

step.

d∗k(

n−1∑
i=1

µi ◦ µn−i) =

n−1∑
i=1

d∗k(µi ◦ µn−i)

=

n−1∑
i=1

d∗k(µi) ◦ µn−i − µi ◦ d∗k(µn−i)− (µi · µn−i − µn−i · µi)

=

n−1∑
i=1

(

i−1∑
j=1

µj ◦ µi−j) ◦ µn−i − µi ◦
n−i−1∑
j=1

µj ◦ µn−i−j

=
∑

0<i,j,k<n|i+j+k=n−1

(µi ◦ µj) ◦ µk − µi ◦ (µj ◦ µk)

We now write out each summand.

(µi ◦ µj) ◦ µk(a⊗ b⊗ c⊗ d) = µi(µj(µk(a, b), c), d− µj(a, µk(b, c)), d+ µj(a, b)µk(c, d)

− µk(a, b)µj(c, d) + a, µj(µk(b, c), d)− a, µj(b, µk(c, d)))
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µi ◦ (µj ◦ µk)(a⊗ b⊗ c⊗ d) = µi(µj(µk(a, b), c), d− µj(a, µk(b, c)), d

+ a, µj(µk(b, c), d)− a, µj(b, µk(c, d)))

We notice that most of the terms cancel out leaving us with.

(µi ◦ µj) ◦ µk − µi ◦ (µj ◦ µk) = µi(µj , µk − µk, µj)

This allows us to conclude

d∗k(

n−1∑
i=1

µi ◦ µn−i) =
∑

0<i,j,k<n|i+j+k=n−1

(µi ◦ µj) ◦ µk − µi ◦ (µj ◦ µk)

=
∑

0<i,j,k<n|i+j+k=n−1

µi(µj , µk − µk, µj)

= 0

Definition 2.11 (Specification to a value of a deformation). Given a (graded)
algebraic deformation we can define a specification to a value in the field k of the
deformation as the k-algebra given by. This is defined as the (filtered) algebra
A[t]
(t−k) .

There is a canonical way to identify this as a vector space with A. This is
done by the evaluation morphism evalk : A[t] → A which has kernel (t − k).
Under this identification we can view this as the algebra (A, ?) where a ? b =
a · b+

∑∞
i=1 µi(a⊗ b)ti |t=k= a · b+

∑∞
i=1 µi(a⊗ b)ki.

Usually we will use the value 1 for k and refer to the specification to a value of
the deformation as A’.
We could not define this for a nth order deformation, since t would then be
nilpotent and the ideal would then contain 1 by multiplying (k− t) by k−1 · (1+∑n
i=1 k

−iti).

2.4.3 Graded deformation

Definition 2.12. An (ith order) graded gebraic deformation of an algebra A is
an (ith order) algebraic deformation of A where A[t]

(tn) is considered as a graded
algebra wih the additional requirement that the multiplication has degree 0, i.e(
? : A[t]

(tn) ⊗
A[t]
(tn) −→

A[t]
(tn)

)
∈ Hom A[t]

(tn)

(A[t]
(tn) ⊗

A[t]
(tn) ,

A[t]
(tn)

)
0

The grading is induced from A by assuming that t has degree one. That means
the decomposition is given as A[t]

(tn) i
'
⊕

s+j=iAst
j.

The assumption that the multiplication has degree zero forces µi to have degree
-i since ti has degree i.
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Lemma 2.10. The associated graded of a specification to a value k of a defor-
mation of A (Gr A’) is isomorphic to A.

Proof. We use the evaluation morphism in k to describe the ring. Since k is
a member of the underlying field it necessarily is homogeneous of degree zero.
This means that evalk(Ajt

i) = Aj .

...
...

...
...

...

A−1 A−1t A−1t
2 A−1t

3 A−1t
4 . . .

A0 A0t A0t
2 A0t

3 A0t
4 . . .

A1 A1t A1t
2 A1t

3 A1t
4 . . .

A2 A2t A2t
2 A2t

3 A2t
4 . . .

A3 A3t A3t
2 A3t

3 A3t
4 . . .

A4 A4t A4t
2 A4t

3 A4t
4 . . .

...
...

...
...

...

Now using the decomposition above where each degree of A[t] corresponds to a
diagonal, we identify Uz = evalk(

⊕
i≤z A[t]i) = evalk(

⊕
i+j≤z Ait

j) =
⊕

i≤z Ai

This means we can canonically consider Gr(A′)n = Uz

Uz−1
=

⊕
i≤z Ai⊕

i≤z−1 Ai
' Ai as

a vector space.
Now we want to see that the multiplication match, it is enough to show this
on homogeneous elements. Denote by φ :

⊕
z Uz → A the bijection given

by the above correspondence. Note that we will use the Canonical choice of
representative.

∀a ∈ Gr(A′)n, b ∈ Gr(A′)m φ(a ? b) = φ(a · b+

∞∑
i=1

µi(a⊗ b)ki)

However since deg(µi) = −i we have that deg(µi(a ⊗ b)ki) = n + m − i <
n+m− 1⇒

∑∞
i=1 µi(a⊗ b)ki ∈ Gr(A′)n+m−1 this means that we have

φ(a ? b) = φ(a · b+

∞∑
i=1

µi(a⊗ b)ki) = φ(a · b) = a · b
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3 Proving the result
Theorem 3.1 (The Classical PBW theorem). Given a Lie algebra L over a
field K, the associated graded of its universal enveloping algebra denoted U(L)
is isomorphic to the symmetric algebra generated by L denoted S(L).

Proof. In order to prove this we will demonstrate that there exists an algebraic
deformation from S(L) to some module whose associated graded is isomorphic
to that of U(L)

Recall from the section on the kozul complex that we have the vector subspace
K ′1 = (x⊗y−y⊗x) of V ⊗V which again is a subspace of S(L) with an injection
i and and a non-canonical projection p for each K ′n such that p ◦ i = idK′n and
such that p and i commute with the differentials.

We begin by constructing a order 1 (infitesimal) deformation of S(A) with
µ1(a ⊗ b) = [−,−] ◦ p(a ⊗ b) = p∗([−,−]). Now we want to confirm that
this is a Hochschild 2- cocycle of degree -1.

d∗(µ1)(a⊗ b⊗ c) = d∗([−,−] ◦ p)(a⊗ b⊗ c)
= d∗(p∗([−,−]))(a⊗ b⊗ c)
= p∗(d∗([−,−]))(a⊗ b⊗ c)
= (d∗([−,−]))(p(a⊗ b⊗ c))

d∗([−,−])(e⊗ f ⊗ g − f ⊗ e⊗ g − e⊗ g ⊗ f + f ⊗ g ⊗ e+ g ⊗ e⊗ f − g ⊗ f ⊗ e)
= e[f, g] + f [g, e] + g[e, f ]− ([f, g]e+ [g, e]f + [e, f ]g)

= e[f, g]− [f, g]e+ f [g, e]− [g, e]f + g[e, f ]− [e, f ]g ∈ R

Now since p has degree 0 and [, ] has degree -1 µ1 has degree -1.
The next step will be to lift this infinitesimal deformation to a formal deforma-
tion. This will be done one step at a time.
We have seen in the section on algebraic deformations that the obstruction to
lifting an ith-order graded deformation to a (i+1)th-order graded deformation
is a Hochschild 3- cocycle of degree -(i+1).
The obstruction to lifting to a 2nd order graded deformation is then µ1 ◦ µ1

Using that i induces an isomorphism on cohomology we get

µ1 ◦ µ1 ◦ i(e⊗ f ⊗ g − f ⊗ e⊗ g − e⊗ g ⊗ f + f ⊗ g ⊗ e+ g ⊗ e⊗ f − g ⊗ f ⊗ e)
= µ1(e⊗ [f, g]− [f, g]⊗ e+ f [g, e]− [g, e]⊗ f + g[e, f ]− [e, f ]⊗ g)

= [e, [f, g]] + [f, [g, e] + [g, [e, f ]] = jacobi = 0

28



Giving that i∗(µ1 ◦ µ1) is zero in cohomology on the kozul complex, implying
that (µ1◦µ1) is zero in cohomology on the bar complex, since i∗ induces a graded
isomorphism on cohomology, meaning that there exists a morphism µ′2 : A⊗A
such that d(µ′2) = µ1 ◦µ1 wwich necessarily has degree -2. Now we need to alter
this so that we get a µ2 satisfying i∗(µ2) = 0.

Since d∗(i∗(µ′2)) = i∗(d∗(µ′2)) = i∗(µ1 ◦ µ1) = 0 Meaning that i∗(µ′2) is a cocy-
cle on the kozul resolution. Then again since i∗ induces a graded isomorphism
on cohomology there must be a corresponding cocycle on the bar complex µ̃2

such that i∗(µ̃2) = i∗(µ′2). Then we can define µ2 = µ
′

2 − µ̃2. Now we have
d(µ2) = d∗(µ

′

2 − µ̃2) = µ1 ◦ µ1 − 0 and i∗(µ2) = i∗(µ
′

2 − µ̃2) = 0.
This deformation now has the properties we need, the only thing that remains is
to extend it indefinitely. The 2.nd obstruction is [µ2,mu1] but i ∗ [µ2,mu1] = 0
since i∗(µ2) = 0, which means that it is a coboundary on the bar complex, so
we can find a µ3 which extends the deformation.
The remaining obstructions all have degree -4 or lower. Meaning they on the
Kozul complex must lay in Homk(K ′(3), A)z | z < −3 but these spaces are
all zero since elements of K ′(3)V ⊗ V ⊗ V all have degree 3 and elements of
A = T (V )

R all have degree 0 or greater. This means that all higher obstructions
vanish on cohomology and we may lift this deformation indefinitly. We can also
since the obstructions are zero on K ′(3) we may ensure that i∗(µi) = 0 by the
same argument as when we lifted to a order 2 deformation
All that remains is to show that this deformation with a specification to a value
gives us U(L), this value will be 1.
Consider the inclusion φ : L → T (L)

(x⊗y−y⊗x) [t]/(t − 1) it is injective and sur-
jective on its image. It can then be extended to a algebra homomorphism
φ : T (L) → T (L)

(x⊗y−y⊗x) [t]/(t − 1) wich is surjective. We want to show that ele-
ments of the form x⊗ y − y − [x, y] map to zero over this morphism.

φ(x⊗ y − y ⊗ x− [x, y]) = φ(x) ? φ(y)− φ(y) ? φ(x)− φ([x, y])

= x⊗ y +

∞∑
i=1

µi(x⊗ y)ti − (y ⊗ x+

∞∑
i=1

µi(y ⊗ x)ti)− [x, y]

= x⊗ y − y ⊗ x+

∞∑
i=1

µi(x⊗ y − y ⊗ x)− [x, y]

= µ1(x⊗ y − y ⊗ x) +

∞∑
i=2

µi(x⊗ y − y ⊗ x)− [x, y]

= [x, y]− [x, y]

= 0

Here we have used that x ⊗ y − y ⊗ x = 0 since we are working in the sym-
metric algebra and that µi(x ⊗ y − y ⊗ x) = 0 for 1 < i by definition and that
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µ1(x⊗ y − y ⊗ x) = [x, y] again by definition.
This implies that φ : T (L) → T (L)

(x⊗y−y⊗x) [t]/(t − 1) factors uniquely trough

φ̃ : T (L)
(x⊗y−y⊗x−[x,y]) →

T (L)
(x⊗y−y⊗x) [t]/(t− 1)

this morphism we can then pass to a morphism Gr(φ̃) : Gr
(

T (L)
(x⊗y−y⊗x−[x,y])

)
→

Gr
(

T (L)
(x⊗y−y⊗x) [t]/(t− 1)

)
again this sends the elements of L to themselves and

extends.

Construct a morphism ψ : T (L) → Gr
(

T (L)
(x⊗y−y⊗x−[x,y])

)
by sending elements

of L to themselves and extending multiplicatively and additivly. Let R = (x⊗
y−y⊗x− [x, y]) Then ψ(x⊗y−y⊗x) = (x⊗y−y⊗x+R∩U2)+U1 = ([x, y]+

R ∩ U2) + U1 = 0. Therefore we may factor the morphism trough T (L)
(x⊗y−y⊗x) .

This gives a surjective morphism T (L)
(x⊗y−y⊗x) → Gr

(
T (L)

(x⊗y−y⊗x−[x,y])

)
defined by

sending generators to themselves. Now we put this together which gives us the
following sequence:

T (L)

(x⊗ y − y ⊗ x)
→ Gr

(
T (L)

(x⊗ y − y ⊗ x− [x, y])

)
→ Gr

(
T (L)

(x⊗ y − y ⊗ x)
[t]/(t− 1)

)
→ T (L)

(x⊗ y − y ⊗ x)

Now since all the maps send the generating set, L to itself the composition of
all these maps sends L to itself and hence is the identity on T (L)

(x⊗y−y⊗x) . Since
The composition of all these maps is injective, the first map has to be injective.
Hence

T (L)

(x⊗ y − y ⊗ x)
' Gr

(
T (L)

(x⊗ y − y ⊗ x− [x, y])

)
An alternative proof is given by showing that φ is an isomorphism. For finite
dimensional Lie algebras this follows by that φ is surjective and by counting the
dimensions of the domain and co-domain and showing them to be equal. This
version is interesting since it proves that the universal enveloping algebra is in
fact a deformation of the symmetric algebra.
However extending this proof to arbitrary dimensions is hard, but seems like
something that would be worthwhile.

Another interesting fact about this theorem is that it is an equivalence. That
is T (V )/(x ⊗ y − y ⊗ x) ' Gr(T (V )/(x ⊗ y − y ⊗ x − µ(x ⊗ y − y ⊗ x))if and
only if mu is given by a bracket. That is, it satisfies the Jacobi identity. This
follows readily from the version of the theorem proved in [Wit19] section 5.5.
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