
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Ba
ch

el
or

’s 
pr

oj
ec

t

Jonas Pedersen Vean

Bifurcation of Weakly Dispersive Partial
Differential Equations

Bachelor’s project in Mathematics

Supervisor: Mats Ehrnström

June 2020





Jonas Pedersen Vean

Bifurcation of Weakly Dispersive
Partial Differential Equations

Bachelor’s project in Mathematics
Supervisor: Mats Ehrnström
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences





BIFURCATION OF WEAKLY DISPERSIVE PARTIAL

DIFFERENTIAL EQUATIONS

BACHELOR PROJECT

JONAS P. VEAN

Abstract. In this thesis we explore the use of local bifurcation theory to
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Of special note is the equation given by ∂tu + L∂xu + ∂x(u)p+1 = 0,
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1. Introduction

How do we solve partial differential equations? There happens to be a vast multitude
of methods to employ, and indeed no two methods need be equivalent when considering
the same equation. In this thesis, we shall explore the method of reducing nonlinearities
down to what might essentially be linear systems on function spaces - should we be so
lucky! To this end, we will be needing something called local bifurcation theory, which
we explore in Section 3 of this article. A fair bit of the buildup required to understand
this is included, and therefore a review of calculus on Banach spaces is included at the
very beginning.

From there we move on to the essentials of the functional analysis we need to understand
the machinery involved with the partial differential equation. This is the material of
Section 4.

Finally, we put local bifurcation theory, functional analysis and theory of some of the
theory behind pseudodifferential operators together when exploring nonlinear dispersive
equations in Section 5.

2. A Primer on Calculus on Banach Spaces

In analysis one would like to work over spaces whose structure is well-behaved and
practically simple, such as metric spaces, vector spaces and the like. At a fundamental
level, we would like to work with Banach spaces, which we recall are complete normed
vector spaces. In this section we review some concepts about calculus on Banach spaces.

This section will for the most part be inspired by Buffoni and Toland’s exposition
[1], in particular their discussion on Banach space theory and the like, with adapted
notation and some reorganizing.

Definition 2.1. Let (X, ‖·‖X) and (Y, ‖·‖Y ) be Banach spaces and U ⊆ X open. A
map F : U → Y is called continuous at x ∈ U if for every ε > 0 there exists a δ > 0
such that for every y ∈ Y with ‖x − y‖X < δ we have ‖F (x) − F (y)‖Y < ε. If F is
continuous at each and every point x ∈ U we simply call F continuous. In this case we
may write F ∈ C(U, Y ) or F ∈ C0(U, Y ).

For normed spaces and metric spaces this generalization of continuity from elementary
calculus is readily available. However, how does one define a derivative of such a map?
Recall from the case F : R→ R ;x 7→ F (x) that F has a derivative ∂xF (a) = A at a ∈ R
if

A = lim
x→a

F (x)− F (a)

x− a
(2.1)

exists. Notice, however, that Eqn. (2.1) could be rephrased as: for all ε > 0 there exists
δ > 0 such that if |x− a| < δ then∣∣∣∣F (x)− F (a)

x− a
−A

∣∣∣∣ < ε or
|F (x)− F (a)−A(x− a)|

|x− a|
< ε

by the definition of a limit. Should the derivative of F exist at the point a ∈ R,
then for |x− a| sufficiently small the approximation F (x) ≈ F (a) + ∂xF (a) · (x− a) is
valid in the above sense. In other words, being differentiable at a point means we can
locally approximate the function as a linearization around the point. This motivates
the definition of the Fréchet derivative.
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Definition 2.2. (Fréchet differentiation)
Let (X, ‖·‖X) and (Y, ‖·‖Y ) be Banach spaces and U ⊆ X open. We say that a map
F : U → Y is Fréchet differentiable at x0 ∈ U if there exists a linear map A ∈ L(X,Y )
such that

lim
x→x0

‖F (x)− F (x0)−A(x− x0)‖Y
‖x− x0‖X

= 0. (2.2)

In this case we call A the Fréchet derivative of F at x0 and write A = dF [x0]. If F is
Fréchet differentiable at every point in X, then the map

dF : X → L(X,Y ) ;x 7→ dF [x]

is well-defined and the evaluation dF [x0](x) acts as a directional derivative of F at x0

“along” the vector x ∈ X.

Remark. One may as well use a local definition of the Fréchet derivative, where instead
of having X as domain we consider open sets U ⊆ X and maps F : U → Y .

Proposition 2.1. (Chain rule of the Fréchet derivative)
Let X, Y and Z be Banach spaces and let U ⊆ X, V ⊆ Y be open sets. If F : U → Y
and G : V → Z are Fréchet differentiable maps and F (U) ⊆ V , then

(i) the composition G ◦ F : X → Z is Fréchet differentiable
(ii) the Fréchet derivative obeys the chain rule. If x0 ∈ U then

d(G ◦ F )[x0] = dG[F (x0)] ◦ dF [x0].

Definition 2.3. (Partial Derivatives)
Let X, Y and Z be Banach spaces, U ⊆ X × Y be open in the product topology, and
F : U → Z a function. Consider the projection maps πX(x, y) = x, πY (x, y) = y, then
set Ux0 = π−1

X (x0)∩U and Uy0 = π−1
Y (y0)∩U for (x0, y0) ∈ U . If F (·, y0) has a Fréchet

derivative at x0 on Uy0 we denote it by ∂xF [(x0, y0)] ∈ L(X,Z) and call it the partial
derivative of F with respect to x at (x0, y0) ∈ U . Similarly for y0 ∈ Ux0 , F Fréchet
differentiable on Ux0 with ∂yF [(x0, y0)] ∈ L(Y,Z).

Definition 2.4. (Higher Derivatives)
Let X and Y be Banach spaces, suppose that F : U → Y , U ⊆ X open, is con-
tinuously Fréchet differentiable on U . If dF : U → L(X,Y ) is itself differentiable at
x0 ∈ U , then we say that the second (order) Fréchet derivative exists and is denoted
by d(dF )[x0] ∈ L(X,L(X,Y )). Higher k-order Fréchet derivatives are defined similarly
when the previous order is defined and continuously differentiable, namely through a
k-fold multilinear scheme: d(d · · · (dF ))[x0] ∈ L(X,L(· · · L(X,Y ))). A function that is
k times continuously Fréchet differentiable on U ⊆ X is said to be of class Ck(U, Y ).

Definition 2.5. (Homeomorphisms, Diffeomorphisms)
Let X and Y be Banach spaces, U ⊆ X open, F : U → Y a continuous function. The
function F is called a homeomorphism if it is bijective and if F−1 is continuous on Y .
Furthermore, if F ∈ Ck(U, Y ) is k times continuously Fréchet differentiable and bijective
with F−1 ∈ Ck(Y,U), then we say that F is a Ck-diffeomorphism.

Definition 2.6. A subset U ⊆ X of a vector space X is called convex if every pair of
points x1, x2 ∈ U can be connected via. a line segment between them, i.e. we have a
parametrized curve

γ : [0, 1] −→ X ; t 7−→ γ(t) = (1− t)x1 + tx2

which lies entirely in U .



4 JONAS P. VEAN

Lemma 2.1. Let X and Y be Banach spaces, and let U ⊆ X be a convex open set. If
F : U → Y is Fréchet differentiable at each point of U with the property that

sup
x∈U
‖dF [x]‖L(X,Y ) = m <∞.

Then we have that F is Lipschitz on U :

‖F (x2)− F (x1)‖Y ≤ m‖x2 − x1‖X , x1, x2 ∈ U. (2.3)

Proof. We fix two points x1, x2 ∈ U and use the convexity property of U : the line γ
satisfies γ(t) = (1 − t)x1 + t x2 ∈ U for t ∈ [0, 1]. We may find a real-valued linear
functional ϕ ∈ Y ∗ such that

ϕ(F (x2)− F (x1)) = ‖F (x2)− F (x1)‖Y , ‖ϕ‖Y ∗ = 1.

Note that ϕ : Y → R is continuous, so that the function g(t) : [0, 1] → R defined by
g(t) = ϕ ◦ F (γ(t)) is continuous on [0, 1]. Differentiating we obtain

g′(t) = ϕ(dF [γ(t)](x2 − x1))

which when combined with ‖ϕ‖Y ∗ = 1 then leads to

|g′(t)| ≤ ‖dF [γ(t)]‖L(X,Y )‖x2 − x1‖X ≤ m‖x2 − x1‖X . (2.4)

Using the mean value theorem for one-variable functions with t∗ ∈ (0, 1) we obtain

g′(t∗) =
ϕ(F (γ(1))− F (γ(0))))

1− 0
= ϕ(F (x2)− F (x1)) = ‖F (x2)− F (x1)‖Y . (2.5)

Combining the estimate from (2.4) with the latter equation (2.5) gives the desired result.

�

Theorem 2.1. (Inverse Function Theorem)
Let X and Y be Banach spaces, x0 ∈ U be an open neighborhood of U ⊆ X and let
F ∈ C1(U, Y ) such that the Fréchet derivative dF [x0] ∈ L(X,Y ) is a homeomorphism.

Then there exists a connected open set Ũ ⊂ U with x0 ∈ Ũ such that F |Ũ : Ũ → V for

some V ⊆ Y open with F (x0) ∈ V is a local C1-diffeomorphism.

Remark. If one instead assumes F ∈ Ck(U, Y ), then F with the above assumptions
becomes a local Ck-diffeomorphism.

Proof. Consider first the map Φ: X → X given by Φ(x) = dF [x0]−1(F (x)−F (x0)) and
note that dΦ[x0] = I ∈ L(X,X), the linear identity operator on X, and that Φ(x0) = 0.

We may then choose an r ∈ (0, 1) such that if ‖x − x0‖X ≤ r then x ∈ U and
‖dΦ[x] − I‖L(X,X) ≤ 1/4. Assume y ∈ X satisfies Φ(x) = y for some x ∈ X. We show
that one can find a sequence (xn)n∈N0 converging to a solution x of Φ(x) = y. Consider
the sequence given by

xn+1 = y + xn − Φ(xn), n ∈ Z≥0. (2.6)

Note that x1 − x0 = y, which implies that ‖x1 − x0‖X = ‖y − 0‖X . If we consider the
latter norm to be sufficiently small, we can see that xn ∈ B(x0; r) by the estimates

‖xn+1 − xn‖X = ‖Φ(xn−1)− xn−1 − (Φ(xn)− xn)‖X
≤ sup

0≤t≤1
‖dF [xn−1 + t(xn − xn−1)]− I‖L(X,X) · ‖xn − xn−1‖X

≤ 1

4
‖xn − xn−1‖X
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which when applied successively results in the inequality ‖xn+1 − xn‖X ≤ 4−n‖y‖X .
Using this inequality with the triangle inequality we obtain

‖xn − x0‖X ≤ ‖xn − xn−1‖X + ‖xn−1 − xn−2‖X + · · ·+ ‖x1 − x0‖X

≤
(

1

4n−1
+

1

4n−2
+ · · ·+ 1

)
‖y‖X

<

( ∞∑
k=0

1

4k

)
‖y‖X =

4

3
‖y‖X =

4

3
‖y − 0‖X .

Therefore if we choose ‖y − 0‖X < 3r/4 we see that ‖xn − x0‖X < r for all n ≥ 0. The
sequence (xn)n∈N0 is Cauchy since for all m > n we have by the triangle inequality

‖xm − xn‖X ≤
m−1∑
k=n

‖xk+1 − xk‖X ≤
m−1∑
k=n

1

4k
‖y‖X ≤ 4−n+1‖y‖X

which can be made small for sufficiently large n. Thus the sequence (xn)n∈N0 converges
to some x ∈ X with ‖x − x0‖X ≤ 4‖y‖X/3 < r. By continuity we established that
x = y + x− Φ(x), i.e. Φ(x) = y.

We can now define open subsets

V = {y ∈ X | ‖y‖X < 3r/4}, Ũ = {x ∈ X | ‖x− x0‖X < r, Φ(x) ∈ V }

which makes Φ|Ũ : Ũ → V a bijection. Surjectiveness comes a priori from the definition

of Ũ , and injectiveness stems from the uniqueness of the limit of the sequence (xn)n∈N0 .

Let y1, y2 ∈ V and x1, x2 ∈ Ũ such that Φ(x1) = y1, Φ(x2) = y2, then

‖y2 − y1‖X = ‖Φ(x2)− Φ(x1)‖X
= ‖(x2 − x1) + (dΦ[x2]− I)(x2 − x1) + (Φ(x2)− Φ(x1)− dΦ[x2](x2 − x1))‖X
≥ ‖x2 − x1‖X − ‖(dΦ[x2]− I)(x2 − x1)‖X − ‖Φ(x2)− Φ(x1)− dΦ[x2](x2 − x1)‖X

≥ 3

4
‖x2 − x1‖X − ‖Φ(x2)− Φ(x1)− dΦ[x2](x2 − x1)‖X .

In order to show continuity of Φ−1 we first prove the lemma

Lemma. Let (X, ‖·‖X) and (Y, ‖·‖Y ) be Banach spaces. Assume U ⊂ X is open convex
and F : U → Y is Fréchet differentiable on U . If there exists A ∈ L(X,Y ) such that
‖dF [x]−A‖L(X,Y ) ≤ m for all x ∈ U , then for any pair x1, x2 ∈ U we have that

‖F (x2)− F (x1)− dF [x2](x2 − x1)‖Y ≤ 2m‖x2 − x1‖X (2.7)

Proof of Lemma. Fix the point x2 ∈ U . Define the function G(x) = F (x) − dF [x2](x)
for x ∈ U and observe that

‖dG[x]‖L(X,Y ) = ‖dF [x]− dF [x2]‖L(X,Y )

≤ ‖dF [x]−A‖L(X,Y ) + ‖dF [x2]−A‖L(X,Y ) ≤ 2m

which when using Lemma 2.1 on G : X → Y we obtain the desired result.

Continuing with the proof of the theorem, we now see that the previous chain of
inequalities results in

1

4
‖x2 − x1‖X ≤ ‖y2 − y1‖X ⇐⇒ ‖Φ−1(y2)− Φ−1(y1)‖X ≤ 4‖y2 − y1‖X (2.8)
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which shows that Φ−1 is Lipschitz continuous on V . Taking the pre-image of V then
shows that Ũ is also connected, but not necessarily path-connected or even convex.

Finally, to prove that Φ−1 is continu-
ously Fréchet differentiable on V we con-
sider the setting where Φ(x) = y, Φ(x′) =

y′ such that x, x′ ∈ Ũ . By the definition
of Ũ , we have ‖x − x0‖X < r and thus
dΦ[x] = dΦ[Φ−1(y)] is a homeomorphism
due to the following lemma:

Lemma. Let X, Y be Banach spaces and
let S, T ∈ L(X,Y ) with T a homeomor-
phism and ‖S−T‖L(X,Y ) < ‖T−1‖−1

L(X,Y ).

Then S is a homeomorphism.

Proof of Lemma. The condition on the norm is equivalent to ‖T−1(S − T )‖L(X,Y ) < 1.

Because of the norm, one can consider a power series
∑∞

k=0(T−1(S − T ))k with the
property that

(I − T−1(S − T ))

( ∞∑
k=0

(T−1(S − T ))k

)
= I

so then we observe that, for S 6= T , the inverse

(I − T−1(S − T ))−1 =

∞∑
k=0

(T−1(S − T ))k (2.9)

is in L(Y,X) since each term in the sum on the right hand side is bounded such that the
sum itself is well-defined and bounded. From this we see that ‖−T−1(S−T )‖L(X,Y ) < 1
as well and that

(I + T−1(S − T ))−1 =

∞∑
k=0

(−1)k(T−1(S − T ))k

is bounded absolutely by Eqn. (2.9) and thus I + T−1(S − T ) has a power series inverse
and is therefore a homeomorphism. A final observation is that S can be expressed
as S = T (I + T−1(S − T )), which is a composition of homeomorphisms and thus a
homeomorphism in it self. �

With x ∈ Ũ and ‖I − dΦ[x]‖L(X,X) < 1/4 we have by the previous lemma that dΦ[x]
is a homeomorphism. Consider then the natural candidate for the Fréchet derivative
for Φ−1 at y ∈ V which is (dΦ[Φ−1(y)])−1, for which we have

‖Φ−1(y)− Φ−1(y′)− (dΦ[Φ−1(y)])−1(y − y′)‖X
‖y − y′‖X

=
‖x− x′ − (dΦ[x])−1(Φ(x)− Φ(x′))‖X

‖y − y′‖X

=
‖(dΦ[x])−1{Φ(x)− Φ(x′)− dΦ[x](x− x′)}‖X

‖x− x′‖X
· ‖x− x

′‖X
‖y − y′‖X

≤ ‖dΦ[x]−1‖L(X,X) ·
‖Φ(x)− Φ(x′)− dΦ[x](x− x′)‖X

‖x− x′‖X
· ‖x− x

′‖X
‖y − y′‖X

letting ‖y − y′‖X → 0 with the Lipschitz continuity of Φ−1 from Eqn. (2.8), the entire
latter expression vanishes in the limit, which shows that Φ−1 is Fréchet differentiable
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on V ⊂ X. The continuity of this Fréchet derivative is guaranteed by the previous
lemma. �

With the inverse function theorem, we may establish the implicit function theorem
as a corollary.

Theorem 2.2. (Implicit Function Theorem)
Let X, Y and Z be Banach spaces and let U ⊆ X×Y be open in the product topology.

Let (X0, y0) ∈ U . Assume F : U → Z is of class F ∈ Ck(U,Z) such that F (x0, y0) = z0

and ∂xF [(x0, y0)] ∈ L(X,Z) is a homeomorphism. Then there exists an open ball
B(y0; r), r > 0, and a connected open set V ⊆ U and a mapping φ ∈ Ck(B(y0; r), X)
such that

(x0, y0) ∈ V and F−1(z0) ∩ V = {(φ(y), y) | y ∈ B(y0; r)}.

Proof. First define a new function G ∈ Ck(U,Z × X) by G(x, y) = (F (x, y), y). We
then have that G(x0, y0) = F (z0, y0) and that for (x, y) ∈ X × Y

dG[(x0, y0)](x, y) = (∂xF [(x0, y0)]x+ ∂yF [(x0, y0)]y, y)

since the Fréchet derivative acts like the total derivative from the calculus of differential
forms, namely dF = ∂xF dπX + ∂yF dπY where πX , πY are the standard projections
into X and Y respectively. We observe that another representation is

dG[(x0, y0)] =

[
∂xF [(x0, y0)] ∂yF [(x0, y0)]

0 I

]
.

The determinant of this matrix is non-zero since ∂xF [(x0, y0)] is a homeomorphism, and
thus dG[(x0, y0)] is invertible with

dG[(x0, y0)]−1 =

[
∂xF [(x0, y0)]−1 −∂xF [(x0, y0)]−1∂yF [(x0, y0)]

0 I

]
.

and is thus clearly bounded in L(X × Y,Z × Y ). Using the inverse function theorem
(Theorem 2.1) on G we may find a connected open set V ⊆ U with (x0, y0) ∈ V and an
open ball B((z0, y0);R) ⊆ Z × Y with R > 0. By the theorem, G : V → B((z0, y0);R)
is a Ck-diffeomorphism.

Declare W = {y ∈ Y | (z0, y) ∈ B((z0, y0);R)} and define φ(y) = x for y ∈ W if
and only if G−1(z0, y) = (x, y) ∈ V . In this case, (x, y) = (φ(y), y). Note that G−1 is
of class Ck on B((z0, y0);R), which in particular means that G−1 is of class Ck on W
also. Note that the projection πX is smooth on X × Y , so since φ(y) = πX ◦G−1(z0, y)
it follows that φ is of class Ck on W . �

3. Local Bifurcation Theory

The setup for bifurcation theory is a nonlinear function F : F×X → Y with F (λ, 0)) =
0 for all λ ∈ F, given a field F ∈ {R,C} and Banach spaces X and Y . Our goal is to
find solutions x ∈ X to F (λ, x) = 0.

As with general mathematical problems, we are inclined to reduce our nonlinear
problem to a problem that is in some way solvable by conventional methods or well-
studied theory. One way to go about doing this in our present case is through Lyapunov-
Schmidt reduction of the equation.

This entire section is heavily based on the material covered by Kielhöfer [11].
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3.1. Fredholm Operators and the Lyapunov–Schmidt Reduction Method

Definition 3.1. (Nonlinear Fredholm Operators)
Let X and Z be Banach spaces, U ⊂ X open, F : U → Z Fréchet differentiable. Assume
furthermore that dF [x], x ∈ U satisfies

(i) dim ker(dF [x]) <∞, the kernel is finite dimensional
(ii) codim im(dF [x]) = dimL(X,Z)− dim im(dF [x]) <∞
(iii) the image im(dF [x]) is closed in Z

then we call F a nonlinear Fredholm operator with Fredholm index given by the integer
dim ker(dF [x])− codim im(dF [x]).

Considering the function F : U → Z for U ⊂ X × Y open, we may consider the
conditions F (x0, y0) = 0, F ∈ C(U,Z) and ∂xF ∈ C(U,L(X,Z)). Furthermore, we
assume that F (·, y0) is a nonlinear Fredholm operator with respect to x for some y0 ∈ V .

We may decompose the Banach spaces X and Z into

X = ker(∂xF [(x0, y0)])⊕X0 and Z = im(∂xF [(x0, y0)])⊕ Z0.

Defining projections P : X → ker(∂xF [(x0, y0)]) and Q : Z → Z0 in the natural way, by
the open mapping theorem both of these maps are in particular continuous.

Theorem 3.1. (Lyapunov–Schmidt Method of Reduction)
Let X, Y and Z be Banach spaces, F : U → Z as above with U ⊂ X × Y open, and
P, Q projections onto ker(∂xF [(x0, y0)]) and Z0 respectively. Then there is an open

neighborhood Ũ of (x0, y0) in U ⊂ X × Y such that our problem F (x, y) = 0 with

(x, y) ∈ Ũ is equivalent to a finite-dimensional problem

Φ(ξ, y) = 0 (ξ, y) ∈ U0 × V ⊂ ker(∂xF [(x0, y0)])× Y (3.1)

where Φ: U0 × V → Z0 is continuous with Φ(ξ0, y0) = 0.

Proof. Observe first that with the projection maps, the equation F (x, y) = 0 is equiva-
lent to the system

QF (Px+ (I − P )x, y) = 0

(I −Q)F (Px+ (I − P )x, y) = 0

where due to the properties of projections we may write x = ξ + η for ξ = Px ∈
ker(∂xF [(x0, y0)]) and (I − P )x = η ∈ X0. Our aim is to obtain a function whose
properties satisfy the conditions of the implicit function theorem (Theorem 2.2). To
this end, define the function G : U0 ×W × V → im(∂xF [(x0, y0)]) by

G(ξ, η, y) = (I −Q)F (ξ + η, y).

Furthermore, if ξ0 = Px0 ∈ U0 and η0 = (I−P )x0 ∈W , then G(ξ0, η0, y0) = 0. Our as-
sumptions provide us with the existence of the partial derivative ∂ηG[(ξ0, η0, y0)] : X0 →
im(∂xF [(x0, y0)]), so we obtain

∂ηG[(ξ0, η0, y0)] = (I −Q)∂xF [(x0, y0)] ∈ L(X0, im(∂xF [(x0, y0)]))

where we note that due to the setup this is a bijection. Thus ∂ηG[(ξ0, η0, y0] is a
homeomorphism, and we may then use the implicit function theorem onG. Our equation
G(ξ, η, y) = 0 for (ξ, η, y) ∈ U0×W×V is equivalent to ξ = φ(η, y) with φ ∈ C(U0×V,W )
such that φ(η0, y0) = ξ0. For (ξ, y) ∈ U0 × V we obtain

Φ(ξ, y) = QF (ξ + φ(ξ, y), y) = 0

with Φ ∈ C(U0 × V,Z0) and Φ(ξ0, y0) = 0 as desired. �
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Remark. We call the function Φ: U0 × V → Z as in the latter theorem and proof the
bifurcation function for the problem considered.

A property that will be useful for us is the preservation of regularity of F onto its
locally-defined bifurcation map.

Corollary 3.1. (Regularity of Bifurcation Functions)
If F : U → Z as in Theorem 3.1 has regularity F ∈ Ck(U,Z), then for the functions φ, Φ
as in the proof of said theorem, we have φ ∈ Ck(U0 × V,X0) and Φ ∈ Ck(U0 × V,Z0).
Furthermore,

∂ξφ[(ξ0, y0)] = 0 and ∂ξΦ[(ξ0, y0)] = 0.

Proof. The regularity of φ and Φ follow from the implicit function theorem when the
regularity of F is assumed to be Ck for k ≥ 1. Recall that the bifurcation function is
given by Φ(ξ, y) = QF (ξ+φ(ξ, y), y). We differentiate I−Φ with respect to ξ to obtain,
for (ξ, y) ∈ U0 × V

(I −Q)∂xF [(ξ + φ(ξ, y), y)](Iker(∂xF [(x0,y0)]) + ∂ξφ[(ξ, y)]) = 0 (3.2)

where if we evaluate at (ξ, y) = (ξ0, y0) then

∂xF [(ξ0 + φ(ξ0, y0), y0)] ◦ Iker(∂xF [(x0,y0)]) = ∂xF [(x0, y0)] ◦ Iker(∂xF [(x0,y0)]) = 0

which when combined with Eqn. (3.2) leads us to conclude that

(I −Q)∂xF [(x0, y0)] ∂ξφ[(ξ0, y0)] = 0.

Note that ∂ξφ[(ξ0, y0)] : U0 × V → X0, so if ∂xF [(x0, y0)] ∂ξφ[(ξ0, y0)] = 0 we are forced
to conclude that ∂ξφ[(ξ0, y0)] = 0 since X0 is the complement subspace of the kernel.

Differentiating Φ(ξ, y) = QF (ξ + φ(ξ, y), y) with respect to ξ, using what is shown
from previous calculations, we obtain

∂ξΦ[(ξ0, y0)] = Q∂xF [(x0, y0)] Iker(∂xF [(x0,y0)]) = 0.

�

3.2. Bifurcation of A Single Eigenvalue

We return to our bifurcation problem with F (λ, x) = 0. Assume that a given solution
(λ0, x0) has two distinct solution curves passing through this point. What conditions
are needed for two such solution curves to exist? Indeed, a necessary condition for the
existence of two such curves has to be a non-bijective partial derivative ∂xF [(λ0, x0)],
since if it were bijective we would be able to use the implicit function theorem locally
around (λ0, x0) in such a way where the bifurcation cannot possibly occur.

An essential trick for our analysis is to normalize one of the solution curves to that
of a trivial solution line λ × {0} ⊂ R × X. To realize that this is always possible,
consider the solution curve γ(s) = (λ(s), x(s)), satisfying F (γ(s)) = 0 and set G(s, x) =
F (λ(s), x(s) + x) which in turn means that G(s, 0) = 0 for all applicable s ∈ R. This
makes the trivial solution line one of the solution curves when considering G instead of
F . In the proceeding matter, we assume that F has a trivial solution line.

For a single eigenvalue, our kernel of the partial derivative has to have dimension
equal one: dim ker(∂xF [(λ0, 0)]). In addition to this, we make the assumption that
our function F : R × U → Z is a nonlinear Fredholm operator of index zero, meaning
that we assume codim im(∂xF [(λ0, 0)]) = 1. Also, assume F satisfies the criteria in the
Lyapunov-Schmidt reduction method in Theorem 3.1.
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Theorem 3.2. (Crandall–Rabinowitz)
Assume F ∈ C2(V × U,Z) is a nonlinear Fredholm operator for 0 ∈ U ⊂ X and λ0 ∈
V ⊂ R open, along with the normalized assumptions as outlined above. Furthermore,
assume that

ker(∂xF [(λ0, 0)]) = span{v0}, v ∈ X, ‖v0‖X = 1

and that the second mixed partial derivatives commute and satisfy

∂2
xλF [(λ0, 0)]v0 6∈ im(∂xF [(λ0, 0)]).

Then there is a second, distinct solution curve γ : (−δ, δ)→ V ×U through γ(0) = (λ0, 0)
which is continuously differentiable and solves F (γ(s)) = 0 for all s ∈ (−δ, δ).

Finally, there are only two solutions intersecting at the bifurcation point (λ0, 0),
namely the trivial solution line curve and γ as above.

Proof. We have assumed that F satisfies the assumptions required for Lyapunov-Schmidt
reduction, so there exists Φ ∈ C2(V0 × U0, Z0) given by

Φ(λ, ξ) = QF (λ, ξ + φ(λ, ξ)) (3.3)

where φ ∈ C2(V0 × U0, X0), Φ(λ, ξ) = 0 locally around (λ0, 0) ∈ V0 × U . Note that due
to the zero Fredholm index, one necessarily has dimZ0 = 1. Due to the trivial solution
line, F (λ, 0) = 0 for all λ ∈ R, we have for all λ ∈ V0

φ(λ, 0) = 0 and ∂λφ[(λ, 0)] = 0.

Evaluating Φ(λ, ξ) at (λ, 0), by Eqn. (3.3) we have Φ(λ, 0) = 0 for all λ ∈ V0. Because
of this we may represent Φ(λ, ξ) by

Φ(λ, ξ) = Φ(λ, ξ)− Φ(λ, 0) =

∫ 1

0

d

dt
Φ(λ, tξ) dt =

∫ 1

0
∂ξΦ(λ, tξ) ξ dt.

Now let ξ = sv0 ∈ U0 ⊂ ker(∂xF [(λ0, 0)]) for s ∈ (−ε, ε) and consider the modified
equation

Φ̃(λ, s) ≡
∫ 1

0
∂ξΦ(λ, stv0) v0 dt = 0

for s 6= 0. Then regularity assumptions imply that Φ̃ ∈ C1((−ε, ε)×U0, Z0), additionally

we have Φ̃(λ0, 0) = 0. Taking another derivative with respect to λ, we compute

∂λ(∂ξΦ[(λ, ξ)]v0) = ∂λ(Q∂xF [(λ, ξ + φ(λ, ξ))](v0 + ∂ξφ(λ, ξ)) v0)

= Q∂2
xF [(λ, ξ + φ(λ, ξ))](v0 + ∂ξφ(λ, ξ) v0, ∂λφ(λ, ξ))

+Q∂xF [(λ, ξ + φ(λ, ξ))] ∂2
λξφ(λ, ξ) v0

+Q∂2
xλF [(λ, ξ + φ(λ, ξ))](v0 + ∂ξφ(λ, ξ) v0)

(3.4)

where derivatives involving λ are identified with scalars and linear maps in the following
sense:

∂λF [(λ, x)] 1 = ∂λF [(λ, x)] ∈ Z, ∂2
xλF [(λ, x)](1, x) = ∂2

xλF [(λ, x)]x ∈ L(X,Z).

Note that if F ∈ C2(V × U,Z) in the Fréchet sense, we immediately know that both
∂2
xλF and ∂2

λxF exist and are equal as operators. Evaluating Eqn. (3.4) at (λ, ξ) = (λ0, 0)
we obtain, due to the porjection Q and that ∂ξφ[(λ0, 0)] = 0 from Corollary 3.1, that

∂λΦ̃[(λ0, 0)] = Q∂2
xλF [(λ0, 0)] v0 ∈ Z.

This derivative is identified with a non-zero element of Z since Q projects onto the
complement of the image of ∂xF [(λ0, 0)] and ∂2

xλF [(λ0, 0)] v0 6∈ im(∂xF [(λ0, 0)]) by the
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theorem’s assumptions. Thus ∂ξΦ̃[(λ0, 0)] is a homeomorphism and by the implicit func-
tion theorem, Theorem 2.2, there exists (−δ, δ) ⊂ (−ε, ε) and a function ϕ : (−δ, δ)→ V0

satisfying ϕ(0) = λ0 and Φ̃(ϕ(s), s) = 0 for all s ∈ (−δ, δ).

Our desired non-trivial solution to the bifurcation function then is

Φ(ϕ(s), sv0) = sΦ̃(ϕ(s), s) = 0.

Define the curve γ : (−δ, δ)→ V × U by γ(s) = (ϕ(s), sv0 + φ(ϕ(s), sv0)). Then γ(0) =
(λ0, 0) and F (γ(s)) = 0 for all s ∈ (−δ, δ), as desired. �

4. Background Material

4.1. A Brief Primer on the Korteweg–de Vries and Whitham Equations

In this section we give a preliminary to the Korteweg-de Vries (KdV) equation and
the function spaces involved in the analysis of the behaviour of this equation. Briefly
put, the KdV equation describes solitary waves of a fluid. Solitary waves are dispersive
waves which do not change their shape over time, and in particular when they do not
obey the linear superposition principle when two or more such solitary waves collide.

A dimensional version of the KdV-equation, or one variant thereof, is given by

∂tη + c0 ∂xη +
3

2

c0

h0
η ∂xη +

1

6
c0h

2
0 ∂

3
xη = 0 (4.1)

where c0 =
√
gh0 and g is the gravitational acceleration, h0 is the height from the

surface of the fluid to the fluid floor, which is assumed to be entirely flat. We may
rescale the (t, x)-coordinates and shift the function η such that we can write down an
equivalent, dimensionless version of the KdV-equation

∂tu+ u ∂xu+ ∂3
xu = 0. (4.2)

A slight modification to the dimensional KdV equation, Eqn. (4.1), proposed by Gerald
B. Whitham exhibits the possibility of solutions with wave breaking and peaking -
informally speaking waves whose profile may look like sharp peaks. This modification
is introduced through the convolution kernel given by

KWhitham = F−1

(√
g tanhh0ξ

ξ

)
such that we instead obtain the (dimensional) Whitham equation

ηt +
3

2

c0

h0
η ηx +KWhitham ∗ ηx = 0. (4.3)

Existence of small-amplitude periodic traveling waves through bifurcation theory are
investigated in [5].

4.2. Some Functional Analysis, Fourier Theory

To further explore the main problem of this thesis, we will for convenience and rigour
lay down some conventions and fundamental theorems. Readers familiar with function
space theory and Fourier theory may choose to skip this subsection.

Spaces of p-integrable functions f : Ω ⊆ X → C are denoted by Lp(Ω,C) (or respec-
tively to R for real-valued functions) and are normed vector spaces with norm given by
the Lebesgue integral

‖f‖Lp(Ω,C) =

(∫
Ω
|f |p dx

) 1
p

.
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Furthermore, we adopt the convention that for p =∞ we obtain the normed vector space
L∞(Ω,C) of all measurable functions that are bounded essentially: if ‖f‖L∞(Ω,C) :=
ess supx∈Ω |f(x)| < +∞ then there exists M ≥ 0 such that f(x) ≤ M for almost
every x ∈ Ω. Implicitly, we have identified functions that agree almost everywhere,
otherwise we would not have a normed vector space since a non-trivial family of functions
satisfy ‖f‖Lp(Ω,C) = 0 besides the zero function. For instance, consider the family of
characteristic functions of single points where f ∈ {χ{q}}q∈Q for Ω = X = R all have
integral zero, but are all almost everywhere equal to the zero function. For a detailed
exposure to measure theory, consider reading Tao’s book [13].

Our conventions for Fourier transformations are as follows, provided f, f̂ ∈ L1(R,C):

Ff(ξ) :=

∫
R
f(x) exp (−ixξ) dx

F−1f̂(x) :=
1

2π

∫
R
f̂(ξ) exp (ixξ) dξ

Fubini’s theorem and the dominated convergence theorem (cf. Tao [13]) guarantees that
these two transformations are mutually compatible in a natural way, namely that for
f ∈ L1(R,C) and Ff ∈ L1(R,C) we have

F−1{Ff} =
1

2π

∫
R
Ff(ξ) exp (ixξ) dξ = lim

ε→0

1

2π

∫
R
Ff(ξ) exp

(
− 1

4π
ε2ξ2 + ixξ

)
dξ

Note that exp (−ε2ξ2/4π + ixξ) ∈ L1(R,C), so we may use Fubini’s theorem to flip the
Fourier transform in the integral:∫

R
Ff(ξ) exp

(
− 1

4π
ε2ξ2 + ixξ

)
dξ =

∫
R

∫
R
f(z) exp

(
− 1

4π
ε2ξ2 − iξ(z − x)

)
dξ dz

=

∫
R
f(z)F

(
exp

(
− 1

4π
ε2ξ2

))
(z − x) dz =

∫
R
f(z)

2π

ε
exp (−π(z − x)2/ε2) dz

which then by the dominated convergence theorem amounts to

F−1{Ff} = lim
ε→0

∫
R
f(z)

1

ε
exp (−π(z − x)2/ε2) dz = lim

ε→0
(ϕε ∗ f)(x) = f(x)

where ϕε(t) = 1/ε exp (−πt2/ε2) has the property that limε→0(ϕε ∗ f)(x) = f(x) for
any f ∈ L1(R,C). Thus we have the desired property that F−1{Ff} = f . This justifies
the name of inverse Fourier transformation. Note that Fourier inversion only works
provided both functions f and Ff are L1-integrable.

Recall that Fourier coefficients for 2L-periodic functions f ∈ Lp((−L,L),C) are de-
fined by

f̂k :=
1

2L

∫ L

−L
f(x) exp (−ixkπL ) dx

Theorem 4.1. (Carleson–Hunt)
Let f ∈ Lp((−L,L),C) be a 2L-periodic function for L > 0 and p ∈ (1,+∞). Then for

f̂k Fourier coefficients of f we have∑
k∈Z

f̂k exp (ixk) = f(x) a.e. (4.4)

A proof of the Carleson–Hunt theorem can be found in [2] and [9] as Lennart Carleson
proved the L2 case and Richard A. Hunt generalized this for the case of Lp for p > 1.
An overview of the Carleson and Carleson–Hunt theorems can be found in [12].
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Definition 4.1. (Schwartz Space)
A smooth function f ∈ C∞(Rn,C) is called a Schwartz function if for all pairs of
multiindices α, β ∈ Zn≥0 one has bounded Schwartz seminorm

ρα,β := sup
x∈Rn

|xα∂βf(x)| <∞.

The space of all Schwartz functions is called the Schwartz space and is denoted S (Rn,C).
A sequence fk in S is said to converge to f ∈ S if and only if limk→∞ supx∈Rn |xα∂β(fk−
f)| = 0 for every pair of multiindices α, β ∈ Zn≥0

fk −→ f in S ⇐⇒ lim
k→∞

sup
x∈Rn

|xα∂β(fk − f)| = 0 ∀α, β ∈ Zn≥0.

Informally, one can interpret the Schwartz space as the functions whose derivatives
decay rapidly at infinity. Note that the space of compactly supported smooth functions
C∞0 (Rn,C) is included in the Schwartz space by virtue of the compact support.

We are now going to list a few key properties of the Schwartz space that will prove
useful, but we shall withhold their proofs.

Proposition 4.1. The Schwartz space is a dense subspace of Lp(Rn,C) for 1 ≤ p <∞.

Proof. This follows from the fact that the smooth, compactly supported functions can
be shown to be dense in Lp, and that the Schwartz space is contained in Lp(Rn,C) due
to the rapid decay of the functions which may bound their p-norm integral, which then
converges. �

Proposition 4.2. The Fourier transform is a one-to-one and onto map on the Schwartz
space. Furthermore, Fourier inversion always holds:

FF−1 = IS = F−1F .

These properties and their proofs, along with a slew of other useful facts and prop-
erties, may be found in [6].

4.3. Distribution Theory

Our equations need a treatment of functions which are not readily analyzable using
standard Fourier analysis.To this end, we shall barely scratch the surface of fruitful
theory called distribution theory. To better understand the premise, it may be best to
consider a preliminary example.

Example 4.1. Consider a function u : R → R such that F(u) = û and ∂xu exist in a
manner such that we may write

F(∂xu) =

∫
R
∂xu exp (−ixξ) dx =

∫
R

(−iξ)u(x) exp (−ixξ) dx = −iξ û(ξ).

Likewise, for u : Rn → R we may, given suitable assumptions on the regularity and
decay of the derivatives, we may write

F(∂αxu)(ξ) = (−iξ)|α| û(ξ).

The interesting thing here, of course, is that we may write this formally as the action
of a Fourier multiplier m(ξ) on the Fourier side, namely by

F(Lu)(ξ) = F(∂αxu)(ξ) = (−iξ)|α|û(ξ) = m(ξ) û(ξ).

However, the inverse Fourier transform of m(ξ) is not defined, as its action on the
Fourier side fails to even be L∞-bounded on Rn. Even when this is the case, we observe
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that its action in the grander picture is far from unreasonable given suitable regularity
on u - we are simply taking the derivative! Although it is unreasonable for m(ξ) to
have an inverse Fourier transform as a function, we hastily introduce the core material
of distributions to show that in the appropriate setting, it does make sense to speak of
Fourier transformations of such objects.

Denote the space of test functions over the (open) set Ω ⊆ Rn by

D(Ω) = {ϕ ∈ C∞(Ω) | suppϕ ⊂ Ω compactly}.

The space D(Ω) is equipped with a topology which is characterized thusly: consider a
sequence of functions (ϕj) ⊂ D(Ω). If there exists a compact set K ⊂ Ω and a ϕ ∈ D(Ω)
such that

suppϕj ⊂ K ∀j ∈ Z≥0 and sup
x∈K
|∂αϕj(x)− ∂αϕ(x)| → 0 as j →∞

then we say that ϕj → ϕ in D(Ω).

A distribution T over D(Ω) is a continuous linear functional T : D(Ω)→ C, whereby
linear we mean for all a, b ∈ C and ϕ,ψ ∈ D(Ω) it is true that

T (aϕ+ b ψ) = a T (ϕ) + b T (ψ).

By continuous linear functional we mean that

T (ϕj)→ T (ϕ) as j →∞ provided ϕj → ϕ as j →∞ in D(Ω).

The space of all continuous linear functionals over D(Ω) shall be denoted by D′(Ω). The
topology on the space of continuous linear functionals D′(Ω) is given as the following:
consider a sequence (Tj) ⊂ D′(Ω) for which we have

Tj(ϕ)→ T (ϕ) for all ϕ ∈ D(Ω).

In this case we say Tj converges to T in D′(Ω). The convergence criteria are included
since presenting these spaces without them would be pointless. Regardless, we are not
going to be needing these criteria.

Example 4.2. What do these distributions look like formally? Consider a linear func-
tional Tf ∈ D(R) for which we have

Tf (ϕ) =

∫
R
f(x)ϕ(x) dx

where f ∈ L1
loc(R) = {f : R → R | f |K ∈ L1(K) for any K ⊂ R compact}. This is

indeed a continuous linear functional, but notice that f need not be continuous. As we
shall see, this kind of distribution will prove useful.

Remark. We sometimes use the notation 〈T, ϕ〉 = T (φ) to better signify the action of
the distribution T ∈ D(Ω), especially when T has a regular form as in the preceding
example.

We may have continuous linear functionals on the Schwartz space S (Ω) as well, by
the exact same definition and topology as for D(Ω), except now over S (Ω). We call the
space of continuous linear functionals S ′(Ω) the space of tempered distributions. We see
then that D(Ω) extends to the Schwartz space S (Ω) in the sense that D(Ω) ⊂ S (Ω).
However, this means that on the distributional side we have S ′(Ω) ⊂ D′(Ω). In other
words, every tempered distribution is also a distribution.
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Definition 4.2. (Fourier transform of tempered distributions)
Let T ∈ S ′(Rn). Then the Fourier transform of T denoted F T is defined formally by

F T (ϕ) = T (Fϕ), ϕ ∈ S (Rn).

Example 4.3. What is the Fourier transform of the unit function f(x) = 1? This
seems a nonsensical question, which it is in the sense of taking Fourier transformations
of functions, but for distributions the Fourier transform makes sense:

F 1(ϕ) = 〈1,Fϕ〉 =

∫
Rn
ϕ̂(ξ) dξ =

∫
Rn

∫
Rn
ϕ(x) exp (−ixξ) dx dξ

=

∫
Rn

exp (i0ξ)

∫
Rn
ϕ(x) exp (−ixξ) dx dξ = (2π)nF−1F(ϕ)(0) = (2π)nϕ(0)

In fact, one may feasibly extend this notion of Fourier transform to all essentially
bounded functions f ∈ L∞(Rn).

Convolutions of distributions are readily definable from our building blocks covered
thus far, and will be important later for checking the consistency of equations that arise
from using Fourier multipliers.

Definition 4.3. (Convolutions on Tempered Distributions)
Given ψ ∈ S (Rn) and f ∈ S ′(Rn) we define the distribution ψ ∗ f by

〈ψ ∗ f, ϕ〉 = 〈f, ψ̃ ∗ ϕ〉 for ϕ ∈ S (Rn)

where ψ̃(x) = ψ(−x).

4.4. Hölder Spaces

Our choice of bifurcation space on our problem will be what is known as a Hölder space.
In case of unfamiliarity, we write its definition and key properties in this subsection.
The primary references for this section is [3] and [8].

Definition 4.4. (Hölder Spaces)
Let Ω ⊆ Rn be open, and denote the space of bounded, continuous functions over Ω
as BC(Ω), and likewise with BCk(Ω) for k-times differentiable, bounded continuous
functions. We say a function f ∈ BCk(Ω) is Hölder k-times continuously differentiable
with exponent 0 < α ≤ 1 if each derivative of f up to order k has finite C0,α-norm given
by

‖f‖C0,α(Ω) := sup
x∈Ω
|f(x)|+ sup

x, y∈Ω
x 6=y

|f(x)− f(y)|
‖x− y‖α

, [f ]α := sup
x, y∈Ω
x 6=y

|f(x)− f(y)|
‖x− y‖α

.

Furthermore, the norm of Ck,α(Ω) is given by

‖f‖Ck,α(Ω) =
∑
|β|≤k

‖∂βf‖BC(Ω) +
∑
|β|=k

[∂βf ]α.

The space of all Hölder continuous functions over Ω with exponent α is then the Hölder
space C0,α(Ω) = {f ∈ BC(Ω) | ‖f‖C0,α(Ω) <∞}.

Remark. Our notation avoids the possible confusion between Ck-spaces and Hölder
spaces Ck,α. We note that for f ∈ C0,α(Ω) with exponent α = 1 there exists an M > 0
such that for x, y ∈ Ω and x 6= y

|f(x)− f(y)|
‖x− y‖

≤M
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which then clearly implies that f is Lipschitz continuous on Ω. Hence unit exponent
functions are all Lipschitz. Furthermore, if we allow the exponent α to be strictly greater
than 1, we see by the same token that

|f(x)− f(y)| ≤M‖x− y‖α ≤M‖x− y‖

whenever ‖x − y‖ ≤ 1, so therefore f ∈ C0,α(Ω) is locally Lipschitz about every point
x ∈ Ω. By Rademacher’s theorem (cf. [8]) we have that every Lipschitz function
f : U ⊂ Ω → R is almost everywhere differentiable, and thus we can speak of a total
derivative almost everywhere locally on our domain Ω. Therefore we notice that by the
definition of the total derivative/Fréchet derivative that

lim
‖x−y‖→0

|f(x)− f(y)− df [y](x− y)|
‖x− y‖

= 0

for almost every y ∈ U , which, after applying the inverse triangle inequality and Cauchy-
Schwarz turns to∣∣∣∣ |f(x)− f(y)|

‖x− y‖
− ‖df [y]‖

∣∣∣∣ ≤ |f(x)− f(y)− df [y](x− y)|
‖x− y‖

.

Applying the limit ‖x − y‖ → 0 on both sides necessarily forces the Fréchet derivative
to be zero at the point, and thus f is constant on each connected component since we
may find a parametrized curve γ : [0, 1]→ Ω such that γ(0) = x, γ(1) = y and

f(x)− f(y) =

∫ 1

0

d

dt
γ(t) · df(γ(t)) dt = 0.

Therefore, every function is constant on each (path) connected component of Ω when
α > 1, which is not of much interest when considering connected domains.

Proposition 4.3. The Hölder spaces C0,α(Ω) for 0 < α ≤ 1 are Banach spaces.

Proof. Write the following for f ∈ C0,α(Ω)

‖f‖C0,α(Ω) = ‖f‖BC(Ω) + [f ]α.

We first need to show that ‖·‖C0,α(Ω) is indeed a norm on the vector space C0,α(Ω).
The normed space (BC(Ω), ‖·‖BC(Ω)) with norm given by ‖f‖BC(Ω) = supx∈Ω |f(x)|
has the required non-degeneracy condition in the definition of our proposed norm for
C0,α(Ω), therefore if the remaining term involving [f ]α constitutes a semi-norm (that
is, regardless of degeneracy), then ‖·‖C0,α(Ω) is a norm. Clearly, for any scalar λ ∈ R we
have ‖λf‖C0,α(Ω) = |λ|‖f‖C0,α(Ω), thus it remains to calculate a triangle inequality for
our semi-norm term:

[f + g]α = sup
x, y∈Ω
x6=y

|(f(x) + g(x))− (f(y)− g(y))|
‖x− y‖α

= sup
x, y∈Ω
x 6=y

|f(x)− f(y) + g(x)− g(y)|
‖x− y‖α

≤ sup
x, y∈Ω
x 6=y

|f(x)− f(y)|+ |g(x)− g(y)|
‖x− y‖α

= [f ]α + [g]α

which therefore shows that (C0,α(Ω), ‖·‖C0,α(Ω)) is a normed space.

Regarding completeness, first recall that (BC(Ω), ‖·‖BC(Ω)) as before is a Banach

space and that functions f ∈ C0,α(Ω) are also by definition bounded and continuous.
Let (fn) ⊂ C0,α(Ω) be a Cauchy sequence, which then means that for every ε > 0 there
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exists N(ε) > 0 such that ‖fn − fm‖C0,α(Ω) < ε whenever m,n ≥ N(ε). In particular,
this means that for x 6= y in Ω we have

ε > ‖fn − fm‖C0,α(Ω) ≥ [fn − fm]α =
|fn(x)− fn(y)− (fm(x)− fm(y))|

‖x− y‖α
.

By this we immediately note that if the Cauchy sequence (fn) converges to f ∈ BC(Ω),
we may then write

|fn(x)− f(x)− (fn(y)− f(y))|
‖x− y‖α

= lim
m→∞

|fn(x)− fm(x)− (fn(y)− fm(y))|
‖x− y‖α

≤ lim sup
m→∞

‖fn − fm‖C0,α(Ω)

since (fn) was assumed to be Cauchy, and therefore we have [fn − f ]α → 0 as n → ∞
which implies limn→∞‖fn − f‖C0,α(Ω) = 0, concluding the proof. �

Definition 4.5. (Banach Algebra)
Let (X, ‖·‖X) be a Banach space. If furthermore X is an associative algebra over the
real (or complex) numbers such that for f, g ∈ X

‖f · g‖X ≤ ‖f‖X · ‖g‖X
then X is called a Banach algebra.

Proposition 4.4. The Hölder space C0,α(Ω), Ω ⊆ Rn is a Banach algebra.

Proof. We have already established that (C0,α(Ω), ‖·‖C0,α(Ω)) is a Banach space. Fur-

thermore, for f, g ∈ C0,α(Ω) there exists Mf ,Mg ≥ 0 such that

|(fg)(x)− (fg)(y)| ≤ |f(x)(g(x)− g(y))|+ |g(y)(f(x)− f(y))|
≤ ‖f‖BC(Ω)Mg‖x− y‖α + ‖g‖BC(Ω)Mf‖x− y‖α

= (‖f‖BC(Ω)Mg + ‖g‖BC(Ω)Mf )‖x− y‖α

which shows that we may take the quotient and supremum to get finite C0,α-norm, thus
concluding the proof. �

4.5. Classical Symbols

The theory of pseudodifferential operators gives us operators that on the Fourier side
act as if they were in some sense differential operators in the physical space. The rough
idea is to manipulate the functions on the Fourier side in ways that mimic the behaviour
of differential operators.

Pseudodifferential operators can be viewed as convolution kernels of the form

K(x) =

∫
Rn
a(x, ξ) exp (iϕ(x, ξ)) dξ

where ϕ(x, ξ) is a phase function and a(x, ξ) is a symbol. These functions may be
regarded quite generally.

Kazuaki [10] gives a good exposition to the general classification of symbol classes.

Definition 4.6. (Symbol Classes)
Let Ω be an open subset of Rn. If s ∈ R and 0 ≤ δ < ρ ≤ 1 we let Ssρ,δ(Ω × Rn) be

the set of all functions a(x, ξ) such that for any compact K ⊂ Ω and multi-indices α, β
there exists constants CK,α,β > 0 such that for all x ∈ K and ξ ∈ Rn one has

|∂αξ ∂βxa(x, ξ)| ≤ CK,α,β(1 + |ξ|)s−ρ|α|+δ|β|.
We call Ssρ,δ(Ω× Rn) the symbol class of order s.
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Of particular interest to us are the classical symbols given by Ss1,0(R,R). An important
family of such symbols are the Bessel symbols given by

m(ξ) = (1 + ξ2)
s
2 , s ∈ R \ {0}.

These symbols when acted upon a function have the ability to increase or decrease the
regularity/smoothness of said function, depending as the order s is strictly negative or
positive respectively.

5. Nonlinear Dispersive Equations Inspired by KdV and Whitham

Given our build-up of theory, we are now ready to tackle our main problem. First we
present our equation of interest, and then we begin the analysis of its local bifurcation
solutions after having examined some rudimentary properties. The following analysis is
heavily inspired by the work of Ehrnström and Kalisch [5].

Our main focus will be the family of equations given by

∂tu+ L∂xu+ ∂x(up+1) = 0, p ∈ Z≥2. (5.1)

Here, the Fourier multiplier L will be assumed to be a Bessel symbol on the Fourier side

m(ξ) = (1 + ξ2)
s
2 , s ∈ (−∞, 0).

This is a classical symbol. Note that it is also real and symmetric as a function.

Remark. Note that for m(ξ) = −ξ2 and p = 1 one obtains the dimensionless KdV
equation, Eqn. (4.2). In fact, using the convolution theorem

F(KWhitham ∗ ∂xu) = F(KWhitham) · F(∂xu) =
√

g tanhh0ξ
ξ F(∂xu)

we see that even the Whitham equation (4.3) may be rephrased as an equation with
a Fourier multiplier, meaning that Eqn. (5.1) specializes to the Whitham equation as
well. The proof that KWhitham ∈ L1(R) can be found in [5]. Indeed, this in part justifies
calling the family of equations Eqn. (5.1) a kind of generalization of KdV and Whitham.
Because of this, we delimit solutions and their analysis to the heuristics of physical limits
- even though our equation need not be physically inspired per se.

We know that by our previously established theory, if we first impose the ansatz of
traveling solutions of the form u(t, x) = η(x− ct) with propagation speed c > 0 we may
rewrite Eqn. (5.1) as

−c η′ + Lη′ + ηp η′ = 0

where we recall by our previously established theory that L may have its action written
by a convolution since F(Lf)(ξ) = m(ξ) f̂(ξ) = F(F−1m ∗ f)(ξ), at least in the distri-
butional sense. Since we may pass an integral through the convolution, our equation
may be integrated to the following equation

−c η + Lη + ηp+1 = B

where we may normalize B = 0 due to the expected convergent properties of the solution
as |x| → ∞. With all of this, we have arrived at the normalized (weak) version of our
equation

−c η + Lη + ηp+1 = 0. (5.2)

Remark. For Bessel symbols of negative order, the convolution kernel K in Lf = K ∗ f
happens to have unit Lp-norm for 1 ≤ p <∞. A proof and further examination of this
can be found in Grafakos [7].
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The following theorem, lemma and consequent proof of theorem is heavily inspired
by the article of Ehrnström and Kalisch [5].

Theorem 5.1. (Main theorem - Existence of small amplitude solutions to Eqn. (5.1))

For a given L > 0 there exists a local bifurcation curve consisting of 2L-periodic, even
and continuous solutions to the weak normalized equation (5.2). These solutions are
perturbations in the direction of cos (πx/L) in the appropriate bifurcation space, and
their maximal wave speed cmax is determined by∫

R
K(x) dx = cmax

which for Fourier multipliers of Bessel symbols of negative order happens to evaluate to
cmax = 1. Furthermore, owing to the dispersion relation m(ξ) of the equation, the wave
speed at the bifurcation point is given by

c∗ =

(
1 +

π2

L2

) s
2

where in particular as L→∞ one has c→ 1.

Recall from Section 3.2 that Fréchet derivatives on parameters λ are identified with
scalars. Therefore it also naturally commutes with the derivative on the bifurcation
space.

Lemma 5.1. (Crandall-Rabinowitz Revisited)
Let W be a Banach algebra, and let c ∈ (0, 1) be a parameter. Let L : W → W be the
Fréchet derivative at 0 ∈W with respect to the function u of the map

J : u 7−→ −cu+ Lu+ up+1. (5.3)

Suppose also that both L and ∂cL exist and are continuous on and onto W , and that
for some specific parameter c∗ ∈ (0, 1) the following conditions hold:

(i) dim ker(L) = 1;
(ii) W = ker(L)⊕ im(L);
(iii) (∂cL) ker(L) ∩ im(L) = 0.

Then there exists ε > 0 and a continuous bifurcation curve {(φs, cs) | |s| < ε} with
cs|s=0 = c∗. Furthermore φ0 is the vanishing solution of the normalized equation (5.2)
and {φs}s are nontrivial solutions to the normalized equation with corresponding wave
speeds {cs}s. In addition to all of this, we have for all solutions φs ∈W that

dist(φs, ker(L)) = o(s).

The reader is encouraged to work through the connections of the original Crandall-
Rabinowitz formulation and the formulation presented above to show equivalency in
our context.

Before we turn to proving the theorem, we have to analyze how the convolution
acts on functions f ∈ L∞(R) that are both even and 2L-periodic. Assume that the
Fourier multiplier L can be written as a convolution when acting on the function f , so
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Lf = K ∗ f . Then the following integral makes sense∫
R
K(x− y)f(y) dy =

∑
k∈Z

∫ L

−L
K(x− y + 2kL)f(y) dy

=

∫ L

−L

(∑
k∈Z

K(x− y + 2kL)

)
f(y) dy =:

∫ L

−L
A(x− y)f(y) dy

where we immediately note through inspection that A(x) is even, 2L-periodic and con-
tinuous on [−L,L] \ {0}. Furthermore, we exploit Minkowski’s inequality

Lemma 5.2. (Minkowski’s Inequality)
Let 1 ≤ p <∞ and assume f, g ∈ Lp(R). Then Minkowski’s inequality is given by

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

which can be used to show that A(x) ∈ Lp(−L,L) for 1 ≤ p < 2. Then, according to
Carleson-Hunt (Theorem 4.1), we may approximate A(x) by its Fourier series pointwise
almost everywhere:

A(x) =
1

L

∞∑
k=0

′
Âk cos (kπxL ) a.e.

where the prime on the sum indicates that the first term in the sum be multiplied by
1/2. The Fourier coefficients of A are given by

Âk =

∫ L

−L

∑
j∈Z

K(x+ 2jL) exp (− ixkπ
L ) dx

=
∑
j∈Z

∫ L

−L
K(x+ 2jL) exp (− i(x+2jL)kπ

L ) dx

=

∫
R
K(x) exp (− ixkπ

L ) dx = K̂(kπL ).

Finally, the convolution we initially began with can now be written as

K ∗ f(x) =
1

L

∞∑
k=0

′
f̂kÂk cos (xkπL ) =

1

L

∞∑
k=0

′
f̂kK̂(kπL ) cos (xkπL ).

Having established these properties, we turn to prove Theorem 5.1.

Proof. Firstly, note that by our previous examinations, we have that Lu = K ∗ u for

some kernel K (distributional if need be) and that since m(ξ) = (1 + ξ2)
s
2 for s < 0 we

have that

Linearization of the main equation gives

Lψ := ψ − 1

c
K ∗ ψ = 0 (5.4)

where if ψ ∈ L∞(R) we see that in the distributional sense we have

ψ̂

(
1− 1

c
m(ξ)

)
= 0.

Note that ψ̂, 1
c K̂ ∗ ψ and 1

c K̂ all exist as tempered distributions in the space S ′(R).
Furthermore, given that our Fourier multiplier is a Bessel symbol of strictly negative
order we have that 1 −m(ξ)/c is both essentially bounded and smooth, so taking the

product with the distribution ψ̂ we may let this product act on Schwartz functions ϕ ∈
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S (R). Again, since the product is a distribution, we may then use the (distributional)
convolution theorem to obtain the relation

1

c
K̂ ∗ ψ(ϕ) =

1

c
(ψ̂K̂)(ϕ), for any ϕ ∈ S (R).

This establishes

Given our equation as above, we start to examine whenever ψ̂ vanishes. Given c < 1
we see that the equation

1− 1

c
(1 + ξ2)

s
2 = 0

has two solutions ±ξ0 since the Bessel function is in particular always decreasing and
symmetric about ξ = 0. For c = 1 we have only one solution, namely ξ = 0. Lastly,
for c > 1 we have no solutions to the above equation - which immediately implies that
the distribution ψ̂(ϕ) has to vanish for all ϕ when c > 1. Using these results, we may
formally find the inverse Fourier transforms of the distribution by use of the Dirac delta
distribution given by

〈δ, ϕ〉 = ϕ(0), ϕ ∈ S (R)

and shifting this distribution by ξ ∈ R to the distribution δξ such that 〈δξ, ϕ〉 = ϕ(ξ).
Then it turns out that the nontrivial solutions to the linearized equation (5.4) are given
by the functions {

ψ(x) = C, c = 1,

ψ(x) = C cos (ξ0x), c < 1,
(5.5)

for constants C ∈ R \ {0}. Because of the physical nature of the context from which
we derive our PDE, we shall not be including the non-zero constant functions as part
of our analysis. Allowing the parameter c > 0 to be the bifurcation parameter for fixed
wavelength L > 0 (which also fixes the period), we set out to perform local bifurcation
theory on our nontrivial solutions. Clearly, from Eqn. (5.5) we see that in the case of
2L-periodic and even solutions to our linearized equation we have

dim ker(L) = 1 if and only if ξ0 = kπ/L for k ∈ Z≥1.

Now, choose the lowest mode of frequency k = 1 as above. This ensures uniqueness of c
in the dispersion relation of our equation, and also allows us to establish the proposed
c∗ as in the theorem.

Our choice of bifurcation space will be the Hölder space C0,α(R) for α > 1/2. Note
that we have already shown every C0,α-space to be a Banach algebra, so in particular
we have that multiplication of functions is a continuous operation on the Hölder space.
The nonlinear term is then not a problem in terms of continuity.

As we have seen, we may write as the action of L the following relation

Lu =
1

L

∞∑
k=0

′
û(k)

(
1− 1

c Â(k)
)

cos (xkπL ) a.e. (5.6)

on the interval [−L,L]. Due to the Riemann-Lebesgue lemma one has the convergent

property that Â(k) → 0 as k → ∞, so therefore we have that Lu is contained in our
Banach algebra C0,α(R) and is hence a continuous map. Furthermore, notice that

‖Lu‖C0,α(R) ≤ C‖u‖C0,α(R)

for some constant C > 0 since the Bessel symbols of negative order happen to increase
the regularity of the functions they act upon. Therefore we have that Eqn. (5.6) is an
equality due to continuity.
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We have already established that ker(L) = spanR(cos (πx/L)), which corresponds to

Â(1) = c and Â(k) 6= c for k 6= 1.

Therefore, based on Theorem 6.2 in [4] by Ehrnström et al. we may take some given

u ∈ C0,α(R) and u⊥ ∈ C0,α(R) with û⊥(1) = 0, also û⊥(k) = û(k) for k 6= 1. The
aforementioned theorem makes sense of the following function in our Hölder space

v(x) :=
1

L

∞∑
k=0

′ û⊥(k)

1− 1
c Â(k)

cos (kπxL )

which then readily implies that v(x) = L−1u⊥. Moreover, this implies that

u(x) = Lv +
û(1)

L
cos (kπxL )

which indeed shows that C0,α(R) = ker(L) ⊕ im(L). The derivative of the Fréchet
derivative with respect to the bifurcation parameter is then

(∂cL)u = −(∂c
1

c
K) ∗ u =

1

c2
K ∗ u.

By the same arguments as above we therefore have

(∂cL)u =
1

Lc2

∞∑
k=0

′
û(k) Â(k) cos (kπxL )

as a bounded map on C0,α(R) and hence continuous. Finally, we also have that

(∂cL) ker(L) ∩ im(L) = ker(L) ∩ im(L) = 0.

�

5.1. On Generalizing to Arbitrary Classical Symbols

By now it should be quite clear that generalizing to other classical symbols with negative
order, explicitly or formally given as functions, should be possible if they satisfy the
various L1-integrability conditions, the correct dispersion relation properties, and the
various other ingredients that went into the proof of our main theorem.

However, in generality it might prove difficult to verify all of these properties a priori
without more information about the functions we are looking at.
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