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1 Introduction

Affine spaces are geometric structures where there is a notion of parallel lines.
Parallel lines by definition do not intersect each other in any point. However,
inspired by visual perspective in the real world, where parallel lines seem to
converge to a point on the horizon, comes the idea of a projective space. In a
projective space, we add certain ”points at infinity”, such that parallel lines
actually do meet in these points. This introduces a slight problem, as we
now have a space containing two different types of points, ”regular points”,
and ”points at infinity”. This is cumbersome to work with, so we want to use
another definition. In this text we will instead define a projective space by
looking at the set of 1-dimensional subspaces of a vector space V, together
with some additional structure. We will see that this does indeed reflect the
above description of what a space with ”points at infinity” should look like,
while still just containing one type of points.

After defining what projective spaces are and looking at a couple of exam-
ples, we will take a look at finite projective spaces, polynomials in projective
spaces, and maps between projective spaces. After that we will look at grass-
mannians, a sort of generalization of projective spaces. In the end, we will
look at how grassmannians can be realized as structured subsets of projective
spaces, through the use of the ”Plücker embedding”.

1



2 Projective Spaces

Let V be a finite dimensional vector space over a field F . We define the
equivalence relation on the set V \{0}:

a ∼ b⇔ ∃λ ∈ F\{0}, λa = b (1)

In other words, two points in V \{0} are related if they belong to the
same 1-dimensional subspace of V . The projective space of V , P (V ), is then
defined as the equivalence classes of V \{0} under this equivalence relation:

P (V ) = (V \{0})/ ∼ (2)

(”Projective space”, Wikipedia)

The elements, or ”points”, in P (V ) are therefore the 1-dimensional sub-
spaces of V . Notice that if V = {0}, then P (V ) = ∅, since it contains no
1-dimensional subspaces.

We define the map pV : V \{0} → P (V ) given by pV (v) = [v], the map
that maps a vector in V \{0} onto the unique 1-dimensional subspace that
contains it. We also define a choice function sV : P (V ) → V \{0} that will
serve as a right inverse of pV . Given a 1-dimensional subspace a ∈ P (V ), sV
will choose a vector v 6= 0 belonging to this subspace, and define sV (a) = v.
In other words we want sV to satisfy: pV (sV (a)) = a,∀a ∈ P (V ). While sV
does not work as a left inverse, it will atleast satisfy that given a v ∈ V \{0},
sV (pV (v)) = λv for some λ ∈ F\{0}.

We then give P (V ) a geometric structure by defining what a line in P (V )
is: Given two distinct points a, b ∈ P (V ), the line through these points con-
sists of all points c ∈ P (V ) such that sV (c) ∈ span{sV (a), sV (b)}. This means
that all 1-dimensional subspaces that belong to the same 2-dimensional sub-
space of V lie on a line in P (V ). In other words a line in P (V ) corresponds
to a 2-dimensional subspace of V . Generalizing this concept, a k-dimensional
subspace U of V corresponds to a ”subspace” in P (V ) of dimension k − 1.
If the whole space V has dimension n+1, we say that P (V ) has dimension n.

For any vector space V over F , if dimV = n + 1, we have V ' F n+1

through the choice of a basis for V. In section 5 we will see that this implies
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that their projective spaces are also isomorphic: P (V ) ' P (F n+1) := P n(F ).
This shows that since all n+ 1 dimensional F vector spaces are isomorphic,
we can talk about the projective space of dimension n over F , P n(F ), with-
out needing to specify what the underlying vector space is.

How should we denote the elements of P (V )? For any point a 6= 0
in V , there is a unique 1-dimensional subspace of V containing a. Given
an ordered basis of V , we can use the coordinates of a to denote this 1-
dimensional subspace. This comes with a slight problem, since for any λ ∈
F\{0}, a and λa denote the same 1-dimensional subspace. To counteract
this we simply define the ”homogeneous coordinates” of an element in P (V )
to be equal to the coordinates of any nonzero vector in the 1-dimensional
subspace, together with the equivalence relation that two sets of homogeneous
coordinates represent the same element if one can be scaled by some number
λ ∈ F\{0} to get the the other one. If we want a unique representation
for each 1-dimensional subspace of V , we can scale a in such a way that
the first nonzero coordinate becomes 1. Geometrically, this corresponds to
seeing where the line intersects a specific affine subspace of V . If dim(V ) = n,
an element in P (V ) can then be uniquely identified by one element in the
following set:

S = {(1, a12, . . . , a1n)} ∪ {(0, 1, a23, . . . , a2n)} ∪ . . . ∪ (0, . . . , 1), aij ∈ F (3)

Example: Let V = R3, and take any v = (v1, v2, v3) ∈ V. We want to
represent the 1-dimensional subspace U of V containing this vector uniquely.
If v1 6= 0, we can represent U by v/v1 = (1, v2/v1, v3/v1) = (1, a, b), which
geometrically corresponds to the intersection of U and the affine plane given
by x = 1. So we can represent any 1-dimensional subspace U where v1 6= 0
uniquely by an element on the form (1, a, b).

If v1 = 0 and v2 6= 0, we can represent U by the element v/v2 =
(0, 1, v3/v2) = (0, 1, c). Geometrically this corresponds to the point where
U intersects the affine line given by y = 1, x = 0. Thus we can represent any
of these elements by a point on the form (0, 1, c).

The only remaining 1-dimensional subspace is the z-axis, which we can
then represent by the point (0, 0, 1). All in all, this gives us a way to denote
each element in P (V ) with a unique element in the set:
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S = {(1, a, b)|a, b ∈ R} ∪ {(0, 1, c)|c ∈ R} ∪ (0, 0, 1) (4)

The points with first coordinate 0 are the ones corresponding to the
”points at infinity” mentioned in the introduction. To see this, we take
an element with nonzero first coordinate v = (1, a, b). We want to see what
happens to v when we get further out in this plane, as (a2 + b2)→∞. Since
there are many ways this can approach infinity, we dont always get that v
converges to a point in the projective space (for example by going out in a spi-
ral). However, if we assume that lim(a2+b2)→∞ a 6= 0, and lim(a2+b2)→∞

b
a

= r,
then v converges. Since v is represented with homogeneous coordinates, we
can scale v by 1

a
to get v = ( 1

a
, 1, b

a
). Because of the assumptions above, we

get that |a| → ∞, so the frist coordinate will go to 0, and the third coor-
dinate will go to r. The result is that v will converge to the point (0, 1, r).
If we instead assume that lim(a2+b2)→∞ a = 0, then |b| → ∞. Scaling the
homogeneous coordinates by 1

b
, we get that v = (1

b
, a
b
, 1), which converges

to (0, 0, 1) as (a2 + b2) → ∞. Since b
a

= r = −b
−a , (1, a, b) and (1,−a,−b)

converge to the same point as (a2 + b2)→∞. This shows that there is a 180
degree rotational equivalence of the limit points. To picture this fact we can
”glue” the set {(0, 1, c)|c ∈ R} ∪ (0, 0, 1) twice around the affine part of the
projective space, with (0, 1, 0) at both infinities along the y axis, and (0, 0, 1)
at both infinities along the z axis. (see bottom of figure 1)

Another way to look at the elements of P (R3) is to identify a 1-dimensional
subspace of R3 with the two points in which they intersect the unit sphere.
Specifically:

P (R3) ' S2/ ∼
a ∼ b⇔ a = b ∨ a = −b

(5)

This approach has the benefit of being indpendent of choice of coordinate
system, as well as showing that all points are equivalent; there isn’t techni-
cally anything ”infinite” or special about some of the points. Since lines in
P (R3) correspond to 2-dimensional subspaces of R3, they will be represented
by the intersection of a 2-dimensional subspace and the unit sphere, which
is a great circle on the unit sphere. This representation also gives a way to
define a distance between two points in P (R3), as the shortest distance along
the unit sphere between the representatives of the two points.
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Figure 1:
Top picture shows how scaling the
first coordinate of a vector to 1 is
equivalent to see where it intersects
the plane given by x = 1.

Bottom picture shows the plane
given by x = 1 seen from above,
and how the points with x = 0 can
be seen as ”points at infinity” on
the edge of the plane.

3 Finite Projective Spaces

Let Fq be the finite field with q elements. We now look at the vector space
V = F n

q over Fq. How many elements are there in P (V )? There are several
approaches here. One option is to look at the set S we defined in section 2:

S = {(1, a12, . . . , a1n)} ∪ {(0, 1, a23, . . . , a2n)} ∪ . . . ∪ (0, . . . , 1), aij ∈ Fq (6)

We argued previously how there is a bijection between S and P (V ), so
we just need to count the number of elements in S and we’re done. Since
|Fq| = q, we have: |P (V )| = |S| = qn−1 + . . .+ 1 = qn−1

q−1 .
Another approach is to look at all the vectors in V , and what 1-dimensional

subspaces those vectors generate. We know |V | = |F n
q | = |Fq|n = qn. We

remove 0, the only vector which does not genrerate a 1-dimensional subspace.
We are left with qn − 1 vectors, each generating a 1-dimensional subspace.
But we are overcounting, because given a 1-dimensional subspace generated
by v, it is also generated by the q−2 other elements f2 ·v, . . . , fq−1 ·v, fi ∈ Fq,
in total we have q− 1 generators for this subspace. This means we are over-
counting each 1-dimensional subspace exactly q − 1 times too many, which
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means we get: |P (V )| = qn−1
q−1 .

How do some of the simplest finite projective spaces look like? We take
V = F 3

2 , and look at P (V ). Given any vector a ∈ V , the 1-dimensional
subspace containing a consists of exactly two points: a and 0. Therefore each
1-dimensional subspace of V is uniquely determined by the nonzero vector
it contains. There are 7 nonzero vectors in V , each of which determine a
1-dimensional subspace. This means P (V ) consists of 7 points, which can
be represented in homogeneous coordinates by the unique nonzero vector
contained in each of the 1-dimensional subspace. Writing it out we get the
set:

S = {(a, b, c) ∈ F 3
2 |(a, b, c) 6= (0, 0, 0)} (7)

The lines in P (V ) can in this case be determined by the following: Given
two points a = (a1, a2, a3), b = (b1, b2, b3), a third point c = (c1, c2, c3) lie on
the same line if c = f1 · a + f2 · b. Since the field is so small, the only such
nonzero linear combinations are a, b and a + b. So the only point on this
line distinct from a and b is a + b. We end up with the following picture
consisting of 7 points and 7 lines, 3 point on each line, 3 lines through each
point. This is called the ”Fano plane”. (Figure 2)

The case above where we use F2 as the base field is a bit special, be-
cause the elements in P (V ) are in a 1 to 1 correspondence with the nonzero
elements of V , since each 1-dimensional subspace only contain one nonzero
element. What happens if we look at V = F 3

3 instead? By the formula at the
start of this section, we know that |P (V )| = 33−1

3−1 = 13, but how are these
points connected by lines?

We identify each line in P (V ) with the homogeneous coordinate where
the first nonzero coordinate is 1. There are 9 points on the form (1, a, b), 3
points on the form (0, 1, c), and the last point represented by (0, 0, 1). We
start out by putting the 9 points with nonzero first coordinate in a 3×3 grid,
such that any straight line or diagonal in this grid is a line in P (V ). After
this is done, the points on the offset diagonals and the corner points farthest
away from this diagonal also lie on a line in P (V ), so we draw this in. Now
each line contains exactly 3 points. We get this picture (Figure 3):
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Figure 2:
P (F 3

2 ), the ”Fano plane”.

Figure 3 (Below):
Shows the 9 points of P (F 3

3 ) with
nonzero first coordinates and the
lines between them.
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Adding the 4 remaining points (which all lie on a line), and drawing out
the lines which contain them, we get:

We end up with 13 lines, each of which contain 4 points. We can also
notice that each point is contained in 4 lines. Notice that in both of these
examples there seems to be some sort of symmetry hiding, the number of
points in P (V ) is equal to the number of lines in P (V ), and the number of
lines through any point is the same as the number of points on any line. We
will get back to why this happens.

Finite projective spaces are entirely symetrical in the following sense:
Every line contains an equal number of points, and all points have an equal
number of lines going through them. We can see this by looking at the un-
derlying vector space:

Let V = F n
q over Fq. Given a 2-dimensional subspace U of V , we can

write U = span(v1, v2). Given any fixed 1-dimensional subspace W of U ,
W is generated by a single element w. Since W is a subspace of U , w can
be written as a linear combination of v1 and v2. We claim that the spaces
generated by each of the following vectors are distinct and are all the 1-
dimensional subspaces of U : S = {v1, v2, v1 + f1v2, v1 + f2v2 . . . , v1 + fq−1v2},

8



where f1 . . . fq−1 are the q − 1 nonzero elements of F . Given any other ele-
ment generating a 1-dimensional subspace (fiv1 + fjv2), we can multiply it
by f−1i to get (v1 + f−1i fjv2) ∈ S (If fi = 0, then fiv1 + fjv2 = fjv2, so this
generates the same space as v2 ∈ S). Since |S| = q + 1 independent on the
choice of U , this shows that all 2-dimensional subspaces of V contain the
same number of 1-dimensional subspaces.

The second part of the symmetry mentioned above corresponds to count-
ing the number of 2-dimensional subspaces of V which contain a fixed 1-
dimensional subspace of V .

Again let V = F n
q over Fq. Given a 1-dimensional subspace U of V , how

many choices do we have for a second 1-dimensional subspace W of V such
that dim(U +W ) = 2? There are qn−q ways to chose a vector w /∈ U , which
will then be a generator of W . There are q− 1 generators of W , so we divide
by this. We get that there are qn−q

q−1 choices for W such that dim(U+W ) = 2.
But can we chose W1 6= W2 and get U + W1 = U + W2? Yes, but this is
exactly when W1 and W2 lie on the same line as U in P (V ). Above we
saw that each line in P (V ) contains q + 1 points, so without counting U
itself, there are q choices of W which result in the same 2-dimensional sub-
space U +W . Dividing by this we get: #2-dimensional subspaces containing
U = qn−q

(q−1)·q = qn−1−1
(q−1) . We see here that this is also independent of the choice

of U , so its the same for any fixed 1-dimensional subspace of V.

The above explains parts of the symetries we noticed when looking at
P (F 3

2 ) and P (F 3
3 ). In these examples the number of lines through any point

and the number of points on any line were equal. We see now that this
is not true in general, but just a consequence of that for n = 3, we have
qn−1−1
(q−1) = q2−1

(q−1) = (q+1)(q−1)
(q−1) = q + 1.

As a result of the symmetry of these finite projective spaces, we can look
at the symmetry group of any of them, the set of permutations of the points
in P (V ) which preserve the line structure through the points.

Example: We will look at the symmetry group of P (F 3
2 ). We can find

the size of the group by just counting. There are 7 choices for where to put
the first point, and 6 choices for the choice of another point on the same line.
To preserve colinearity, the choice for the last point on that line is forced.
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Now we have 4 choices for the next point. After this however, the choices for
the last 3 points are forced. So the size of the symmetry group is 7·6·4 = 168.

4 Polynomials in projectives spaces

Given the projective space P n−1(F ), elements can be represented by homo-
geneous coordinates, a set of n numbers as shown in section 2. Given a
polynomial f ∈ F [x1, . . . , xn], can we evaluate it in a point in the projective
space? In general, no, because we require the value of f to be indepen-
dent of representative of the point in the projective space: f(x1, . . . , xn) =
f(λx1, . . . , λxn) ∀λ 6= 0. If we limit ourselfs to homogeneous polynomi-
als, the polynomials in which all terms are of the same degree k, we get:
f(λx1, . . . , λxn) = λkf(x1, . . . , xn). So while f(x) and f(λx) do not have the
same values, the set of points in which they evaluate to zero are the same:
f(x) = 0 ⇔ f(λx) = 0. Because of this, in a projective space it is often in-
terresting to study the zero set of a homogeneous polynomial. We therefore
make the following definition:
Given a set S of homogeneous polynomials in n variables over a field F :

S = {f ∈ F [x1, . . . xn]|f homogeneous} (8)

the projective variety US ⊆ P n−1(F ) defined by S is the set of common
zeroes for all these polynomials.

US = {x ∈ P n−1(F )|f(x) = 0 ∀f ∈ S} (9)

(”Projective variety”, Wikipedia)

If |S| = ∞, we know through hilberts basis theorem that there exists
a finite set of homogeneous polynomials S ′ such that US = US′ (”Hilbert’s
basis theorem”, Wikipedia).

If we have a polynomial f ∈ F [x1, . . . , xn] of degree k which is not ho-
mogeneous, we can homogenize it by introducing a new variable x0, and
multiplying each term by it enough times so that each term has degree k.
We can now study it in a projective space, and setting x0 = 1 will return
back the original polynomial.
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Why would we want to work with projective varieties compared to for
example affine varieties? One example of how projective varieties behave
nicely is a result known as Bézout’s theorem. The statement of the theorem
is as follows: Take the projective space P n(F ), F algebraically closed, and n
projective varieties, where each one is defined by a single homogeneous poly-
nomial in n + 1 variables. Then the number of common intersection points
of all these projective varieties is either equal to the product of the degrees
of their defining polynomials, or infinite. (”Bézout’s theorem”, Wikipedia)

We will now take a look at elliptic curves, an example of a projective
variety that is used in cryptography and number theory among other things.
An elliptic curve over a field F (with characteristic different from 2 and 3) is
often defined as the points (x, y) ∈ F 2 that satisfies an equation on the form:
y2 = x3+ax+b, where 4a3+27b2 6= 0, together with a unique point O at infin-
ity. Because of this point at infinity, the curve really lies in a projective plane.
If we homogenize the equation, we can find out exactly how the elliptic curve
looks like. We add a variable z, and look at the projective variety defined
by the equation zy2 = x3 + az2x + bz3 in homogenous coordinates (z, x, y).
Putting z = 1 we get back the original equation,
so that gives us all the points of the elliptic curve
that lies on the affine part. If z = 0, we get that
0 = x3, which means x = 0. Thus we are left with
the point (0, 0, 1) in the projective space as the only
solution outside of the affine part of the projective
plane, this is the unique point at infinity O. If we
look at a picture of an elliptic curve, this makes
sense: As we look further out on the curve, it be-
comes more and more parallel to the y axis, and
the homogeneous coordinate (0, 0, 1) represents ex-
actly this, the direction along the y axis. (”Elliptic
curve”, Wikipedia)

5 Homographies

A homography is an isomorphism of projective spaces. It is a bijection that
is structure preserving in the sense that lines are mapped to lines. Given
an isomorphism of vector spaces G : V → W , there is an induced isomor-
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phism of their projective spaces, H : P (V )→ P (W ), H(x) = pW (G(sV (x))).
Here pW and sV are the functions defined in section 2. In words, given a 1-
dimensional subspace x of V , H(x) first chooses a vector contained in x,
then maps that vector into W through the isomorphism G, then projects the
result back onto the 1-dimensional subspace of W containing the result.

We show that H is in fact an isomorphism. Its inverse is doing almost
the same as H, just going opposite way through the use of G−1, H−1(y) =
pV (G−1(sW (y))), H(H−1(y)) = pW (G(sV (pV (G−1(sW (y)))))) =
pW (G(λG−1(sW (y)))) = pW (λG(G−1(sW (y)))) = pW (λsW (y)) = pW (sW (y)) =
y, calculating that H−1(H(x)) = x is exactly the same argument.

Is it structure preserving, in that lines in P(V) are mapped to lines in
P(W)? Since G is an isomorphism, a 2-dimensional subspace of V is mapped
surjectively onto a 2-dimensional subspace of W. This is exactly what it
means for lines to be mapped to lines in the projective spaces, so yes it is
structure preserving.

We also need to show that the isomorphism H is independent of the choice
function sV used: Let sV and sV be two different choice functions as defined
in section 2, with sV (x) = v and sV (x) = u. Since u and v are both nonzero
and belong to the same 1-dimensional subspace of V , we can write v = λu
for some λ 6= 0. We get: H(x) = pW (G(sV (x))) = pW (G(v)) = pW (G(λu)) =
pW (λG(u)) = pW (G(u)) = pW (G(sV (x))). This works because G is linear
and pW (a) = pW (λa) ∀λ ∈ F\{0}.

This verifies the statement in section 2 that we can identify a projective
space P n(F ) without knowing or specifying what the underlying vector space
is: Given any V ' F n+1, we get by the induced isomorphism above that:
P (V ) ' P (F n+1) := P n(F ).

An example of a homography, and maybe the classical reason why people
started studying projective spaces, is that of visual perspective. Let P 3(F )
be a projective space. We define a central projection C as such: Fix a point
O ∈ P 3(F ), called the center of the projection, and a plane S ⊂ P 3(F ) that
does not contain O. Given a point A ∈ P 3(F )\{O}, let AO denote the line
in P 3(F ) going through A and O. Then define C(A) := AO ∩ S. Now given
another plane Q ⊂ P 3(F ) not containing O, we can make a bijection between
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the two planes S and Q by restricting the domain of the central projection to
Q. This type of bijection is called perspectivity, and is a type of homography.
(”Homography”, Wikipedia)

Perspectivities can also be generalized to projective spaces of higher di-
mensions, and form the basis for all homographies. In fact, the ”Fundamental
theorem of projective geometry” states that all homographies are the com-
position of a finite number of perspectivities. (”Homography”, Wikipedia)

6 Grassmannians

Grassmannians generalize the idea introduced with projective spaces. Whereas
the elements in a projective space P (V ) are the 1-dimensional subspaces of V ,
the elements in the grassmannian Gr(k, V ), are the k-dimensional subspaces
of V (”Grassmannian”, Wikipedia). Gr(k, V ) is also denoted as Gr(k, n) for
an unspecified n-dimensional vector space V. When a basis of V is chosen,
we can represent an element U in Gr(k, V ) by a k × n matrix:

M =

m11 . . . m1n
...

. . .
...

mk1 . . . mkn

 =

M1
...
Mk

 ,Mi row vectors (10)

where span{M1, ...,Mk} = U

Note here that like we had with projectve spaces this representation isn’t
unique. If we multiply this matrix from the left with an invertible k× k ma-
trix, we get a new matrix where the row vectors still span U , so the matrix
represents the same element in Gr(k, V ). In other words, two k×n matrices
A,B represent the same element in Gr(k, V ) if ∃ C ∈ GL(k, F ) such that
CA = B

If V = F n
q over Fq, how many elements are there in Gr(k, V )? The idea

here is that any k-dimensional subspace can be mapped onto any other k-
dimensional subspace through an invertible n × n matrix. If we can find
how many such matrices there are, and how many of these which map a
k-dimensional space onto itself, we will get what we’re looking for by using
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the orbit-stabilizer theorem.

Let’s first look at the general linear group GL(n, V ), the set of invertible
n×n matrices with the group operation being matrix multiplication. To find
|GL(n, V )|, we consider how many choices we have for the column vectors.
The first column can be any nonzero vector, so we have qn − 1 choices. For
the next column, we have to chose something linearly independent of the
first, so we are left with qn − q choices. Next we have qn − q2, and so on. In
the end |GL(n, V )| = (qn − 1) · (qn − q) · . . . · (qn − qn−1).

We can now look at GL(n, V ) as a group action acting on Gr(k, V ).
The reason that this is useful, is because a matrix in GL(n, V ) can map any
element in Gr(k, V ) onto any other. In other words, this is a transitive group
action. We are interested in the number of matrices in GL(n, V ) that maps
a k-dimensional subspace onto itself. We choose an element U in Gr(k, V ).
If we pick an ordered basis for V where the first k basis elements span out
U , then an invertible matrix mapping U onto itself is on the form:

M =

(
GL(k) A

0 GL(n− k)

)
(11)

where A is any k× (n− k) matrix. There are in total |GL(k)| · |GL(n− k)| ·
qk(n−k) such matrices.

From the orbit stabilizer theorem we know that |G · x| = |G|
|Gx| (”Group

action”, Wikipedia). In our case this corresponds to: |Gr(k, V )| = |GL(n)|
#M

,
where #M is the number of matrices on form above. Putting it all together
we get:
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|G · x| = |G|
|Gx|

=
|GL(n)|

|GL(k)| · |GL(n− k)| · qk(n−k)

=
(qn − 1) · (qn − q) · . . . · (qn − qn−1)

(qk − 1) · . . . · (qk − qk−1) · (qn−k − 1) · . . . · (qn−k − qn−k−1) · qk(n−k)

=
(qn − 1) · (qn−1 − 1) · . . . · (q − 1)

(qk − 1) · (qk−1 − 1) · . . . · (q − 1) · (qn−k − 1) · (qn−k−1 − 1) · . . . · (q − 1)

=
(qn − 1) · (qn−1 − 1) · . . . · (qn−k+1 − 1)

(qk − 1) · (qk−1 − 1) · . . . · (q − 1)
(12)

On second to last line we factored out q
(n−1)n

2 in numerator and denominator.
It’s worth noting the symmetry of this expression, if we replace k with n− k
we get the same number. It’s the same type of symmetry that we see in
binomial coefficients, that

(
n
k

)
=
(

n
n−k

)
. To make it more clear, we define

f(q, n) = (qn − 1) · (qn−1) · · · · (q − 1), we get the familiar looking equation:

|Gr(k, V )| = f(q, n)

f(q, k) · f(q, n− k)
(13)

This equation is on the same form that the formula for calculating bino-
mial coefficients are, just that x! is replaced by f(q, x), so it makes sense that
it has the same type of symetry. This also explains the symmetry we saw
in section 3, that we had the same number of points and lines in P (F 3

2 ) and
P (F 3

3 ). This is because points in these spaces corresponds to 1-dimensional
subspaces of a 3-dimensional space, and lines are 2-dimensional subspaces of
a 3-dimensional space. Since 3− 1 = 2 this satisfies the (n− k) ∼ k symetry.

7 The Plücker Embedding

Any grassmannian can be embedded as a projective variety into a projective
space through Plücker embedding (”Plücker embedding”, Wikipedia). Take
an element M = (M1, . . . ,Mn) ∈ Gr(k, n). Choose k numbers 1 ≤ i1 < i2 <
· · · < ik ≤ n, and form the k× k matrix (Mi1 ,Mi2 , . . . ,Mik). Since there are(
n
k

)
ways to choose the numbers ij, there are

(
n
k

)
such matrices. After some

ordering of these matrices are made, we label them Di. We can then define

the Plücker embedding f : Gr(k, n)→ P (n
k)−1 as:
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f(M) = (v1, . . . , v(n
k)

),

vi = det(Di)
(14)

The resulting vi-s here in the result are called the Plücker coordinates of
the matrix M .
Note that since mutltiplying M by an invertible k × k matrix A doesn’t
change the element it represents, it shouldnt change its Plücker coordinates
either. We have:

f(A ·M) = (v1, . . . , v(n
k)

),

vi = det(A ·Di) = det(A) · det(Di)
(15)

So each coordinate is scaled by the same constant det(A), so it still represents
the same point in the projective space.

What is the image of the embedding? It turns out that it is a projective

variety of P (n
k)−1, we will get back to which polynomial equations define this

variety and how to find them later.

Example: We look at the finite vector space V = F 4
q over Fq, and want to

look at the Plücker embedding Gr(2, V )→ P 5(V ). It turns out the image are
exactly the points (a1, . . . , a6) ∈ P 5(V ) which satisfy a1·a6−a2·a5+a3·a4 = 0.
It is easily verifiable that the image of the embedding satisfies this equation.
Are there any points which satisfy the equation, but are not in the image of
the embedding? To answer this we rewrite the equation:

(
a1 a2 a3

)1 0 0
0 −1 0
0 0 1

a6a5
a4

 = 0 (16)

If we now fix (a1, a2, a3) 6= 0, and multiply the row vector with the matrix,
we end up with a new nonzero row vector (r1, r2, r3), and get the equation:

(
r1 r2 r3

)a6a5
a4

 = 0 (17)
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Since (r1, r2, r3) is nonzero, it is a full rank 1 × 3 matrix. The rank-nullity
theorem then gives us that the null space has dimension 2. Hence, for any
fixed (a1, a2, a3) 6= 0, there are q2 choices of (a4, a5, a6) such that eq.(17)
holds. There are q3−1 nonzero choices for (a1, a2, a3). When these 3 are zero,
we have to chose nonzero (a4, a5, a6), this gives another q3− 1 choices. Since
the image of the Plücker embedding is in a projective space, several of the
solutions we get here represent the same element. In fact if v = (v1, . . . , v6)
satisfies the equation, fi · v, fi ∈ F\{0} also satisfies the equation, since it
is a homogeneous polynomial. So we have counted all the q − 1 multiples of
a solution, but all these represent the same element in the projective space.
Thus we have to divide what we counted by q − 1. All in all we get:

#Solutions =
(q3 − 1) · q2 + (q3 − 1)

q − 1
=

(q3 − 1) · (q2 + 1)

q − 1
=

(q4 − 1) · (q3 − 1)

(q2 − 1) · (q − 1)
(18)

We see that this is the same formula that we derived in section 6 if we put
n = 4 and k = 2. In other words the number of solutions is the same as the
number of 2-dimensional subspaces of V , and since we know that the image
of the Plücker embeding satisfies this equation, the image must be exactly
the solution set of the equation.

As we saw in the example above, the image of the Plücker embedding
satisfied a quadratic homogeneous equation. In general, the image of any
grassmannian under the Plücker embedding satisfies a set of quadratic ho-
mogeneous equations, called the ”Grassmann-Plücker relations” (”Plücker
embedding”, Wikipedia). We will now see how these equations look like.

Given Gr(k, n), we first start by making two ordered sequences, one of
length k − 1, and one of k + 1:

1 ≤ i1 < i2 < · · · < ik−1 ≤ n

1 ≤ j1 < j2 < · · · < jk+1 ≤ n
(19)

Now for each fixed js in the second sequence, we can transform these
sequences into two sequences of equal length k:

i1, i2, . . . ik−1, js

j1, j2, . . . js . . . , jk+1

(20)
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Where js denotes the sequence where js is removed. Using the matrix rep-
resentation of the elements in the grassmannian: (M1, . . . ,Mn), we pick out
the columns according to the sequences generated above to create two k× k
matrices. We then take their determinants:

Di1,...ik−1,js = det(Mi1 ,Mi2 , . . .Mik−1
,Mjs)

Dj1,...js...,jk+1
= det(Mj1Mj2 , . . . ,Mjk+1

)
(21)

Notice here, that if js = it for some t, then Di1,...ik−1,js = 0, since two of
its columns are the same. Now we can create the equation:

k+1∑
s=1

(−1)(s−1)Di1,...ik−1,jsDj1,...js...,jk+1
= 0 (22)

So going through all the k+1 choices of js, gives us one quadratic equation
in Plücker coordinates with k+ 1 terms. Now going through all the possible
starting sequences on the form:

1 ≤ i1 < i2 < · · · < ik−1 ≤ n

1 ≤ j1 < j2 < · · · < jk+1 ≤ n
(23)

and do the same process as described above, we end up with a set of homo-
geneous quadratic equations in Plücker coordinates which define a projective
variety, the image of the Plücker embedding of Gr(k, n).

Does this method generate too many equations? Is there a subset of
these equations that define the same projective variety? Yes, and its related
to when the two starting sequences contain the same number. We can look
at Gr(2, 4) which we saw in the example to illustrate this.

Chosing the starting sequences 1, and 2 < 3 < 4 of lengths 2− 1 = 1 and
2 + 1 = 3, we get 3 sets of transformed sequences:

1, 2 | 3, 4
1, 3 | 2, 4
1, 4 | 2, 3

(24)
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which gives the equation:

D12 ·D34 −D13 ·D24 +D14 ·D23 = 0 (25)

which is the equation that describes the Plücker embedding of Gr(2, 4). How-
ever if we choose the starting sequences to be: 1 and 1 < 2 < 3, we get the
sets of transformed sequences:

1, 1 | 2, 3
1, 2 | 1, 3
1, 3 | 1, 2

(26)

which gives the equation:

D11 ·D23 −D12 ·D13 +D13 ·D12 = 0 (27)

D11 = 0 because two of its columns are equal, which means the whole equa-
tion is always zero. Thus this equation gives us no information. Another way
this method generates redundant equations, is by starting with the sequences
2, and 1 < 3 < 4. The transformed sequences are:

2, 1 | 3, 4
2, 3 | 1, 4
2, 4 | 1, 3

(28)

This gives the equation:

D21 ·D34 −D23 ·D14 +D24 ·D13 =

−D12 ·D34 +D24 ·D13 −D23 ·D14 =

(−1) · (D12 ·D34 −D13 ·D24 +D14 ·D23) = 0

(29)

Above the fact that the determinant is alternating is used: D21 = −D12.
The equation we get is the same as if we were using the first ordering (mul-
tiplying the equation by (−1) still gives the same zero set). While its not
useless information, its redundant information, which means we still get the
same projective variety if we include this in the set of defining equations.

We will now look at Gr(2, 5), and see what the Plücker relations tell us
here about the image of the Plücker embedding. Since k = 2 just like above,
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we still have to chose our starting sequences to have 1 and 3 elements. We
start out with the sequences we know will not be redundant, namely the ones
where there is no overlap between the sequences, and the elements of the first
sequence are all smaller than any in the second sequence. This gives the 5
starting sequences:

1 | 2, 3, 4
1 | 2, 3, 5
1 | 2, 4, 5
1 | 3, 4, 5
2 | 3, 4, 5

(30)

Which gives the 5 equations:

D12 ·D34 −D13 ·D24 +D14 ·D23 = 0

D12 ·D35 −D13 ·D25 +D15 ·D23 = 0

D12 ·D45 −D14 ·D25 +D15 ·D24 = 0

D13 ·D45 −D14 ·D35 +D15 ·D34 = 0

D23 ·D45 −D24 ·D35 +D25 ·D34 = 0

(31)

If we use any pairs of starting sequences where there are overlaping terms,
this just will result in some terms being zero. This gives a less strict equation
than what we already have, so it won’t affect the projective variety which
the equations define. Thus these equations define the image of the Plücker
embedding of Gr(2, 5).
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