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0.1 Abstract/Sammendrag
This paper’s content is about projective geometry. In the paper the con-
cept of a projective space of a vector space is presented with examples of
such projective spaces. It look at maps from a projective space to itself, and
prove that there exists an isomorphism between Grm,n(F) and Grm,n−m(F).
At the end Plücker embedding is presented and wegde product is introduced.

Denne oppgaven handler om projektiv geometri. I oppgaven presenteres kon-
septet om et projektiv rom tilknyttet et vektorrom med eksempler på noen
projektive rom. Man ser på avbildning fra et projektiv rom til seg selv, og
beviser at det eksisterer en isomorfi mellom Grm,n(F) og Grm,n−m(F). Mot
slutten av oppgaven blir Plücker Imbedding presentert og ytreprodukt blir
introdusert.
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Chapter 1

Projective geometry

1.1 Introduction to projective geometry
Projective geometry is the study of projections. In linear algebra a projective
space of dimension n over some field F is seen as the set of 1-dimensional
subsets of the vectorspace Fn+1. Where any k-dimensional subspaces in Fn+1

represents a k−1 dimensional objects in the projective space. Another way of
thinking of projective spaces, is as extensions of Euclidean spaces by adding
"infinity points" that determines the direction of a line in the space. The
weakness with this way of thinking is that it seperates the "infinity points"
from the other points, but they really are "inseperable" from the other points.

Definition 1 Let V be a n-dimensional vector space over a field F, then
the projective space given by V is denoted by P(V ) and consist of all the
1-dimensional subspaces of V. If V = Fn then the notation Pn−1(F) will be
used.

First, we will see the relation between projective geometry and projec-
tions. To do this I will define what a projection is.

Definition 2 Let A be a set, and B be a subset of A. Then we call the map
g : A → B a projection if g has the following property: g ◦ g = p, which
means that g(g(a) = g(a) for all a ∈ A.

If V = Fn for some field F, Then the projection we will look at is
the projection that maps all nonzero vectors in V , to a n − 1 dimensional
object in V . One way to do this is to let the n − 1 dimensional object
A = An−1∪An−2∪...∪A1∪A0 such that Ai = {(0, ..., 0, 1, xn−i+1, ..., xn−1, xn) |
xi ∈ F} and map a point a = (a1, a2, ..., an) 6= 0 to the point in the inter-
section between A and the line l = {(ka1, ka2, ..., kan) | k ∈ F}, so if a1 6= 0
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then (a1, a2, ..., an) is mapped to (1, a−1
1 a2, a

−1
1 a3..., a

−1
1 an). In the case that

a1 = 0, since a 6= 0, there must be an k such that ak 6= 0 and am = 0
for m < i Then a is mapped ak

i a, Then this map is a projecting of V on
A such that for any point b ∈ A, the set of vectors which is projected to
b is equal the nonzero part of the subspace generated by b, so this projec-
tion can be seen as projecting Fn onto the set of 1-dimensional subspaces of V

We will now look at some examples of projective lines and spaces over some
finite fields, and the projective plane over R and the complex projective line.

1.2 Projective spaces over finite fields
First I want to define what homogenous coordinates is, as this is quite com-
monly used to name points in a projective geometry:

Definition 3 Let V be a vector space over the field F with dimension n.
Let B be a set of ordered basis elements in V . Then homogenous coordinate
a = [a1, a2, ..., an], a 6= 0 is the equivalence class such that [a1, a2, ..., an] =
[b1, b2, ..., bn] only if there exist a k ∈ F − {0}, such that kai = bi for i =
1, 2, ..., n. [0, 0, ..., 0] is not a homogenous coordinate.

Looking at the homogenous coordinates, it is clear that a homogenous
coordinate represents the nonzero part of a 1-dimensional subspace in the
vector space. Therefore it becomes quite useful when naming the points in a
projective space, since a projective space is a set of 1-dimensional subspaces.

The projective line over Z3 can be seen as the set of 1-dimensional sub-
spaces of the vectorspace Z3×Z3. The line contains four points. One can use
homogenous coordinates to represent the different points, then [1, 0], [1, 1], [1, 2], [0, 1]
represents all the points in the projective line

Look at the vector space V = Z3
2. By mapping 1-dimensional subspaces

of V to points, 2-dimensional subspaces to line, one gets P2(Z2) which can
be illustrated by the the Fano plane shown below:

Since every 1-dimensional subspace of V contains only one nonzero point,
it is natural to name the points in the projective plane using the nonzero point
of the corresponding 1-dimensional subspace of V , this is a consequence of
that V is a vector space over Z2 and Z2 contains only 2 elements and only
1 nonzero value. Since 1-dimensional subspaces over a vector space U over a
field F can be represented by a nonzero point u in U . Since f ∗u, f ∈ F, f 6= 0
represents the same subspace, one can say that the points f ∗ u and u maps
to the same point in the projective space given by U .
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Figure 1.1: The projective plane over Z2, also known as the Fano plane.

Lets now look at the projective plane over Z3. As in last case this can
be constrcuted by looking at the subspaces of V = Z3

3. In this case, since
each 1-dimensional subspace contains 2 nonzero points. Using the natural
basis for V , every 1-dimensional subspace can by represented by homogenous
coordinates in V such that if a 1-dimensional subspace in V is generated by
an point a = (a1, a2, a3), then the corresponding point in the projective
plane is represented by the homogenous coordinates [a1, a2, a3]. Under is an
illustration of the the projective plane with homogenous coordinates:

Figure 1.2: The projective plane over Z3
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1.3 The real projective plane
Before we look at the real projective plane, we will look at the real projective
line, P1(R), which is again the set of all lines containing (0, 0) in the vector
space R2. Now we can look at the intersection between these lines and the
unit circle. Observe that a line intersects the circle at two points which are
antipodal points, and that two different lines intersects in different points.
Then we can say that the circle is an image of P1(R), where an antipodal
pair of points represents a point in the projective geometry. If we want that
a point in the projetive geometry is represeented by a unique point, if we
denote the points by their angle, we just double the angle, such that the
point which creates the angle α goes to the point which creates the point 2α.
observe now if we have two antpodal points β and π + β, then both goes to
2β, and also if two points α and β both goes to the same point, then either
α = β or α and β are antipodal points. then this is a representation of P1(R).

To construct the real projective plane, it is possible to do the same as
for the finite fields. An other way of obtaining it is extending the Euclidean
plane such that every pair of lines intersect in exactly one point. It is done
by adding a point in the "infinity" for every possible direction of a line in the
euclidean plane. A line in this extend plane is then a line in the euclidean
plane together with the corresponding "infinity point" or the line consisting of
all infinity points. This plane is the projective plane of the real(Or isomorphic
to it). It is important to see that there is no difference between a "normal"
point and a "infinity" point.

1.4 The projective Complex line(The riemann
sphere)

The projective complex line can be seen as the set of 1-dimensional subspaces
of the vector space C2. It can also be imagined as the extension of the
complex plane (C). Since any 1-dimensional subspace of C2 is generated by
a v ∈ C2 such that v = (z1, z2) such that at least one of zi 6= 0. Since v and
k∗v, k ∈ C−{0} both generates the same subspace, one can use homogenous
coordinates to name the points in the projective complex line. the points can
then be named either [1, z] or [0, 1]. If one thinks of the projective space as
an extension of vector space of same dimension by adding "infinity" points,
then the points on the form [1, z] corresponces to z in the complex number,
while [0, 1] represents the added infinity point. The projective complex line
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Figure 1.3: If l represents a 1-dimensional subspace of R2, then A and A′

arethe points where l and the unit circle intersects and has the angle α and
π + α, they are antipodal points. By mapping A to the point B such that
the angle given by B is 2α we get a mapping fro m the unit circle to itself
which is surjective, and also C and C ′ maps to the same point P then either
C = C ′ or C and C ′ are antipodal points. So A′ does also map to B. So B
represents the subspace of R2 given by l.

can also be represented by the unit sphere in R3. This is done by saying
that (0, 1, 0) is the infinity point. (0,−1, 0) is 0. The complex number are
placed such that if [z, 1], z = a + bi then [z, 1] is represented by the second
intersection point between the line given by (0, 0, 1) and (a, b, 0), and the
unit sphere.

1.5 Mappings on a projective space
First we want to introduce some notations.

Definition 4 Let V be a n-dimensional vector space over a field F. Then
the set of linear maps from V to itself that is bijective is called GL(V ). If
V = Fn we use GLn(F) instead of GL(V ).

GLn(F) is frequently seen as the set of invertible n × n matrixes over

6



Figure 1.4: The Riemann sphere
Source: https://commons.wikimedia.org/wiki/File:RiemannKugel.svg

the field F since Fn has a natural basis. For a arbitrary n-dimensional vector
space over F, the matrix associated with an linear map L over V is dependent
on a chosen basis.

Definition 5 Let A be a set containing a finite number of elements. Then
the number of elements in A is denoted as |A|.

Example: Let A = {1, 2, 3, 4, 7, 10}. Counting the number of elements in
A, we get that A contains 6 elements. Therefore |A| = 6

Definition 6 Let A and B be sets, and let g be a function from A to B;

g : A→ B

If C ⊂ A, we denote {g(x) | x ∈ C} as gC or g(C)

Let us first look at the size of GLnF if F is a finite field.

Theorem 1 Let F be a finite field, |F| = q = pk where p is a prime number,
and k a nonnegative integer. Then the following statement is true:

|GLn(F)| =
n−1∏
i=0

qn − qi

Proof: Since GLn(F) can be seen as the set of invertible n × n matrices
over F and a square matrix is invertible if and only if the set of coloumvectors
of the matrix are linearly independent. So if we want to construct a matrix
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of this form, for the first row we can choose any nonzero vector in Fn, so the
numbers of vectors we can choose from is qn − 1 = qn − q0. for the next we
can not choose a linear combination of the last one, which are q vectors, so
the numbers of vectors we can choose from is now qn− q. Observe that if we
have i numbers of lineraly independent vectors. the number of vectors which
can be writen as a linear combinations of these vectors is qi. Therefore when
choosing column number m there are qn − qm−1 we can choose from. This
gives the formula in the theorem.

Lets look at some examples. Let F = Z3 and we are interested in find-
ing the size of GL5(F). First |F| = 3. Using the formula from the theorem
we then get that:

|GL5(F)| =
4∏

i=0
35 − 3i = 242 ∗ 240 ∗ 234 ∗ 216 ∗ 162 = 475566474240

So GL5(F) contains 475566474240 elements.
If we have a projective space P, we want to look at automorphism of this

P. The mappings from P to itself such that structure is preserved. With that
I mean that an n-dimensional object in P should map onto an n-dimensional
object in P

Definition 7 Let F be a field, and let U = Pn(F) be the n-dimensional
projective space over F. Then the set of mappings L from U into itself such
that a k-dimensional object in U is sent to a k-dimensional object we call
PGLn+1(F)

If P is the set of 1-dimensional subspaces of a vector space V , it is clear
that any L ∈ GL(V ) conserves structure also if one see L as an mapping
from P to itself.

Theorem 2 Let F be a finite field, |F| = q = pk where p is a prime. Then
|PGLn(F)| = |GLn(F)|

q−1 where PGLn(F) is the set of mappings from Pn−1(F)
to itself, where the map is bijective and conserves the structure.

Proof: As any L ∈ GLn(F) conserves subspace structure in the vector
space V = Fn, it will also conserve structure in Pn−1(F). It is also clear that
GLn(F) contains any mapping with this property. We are interested to know
which mappings which works as the identity on Pn−1(F). Let L ∈ GLn(F)
be a mapping with this property, then we have that Lv = u = kv, for all
v ∈ V , where k ∈ F, k 6= 0, since the subspace generated by v and u must
be the same. So this implies that k ∗ id, k 6= 0 in GLn(F) is the only maps
which works as the identity on Pn−1(F), and there exist |F| − 1 = q − 1 such
maps. So |PGLn(F)| = |GLn(F)|

q−1

8



Theorem 3 Let U = P1(F) be a 1-dimensional projective space over a finite
field F such that |F | = q = pk then any map L ∈ PGL2(F) can be constructed
by taking 3 distinct points in U and choose 3 distinct points to map them
to. There is no restriction to which points one can map to. So the size of
PGL2(F) is:

|PGL2(F)| = (q + 1)q(q − 1)

Proof: Let [a, b], [c, d] ∈ P1(F), such that [a, b] 6= [c, d]. Then there exists
a mapping L ∈ PGL2(F) which has the property that L([1, 0]) = [a, b] and
L([0, 1]) = [c, d]. Let L′ ∈ GL2(F) be a linear map such that L′A = L(A)
where A is a 1-dimensional subspace of F2, which also represents a point in
P1(F). Then we know that L′(1, 0) = k1(a, b) and L(0, 1) = k2(c, d) for some
k1, k2 ∈ F− {0}. Then we get that

L(1, 1) = L(1, 0) + L(0, 1) = k1(a, b) + k2(c, d)

, And L([1, 1]) = [k1a+ k2c, k1b+ k2d]. Observe that depending on L, [k1a+
k2c, k1b + k2d] can be any point in P1(F) except [a, b] and [c, d], so we can
atleast find a map L ∈ PGL2(F) such that [1, 0], [0, 1] and [1, 1] can be
mapped to any selection of three different points, This gives us that there
are at least (q + 1)q(q − 1) different mappings. Given that the first theorem
gives us that there are only (q + 1)q(q− 1) different mappings, we have that
the map is determined by the mapping of three seperate points.

Definition 8 Let F be a field and let V be a vector space over F, then the
set of all linear maps of the form V → F is called the dual space of V and is
denoted V ∗.

Theorem 4 Let F be a field, and let V be an n-dimensional vector space
over F with an ordered basis B = {e1, e2, ..., en}. Let B′ = {f1, f2, ..., fn},
fi ∈ V ∗, where fi(ej) is 0 if i 6= j and 1 if i = j. Then B′ is a basis for V ∗
and the linear map L : V → V ∗ given by L(ei) = fi is an isomorphy from V
to V ∗

Proof: First we show that B′ is a basis for V ∗. Let f ∈ V ∗. Look at the
values of f(ei) = di. Let v ∈ V , Then v = ∑n

i=1 aiei for some ai ∈ F so

f(v) = f(
n∑

i=1
aiei) =

n∑
i=1

f(aiei) =
n∑

i=1
aif(ei) =

n∑
i=1

aidi

This implies that f = ∑n
i=1 difi, so B′ generates V ∗. It is also clear that B′ is

linear independent since if f ′ = ∑n
i=1 bifi such that for at least one i, bi 6= 0.

Then f(ei) = bi 6= 0 so f 6= 0 and B′ is linearly independent and therefore a
basis.
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Definition 9 Let F be a field and V a vector space over F. Then the set
containing all k-dimensional subspaces of V is denoted with Grk(V ) and is
called the the grassmanian of k-dimensional subspace of V . If V = Fn we
usually denote this by Grk,n(F)

If V is a finite dimensional with dimension n, we want to show that it
is possible to construct an isomorphy between Grk(V ) and Grn−k(V ). But
first I will prove some statements that will help us.

Theorem 5 Let F be a field and V an n-dimensional vector space over F.
let L,L′ ∈ V ∗ − {0}, then ker(L) = ker(L′) if and only if L = aL′ where
a ∈ F− {0}

Proof of " ⇐= ": Assume L = aL′, a 6= 0. Then if v ∈ ker(L) we get
this: L′v = a−1Lv = a−1 ∗ 0 = 0 so v ∈ ker(V ′). If u ∈ ker(V ′) then
Lv = aL′v = a ∗ 0 = 0, so u ∈ ker(L). This implies that ker(V ) = ker(V ′).

Proof of " =⇒ ": Assume ker(V ) = ker(V ′), Let B = {b1, b2, ..., bn−1} be
a basis for ker(V ). choose u ∈ V − ker(V ), then B ∪ {u} is a basis for V .
Since u /∈ ker(V ) we have that Lu = k and L′u = k′ where k 6= 0 and k′ 6= 0.
Let v ∈ V , then v = cu+∑n−1

i=1 cibi so Lv = ak = akk′−1k′ = kk′−1L′v. This
implies that L = aL′ where a = kk′−1

Theorem 6 Let F be a field, and V an n-dimensional vector space over F.
Let A = {f1, f2, ..., fk | fi ∈ V ∗ − {0}} with k < n such that A is a lineary
independent set. Then the intersection of the kernels of the maps in A is a
subspace of V with dimension n− k.

U =
k⋂

i=1
ker(fi)

and dim(U) = n− k

Proof: We prove this by induction. If k = 1, so A = {f1}.Since f1 is a
nonzero linear map from V to F, we get that ker(f1) has dimension n− 1.

Now assume that we know that the theorem is true for k = m,m < n,
let A = {f1, f2, ..., fm+1 | fi ∈ V ∗ − {0}} be a lineary independent set. Since
A−{fm+1} also is a lineary independent set, containing m different mappings,
we get that U = ∩m

i=1 ker(fi) is an (n −m)-dimensional subset of V . Since
ker(fm+1) is a n− 1 dimensional space, we get that W = U ∪ ker(fm+1) is a
subspace of V with dimension n −m or n − (m + 1). Assume that W has
dimension n−m. This implies that W = U , so U ⊂ ker(fm+1).

10



Now look at span(A). From that A is a set of m+ 1 linearly independent
elements, we get that span(A) is a m+ 1 dimensional subspace of V ∗. Since
for any g ∈ span(A),W ⊂ ker(g). So the kernel of g can be generated by
a basis B for W together with m − 1 linearly independent elements in V .
Given that for h, h′ ∈ V ∗, ker(h) = ker(h′) implies that h = ah′ we get that
span(A) has dimension m which is a contradiction. Therefore the assumtion
that W is a n−m dimensional subspace is incorrect, so W is a n− (m+ 1)
dimensional subspace of V . This concludes the induction proof.

Theorem 7 Let F be a field and V an n-dimensional vector space of F. Let
W be a subspace of V ∗ where B1 = {f1, f2, ..., fk} and B2 = {g1, g2, ..., gk}
both are basises for W . Then the following is true:

k⋂
i=1

ker(fi) =
k⋂

i=1
ker(gi) =

⋂
f∈W

ker(f)

Proof: Since B1 is a basis for W and B2 is a subset of W , we get that

gi =
k∑

j=1
ai,jfj

So if U = ∩k
i=1 ker(fi), U ′ = ∩k

i=1 ker(gi), and v ∈ U then:

gi(v) =
k∑

j=1
ai,jfj = 0

So U ⊂ ker(gi) for all i = 1, 2, ..., k. But this implies U ⊂ U ′, but since both
U and U ′ are subspaces of V with dimension n− k, we get that U = U ′

Theorem 8 Let F be a field, and V an n-dimensional vector space over F
with a basis B. Let W be a subspace of V , where B1 = {u1, u2, ..., uk} and
B2 = {v1, v2, ..., vk} both are basises of W . Then the following statement is
true:

k⋂
i=1

ker(Lui) =
k⋂

i=1
ker(Lvi)

where L is the isomorphism between V and V ∗ given by the basis B

Proof: Since B1 and B2 both are are basises for the same subspace W in
V we get that the sets {Lu1, Lu2, ..., Luk} and {Lv1, Lv2, ..., Lvk} both are
basises for the same subspace W ′ of V ∗. Last theorem then gives us that:

k⋂
i=1

ker(Lui) =
k⋂

i=1
ker(Lvi)

11



Theorem 9 Let F be a field, and V an n-dimensional vector space over F.
Then there exists an isomorphism between Grk(V ) and Grn−k(V ). Given a
basis B for V such an isomorphism can be constructed.

Proof: Let B = {e1, e2, ..., en} be a basis for V , then B′ = {f1, f2, ..., fn},
such that fi = Lei where L is the isomorphism between V and V ∗ induced
by the basis B. Then B′ is a basis for V ∗. Define the map g : Grk(V ) →
Grn−k(V ) such that if W ∈ Grk(V ), then

g(W ) =
⋂

f∈LW

ker(f) =
⋂

f∈S′
ker(f) =

⋂
v∈S

ker(Lv) = U

where S is any basis of the subspace W and S ′ is any basis for LW = {Lv |
v ∈ W}. SinceW is a k-dimensional subspace of V and L is an isomorphism,
we get that LW is a k-dimensional subspace of V ∗. This implies that U is a
n−k dimensional subspace of V . So it is clear that g is a map. It is enough to
prove injectiveness of this map, since that would imply that there also exists
an injective map from Grn−k(V ) to Grk(V ) and therefore g is bijective, and
an isomorphism. Let W,W ′ ∈ Grk(V ) such that W 6= W ′. This implies that
LW 6= LW ′ so there exist an f0 in LW such that f0 /∈ LW ′. So let S ′ be a
basis of LW ′, then it is clear that A = S ′∪{f0} is a lineary independent set.
It is also clear that ⋂

f∈LW

ker(f) ∩
⋂

f∈LW ′
ker(f) ⊂

⋂
f∈A

ker(f)

But ⋂f∈A ker(f) is a subset of V with dimension n−k−1, so ⋂f∈LW ker(f)∩⋂
f∈LW ′ ker(f) has dimension less than n− k. So⋂

f∈LW

ker(f) 6=
⋂

f∈LW ′
ker(f)

. So g is bijective and therefore an isomorphism betweenGrk(V ) andGrn−k(V ).

Theorem 10 Let F be a finite field, where |F| = q = pk where p is prime,
then the following is true:

|Grm,n(F)| = |GLn(F)|
|GLm(F)||GLm−n(F)|q(n−m)m

Proof: Let W,U ∈ Grm,n(F) then there exist L ∈ GLn(F) such that
L(W ) = U . We want to find out how many L ∈ GLn(F) which has this
properties. It is equivalent to look at the number of L ∈ GLn(F) such that
L(W ) = W sinceW and U are isomorphic. So letW = {(x1, x2, ..., xm, 0, 0, ..., 0)T |
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xi ∈ K, i = 0, 1, ...,m} then if L has this property then the corresponding
n× n matrix AL is on this form:(

B1 V
O B2

)

where B1 is an invertablem×mmatrix, V is an arbitrarym×(n−m) matrix,
O is the (n −m) ×m 0-matrix, and B2 is an invertable (n −m) × (n −m)
matrix. Then B1 has |GLm(F)| alternatives, V has |F|(n−m)m = q(n−m)m

alternatives, and B2 has |GLn−m(F)| alternatives. This gives us that there
exist |GLm(F)||GL(n−m)(F)|q(n−m)m = Q amounts of such linear projections.
So the size of Grm,n(F) is equal to the size of GLn(F) divided by Q.

Observe that the formula implies that if F is a finite field, then Grk,n(F) =
Grn−k,n(F). This is expected since we before has shown that there exist
an isomorphy between Grk,n(F) and Grn−k,n(F), and since both of these set
contains a finite number of elements, they must have the same number of
elements

As an example, let us look at the field Z2 and the size of Grk,3(Z2) for
k = 1, 2 This is the same as to look at the number of points and lines in the
projective plane over Z2, or the Fano’s plane. The formula gives us this:

|Gr1,3(Z2)| = |GL3(Z2)|
|GL1(Z2)||GL2(Z2)|22 = 7 ∗ 6 ∗ 4

1 ∗ 3 ∗ 2 ∗ 22 = 168
24 = 7

So there is 7 points in P2(Z2), which is the correct number of point. Since
|Gr2,3(Z2)| = |Gr1,3(Z2)| = 7, The number of lines is also 7, counting the
lines of the drawing of the Fano’s plane coincide with this number.

1.6 Plücker Embedings
First we will look at the determinant of a matrix.

Definition 10 Let F be a field and V = Fn is an vector space, then if we
look at an n×n matrix as a matrix containing n- column vectors in Fn, then
the determinant is the only mapping f : V × V × ...× V → F (V is repeated
n times) that has the following properties: The determinant of the identity
should be 1:

f(e1 × e2 × ...× en) = 1
It is linear in each coordinate, for all i = 1, 2, ..., n

f(v1 × v2 × ...× avi + bui × ...× vn)

13



= af(v1 × v2 × ...× vi × ...× vn) + bf(v1 × v2 × ...× ui × ...× vn)

It is alternating which means that:

f(v1, v2, ..., vn) = 0

if {v1, v2, ...vn} is a lineary independent set.

We will confirm that this mapping is unique and that it is the same as
what we know as the determinant of a matrix. Assume we have a mapping
f : V × V × ...× V → F (V is repeated n times). Let A be an n× n matrix.
From the properties we have that adding a scaled colomn to another column
does not change the value of the function: f(A) = f(Ai,j) where Ai,j,a is the
matrix equal to A everywhere except that column i is equal to vi +avj. This
opertation can be done by multipliying with the matrix B from the right.
B = I + a∆i,j where ∆i,j is the matrix containing only zeros, except the ele-
ment in the intersecting of row i and column j, this element is equal to 1. The
other operation we can do is to multiply column i with a 6= 0 and column j
with a−1, This can be achieved by multiplying the matrix A with the matrix
C from the left, where C is the diagonal matrix containing 1s in the diagonal
except for the ith place which contains a a and jth place which contains a
a−1. Observe that both of these types of matrixes has determinant 1 and
therefore det(A) = det(AB) = det(AC). If A is a matrix where the column
vectors are lineraly independent, that A is invertible. it is possible to find
matrixes Bi, i = 1, 2, ..., k such that AB1B2...Bk is a diagonal matrix such
that every diagonal element is 1 except for the last diagonal element. This
last element is equal to f(A) but also equal to det(A) so f(A) = det(A) if A
is invertible. If A is not invertible then f(A) = 0, and since also det(A) = 0
we have that f = det. So det is the only mapping that has these properties.

Theorem 11 Let F be a field and A an 4× 4 matrix over F such that:
a1 a2 a3 a4
b1 b2 b3 b4
c1 c2 c3 c4
d1 d2 d3 d4


Then the following is true:

det(A) = det
(
a1 a2
b1 b2

)
det

(
c3 c4
d3 d4

)
− det

(
a1 a3
b1 b3

)
det

(
c2 c4
d2 d4

)
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+ det
(
a1 a4
b1 b4

)
det

(
c2 c3
d2 d3

)
− det

(
a2 a3
b2 b3

)
det

(
c1 c4
d1 d4

)

+ det
(
a2 a4
b2 b4

)
det

(
c1 c3
d1 d3

)
− det

(
a3 a4
b3 b4

)
det

(
c1 c2
d1 d2

)

Proof: we will show that this equation is true. If A = I we get that the
right side is equal to 1. The right side is also linear in a colom if the the other
coloms are fixed. Last if we add a linear sum of the other colums to one of
the colums not in the linear sum, the determinant does not change, which
implies that if two coloms switches places the determinant changes to the
additive inverse. so since the right side satisfies the these three conditions,
we know that it is equal to the determinant.

Plücker embedings is a way of map a grassmanian set into a projective
space. It is a mapping taking Grm,n(F) into P(n

m)−1(F). The mapping is
defined in this way:

Definition 11 Let V be a n-dimensional vector space over a finite field F
where |F| = q = pk where p is prime. Then the map L : Grm,n(V ) →
p(

n
m)−1(F ) such that for a W ∈ Grm,n and B′ a basis of W such that Bi ∈

B,Bi = (bi,1, bi,2, ..., bi,n) and let the matrix M be the m × n matrix where
mi,j = bi,j then let L(W ) = xW where xW = [x1, x2, ..., x(n

m)] where x1 is
equal to the determinant of the matrix one gets when removing the n−m last
colons of M , and continue.

Now we want to look at an example of a Plücker embeding. Lets look at
Gr2,4(F) for some field F. LetW ∈ Gr2,4(F), and letB = {(a, b, c, d), (e, f, g, h)}
be a basis for W . Then the plücker embedding L : Gr2,4(V ) → P(4

2)−1(F)
works like this on W :

L(W ) = (det
(
a b
e f

)
, det

(
a c
e g

)
, det

(
a d
e h

)
, det

(
b c
f g

)
, det

(
b d
f h

)
, det

(
c d
g h

)
)

= [d1,2, d1,3, d1,4, d2,3, d2,4, d3,4]

We are interesteded in which points x ∈ P(4
2)−1(F) such that there exists

U ∈ Gr2,4(F) where LU = x. In other words the image of L. Let W ∈
Gr2,4(F) such that {(a, b, c, d), (e, f, g, h)} is a basis for W . Then look at the
matrix:

A =


a b c d
e f g h
0 b c d
0 f g h


15



It is obvious that this matrix is not invertible, as the rows are not linearly
independent. If we denote row i as ri, then r2 = e

a
(r1 − r3) + r4. Therefore

the determinant of A must be 0. If we develope the determinant from the
two first rows we get this:

det(A) =
(
a b
e f

)(
c d
g h

)
−
(
a c
e g

)(
b d
f h

)
+
(
a d
e h

)(
b c
f g

)

= d1,2d3,4 − d1,3d2,4 + d1,4d2,3 = 0
So if x is in the image of L, we have that x = [x1, x2, x3, x4, x5, x6] must
satisfy the following equation:

x1x6 − x2x5 + x3x4 = 0

If we let F = Z2 and look at the plücker embeding L mapping Gr2,4(Z2)
into P5. First we will calculate the size of Gr2,4(Z2):

|Gr2,4(Z2)| = |GL4(Z2)|
|GL2(Z2)||GL2(Z2)|24 = 15 ∗ 14 ∗ 12 ∗ 8

3 ∗ 2 ∗ 3 ∗ 2 ∗ 24 = 35

Then we look at the number of points x in P(Z2)5, x = [x1, x2, x3, x4, x5, x6]
such that the equation x1x6 − x2x5 + x3x4 = 0 holds. We know that if
x1x6 = 0, we get that x2x5 = x3x4. x1x6 = 0 if either of x1 or x6 or
both is 0. if x2x5 = x3x4 = 1 that is only if x2 = x3 = x4 = x5 = 1
and if x2x5 = x3x4 = 0, we have 9 different ways of choosing the values of
x2, x3, x4, x5, but xi = 0 for all i is not valid so need to remove 1 possible
way, so if x1x6 = 0 there are 29 ways to arrange the points. If x1x6 = 1 there
are 6 solutions, and 29 + 6 = 35. So there are an equal number of points in
P5(Z2) which satisfies the condition as the size of Gr2,4(Z2)

In general, the image of an plücker embedding of Grk,m(F), which is a subset
of P(n

m)−1(F), is the solution to several homogenous equations, as the one in
the previous example.

Definition 12 Let V be a finite-dimensional vectorspace with dimension n
and x, y ∈ V,, then the wegde product (using the symbol ∧)

x ∧ y = (d1,2, d1,3, ..., d1,n, d2,3, d2,3, ..., dn−1,n)

where di,j = xiyj − xjyi

This operation can be exteded to work for a finite set of vectors

16



Definition 13 Let V be a finite-dimensional vectorspace with dimension n
and xi ∈ V for i ≤ m be a set of m vectors in V , then the wegde product

∧m
i=1xi = ×i1<i2<...<imdi1,i2,...,im (1.1)

where di1,i2,...,im is the minor of the coloums i1, i2, ..., im of the matrix A, where
A is the m× n matrix where row i is xi

Theorem 12 Let V be finite-dimensional vector space with dimension n,
and A = {xi | xi ∈ V, i = 1, 2, ...,m} be a set of m vectors in V , then
∧m

i=1xi = 0 if and only if A is a lineary dependent set.

From this theorem it is obvious that if a vegde product contains two of
the same vectors, the product is equal to 0. Also if the vector space has
dimension n, vegde product containing more than n vectors must also be 0,
since the vectors in the wegde product must be linearly dependent

Definition 14 Let V be a n-dimensional vector space of a field F. Then we
define a algebra, F× V × V ∧ V × V ∧ V ∧ V × ...× V ∧ V ∧ ...∧ V with the
natural vector space operation and

(k1, u1,1, u2,1 ∧ u2,2, u3,1 ∧ u3,2 ∧ u3,3 × ...× un,1 ∧ un,2 ∧ ... ∧ un,n)

∗(k2, v1,1, v2,1 ∧ v2,2, v3,1 ∧ v3,2 ∧ v3,3 × ...× vn,1 ∧ vn,2 ∧ ... ∧ vn,n)

= (k1k2, k1v1 + k2u1, k1u2,1 ∧ u2,2 + u1,1 ∧ v1,1, ...,

k1 ∧m
i=1 vm,i +

m∑
i=1
∧i

j=1ui,j ∧m−i
j=1 vm−i,j + k2 ∧m

i=1 um,i, ...,

k1 ∧n
i=1 vn,i +

n∑
i=1
∧i

j=1ui,j ∧n−i
j=1 vn−i,j + k2 ∧n

i=1 un,i)
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