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Introduction

This thesis will be an introduction to commutative ring theory, with an end
goal of introducing complete intersection rings and reviewing some results about
them. It will be written with the assumption that the reader is familiar with
some basic algebraic concepts, such as groups, rings, and modules.

The first part is localisation of rings. It is important to have tools at hand
to construct local rings in order to have a wider array of ”nice” rings to work
with. It is also important to know what properties such a construction will
have. After that we will look at primary decomposition of ideals. This part
consists of results about primary ideals, and how an intersection of them can be
a way of representing an ideal, and that representation’s properties. The theory
of primary ideals also comes up when working with dimension theory as we will
work with systems of parameters of local rings.

The next part will be about the a-adic completions of rings and modules, and
the Artin-Rees lemma. This construction is complicated and is based on taking
the inverse limit of an inverse system constructed from the ring and an ideal a.
The last part of what we might call the preliminaries of this thesis is dimension
theory. In this part we introduce the concept of graded rings and modules, and
Hilbert functions, as well as proving some properties about dimensions specific
for Noetherian local rings.

The last part will be about complete intersection rings, and some results re-
garding them. For example, that any C.I ring is of the form a regular local ring
quotient with an ideal generated by a regular sequence. Here we will need all
the previous parts to describe them sufficiently. We also need to introduce some
new theory to be able to define them.

There is included an appendix on Category Theory and Homological Algebra as
some of theory included relies on knowing some basic definitions from the fields.

Our book references will be [2] and [5], and for additional background, we refer
the reader to [4].

We assume all rings we work with and define will be commutative and contain
the multiplicative identify.
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1 Localization

Localization can be intuitively understood as focusing on parts of a ring, in
order to apply it some properties it previously lacked. Our main goal is to un-
derstand the theory of local rings. As an example, one can apply localization
to Z to construct Q. It will be shown that one can localize any domain to get
a correspondent field.

Local rings is a concept that will show its use later on in this thesis. How-
ever, not every ring is local, of course, and not every localisation of a ring, even,
is a local ring. This is why we need to introduce localization so that we later on
can apply our theory to more rings, granted we localize them suitably. In this
part we will mainly follow [2, Ch. 3]

Let A be a commutative ring and S ⊂ A a multiplicativly closed subset of
A. We construct the relation ∼ on A× S to be

(a, s) ∼ (b, t) ⇐⇒ (at− bs)u = 0

for some u ∈ S. It is easy to show that this is a equivalence relation:

It is obvious that (a, s) ∼ (a, s) as as − as = 0, and that if (a, s) ∼ (b, t)
then (b, t) ∼ (a, s) as (at − bs)u = 0 =⇒ (bs − as)u = 0. Transitivity
only holds if we either have the requirement of an u ∈ S or if the ring A is
a domain. Assume (a, s) ∼ (b, t) and (b, t) ∼ (c, r) then ∃u, v ∈ S such that
(at− bs)u = (br − ct)v = 0. We have atu = bsu which leads us to

0 = (br − ct)vsu

= (brvsu− ctvsu)

= (aturv − ctvsu)

= (ar − cs)tvu =⇒ (a, s) ∼ (c, r)

as t, v, u ∈ S =⇒ tvu ∈ S.

This can be intuitively understood by treating (a, s) as the fraction a
s . In fact

we denote the equivalence class of (a, s) as a
s , and define the set of these equiv-

alence classes S−1A. The intuition of calling these elements fractions comes in
handy when defining the ring structure of the set S−1A.

We define additive and multiplicative binary operation on S−1A as

a

s
+
b

t
=

(at+ bs)

st

and
a

s

b

t
=
ab

st
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The ring S−1A that we have now defined, is what we call the localization of
A with respect to S. There exists a homomorphism of rings f : A → S−1A,
such that f : a 7→ a

1 . In general, f is not injective, but injectiveity holds if
S contains no zero-divisors. It is easy to see that (0, 1) ∼ (a, 1) if a is a zero
divisor, as (0− a)u = 0 if au = 0.

Theorem 1.1. Let g : A → B such that ∀s ∈ S, g(s) is a unit in B. Then
there exists a unique ring homomorphism h : S−1A→ B such that the following
diagram commutes:

A
g //

f ""

B

S−1A

h

<<

Where f is as above.

Proof. Existence. We construct h to h : (a/s) 7→ g(a)g(s)−1. We check that
this is in fact a ring homomorphism. Let a, b ∈ A and s, t ∈ S. Multiplication
preserving: h((a/s)(b/t)) = h(ab/st) = g(ab)g(st)−1 = g(a)g(s)−1g(b)g(t)−1 =
h(a/s)h(b/t). Which we use to prove addition preserving h(a/s+b/t) = h((at+
bs)/st) = g(at + bs)g(st)−1 = g(at)g(st)−1 + g(bs)g(st)−1 = g(a)g(s)−1 +
g(b)g(t)−1 = h(a/s) + h(b/t). Which leaves multiplicative identity preserv-
ing, h(1/1) = g(1)g(1)−1 = 1B .

Uniqueness. Assume that there is an h′ : S−1A → B, satisfying the condi-
tions for h above.

h′(a/1) = h′ ◦ f(a) = g(a)

for all a ∈ A and

h′(1/s) = h′((s/1)−1) = h′(s/1)−1 = g(s)−1

for all s ∈ S.
Putting this together we get:

h′(a/s) = h′((a/1)(1/s)) = h′(a/1)h′(1/s) = g(a)g(s)−1 = h(a/s)

.

For the most part when one talks about localization, one means localization
at a prime ideal p. What this means is that we choose S = A− p.

Lemma 1.2. Let p be an ideal in A. A − p is multiplicative closed ⇐⇒ p is
prime

Proof. ⇐= :
We have that p is prime. Let a, b ∈ A − p and assume that ab /∈ A − p. Then

4



ab ∈ p but a, b /∈ p which is a contradiction, so ab ∈ A− p.
=⇒ :
We have that A − p is multiplicatively closed. Let ab ∈ p, assume a ∈ A −
p and b ∈ A− p. But ab ∈ A− p as the set is multiplicatively closed, which is a
contradiction so we have then that a ∈ A− p and b ∈ A− p.

We denote the ring S−1A, where S = A−p, by Ap. The elements p/s, where
p ∈ p, and s ∈ S, form an ideal m in Ap. As all elements of Ap that are not in p
are units, and therefore generate the whole ring, or wil generate an ideal which
is contained in m. m is the only maximal ideal of Ap. This is equivalent with
Ap being a local ring.

1.1 Some Examples and Remarks

Remark 1.3. S−1A = 0 ⇐⇒ 0 ∈ S

It is easy to see that if 0 ∈ S then ∀(a, s) ∈ S−1A, (a, s) ∼ (0, 1) as
(1a− 0s)0 = 0

Example 1.4. The localization of Z at the prime ideal (0) is Q. In general, for
an integral domain R, the localization R(0) is called the field of fractions of R.

Example 1.5. The localization of Z at a prime ideal (p) = p, where p is prime,
will be of the form Zp = {as | a ∈ Z, p - s}

The notation for localization at a prime ideal in the ring Z might be confused
for the notation for the field Z/pZ. Therefore, we state that when referring to
the field Z/pZ or the ring Z/nZ, we will use this notation.

Example 1.6. R = k[x1, ..., xn], R(0) is the construction of the field of rational
functions.

Example 1.7. R(x1,..,xn) = {f/g; f, g ∈ R, g(0, .., 0) 6= 0}

Example 1.8. If S = αn;α ∈ R,n ∈ N then we denote the localization as Rα.
If R = k[x], then the localization Rx, (note, not at the ideal generated by x), is
what we call the ring of Laurent Polynomials over k, k[x, x−1].

1.2 Localization is a covariant exact functor

We can apply the construction of localization on an A-module, say M . We
define S as before, but construct another equivalence relation ∼ on M and S.
Let m,n ∈M , and s, t ∈ S, we define ∼ as:

(m, s) ∼ (n, t) ⇐⇒ ∃u ∈ S such that (sn− tm)u = 0

We denote the equivalence classes of (m, s) as before with m
s . The localisa-

tion of M is denoted with Mp if S = A − p for some prime ideal of A, p.
S−1M is a S−1A-module, and there exists a canonical A-module homomor-
phism u : M → S−1A, such that u(m) = m/1.

5



Let f : M → N be an A-module homomorphism. The localization of M then
induces a S−1A-module homomorphism S−1f : S−1M → S−1N , defined to be
S−1f(m/s) = f(m)/s. With this, we now have that localization at S is a
functor S−1 : Mod A → Mod S−1A. We will now be show that S−1 is exact,
and provide some results which are corollary to this fact.

Theorem 1.9. Let M ′
f→M

g→M ′′ be an exact sequence of A-modules. Then

S−1M ′
S−1f→ S−1M

S−1g→ S−1M ′′ is exact.

Proof. As S−1 is a functor, S−1M ′ → S−1M → S−1M ′′ is a complex, i.e
Im S−1f ⊆ Ker S−1g. It remains to prove that Ker S−1g ⊆ Im S−1f . Let
m/s ∈ Ker S−1g, then by definition of ∼ ∃u ∈ S such that 0 = g(m)u =
g(mu) =⇒ mu ∈ Ker g. By exactness, mu ∈ Imf =⇒ ∃m′ ∈ M ′ such
that f(m′) = mu. Therefore, we have that m/s = f(m′)/su in S−1M , and
f(m′)/su = (S−1f)(m′/su) ∈ Im S−1f . This was what we wanted since this
implies that Ker S−1g ⊆ Im S−1f .

This result leads us to uncover many properties of localization. The first of
which we will look at is that localization respects quotients of modules.

Corollary 1.10. Localization respect quotients of modules, i.e let N ⊂ M be
a submodule of an A-module M , then S−1(M/N) ∼= (S−1M)/(S−1N)

Proof. Construct the exact sequence

0→ N →M →M/N → 0

If we apply localization to this we get

0→ S−1N → S−1M → S−1(M/N)→ 0

The corollary follows from this and the first(or third) isomorphism theorem for
modules.

1.3 Local properties

The rest of the results of exactness gives us will be what we call local properties.
A property of a A-module M is said to be local if it is preserved by localization.
I.e if M has property ⇐⇒ Mp has property, for any prime ideal p.

The most immediate local property is if M = 0 ⇐⇒ Mp = 0, this is obvious
from the fact that localisation is a functor and Mod A is an Abelian category.
Similarly, since S−1 is exact it preserves kernels and cokernels, which means it
preserves injections, i.e let φ : M → N , then there exists an φp : Mp → Np

An important result for is that Noetherianess is preserved when localizing. To
prove this, we first need the following lemma.
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Lemma 1.11. All ideals of S−1A are of the form f(I)S−1A, where I is an ideal
in A and f : A→ S−1A as defined before.

Proof. Let J be an ideal of S−1A. We construct I = f−1(J) as an ideal of A.
Let a/s ∈ J , then (a/s)f(s) = f(a) ∈ J =⇒ a ∈ f−1(J). Then we have that
a/s = (1/s)(f(a)) ∈ f(I)S−1A for any a/s ideal J in A. The convsere inclusion,
f(I)S−1A ⊆ J is trivial so we have that f(I)S−1A = J .

Theorem 1.12. If A is Noetherian, then so is S−1A

Proof. Let J0 ⊆ J1 ⊆ ... ⊆ Jn ⊆ ... be an ascending chain of ideals in S−1A.
Then, for any Ji ∈ S−1A we have from the last lemma that they are of the
form f(Ii)S

−1A. Which means that the ascending chain can be written as
f(I1)S−1A ⊆ f(I2)S−1A ⊆ . . . . But as A is Noetherian the chain I1 ⊆ I2 ⊆ . . .
must stabilize at some n which means that for that same n we have · · · ⊆
f(In)S−1A = f(In+1)S−1A = . . . which by definition gives us that S−1A is
Noetherian.

Remark 1.13. The converse of this theorem does not hold so the property of
Noetherianess is not fully ”local”, but the result is still important.

7



2 Primary Decomposition

We start the explanation of primary ideals and ideal structure of rings by look-
ing at the definition for primary ideals. The reader may find this resembling
the definition of prime ideals. For this section we refer to chapter 4 in [2].
This is really a generalisation of ideal factorisation in Dedekind domains, which
of course again is a generalisation of the fundamental theorem of arithmetic. We
will not look at Dedekind domains in this chapter as it is not trivial to expand
the theory we look at here to their factorization of ideals [2, Ch. 9].

Definition 2.1. An ideal q 6= A of a ring A, is a primary ideal if

xy ∈ q =⇒ x ∈ q or yn ∈ q

for some n ≥ 0

The first result is key to be able to talk about primary decomposition as it
allows us to categorize primary ideals by the smallest prime ideal which contains
them.

Theorem 2.2. Let q be a primary ideal in a ring A, then the radical of q, r(q)
is the smallest prime ideal p, containing q. We say then that q is p-primary.

Proof. We first prove that r(q) is prime. Let xy ∈ r(q), then (xy)m ∈ q, by
definition, for some m ∈ N. From the definition of primary ideals, xm ∈ q or
ymn ∈ q, for some n ∈ q. Which by definintion gives us x ∈ r(q) or y ∈ r(q),
which proves prime that r(q). That r(q) is the smallest prime ideal containing q
is obvious from the fact that r(q) can thought of as the intersection of all primes
containing q.

Example 2.3. The primary ideal (pi), i ∈ N in Z has radical r((pi)) = (p). In
fact the only primary ideals of Z are (0), (pi),

An equivalent definition of primary ideals is as follows:

q is primary ⇐⇒ A/q 6= 0 and ever zero-divisor in A/q is nilpotent

This can be thought of as a primary ideal version of the equivalent definitions
for prime ideals, A/p is a domain ⇐⇒ p prime, and for maximal ideals A/m
is a field ⇐⇒ m maximal. We use this in the following examples taken from
[2, p. 51].

Example 2.4. Let (x, yn) be an ideal in k[x, y], n ∈ N then k(x, y)/(x, yn) ∼=
k(y)/(yn). The only zero-divisors in k(y)/(yn) are powers of y, so (x, yn) is
primary. r(x, yn) = (x, y) which is maximal, then prime, but (x, yn) is not a
power of (x, y).

8



Example 2.5. The converse is also not true, a power of a prime ideal need not
be primary. Leta = (xy− z2) be an ideal in k[x, y], and let A = k[x, y]/a. Then
p = (x+ a, z + a) is a prime ideal in A, as A/p ∼= k[y] is a integral domain. We
have that 0 + a = xz − z2 + a ∈ p2 but x+ a /∈ p2 and y + a /∈ r(p2) = p, hence
p2 is not primary despite being a power of a prime.

However, the powers of a maximal ideal m in a ring A, are m-primary ideals.
The generalisation of this is our next theorem.

Theorem 2.6. If r(q) = m is maximal, then q is an m-primary ideal.

Proof. We define r(q) = m as above. One can see that m̄ is the nilradical in
A/q. As the nilradical is the intersection of all prime ideals, m is the only prime
ideal. This means that every element of A/q is either a unit or nilpotent, which
again means that every zero-divisor is nilpotent, which concludes the proof.

We can now begin the introduction of ideal representation as intersections
of primary ideals. We set that a primary decomposition of an ideal a in a ring
A is of the form

a =

n⋂
i=1

qi (2.7)

Where qi are primary ideals.
Primary decomposition of the form above need not exist for a given ideal, but
we will only focus on the ideals for which the decomposition exists. For this
construct to be what call a primary decomposition, we require two properties.
Firstly that all r(qi) are distinct primes, and secondly that the decomposition
is minimal, that is qj /∈

⋂n
i=1 qi, ∀j ≤ n. The first thing we need to cover to get

this is quotient ideals.

Definition 2.8. Let I, J be ideals in a ring A, then (I : J) = {a ∈ A ; aJ ⊆ I}

Example 2.9. I = 0 gives us Ann(J). If J = 0 we get (I : 0) = A

If J = (x) is a principal ideal generated by an element x we write (I : J) =
(I : (x)) = (I : x) by convention.

Example 2.10. Let q be a p-primary ideal in A. If x ∈ q then (q : x) = (1). If
x /∈ p, then (q : x) = q.

Lemma 2.11. Let {qi}i≤n be a set of p-primary ideals, p some prime ideal.
Then q =

⋂n
i=1 is also p-primary.

Proof. The proof is based on the fact that radical of rings commutes with in-
tersections of ideals. That is r(q) =

⋂n
i=1 r(qi) = p. We now need to prove that

q is primary. Let xy ∈ q, then xy ∈ qi for all i ≤ n. Let y /∈ q, then y /∈ qj , for
some j ≤ n, but since xy ∈ qj and qj is primary, x ∈ p =⇒ xk ∈ q for some
k ∈ N, thus q is primary

9



Let
⋂n
i=0 qi be the intersection of primary ideals that does not meet the

requirement of a primary decomposition that that every r(qi) 6= r(qj), for i 6= j.
But from the last lemma, we can construct this set from the elements of the
intersection

{qpi ;
⋂

r(qj)=pi

qj}

The intersection of all qpi ’s will get us a decomposotion of a that satisfies the first
requirement of primary decompositions. By iterativly removing all superfluous
ideals, i.e primary ideals in which qpj ⊆

⋂
i qpi are removed from the set we

intersect. We have now achieved an intersection of primary ideals that equals the
ideal a, in which every ideal intersected is pi-primary, where pi is unique for each,
and which is minimal. We now call this intersection a primary decomposition
of a.

2.1 Uniqueness of primary decompositions

Our next goals is to prove that primary decompositions are unique up to pi’s.
To do this, we need the following lemmas.

Lemma 2.12. Let q be a p-primary ideal, p prime ideal in A, and x ∈ A, x /∈ q.
Then (q : x) is p-primary.

Proof. From example 2 we get that if x /∈ p then (q : x) = q so we look at
the case where x /∈ q, but x ∈ p. Let y ∈ (q : x) then we have that xy ∈ q,
and the series of implications: x /∈ q =⇒ yn ∈ q =⇒ y ∈ p. From this we
get that r((q : x)) = p. Now let some ab ∈ (q : x) and suppose b /∈ p, then
xab ∈ q =⇒ xa ∈ p, hence xa ∈ p then an ∈ (q : x) for some n.

Lemma 2.13. If p =
⋂
i ai, where p is a prime ideal, and ai are ideals in a ring

A, then ai = p for some i.

Proof. Assume that there is an xi ∈ ai for all i’s, where xi /∈ p, and have that
atleast for on i and j, xi 6= xj (as to maintain the equality of the intersection
and p). Then we can construct

∏
i xi ∈

∏
ai ⊆

⋂
i ai, but

∏
i /∈ p as p is prime,

contradiction. We now have that ai ⊆ p for some i. But as
⋂
i ai = p we get the

inverse inclusion p ∈ ai.

Theorem 2.14 (First uniqueness theorem). Let a be a decomposable ideal
in A, then a =

⋂n
i=0 qi is a primary decomposition. Let qi = pi, for all 1 ≤ i ≤ n.

Then the set {pi; 1 ≤ i ≤ n} = {r(a : x);x ∈ A}. This means that the set of
prime ideals, pi, of which are radicals of the primary ideals qi are independent
on the choice of primary decomposition and are therefor unique for each ideal
a.

Proof. For a given x ∈ A, x /∈ a we have the qoutient ideal (a : x), one can see
that intesections commute with the first term of qoutient ideals, which gives us
(a : x) = (

⋂
i qi : x) =

⋂
i(qi : x). This gives us r(a : x) = r(

⋂
i(qi : x)) =⋂

i r(qi : x) =
⋂
i pi, which we get from 2.12. We have that r(a : x) is prime,

10



as {(qi : x)}1≤i≤n is primary, and that its intersection is primary. we then use
2.13 to get that r(a : x) = pi for some i. Hence every ideal of the form (r(a : x))
is one of the pis. Conversely, we have that for each i ≤ n, there exists a xi /∈ q,
but xi ∈

⋂
j 6=i qj , as the decomposition is minimal by assumption. This gives

us r(a : xi) = pi, which concludes the proof.

Example 2.15. Let a = (x2, xy) be an ideal in A = k[x, y]. p1 = (x) and
p2 = (x, y). We have that p2

2 is primary by 2.6, and we can see that a = p1 ∩ p2
2.

But, we also have a = p2
1 ∩ p2

2, this is a also a primary decomposition of a, as
(x2) is primary as well. This coincides with the uniqueness theorem as both
decompositions are of the same prime ideals, namely p1 and p2.

2.2 Noetherian rings have only decomposable ideals

We naturally need a to be a decomposeable ideal for us to apply this theory.
This does not limit us much as the rings we will focus on are Noetherian. These
will be shown to only have decomposable ideals. We follow [2, Ch. 7].

Lemma 2.16. In a Noetherian ring A every ideal is a finite intersection of
irreducible ideals

Proof. We will prove this by contradiction. Assume that S is the set of ideals
in A which are not a finite intersection of irreducible ideals. As A is Noetherian
and S is not empty, S must have a maximal element. We call this ideal a. a is
reducible by assumption, so we have that a = b∩ c, where b ⊇ a and c ⊇ a, but
then b, c /∈ S, hence b, c must be a finite intersection of irreducible ideals and so
is a: contradiction =⇒ S = ∅

Definition 2.17. An ideal a is irreducible if

a = b ∩ c =⇒ (a = b or a = c)

Lemma 2.18. In a Noetherian ring every irreducible ideal is primary

Proof. We prove this by proving that if the zero ideal in A/a is irreducible then
it is primary. Let xy = 0 and assume without loss of generality that y 6= 0.
The ascending chain Ann(x) ⊆ Ann(x2) ⊆ . . . , must stabilize at some n, e.g.
Ann(xn) = Ann(xn+1) = . . . as A is Noetherian. We have that (xn) ∩ (y) = 0,
as for any a ∈ (y) =⇒ a ∈ Ann(x) ⊆ Ann(xn). For any a ∈ (xn), it is of the
form a = bxn, for which we get that bxn+1 = ax = 0, hence b ∈ Ann(xn+1) =
Ann(xn) =⇒ a = bxn = 0. As (0) is irreducible and (y) 6= 0, xn = 0, which
from definition of primary ideals means that (0) is primary, which concludes the
proof.

It follows that

Theorem 2.19 (Noether-Laskar). In a Noetherian ring A, every ideal a ⊆ A
has a primary decomposition.
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3 Completion

Completion of groups, modules and rings can be understood as an algebraic
equivalence to completion and completeness on topological structures. Just as
with localization, one of our goals with completion is to ”simplify” or ”zoom in
on” rings and apply properties while maintaining Noetherianess and exactness.
However this requires more work to prove than with localization. The algebraic
concept of completion differs from the topological concept the reader might al-
ready be familiar with. The method we will use to construct our completions
is based on the inverse limit of inverse systems. The inverse systems can be
understood as equivalence classes of Cauchy sequences, however we forgo this
observation in our construction as superfluous for our purposes. We will follow
[2, Ch. 10] and [5, Ch. 9].

This concept of completion is also different from, for example the completion
that gets us from Q to R. However, with the inverse limit method we can con-
struct, for example, the p-adic integers, written pZ or Zp from the integers Z,
and the power series ring over a field, k ,k[[x1, ..., xn]] from the polynomial ring
k[x1, ..., xn].

In order to define equivalences of completions, we require some topological prop-
erties to our rings and modules. Which is why we will introduce the concept of
topological groups and rings.

Definition 3.1. A topological group (G,+, τ) is a group (G,+) with an assigned
topological space τ , where the binary operation + : G×G→ G, (x, y) 7→ x+ y,
and the inverse −1 : G→ G, x 7→ −x, are both continuous in the given topology

Definition 3.2. Let X be topological space, a system of neighborhoods of an
element x ∈ X is all the open sets containing x.

Let S = {Gλ}λ∈Λ be a family of subgroups of a topological abelian group
G and {Λ, <} a directed set. We define the topology on G as systems of neigh-
borhoods of 0, which makes every subgroup Gλ open sets of the topology over
G. We give each G/Gλ the quotient topology, and let φγµ : G/Gµ → G/Gγ, for
γ < µ, be the natural surjection from g + Gµ 7→ g + Gλ, g ∈ G. With this we
can construct what we call an inverse system {G/Gλ, φγµ}.
To take the inverse limit of our inverse system we will not use the categorical
definition as the more specialised definition for groups suffices. However, the
construction can be defined functorially, and a diagram explaining the

Definition 3.3 (Inverse limit of groups). Let {I,<} be a directed set, {Xi∈I , fkj}
be an inverse system, that is, we must have that fik ◦fkj = fij for i < k < j and
fjj = idAj , then lim←Xi = {(xi)i∈I ∈

∏
i∈I Xi|fkj(xj) = xk,∀j < k}, where

xi ∈ Xi

We are now ready for a definition of completion of a group, which when
one substitutes group for a module, and require the scalar multiplication on the

12



module to be continuous one has completion of modules. It follows then that
one can construct a completion of a ring by letting the module be equal to the
ring it is over.

Definition 3.4 (Completion of a group). Let {Gλ,Λ} with φγµ be as above,

then the completion Ĝ of G is defined as

Ĝ = lim
←λ

G/Gλ

From the definition of inverse limit above it is clear to see that the topology
on the completion is the subspace topology of the product topology of

∏
λG/Gλ,

which is enough for us to see that the completion Ĝ is uniquely determined up
to isomorphisms of topological spaces.
Let S ′ = {G′υ∈Υ,Υ} be a different family of subgroups of G than S, and {Υ, <}
be another directed set. Then the topology G, given by S is the topology given
by S ′ if and only if, every Gλ is a subgroup of a G′υ, and every G′κ is a subgroup
of a Gγ . limG/Gλ ∼= limG/Gυ as topological modules, thus the topology on Ĝ
is uniquely determined by the topology of G.

Our next goal is to show that
ˆ̂
G ∼= Ĝ, and to use this property to define

completeness. Let ψ : G→ Ĝ and πλ : Ĝ→ G/Gλ. We define the new family of
subgroups Ŝ to construct the topology on Ĝ. The elements of Ŝ is defined to be
Ĝλ = kerπλ. As πλ is a surjection we have by the third isomorphism theorem
of group-homomorphisms that

Ĝ/Ĝλ ∼= G/Gλ (3.5)

And taking the inverse limit of this we get

ˆ̂
G ∼= Ĝ (3.6)

This is the property we check in order to define it as complete.

3.1 a-adic topolgies

Until now we have not stated how we choose the inverse system we use in our
completion. One can of course take the inverse limit of any inverse system of
subgroups, as described before. However for our purposes we will only look at
the topologies described by the inverse system of the form

{A/an φnm}

Where A is a ring, and a is an ideal of A, and φnm : A/an → A/am, for n ≥ m.
We call this the a-adic topology on A.

lim
←−

A/an = Â

13



We call this construction the a-adic completion of A. Similarly we can construct
the a-adic completion of an A-module M with the following inverse limit.

lim
←−

M/anM = M̂

Where M̂ ∈Mod Â.
Completion of modules is a functor, Mod A → Mod Â, however, it is neither
right- nor left-exact, generally[6, Tag 05JF]. We will look further in to comple-
tion as a functor on module categories in the next subsection.
This commutative diagram is the functoral definition of the a-adic completion
of A, in where we apply the definition of inverse limit from category theory.
(m ≤ n)

A

Â

A/an A/am

∃!ψ
fn

φnm

fm

pn pm

Example 3.7. Let a = (x1, ..., xn) be an ideal in A = k[x1, ..., xn]. a is maximal,
and the a-adic completion is the local ring, k[[x1, ..., xn]]. It will be shown that it
is generally the case that an m-adic completion of a ring, where m is a maximal
ideal in the ring, is necessarily local.

Example 3.8. Let (p) ∈ Z be a prime ideal. The (p)-adic completion of Z,
Zp, is what we call the p-adic numbers. The elements in Zp are of the form∑∞
n=1 anp

n, an ∈ Z

3.2 Artin-Rees lemma

Definition 3.9. Let M ∈ Mod A, and a an ideal in A, and construct a de-
scending chain of inclusions,
M = M0 ⊇ M1 ⊇ M2 ⊇ · · · ⊇ Mi ⊇ . . . . This is called a filtration of M and is
denoted as (Mi). It is called an a-filtration if, aMi ⊆ Mi+1. And finally, it is
called a stable a-filtration if for some n, all i ≥ n we have that aMi = aMi+1.

By this definition the filtration (anM), M ⊇ aM ⊇ a2M ⊇ . . . is a stable
a-filtration for any ideal a. It can be shown that every stable a-filtration (Mn)
will give the same a-adic topology on M [5, 10.6].

Let A be a ring, and a an ideal of A. We construct the graded ring A∗ =
⊕∞

n an.
Similarly, for M ∈ Mod A, and an a-filtration of M , (Mn), we construct
M∗ =

⊕∞
n Mn ∈ Mod A∗ and is graded. If A is Noetherian, then a is finitely

generated, (x1, ..., xs) = a, then A∗ = A[x1, ..., xs] and is Noetherian by Hilbert’s
Basis Theorem [2, 7.5] We will look further into graded rings in the next section.

14



Lemma 3.10. Let A be a Noetherian ring, M ∈ mod A, (Mn) an a-filtration.
Then

M∗ ∈ mod A∗ ⇐⇒ (Mn) is stable

Proof. We construct the graded module Qn =
⊕n

r=0Mr. Qn is finitely gener-
ated as each Mn is finitely generated. Qn is a subgroup of M∗, but is generally
not a A∗-submodule. However, we can construct one:

M∗n = M0 ⊕M1 ⊕ · · · ⊕Mn ⊕ aMn ⊕ a2Mn ⊕ · · · ⊕ arMn ⊕ . . .

As Qn is finitely generated as an Amodule, M∗n is finitely generated as an
A∗module. We have the ascneidng chain:

M∗0 ⊆M∗1 ⊆ · · · ⊆M∗n ⊆ . . .

For which we have M∗ =
⋃∞
n=0M

∗
n. As A∗ is Noetherian, (M∗ is finitely

generated as as A∗-module) ⇐⇒ the ascending chain stabilizes at some t,
. At this t, we have that M∗ = M∗t . So we have the equivelance as follows:
M∗ = M∗t for some t ⇐⇒ Mt+r = arMt for all r ∈ N (which is the definition
of a stable a-filtration).

Theorem 3.11 (Artin-Rees Lemma). Let a be an ideal of a Noetherian ring
A. And let M be a finitely generated A-module, and (Mn) a stable a-filtration.
If M ′ ⊆M , then (M ′ ∩Mn) is a stable a-filtration.

Proof. We have that a(M ′ ∩Mn) ⊆ aM ′ ∩ aMn ⊆M ′ ∩Mn+1, which is gives us
that (M ′ ∩Mn) is an a filtration. Now we prove that it is stable. As (M ′ ∩Mn)
is an a-filtration, it defines an A∗-module, which is a submodule of M∗, which
is generated by (Mn), and as M∗ is finitely generated then so must the module
generated by (M ′ ∩Mn) also be, as A∗ is Noetherian. We now apply 3.10. and
get that (M ′ ∩Mn) is stable which was what we wanted to prove.

3.3 Some additional results on completion

As stated earlier a-adic completion of a module is not generally exact. However,
it will can be shown, with the Artin-Rees lemma 3.11, that a-adic completion
of M , is an exact functor mod A→mod Â, if A is Noetherian [2, 10.12]. The
next theorem shows how this functor is defined.

Theorem 3.12. Let M ∈ mod A, a an ideal in A, A Noetherian, and Â, M̂
the a-adic completion of A, M , respectively. Then Â⊗AM ∼= M̂

Proof. Finite direct sums commute with tensor product [6, Tag 0CYG]. Hence,
let F = An, then Â⊗AF ∼=

⊕n
Â = F̂ . By assumption, M is finitely generated,

we then have an exact sequence:

0 N F M 0

15



We have that tensor is a right exact functor, so applying Â⊗A−, to the sequence
we get this commutative diagram, where to top row is exact:

Â⊗A N Â⊗A F Â⊗AM 0

0 N̂ F̂ M̂ 0

β αγ

δ

β is an isomorphism, so α is a surjection, we then have that for any Â⊗AM → M̂
is a surjection as long as M is finitely generated. As A is Noetherian, we get that
N is finitely generated. As stated earlier, the fact that the bottom row is exact
is corallary from the Artin-Rees lemma if all the entries are finitely generated
and A is Noetherian [2, 10.12]. From this we state that γ is a surjection. We
now apply the snake lemma to this diagram and get the following map d:

ker γ kerβ = 0 kerα

Â⊗A N Â⊗A F Â⊗AM 0

0 N̂ F̂ M̂ 0

coker γ coker β = 0 coker α = 0

β αγ

δ
d

which, by the exactness of 0 → kerα
d→ coker γ → 0, gives us that kerα ∼=

coker γ. But we have that γ is surjective, so coker γ = 0 ∼= kerα, and we get
that α is injective, which finally gives us that α is an isomorphism as it is also
surjective.

Some use full attributes of completion arises from this theorem.

Theorem 3.13. Let A be a Noetherian ring, Â its a-adic completion, then we
have:

1. â = Âa ∼= Â⊗ a

2. ˆ(an) = (â)n

3. an/an+1 ∼= ân/ân+1

16



4. â is contained in the Jacobson radical of Â

Proof. 1.) A is Noetherian by assumption, therefore a is finitely generated, and
is, of course, also an A module. Therefore by 3.12 we have 1.
2.) from 1., we have

ˆ(an) = Â ˆ(an) = (Âa)n = (â)n

3.) From 3.5 we have
Â/ân+1 ∼= A/an+1

the result follows by taking quotients.
4.) From 2. and 3.6 we can explicitly see that Â is â-adically complete. Hence,
for any x ∈ â

(1− x)−1 = 1 + x+ x2 + . . .

converges in Â. This gives us that 1−x is a unit, which implies that every x ∈ â
is in the Jacobson radical which concludes the proof.

Theorem 3.14. Let A be Noetherian ring, and m a maximal ideal, then the
m-adic completion Â of A, is the local ring (Â, m̂).

Proof. By 3.13 3.) we have Â/m̂ ∼= A/m, (m0 = A), which means that Â/m̂ is a
field and that m̂ is maximal. It now remains to show that m̂ is the only maximal
ideal. As the Jacobson radical is the intersection of all maximal ideals, it is is
included in m̂, but the inverse inclusion comes from 3.13 4., which means that
m̂ must be the only maximal ideal.

It can also be proven that the a-adic completion Â of A is Noetherian if A
is Noetherian [2, 10.26]. This means that we can add that the local ring (Â, m̂)
also is Noetherian in the last theorem.

Example 3.15. Lets look at Z. The p-adic completion Zp of Z is a localiza-
tion of at a prime ideal, but as Z is a PID, (p) is also maximal and Z is also
Noetherian, which means that Zp is a local Noetherian ring. This also means
that Z completed at another, non prime ideal, say (n), need not be local.
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4 Dimension Theory

In this part we will first look at graded rings and modules. Graded rings can in-
tuitively be understood as a deconstruction of rings into groups of homogeneous
elements. In k[x, y], an additive subgroup An ⊂ k[x, y] would be the group of all
homogeneous polynomial of some degree n. These are just tools for us to find
work with the different ways of defining the dimension of a ring. Usually when
talking about the dimension of a ring in commutative algebra we talk about
the Krull dimension, namely the longest chain of prime ideals in a ring. This
is why when we write dimA, A a ring, we refer to the Krull dimension, unless
otherwise specified. In this section we will also look into other ways of define
thinking of dimension of a ring and see the relation between them.

4.1 Graded Rings and Modules and Hilbert Functions

Definition 4.1. A graded ring is a ring A of the form

A =
⊕
n∈N0

An

Such that (An)n≥0 is a family of additive subgroups of A as an additive group,
and AiAj ⊆ Ai+j

We denote A+ =
⊕

n>0An, and A+ is an ideal of A.

Definition 4.2. A graded module is a module M of the form

M =
⊕
n∈N0

Mn

Where (Mn) is a family of sub-modules of M where AmMn ⊆ Mm+n for all
m,n ≥ 0, especially, A0Mn ⊆ Mn which gives us that for all n ≥ 0, Mn ∈
Mod A0.

Definition 4.3. An associated graded ring of A and a is a graded ring Ga(A)
where the Ai’s are of the form Ai = ai/ai+1, a an ideal of A and a0 = A, i.e

Ga(A) =
⊕
n∈N

an/an+1

The multiplication in the group is defined as xi ∈ ai and xj ∈ aj , let xi+ai+1 ∈
ai/ai+1 and xj + aj+1 ∈ aj/aj+1 then (xi + ai+1)(xj + aj+1) = xixj + ai+j+1 ∈
ai+j/ai+j+1

Definition 4.4. Let A be a graded Noetherian ring. A Poincaré Series P (M, t)
of an A-module M, with respect to an additive function λ : mod A→ Z, is an
element of the power series ring over the integers Z[[t]] of the form

P (M, t) =

∞∑
n=0

λ(Mn)tn
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This means that the choice of the additive function λ is really the choice of
the coefficients of each degree of the power series. For our purposes we will most
for the time default this to be the length of the module, denoted l(M). Which
is defined as the longest chain of proper sub-modules of M.
This leads us directly to the Hilbert-Serre Theorem which states that the power
series for some modules can be written as a rational function. More specifically

Theorem 4.5 (Hilbert-Serre). Let A be a Noetherian graded ring, which means
A0
∼= A/A+ is Noetherian, and let M be a finitely generated A-module, and

x1, ..., xs homogeneous elements generate A as an A0-algebra, with respectivly
degree k1, ..., ks. Then the Poincaré Series P (M, t) = f(t)/

∏s
i=1(1− tks), with

f(t) ∈ Z[t].

Proof. This is proven by induction on s. We then start by checking if the
theorem holds for s = 0. This gives us An = 0,∀n > 0 =⇒ A = A0 =⇒ M is a
finitely generated A0 module =⇒ Mn = 0 for sufficiently large n. =⇒ P (M, t)
is a polynomial, say f(t) ∈ Z.
Now, let s > 0, and let the induction hypothesis be that the theorem holds for
s − 1. We define xs : Mn → Mn+ks , and Kn to be the kernel of {xs : Mn →
Mn+ks} and Ln+ks to be the cokernel. This gives us the exact sequence

0→ Kn →Mn →xs Mn+ks → Ln+ks

which by applying the additive function λ on each term of the sequences we get
from [2.11 [2]]

λ(Kn)− λ(Mn) + λ(Mn+ks)− λ(Ln+ks) = 0

Now we multiply the equation above with tn+ks and summing over n. This
looks like

tks

( ∞∑
n=0

λ(Kn)tn −
∞∑
n=0

λ(Mn)tn +

∞∑
n=0

λ(Mn+ks)t
n −

∞∑
n=0

λ(Ln+ks)t
n

)
= 0

tks

( ∞∑
n=0

λ(Kn)tn −
∞∑
n=0

λ(Mn)tn

)
+

∞∑
n=0

λ(Mn+ks)t
n+ks−

∞∑
n=0

λ(Ln+ks)t
n+ks = 0

tks(P (K, t)− P (M, t)) + (P (M, t)− g1(t))− (P (L, t)− g2(t)) = 0

Where g1(t) and g2(t) are polynomials of degree ks in Z[t]

P (M, t) =
tksP (K, t)− P (L, t)− g3(t)

1− tks

Where g3(t) ∈ Z[t].

We denote the pole of P (M, t) in t = 1 as d(M). For our purposes this is
nothing more than the multiplicity of the term (1 − t) in the denominator of
P (M, t).
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Example 4.6. Let A = k[[x, y]]/(x2, xy). This ring is local with the maximal
ideal m = (x, y). We want to find the Poincaré series P (Gm(A), t). We choose
our additive function to be l(mn/mn+1), the length of a module. We have
that Gm(A) = k ⊕ m/m2 ⊕ m2/m3 ⊕ . . . . It is not hard to see that l(k) = 1,
l(m/m2) = 2 and for any n > 1 we have that l(mn/mn+1) = 1. So our Poincaré
series is 1+2t+ t2 + t3 + . . . which as Z[[t]] is (t)-adically complete gives us that

our Poincaré Series is equal to − t2

t−1 +2t+1. Which gives us that d(Gm(A)) = 1.

4.2 Noetherian Local rings

It is now our goal to show equality between d(A), the Krull dimension of A, and
the least number of generators of an m-primary ideal of in a local Noetherian
ring (A,m, k), which we denote δ(A). The set {x1, ..., xδ(A)} is called the system
of parameters of A, and, of course, generate an m-primary ideal.

This is proven by showing the inequalities as such δ(A) ≥ d(A) ≥ dimA ≥ δ(A).
We will prove the first step in this thesis, δ(A) ≥ d(A). To do so we require
some lemmas.

Theorem 4.7. For all large n, the length l(A/qn),(A,m) a local Neotherian ring,
q an m-primary ideal, is of finite length, and is a polynomial for sufficently large
n, denoted Xq(n), of degree ≤ s, where s is the minimal number of generators
of q.

Proof. We must first prove that l(A/qn) is finite for all n ∈ N. It can be proven
that A/q is Artin [2, 8.5]. Every A/qn is a Noetherian A module, and is therefore
finitely generated, and is annihilated by q, thus it is an A/q module and as A/q
is Artin, all it is modules is of finite length.
Now to prove that Xq(n) is a polynomial. By assumption (x1, ..., xs) = q, we
have that (x1 +q2, . . . , xs+q2) generate Gq(A) = A/q[x1 +q2, . . . , xs+q2] as an
A/q-algebra, and each xi + q2 has degree 1. From [2, 11.2], we then have that
each l(qn/qn+1) is a polynomial, say f(n), of degree ≤ s − 1 for n sufficiently
large. Lastly, we have that

l(A/qn) =

n∑
i=1

l(qi/qi+1)

which we use to say that

l(A/qn+1)− l(A/qn) = l(qn/qn+1)

from which it follows that l(A/qn) is a polynomial of degree one plus the degree
f(n). In other words, of degree ≤ s

Lemma 4.8. Let (A,m) be a Noetherian local ring and let q be a m-primary
then

degXq(n) = degXm(n)
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Proof. From [2, 7.16] we have that mr ⊆ q ⊆ m for some r ∈ N. Which means,
mn ⊇ qn ⊇ mrn, which immediately gives us

Xm(n) ≤ Xq(n) ≤ Xm(rn)

Let n→∞, we get that the equality of the degree holds asymptotically.

When talking about local rings, say (A,m), we denote d(Gm(A)) as just
d(A). It can be proven that the degree of Xm(n) is equal to d(A) [2, 11.2]. Now
by 4.7 and 4.8 we get the result:

Theorem 4.9. Let (A,m) be a Noetherian local ring, then δ(A) ≥ d(A)

Proof. From 4.7 we get that d(A) ≤ s, where s is the least number of generators
of m. As δ(A) is just the minimal number of generators of some m-primary
ideal, it is obvious to see that δ(A) ≥ d(A).

The rest results which states d(A) ≥ dimA and dimA ≥ δ(A) are proved in
[2, Ch. 11] and [5, Ch. 13] and will be assumed from now on.

Example 4.10. We revisit the local ring k[[x, y]]/(x2, xy). We have the m-
primary ideal (y2), it is generated by one element so we have δ(A) ≤ 1. We also
have a chain of inclusions of prime ideal (x, y) ⊃ 0, so we have dimA ≥ 1. We
now have that 1 ≥ δ(A) = dimA ≥ 1, and we conclude that dimA = 1 = δ(A).
We confirm this by remembering that d(A) = 1 from the last example with the
same ring.
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5 Complete Intersection Rings

In this part we will introduce and work with a special collection of Noetherian
local rings, namely Complete Intersection rings, denoted C.I’s or C.I rings for
short. The class of local Noetherian rings have a similar chain of inclusions as
different commutative domains, namely

Cohen Macaulay ⊃ Gorenstein ⊃ C.I ⊃ Regular Local rings

All these are very interesting classes of rings, however we will focus on only com-
plete intersection rings in this thesis. C.I rings are the ”nicest” local Noetherian
rings which are not regular. The definition of these rings is involved and require
introductions to some new theory. For this, section we follow [5], chapters 16
and 21. We will start with the Koszul complex.

5.1 The Koszul Complex and Regular Sequences

Definition 5.1. Let A be a ring and x1, ..., xn ∈ A be a sequence of elements.
We define the complex K• as: K0 = A and Kp = 0 for all p > n. For any
0 ≤ p ≤ n we have Kp = Aei1...ip , a free A-module of rank

(
n
p

)
, and where

{ei1...ip ; 1 < i1 ≤ ... ≤ ipn} is the basis. This notation can be understood as

Kp = A
⊕

(np) =
⊕(np)

i=1A. The differential d : Kp → Kp−1 is defined as

d(ei1...ip) =

p∑
r=1

(−1)r−1xirei1...îr...ip

For p ≥ 2, and for p = 1 we have d(ei) = xi. The complex we now have defined
is what we call the Koszul complex and is denoted along with the sequence at
the start of the definition as K•(x1, .., xn) 1.

We will now check that this is a complex by checking that dd = 0.

Example 5.2. Let A = k, a field, and 0, 1 ∈ k be a sequence. We consturct
the Koszul complex K(0, 1) as follow:

0 K1 = k
⊕
k

K2 = k K0 = k

d1d3 d2

And the differentials are as follow

d1 =
[
0 1

]
d2 =

[
1
0

]
1The Koszul ccomplex can be equivalently described as an exterior algebra as well [5, Ch.

21]
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d3 = 0

We can see that di ◦ di+1 = 0 for any i > 0.

We will now introduce some notational conventions of Koszul complexes.
Let x1, ..., xn be a sequence in a ring A, and the Koszul complex of that se-
quence as defined before can be written as K•(x1, ..., xn), K•(x) or K•x,1...n. Let
M ∈ Mod A, then K•(x)⊗AM = K•(x,M). Let C• be a complex of A-modules,
then C• ⊗A K•(x) = C•(x). Furthermore, K•(x) = K•(x1) ⊗A ... ⊗A K•(xn).
And lastly, the homology group of the complex Hp(K•(x,M)), is written as
Hp(x,M).

The next step in order to define C.I rings is to look at what are called reg-
ular sequences in a ring A or an A-module, M, sometimes called A-sequences
and M -sequences respectively.

Definition 5.3. Let (xi)n∈N ∈ A, M ∈ Mod A. x is said to be a M -regular ele-
ment if x is not a zero-divisor in M . A sequence of M -regular elements, x1, ..., xn
is said to be a regular M -sequence if: 1) x1 is M -regular, x2 is M/(x1)M -regular,
x3 is M/(x1, x2)M -regular, ... , xn is M/(x1, ..., xn−1)M -regular. And 2), that
M/(x1, ..., xi)M 6= 0 for all 1 ≤ i ≤ n.

Permutations of regular sequences need not be regular.

Example 5.4. Let A = k[x, y, z]. The sequence x, y − xy, z − zx is a regular
A-sequence, as x is not a zero-divisor in A, and y − xy is not a zero divisor in
A/(x), and z−zx is not a zero-divisor in A/(x, y−yx). However, a permutation
of this sequence, say y − yx, z − zx, x is not regular, as z − zx is a zero divisor
in k[x, y, z]/(y − yx).

Lastly, we need to define the embedding dimension of a local ring.

Definition 5.5. Let (A,m, k) be a local ring. The embedding dimension of A
is defined as

emd dim A = dimk (m/m2)

5.2 Defining Complete Intersections

We are now able to look at the definition of Complete intersection rings.

Definition 5.6. Let (A,m,k) be a Noetherian local ring. Let x1, ..., xn be a
minimal generating set for m. By Nakayamas lemma, we have that n is equal
to emb dim A [5, Ch. 21]. Let E• = K(x1, ..., xn) be the Koszul complex of
(x1, ..., xn). As mHp(E•) = 0 2, we have that Hp(E•) is a k vector space. Let

εn(A) = dimk Hn(E•)

A is a Complete Intersection if ε1 = emb dim A− dim A.

2This is not a trivial result, the proof of this can be found in [5, 16.4]
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Definition 5.7. A regular local ring A is a Noetherian local ring in which

emb dim A = dimA

where dimA is the Krull dimension.

An equivalent definition of complete intersection ring is as follows

Definition 5.8. Let (A,m, k) be a Noetherian local ring. A is a C.I ⇐⇒
Â ∼= R/(a), where Â is the m-adic completion of A, and R is an m-adically
complete regular local ring, and a is generated by a regular R-sequence

Theorem 5.9. 5.6 is equivalent to 5.8

Proof. The proof of this is out of the scope of this thesis.

From 5.8 it is easy to that if (A,m) is a regular local ring then it is a complete
intersection, as 0 ∈ A is a regular A-sequence.

Example 5.10. Let A = k[x, y]. (x, y) is a maximal ideal of A. We construct
the (x, y)-adic completion of A, and get the power series ring over k, k[[x, y]]
which by 3.14 is a local Noetherian ring, so we can apply the theory from section
4.2. We have that k[[x, y]] = R is a regular local ring, to show this we look at
d(R). Each l((x, y)n/(x, y)n+1) = n, this gives is the Poincaré series

1 + 2t+ 3t2 + · · · = 1

(t− 1)2

which gives us d(R) = 2 = dimR. As (x, y) is the maximal ideal in R and it is
generated by 2 elements, we have that emb dim R = 2 = dimR, which satisfies
the necessary and sufficient conditions for R to be a regular local ring.
R is also (x, y)-adically complete. We have the R-regular sequence, x2 ∈ R. We
take the quotient of R by (x2) and get C = k[[x, y]]/(x2). Our goal is to confirm
that C is a complete intersection. We have by 2.6 that (x+y2) is (x, y)-primary
as (x, y) is maximal and r((x+ y2)) = (x, y). We have then that δ(C) ≤ 1. But
we can construct a chain of prime ideals as such (x, y) ⊃ 0 which is obviously
of length 1, therefore dimC ≥ 1, and as dimC = δ(C) we have that dimC = 1.
Let m = (x, y) be the maximal ideal in C. m/m2 = (x, y)/(x, y)2 ∼= k2, and as
dimk k

2 = 2 we have that if ε1 = 2− 1 = 1, then C is a complete intersection.
We construct the Koszul complex of C, K•(x, y) = E• as follow:

0 C C ⊕ C C 00 d2 d1 0

And the differentials are as follows

d1 =
[
x y

]
d2 =

[
y
−x

]
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ker d1
∼= k2

Im d2
∼= k

H1(E•) = Ker d1/Im d2
∼= k

dimk k = 1 = ε1

We have now confirmed that C is a complete intersection.

Example 5.11. Now we look at a non-example. Let A = k[[x, y]]/(x2, xy),
noting that x2, xy is not a regular k[[x, y]]-sequence. We immediately have that
emb dim A = 2, and if we form the Poincaré series we can find that d(A) =
1 dimA. We construct the Koszul complex as follows

0 A A⊕A A 00 d2 d1 0

With differentials as follows
d1 =

[
x y

]
d2 =

[
y
−x

]
ker d1

∼= k4

Im d2
∼= k

ε1 = dimk(ker d1/Im d2) = dimk(k3) = 3 6= 2− 1

We conclude that A is not a complete intersection.

Theorem 5.12. Let A be a local Noetherian ring

A is a C.I ring ⇐⇒ Â is a C.I ring

Proof. We prove this by proving that εp(A) = εp(Â). We get this from the fact

that a minimal basis for m is a minial basis for m̂ = mÂ = m ⊗ Â. We tensor
Â with the Koszul complex and get E•(x, Â). We also have that Â is A-flat [2,
10.14], which gives us Hp(E•)⊗ Â = Hp(E•⊗ Â) and as mHp(E•) = 0, we have

Hp(E•)⊗ Â = Hp(E•).

Example 5.13. As we saw in the earlier example, k[[x, y]] is a regular local
ring, and is therefor an complete intersection. From the theorem above, we get
that k[x, y] also is a complete intersection.

One can also show that a ring is a C.I, and regular local ring by only the
Koszul complex.

Theorem 5.14. Let A be a Noetherian local ring, then

A is a regular local ring ⇐⇒ ε1(A) = 0

and
A is a C.I ⇐⇒ ε2(A) = 0

Proof. The proof of this is out of the scope of this thesis, it can be found in [3,
7.3.3] and [1, 2.7].

25



Appendix

A: Category Theory

Definition 5.15. A (small) Category C is a structure for which the following
requirements are met:

• a class of objects Ob C

• (Hom-sets exists for any two objects)for any two X,Y ∈ Ob C, there exists
a set of morphisms, HomC(X,Y ). This set can be empty but must exist.

• (Compositions of morphisms) For any three objects X,Y, Z ∈ ObC, there
exists a multiplication map

HomC(Y,Z)×HomC(X,Y )→ HomC(X,Z)

(f, g) 7→ f ◦ g

such that

• (Identity maps exits) for any object X ∈ Ob C there exists a morphisms
idX ∈ HomC(X,X), such that

∀Y ∈ Ob C,∀f ∈ HomC(X,Y ) : f ◦ idX = f

∀Y ∈ Ob C,∀f ∈ HomC(Y,X) : idX ◦ f = f

• (Associativity of composition of morphisms) For any X,Y, Z,W ∈ Ob C,
f ∈ HomC(X,Y ), g ∈ HomC(Y, Z), h ∈ HomC(Z,W ) we must have

(h ◦ g) ◦ f = h ◦ (g ◦ f)

Example 5.16.

• The category Set, where:
Ob Set are sets, and
HomSet(X,Y ) = {maps from X to Y }

• The category Mod R, where, R is a ring and:
Ob Mod R are R-modules, and
HomMod R(M,N) = {R-module homomorphisms form M to N}

• The category mod R, where, R is a ring and:
Ob mod R are finitely generated R-modules, and
Hommod R(M,N) = {R-module homomorphisms form M to N}

• The category vec k, where, k is a field and:
Ob vec k are k vector spaces, and
Homvec k(V,W ) = {k-vector space homomorphisms from V to W}
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The last two examples is the shorthand used throughout the thesis to define
the modules we work with.

Definition 5.17. A covariant functor F is a map from a category C to another
D, where:

• F : Ob C → Ob D : X 7→ F (X) is a well defined map

• for any X,Y ∈ Ob C, F : HomC(X,Y ) → HomC(F (X), F (Y )) is a well
defined map, such that

• for any X ∈ Ob C we have that F (idX) = idF (X)

• For any composable morphisms f, g ∈ C, F (f ◦ g) = F (f) ◦ F (g)

Example 5.18. The classical example of a covariant functor is

HomC(X,−) : C → Set

Definition 5.19. A covariant functor F : C → D is called right exact if for any
exact sequence in C

A→ B → C → 0

the sequence
F (A)→ F (B)→ F (C)→ F (0)

is exact in D.
F is exact if it is both right and left exact.

Definition 5.20. A covariant functor F : C → D is called left exact if for any
exact sequence in C

0→ A→ B → C

the sequence
F (0)→ F (A)→ F (B)→ F (C)

is exact in D.

Example 5.21. HomC(X,−) is a left exact covariant functor, − ⊗R M is a
right exact covariant functor.

B: Homological Algebra

Definition 5.22 (Tensor Product of modules). Let A be a ring,
M,N,P ∈Mod A. Let φ : M ×N → P be a map. φ is said to be A-bilinear
if for any x ∈M the mapping y 7→ φ(x, y) of N into P is A-linear, and for any
y ∈ N , the mapping x 7→ φ(x, y) of M into P is A-linear.
We construct the tensor product, T ∈Mod A, of M and N with the property
that the A-bilinear mappings M ×N → P are in a natural injective correspon-
dance with the A-linear mappings T → P , for all A-modules P [2, Ch. 2].
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It can be proven that the tensor product exists and is unique up to isomor-
phisms [2, Ch.2]. We denote T from above as M ⊗ N , and the elements of
M ⊗N as x⊗ y, if x ∈M and y ∈ N .

Definition 5.23 (Complexes of A-modules). A Complex of A-modules is a
sequence of A-modules, Kn, with A-module-homomorphisms.

. . . Kn Kn−1 Kn−2 . . .
dn dn−1dn+1 dn−2

Where for any n ∈ Z, dn−1 ◦ dn = 0, as for any n, we have Im dn+1 ⊆ Ker dn.

Definition 5.24 (Homology). Let K• denote a complex of A-modules as above.
The homology in dimension n is then defined as

Hn(K•) = Ker dn/Im dn+1
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