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Abstract

Detecting and classifying features in an image is an important subtask in
building algorithms that interact with the real world. In modern applica-
tions, this task is solved using deep learning with convolutional layers. A
problem with this method is that it responds in unpredictable ways when
an input image is rotated, leading to unstable outputs if nothing is done to
mitigate it. While this problem is usually solved by giving the learning algo-
rithms more data, there are other alternatives. This thesis explores ways to
exploit rotational symmetries by algorithmic construction, using both group
convolutions and harmonic networks, and attempts to measure the benefits
of using them.

The resulting algorithms learn faster on rotationally invariant classifica-
tion problems but are still outperformed by traditional methods when sub-
stantial data augmentation is used. Harmonic networks are an architecture
that lends itself to rotated inputs, improving on the test error of a basic con-
volutional network on the rotated MNIST dataset from ∼ 5.0% to ∼ 1.7%.
Group convolutions and harmonic networks have several advantages during
the training phase and often do better than traditional methods when data
is limited.
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Chapter 1

Introduction

For humans and many other animals, visual perception is the most impor-
tant sense. Almost every aspect of our lives relies on vision, from driving to
work in the morning to recognizing a friend in a crowd.

The process of perception is an automatic and mostly unconscious pro-
cess to us and is rarely duly appreciated. The amount of biological engineer-
ing involved in every facet of it is staggering. In order to read this sentence,
tens of millions of photons in the visual spectrum have to scatter off the
page, get focused by the iris, and hit the retina, initiating a chemical chain
reaction that feeds into to the brain. This, however, is only the beginning
of perception.

On their own, the signals entering the brain have no more meaning than
a list of numbers, yet these signals are sufficient input for everything from
reading a book to driving a car to playing a video game. How is this possible?
The problem of explaining visual perception, let alone recreating it, has been
baffling scientists for centuries.

Computer vision is the science of automatically extracting high-level
information from images, and has long been striving to be as successful
as us humans are without even trying. Historically, attempts at computer
vision algorithms have been “hard coded”—handwritten as a solution to a
specific task. In recent years, however, focus has shifted towards designing
algorithms that are told what to do and not how to do it, learning the
specifics on their own. The change in direction from theory and design based
algorithms to data-driven models is a step closer to how humans actually
see.

The data-driven approach has proven to be superior to writing algo-
rithms entirely by hand, but is still far from perfect; nearly all modern

4



Figure 1.1: Edge detection in the 1960s. Source: Lawrence Roberts – “Ma-
chine perception of three-dimensional solids” [13]

visual algorithms need to be trained. This process can take a large amount
of processing power and will often also require massive amounts of data.

1.1 A Brief History of Computer Vision

The scientific field of computer vision (CV) began in the 1960s. Although
the growth of the field was largely an inevitability, much of the early work
was influenced by Lawrence Roberts’ 1963 PhD thesis on perceiving three-
dimensional solids from images [13].

The early days of CV saw high levels of confidence and low success
rates. Famously, Seymour Papert at MIT thought in the early 60s that a
small group of students would be able to solve a large chunk of “the vision
problem” in one summer [12]. This initiative towards the goal of object
recognition came up short.

Almost two decades later, in 1980, following new research in neuro-
science, the Japanese computer scientist Kunihiko Fukushima created a
model he named the Neocognitron [4]. This model was an early version
of a neural network using convolutional layers. The model was later im-

5



proved in 1989 by Yann LeCun’s LeNet [7], in which he applied the then
new backpropagation algorithm to Fukushima’s convolutional architecture.
LeNet is surprisingly similar to the convolutional networks we still use today.

In modern times, computer vision has exploded into many branches and
subfields. Data availability, computational resources, and open development
communities are important factors in driving this rapid growth. Advanced
applications of computer vision, along with hardware to support them, en-
able applications like autonomous vehicles, instant face recognition, and
optical character recognition.

1.2 Problem Statement

Current image processing techniques benefit greatly from the way they use
translation symmetries, but other potentially useful symmetries are largely
ignored. For flat images, rotation symmetries seem promising to improv-
ing performance. This thesis will explore methods of ensuring rotational
stability by construction, and evaluate the benefits of doing so.

6



Chapter 2

Theoretical Background

Before getting into methods, some terms will be defined. Note that there is
a glossary on page 42. Terms with definitions in the glossary will be marked
with dotted underlines .

2.1 Fundamentals

2.1.1 Convolutions

A convolution1 is a mathematical operation on two functions, resulting in a
new function that combines the properties of the input functions. For two
functions f(t) and g(t), we denote their convolution as [f ∗g](t). In the case
of continuous functions on a domain X (which in this thesis will be R or
R2), the convolution can be expressed as the integral

[f ∗ g](t) =

∫
X
f(τ)g(τ − t)dτ. (2.1)

This integral can be interpreted in several ways. For example, it has the
effect of placing the function g(t) at every point τ weighted by the value at
f(τ). This can be seen in Figure 2.1.

For functions f and g on a discrete domain Y , an analogous discrete

1There is some confusion in the term “convolution”, as it is used differently in computer
vision and mathematics. What we refer to as a convolution here would be called a cross-
correlation in mathematics. Every proof would be similar for mathematical convolution,
but we use cross-correlation because it is easier to deal with. We will refer to the operation
as “convolution”, keeping with computer vision convention.
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convolution can be written similarly as

[f ∗ g](t) =
∑
y∈Y

f(y)g(y − t). (2.2)

We will later see that it is useful to define convolutions on images, both
continuous ((2.1) with X = R2) and discrete ((2.2) with Y = Z2). These
are both called planar convolutions.

2.1.2 Group Theory

Group theory is the study of the particular algebraic structure known as a
group. A group is a set with a binary operation.

Let G be a group. Then G has four important properties:

1. For any g1, g2, g3 ∈ G, (g1g2)g3 = g1(g2g3) (associativity).

2. For any g1, g2 ∈ G, g1g2 ∈ G (closure).

3. There exists an element e ∈ G s.t. for any g1 ∈ G eg1 = g1 (identity
element).

4. For any g ∈ G there exists an inverse element g−1 ∈ G s.t. g−1g =
gg−1 = e ∈ G (inverse).

Group Actions

We will use groups in the context of group actions. Group actions are an
extension of groups that additionally allow for the group elements to act on
a set.

Let G be a group and X be a set. We say that · is a group action of G
on X if · is a map · : G×X → X satisfying the conditions

1. e · x = x for all x ∈ X,

2. (g1g2) · x = g1(g2 · x) for all x ∈ X and all g1, g2 ∈ G.

If these properties are satisfied, we say that X is a G-set.

8
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Figure 2.1: The sum of several delta functions f is convolved with a Gaussian
function g to give (f ∗ g), which has several Gaussians combined in the
location of the delta functions of f . Notice that convolution with g has the
effect of “smearing out” the function f .
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Important to this thesis are the group actions on 2D images defined by

1. Translations by vector t, T = {Tt | t ∈ Rn}, with Tt1Tt2 = Tt1+t2 , and
Tt · x = x translated by t.

2. Rotations by angle θ, R = {Rθ | θ ∈ [0, 2π)}, with Rθ1 · Rθ2 = Rθ1+θ2

and Rθ · x = x rotated by θ.

3. Roto-translations by angle θ and vector t, T R = {TtRθ | Tt ∈ T ,Rθ ∈
R}, with Tt1Rθ1Tt2Rθ2 = Tt1+Rθ1 t2Rθ1+θ2 (proof in section A.1) and
TtRθ · x = x rotated by θ then translated by t.

Rotations and translations do not commute. That is, in general RθTt 6=
TtRθ.

2.1.3 Functions as Images

Usually, images are treated as arrays of data. For the purposes of this
thesis, we will instead refer to images as functions. An image F is a map
F : X → Rn from position to “pixel value”. The images used for calculations
will be treated as if they are defined on infinite domains R2 and Z2 while
manipulating them.

Translations and rotations are also defined on these image functions. For
a function f : X → Y

[Tt · f ](x) = f(T−t · x) = f(x− t) (2.3)

and
[Rθ · f ](x) = f(R−θ · x) (2.4)

for X = R2 or X = Z2.
For the sake of brevity, the operator “·” will mostly be omitted. Whether

the operation is a group action or a group operation can be inferred by the
operand types.

2.2 Machine Learning

A machine learning algorithm is an algorithm that is able to learn from
data. Tom Mitchell defines this process of machine learning in [10]: “A
computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P , if its performance at tasks in
T , measured by P improves with experience E.”

10
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θ
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Figure 2.2: Translation, rotation, and their ordered composition. Note that
in (c) the rotation is applied in global coordinates before the translation.

While there are several ways to learn from experience, we consider only
supervised learning for the purpose of this thesis. In supervised learning, our
algorithm is given an array of example inputs along with the correct outputs.
By changing the algorithm slightly many times, it is nudged closer to being
able to give the correct answers to the examples we have given. Given
enough experience, it should also be able to produce the desired outputs
when given new inputs.

2.2.1 Image Classification

For now, we will only consider the task T of image classification. Given a set
of input images, we want our program to give each image an output label
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corresponding to what it sees. In this domain, we use a set of labeled training
data as our experience E, and the proportion of correctly labeled images in a
test set as our performance measure P . Mathematically, one might describe
the classification problem using a set of possible input images X and a set of
possible labels Y . Denote by f : X → Y the unknown function mapping an
image to its appropriate label. The classifier can then be seen as a function
f̂θ : X → Y that adjusts parameters θ to best approximate f .

2.2.2 Neural Networks

One of the most widely used architectures for learning from examples is the
feedforward neural network. The basic mechanism of such a neural network
is to repeatedly transform data in different phases, often called layers. For
a set of inputs X and set of outputs Y , given an input x0 ∈ X, the network
constructs an output xN ∈ Y using intermediary representations {xi}N−1

i=1

which are created using piecewise differentiable functions {fi}N−1
i=0 .

x0
f0−→ x1

f1−→ . . .
fN−2−−−→ xN−1

fN−1−−−→ xN (2.5)

The functions fk can either be constant or subject to change by varying
parameters θ. Layers that are subject to θ are known as “trainable” because
their parameters can be tweaked by optimization algorithms. The output of
a neural network can be differentiated with respect to θ, and this derivative
is used to update θ and make the model better.

Input #1

Input #2

Input #3

Input #4

Output

Figure 2.3: A dense neural network. Every node in each layer is connected
to every node in the next.
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Convolutional Neural Networks

A convolutional neural network (CNN) is a neural network that makes use
of convolutional layers. Instead of connecting every input to every output
at every layer, convolutional layers limit connections at every step. The two
important ways in which convolutional layers limit themselves are weight
sharing and locality. Subsection 2.2.4 will discuss the consequences of these
limitations.

. . . . . .

Figure 2.4: In a CNN, each layer has a restricted influence on the next. In
this figure, weight sharing means that per-layer the edges from each of the
nodes are the same.

. . . . . .

Figure 2.5: A node in a CNN will only be influenced by nodes in a restricted
region of the previous layers.
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Figure 2.6: A simple yet biased function generalizes better than a needlessly
complex one. Although f fits the sample points exactly, it is more likely that
the ground truth is simple, as captured by g.

2.2.3 The Bias–Variance Tradeoff

Fully connected architectures such as the one in Figure 2.3 are very flex-
ible. With the right weight settings, a dense neural network like this can
approximate any function, even if it has only one hidden layer [9]. But while
it may be technically possible to reach an optimal solution, that does not
mean that the training procedure will lead to it. In fact, a fully connected
neural network will have large set of completely different solutions that fit
the input data well.

The bias–variance tradeoff describes a way of decomposing the expected
error of a predictive model into three terms.

1. The irreducible error term arises from inaccuracies when sampling, or
inherent randomness in the model.

2. The bias error term is related to the complexity of the model. If the
model is too simple to fit the true function f , this term will be high.

3. The variance error term is also related to the complexity of the model,
but instead grows as complexity increases. Using too complex a model
will frequently lead to solutions that strive to reduce the error on the
training set at the cost of a higher test error.

The optimal model is complex enough to be able to fit the true function, but
not so complex that it’s unlikely for it to converge correctly (see Figure 2.7).
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Figure 2.7: Optimizing for the total error is a compromise between between
bias and variance.

These terms also have precise definitions and derivations as found in [11].

2.2.4 CNNs on Images

CNNs applied to images are a great example of the bias–variance tradeoff.
By making restrictions to the model, a CNN is far better at avoiding the
error term due to complexity that so often dominates dense networks.

Why do CNNs work so well for images? As seen in Figure 2.5, a node in
a later layer will be influenced by a small area of the previous layer, which
is influenced by a larger area of the layer before and so on. This restriction
encourages the network to construct useful abstractions at every layer of the
network, gradually building up to a high-level understanding of the image.

Figure 2.8: Features in a convolutional neural network. The deeper into the
network, the more useful and high level the features are. Source: Alexander
Amini
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Chapter 3

Convolutions and Group
Theory

3.1 Symmetry and Equivariance

We say an operation f on an object O has a set of symmetries S if for any
transformation T ∈ S it follows that f(O) = f(T [O]). This definition of
symmetry is no more than a mathematical formulation of the everyday use
of the word. In the same situation, one might also say that f is an invariant
of {T [O] | T ∈ S}, or that f is invariant to S.

To give an example, if f is a function that doesn’t distinguish between
corners of a polygon, the symmetries of a square O with respect to f would
be the set of reflections and rotations that result in the same shape, as seen
in Figure 3.1b. Then f is invariant to these symmetries.

Equivariance is a relaxed extension to the concept of symmetry. Instead
of requiring the function value to be unchanged by a symmetry group, an
equivariant function must allow for such an action to be reversed after the
fact. In technical terms, a function f is said to be an equivariant map if both
its domain and its codomain can be acted on by the same group such that
the function commutes over the group action. For f : X → Y a function
and G a group on X and Y we say that f is an equivariant map if

f(g ·X x) = g ·Y f(x) ∀x ∈ X, (3.1)

where the binary operator ·X : G ×X → X is the group action of G on X
and ·Y : G× Y → Y is the group action of G on Y .

16
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(a) (b)

0

π
3

2π
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π

4π
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(c)

Figure 3.1: Different symmetries. 3.1a shows circular symmetry, allowing
for rotations and mirroring at any angle. 3.1b shows a square, allowing
90◦ rotations and mirrors around the marked axes. 3.1c shows a circular
harmonic function, which allows for mirrors at any of the axes, as well as
rotations in multiples of 2π

3 radians.

3.2 Group Convolutions

In subsection 2.1.1, discrete convolutions were introduced with the equation

[f ∗ g](t) =
∑
y∈Y

f(y)g(y − t). (2.2 revisited)

The usual form of this convolution uses the group operation of translation,
where the domain of the output function parametrizes the group of all trans-
lations to the filter g. In this case, we can write (2.2) as

[f ∗ g](t) =
∑
y∈Z2

f(y)g(y − t). (3.2)

17



3.2.1 Equivariance of Planar Convolution

Translating the left function f in (3.2) gives

[[Tsf ] ∗ g](t) =
∑
y∈Z2

f(y − s)g(y − t) (3.3)

=
∑
y∈Z2

f(y)g(y + s− t) (3.4)

=
∑
y∈Z2

f(y)g(y − (t− s)) (3.5)

= [Ts[f ∗ g]](t). (3.6)

Equivalently, it can be shown that

[f ∗ [Tsg]](t) = [T−s[f ∗ g]](t), (3.7)

so the planar convolution is equivariant to translation in the two input func-
tions. This result can be proven for continuous planar convolutions by re-
placing the sum with an integral and Z2 with R2.

It can be shown that the planar convolution is not equivariant to rota-
tion, however:

[[Rθf ] ∗ g](t) 6= [Rθ[f ∗ g]] (3.8)

3.2.2 Generalization

It turns out that equivariance is not restricted to planar convolutions. Let
U be a group with a group action defined on Z2, u, v ∈ U , and f, g : U → Rn
functions. We define the group convolution as

[f ∗ g](v) =
∑
w∈U

f(w)g(v−1w). (3.9)

Recall that u ∈ U can act on functions (uf(x) = f(u−1x)), and let u act on
f in (3.9). Then

[[uf ] ∗ g](v) =
∑
w∈U

f(u−1w)g(v−1w) (3.10)

=
∑
w∈U

f(w)g(v−1uw) (3.11)

=
∑
w∈U

f(w)g((u−1v)−1w) (3.12)

= [u[f ∗ g]](v). (3.13)

18



Again, equivalently

[f ∗ [ug]](v) = [u−1[f ∗ g]](v). (3.14)

This shows that any convolution of two functions on the domain of a group is
equivariant to transformations by that group. It follows directly from (3.13)
and (3.14) that functions defined under the roto-translational group are
equivariant to rotations and translations.

3.2.3 Harmonic Convolutions

Instead of changing the method of convolution, constraining the parameters
of the planar convolution can also result in the desired rotational equivari-
ance. Consider the continuous convolution defined in (2.1) with X = R2,

[f ∗ g](t) =

∫
R2

f(τ)g(τ − t)dτ, (2.1 revisited)

with g(r, ϕ) = R(r). Let F be a translated and rotated image, represented
as F = TtRθG. Then

[Wm ∗ F ](x) =

∫
R2

Wm(y)F (y − x)dy (3.15)

=

∫
R2

Wm(r, φ)F (T−xy)dy (3.16)

=

∫
Φ

∫
R
Wm(r, φ) [TxF ] (r, φ)rdrdφ (3.17)

=

∫
Φ

∫
R
Wm(r, φ) [TtRθTxG] (r, φ)rdrdφ (3.18)

=

∫
Φ

∫
R
Wm(r, φ)

[
RθTR−θtTxG

]
(r, φ)rdrdφ (3.19)

=

∫
Φ

∫
R
Wm(r, φ)

[
TR−θtTxG

]
(r, φ− θ)rdrdφ (3.20)

=

∫
Φ

∫
R
Wm(r, φ+ θ)

[
TR−θtTxG

]
(r, φ)rdrdφ, (3.21)
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where (A.1) from Appendix A is used to get from (3.18) to (3.19). Using
Wm = R(r)eimφ and the continuous version of (3.7) gives

[Wm ∗ F ](x) =

∫
Φ

∫
R
R(r)eim(φ+θ)

[
TR−θtTxG

]
(r, φ)rdrdφ, (3.22)

= eimθ
∫

Φ

∫
R
R(r)eimφ

[
TR−θtTxG

]
(r, φ)rdrdφ, (3.23)

= eimθ[Wm ∗ [TR−θtG]] (3.24)

= eimθTR−θ(−t)[Wm ∗G]. (3.25)

Thus, harmonic convolutions in continuous space are equivariant under the
group of roto-translations.
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Chapter 4

Equivariant Methods

4.1 Invariance and Equivariance

Recall from section 3.1 that invariance of a function to translation means
that its output (in the codomain) is unchanged after translating an input (in
the domain). Elements of the domain are also mapped to the same elements
of the codomain after having been acted on by a symmetry group. Given a
function f : X → Y and a symmetry group S,

f(x) = y ⇐⇒ f(s · x) = y ∀x ∈ X, y ∈ Y, s ∈ S. (4.1)

This property is very useful in image classification. We do not want to have
to retrain a cat-finding neural network for every possible position a cat can
be in. A cat has been moved 20 pixels to the right is still a cat.

If an image classification method should be invariant to translation, why
are convolutions not invariant, but rather, equivariant? The problem with
using invariant methods internally is precisely that they are invariant; they
lose all information about the transformations they are invariant to. As
described in subsection 2.2.4, learning from images usually involves gradually
expanding the size and complexity of features as each layer acts on an image
or an earlier feature map. These new features depend greatly on positions of
pixels or features in the previous layers. So, while the classification algorithm
should be invariant to translation, each individual step cannot be.

Instead, using an equivariant function in each layer still allows for varia-
tion and information to pass through, but guarantees that a transformation
in the input image can be reversed by applying a predictable transformation
on its output. If the next layer uses a function that is equivariant to the
predictable transformation, and so on, the functions can be chained to make
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Tt

“Cat” “Cat”

f f

Figure 4.1: After translating the cat to the left with Tt, the classifier should
still know that the image is of a cat.

a chunk of the network equivariant to the transformation. For translation
equivariant functions f, h, their composition is also translation equivariant:

f(h(x− t)) = f(Tth(x)) = Ttf(h(x)) (4.2)

Notice now, that if we applied an invariant function to the composition of
f and h, the complete composite function would be translation invariant.
The final layer in a neural network is often but not necessarily invariant to
relevant transforms.

4.2 The Brute Force Approach

By far, the most common way of coercing invariant results from a neural
network is brute force. This means that we input the same training images
several times but with different transformations applied. Making changes to
inputs during training in this way is called data augmentation, and is also
used to prepare for other factors such as changes in brightness, noise, and
skew.

There are some strong advantages to using data augmentation, most
important of which is the ease of use. If a neural architecture performs well
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Figure 4.2: In computer vision, the Picasso effect describes what happens
when functions on images are spatially invariant. An invariant face detector
would not care where two eyes, a nose, and a mouth are located as long as
they are present.

on images without data augmentation, it is also likely that it will generalize
well using brute force. Additionally, if data quantity is low in the original
dataset, brute forcing can improve the performance of your network.

On the other hand, as the name may imply, brute force is far from
efficient when training. Running through the same images, but rotated
and transformed in many different ways, will always increase the training
time by a large factor. In the case where the dataset already is sizeable,
artificially increasing the size of it can potentially harm performance due
to “forgetfulness” unless the augmented dataset is properly shuffled (this is
expensive in terms of memory use).

4.3 Group Convolutional Neural Networks

An alternative way of achieving equivariance or invariance is to enforce it by
design. As discussed in section 3.2, the group convolution is a generalization
of the standard planar convolution to any symmetry group that can act on
functions. The approach is fairly simple: in order to be equivariant to a new
symmetry group, add a parameter to the domain of the convolution that can
be indexed by elements of this group. The result is a function in which a
transformation from the symmetry group has an equivalent effect if applied
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Figure 4.3: An image of a cat is rotated and obscured before it is inputted
to a classifier as training data. Source: Suki Lau

to the index of the resulting function or to the image/filter. Internally, the
group convolution is denoted as

[f ∗ g](v) =
∑
w∈U

f(w)g(vw). ((3.9) revisited)

In the first layer, however, the functions to be convolved are images that
cannot be indexed by elements of the group. Instead, the initial layer sums
over the domain of the input image and the filter is transformed by the
group.

[f ∗ g](v) =
∑
y∈Z2

f(y)[vg](y) (4.3)

The result is an output function with domain U .
For proof of the equivariance property of the generalized group convolu-

tion, see section 3.2.

4.3.1 P4M

P4M is the most flexible group equivariant method proposed by Cohen and
Welling in 2016 [3]. The method is simply the generalized group convolu-
tion where the symmetry group is the group P4M, the group of reflections,
discrete translations, and 90◦ rotations.
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Figure 4.4: P4M is one of several “wallpaper groups”. If the pattern were
tiled infinitely, it would be invariant to discrete translations, reflections, and
90◦ rotations. This pattern is from an ornamental painting in Nineveh,
Assyria. Source: Wikimedia Commons
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Chapter 5

Harmonic Convolutional
Neural Networks

We have seen that discrete group convolutions can be equivariant to discrete
transformations as part of their design. Although equivariance to reflections
and 90◦ rotations is useful, we will see that equivariance to any angle of
rotation is preferred. It is possible to use finer grained structures that are
similar P4M along with resampling techniques for more rotational freedom,
but implementations are, for the most part, impractical. In this chapter, we
will explore an alternative architecture known as Harmonic Networks, first
proposed in [15].

5.1 Overview

A harmonic network is a complex valued convolutional neural network where
the filters are constructed so that they ensure local rotational equivariance.
Each filter is constructed with a rotation order ∆m ∈ Z in mind. Impor-
tantly, given an input F and a filter W∆m of rotation order ∆m, the complex
convolution yields

[W∆m ∗ (RθF )] = ei∆mθ[W∆m ∗ F ]. (Follows from (3.25))

Since the convolution operation is either an integral or a sum, it is also
linear, and repeated applications each deposit an exponential factor. Us-
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ing (A.11) from Appendix A gives

{Filters of order ∆m1,∆m2, . . . ,∆mk} convolved with RθF (5.1)

= ei(
∑k
i=1 ∆m)θ{Filters of order ∆m1,∆m2, . . . ,∆mk} convolved with F.

(5.2)

Therefore, if
∑k

i=1 ∆m = 0, the composition of convolutions is invariant to
rotation. This is the basis of the harmonic network.

5.2 Harmonic Convolution

5.2.1 Complex Convolution

While the convolution is a fairly general operation, the fast and widely
available implementations of it do not support complex numbers. Instead,
2D convolution of complex variables is rewritten in terms of real valued
convolutions as

[W ∗ F ]C =
[

Re(W ) ∗ Re(F )
]
R −

[
Im(W ) ∗ Im(F )

]
R

+ i
([

(Re(W ) ∗ Im(F )
]
R +

[
Im(W ) ∗ Re(F ))R

])
.

(5.3)

This is implemented in Algorithm 1.

Algorithm 1: ComplexConvolution

Data: Complex valued filter W , complex valued feature map F
Result: The convolution of W and F
real ← conv2d(W .real, F .real) − conv2d(W .imag, R.imag)
imag ← conv2d(W .real, F .imag) + conv2d(W .imag, F .real)
return real + i · imag

5.2.2 Harmonic Convolutional Layer

A harmonic convolutional layer represents one of the vertical sections in Fig-
ure 5.1. The inputs to such a layer are streams containing several channels
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of complex valued images.

Algorithm 2: HarmonicClassifier

Data: Dictionary of streams heading into the layer, S
Result: Dictionary of streams coming out of the layer
output streams← empty dictionary
for stream to = 0 to streams out− 1 do

for stream from = 0 to streams in− 1 do
∆m← stream to− stream from
W∆m ← recall or create filter with rotation order ∆m
output streams[stream to] ← ComplexConvolution(W∆m, S[∆m])

end

end
return output streams

5.3 Architecture

The classifier is laid out much like a traditional CNN [8], but with all the op-
erations restricted to ones that preserve the rotational equivariance property
of the inputs at each layer.

Image Output

∆
m

=
1

∆
m

=
−1

∆m = 0
∆
m

=
−1

∆m = 0
∆
m

=
−1

∆m = 0 ∆m = 0

∆
m

=
1

∆m = 0

∆
m

=
1

∆m = 0

Figure 5.1: Channels can be grouped into internally equivariant equivalence
classes, called “streams” by Worrall et al. [15]. The edges in the graph rep-
resent convolutions with a harmonic filter of the annotated order. Equivari-
ance is maintained within streams, and the topmost stream has the property
of rotational invariance. Note that

∑
i ∆mi = 0 along every path from the

image to the output, so by (5.2) the method is rotationally equivariant.
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Average Pooling

Batch Normalization

Harmonic Conv.

Figure 5.2: The architecture of the model used for classification of rotated
handwritten digits. Each rectangle represents a layer. The numbers above
the arrows signify number of channels in the representation.

Algorithm 3: HarmonicClassifier

Data: List of images to classify I, list of layers L in the current
network

Result: List of output classes, corresponding to the input set.
O ← empty list
foreach image ∈ I do

x← image
foreach layer ∈ L do

x← layer(x)
end
append x to O

end
return O

5.4 Constructing the Filters

For an ordinary convolutional layer with n channels going in and m channels
going out, one typically needs n ·m trainable filters. The additional require-
ment of respecting the rotational order m of the separate streams means
that each filter must have a rotational order ∆m. A set of n ·m filters is
needed for every ∆m used in the layer, resulting in n ·m · N∆m harmonic
filters.
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5.4.1 Constraints

Recall from subsection 3.2.3 that the filters used for harmonic convolution
are of the form

W∆m(r, φ) = R(r)ei(∆m·φ+β),

where R(r) and β are trainable parameters. β is a simple scalar in the
interval [0, 2π), but for R(r), we decompose the function into its truncated
complex Fourier series. The truncation acts much like a low-pass filter, so
noisy filters are not possible.

R(r) =
N∑

n=−N
cne

inr, c−n = cn, (5.4)

where the restriction on cn ensures that R(r) is a real-valued function.
The coefficients {cn}Nn=−N are complex-valued, but must come from a

finite number of real-valued trainable weights. Using the schema in (5.5),
we construct coefficients cn from a weight vector of odd length.

c0 = w0 c1 = w1 + iw2 . . . cN = w2N−1 + iw2N

c−1 = w1 − iw2 . . . c−N = w2N−1 − iw2N (5.5)

By construction, the imaginary part of R(r) is 0, so we get the real expression

R(r) =

N∑
n=−N

cne
inr =

N∑
n=−N

(an + bni)(i sin(nr) + cos(nr))

=
N∑

n=−N
(an cos(nr)− bn sin(nr))

= a0 +
N∑
n=0

((an + a−n) cos(nr) + (b−n − bn) sin(nr))

(5.6)

where

an = w|n|, bn =


w|n|+1, n > 0

−w|n|+1, n < 0

0, n = 0

, (5.7)

so

R(r) = w0 +

N∑
n=1

(2wn cos(nr)− 2wn sin(nr)). (5.8)
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Finally, the radial part R(r) and the angular part Φ(φ) are combined to
make the complete filters

W∆m(r, φ) = R(r)Φ(φ) = R(r)ei(∆mφ+β)

= R(r)(i sin(∆mφ+ β) + cos(∆mφ+ β)).
(5.9)

Algorithm 4: CreateFilter

Data: Filter weights {wn}2N+1
n=0 , offset β, rotation order ∆m

Result: Filter for convolution
R(r)← w0 +

∑N
n=1(2wn cos(nr)− 2wn+1 sin(nr))

Φ(φ)← i sin(∆mφ) + β) + cos(∆mφ+ β)
return R(r)Φ(φ)

5.4.2 Discretization

Unlike the trainable filters used in normal convolution layers, harmonic fil-
ters are continuous. Since we wish to apply the filters to images which are
sampled on a 2D-grid, the filters are also discretized. Pointwise nonlineari-
ties on the image commute, so applying the convolutions after sampling both
the image and the filters is equivalent to convolving a continuous filter with
a continuous image and the sampling result. In the algorithms described,
the filters are sampled at 5× 5 points.

5.5 Other Layers

In order to improve performance, certain additional layers were used. These
layers are similar to layers that are used in convolutional neural networks,
but have been adapted to conserve equivariance.

5.5.1 Non-Linearities

In a neural network, a non-linearity is a non-linear function applied to the
outputs of a layer. Non-linearities are a bit tricky in the case of equivariant
networks. Ruining the equivariance property is a potential problem that
needs to be avoided. A non-linearity Z : C → C must act only on the
magnitude of the feature map elementwise, so

Z(z) = Z(reimθ) = Z ′(r)eimθ. (5.10)

for some Z ′ : R+ → R.
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Figure 5.3: Examples of what the filters may look like after training a har-
monic network.

The only non-linearity used in this implementation is the complex shifted
ReLU

ReLUb(re
imθ) = ReLU(r + b)eimθ. (5.11)

Here, ReLU(x) = max(0, x).

5.5.2 Normalization

It is known that neural networks with randomly initialized weights can scale
and transform inputs in ways that are unfortunate to the training process,
often leading to exploding gradients and therefore numerically unstable neu-
ral networks. Batch normalization [5] is a common mitigation technique for
this situation in convolutional neural networks.

In a batch normalization layer, inputs are rescaled in order to lessen the
spread and the mean while keeping the variation. In essence, an empirical
batch mean µB and empirical variance σ2

B is calculated in order to rescale
the outputs to

yi =
xi − µB√
σB + ε

, (5.12)
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where xi is the input and yi is the output in the i-th batch. ε is a small
constant. In a harmonic network, batch normalization layers act on the
magnitude of the inputs.

5.5.3 Pooling

Pooling layers are a known way of reducing the size of mappings to a
more reasonable size, while keeping important information from previous
layers [14]. Usually, max-pooling is used for this purpose, and it usually
performs the best. However, using max-pooling would ruin the equivariance
property [15]. Average-pooling is used as a substition. It can be shown that
average-pooling does not affect the equivariance property.
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Chapter 6

Training and Results

6.1 Evaluation

6.1.1 Loss Functions

To improve the performance of a machine learning algorithm, we must first
define a measure of performance. In machine learning, the primary measure
of performance is known as the loss function (also known as a negative
objective function in statistics). The greater the value of the loss function,
the worse the model is performing. A loss function typically has the structure

Loss(ŷ, y, θ) = L(ŷ, y) + λR(θ), (6.1)

where ŷ = f(x) is the predicted output from the function, y is the target
output, and θ are the parameters of the function. λ ≥ 0 is known as the
regularization coefficient, and R is a regularization function which increases
with model complexity. L is a quasimetric on the set of outputs, and is
the main feature of the loss function, representing the distance between a
predicted and a desired output.

6.1.2 Classification Losses

For classification problems, we normally construct functions that output
probability distributions ŷ, representing the confidence of a model in differ-
ent classes. For training, a one-hot vector of the true class is used as y. The
simplest possible choice for a loss function is the 0–1 loss:

L(ŷ, y) = I(argmax ŷ 6= argmax y), (6.2)
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where I is the indicator function. While this technically works as a loss
function, an ideal one is more transparent about what aspects lead to high
loss, and is differentiable without having to make poor approximations.

The categorical cross entropy is a concept from information theory that
happens to also be useful as a loss function in machine learning. In short, the
cross entropy between two distributions is a measure of the relative entropy
between two distributions.

L(ŷ, y) = H(ŷ, y) = −
∑
i

yi log(ŷi) (6.3)

It is well known that the categorical cross entropy is the best performing
loss function for classification tasks.

6.1.3 Accuracy

After the network has finished training, it is usually evaluated using a ded-
icated test dataset. It is crucial that this dataset has not been used in any
of the previous steps, as this would give the model an unfair advantage. For
classification problems where the distribution of labels is uniform, a common
measure of the ultimate performance of a model is its prediction accuracy.
The accuracy is the ratio of correct predictions to the number of predictions.

Accuracy =
# correct predictions

# of predictions
(6.4)

6.2 Data

The MNIST handwritten digit dataset is a de facto standard in image clas-
sification, and was also used for this project. In order to test for rotation
specific performance characteristics, however, a rotated version of it was
used. The rotated MNIST dataset is a relatively standard test for rotation
invariant models, and was standardized in [6].

6.3 Training

The neural network was implemented using tools from Keras [2] (training,
stitching together layers) along with TensorFlow 2 [1] (automatic differ-
entiation, convolution operations, vectorized math). The training process
was automated by Keras, which ran optimization for categorical cross en-
tropy (6.3). Training the harmonic network on the rotated MNIST dataset
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on a GPU (NVIDIA GTX 1070) takes around 40 seconds per epoch with
the network sketched in Figure 5.2.

6.4 Results

Model Test Error (%)

CNN∗ 4.88

P4CNN (Cohen, Welling) 2.28

Harmonic Network (2 streams)∗ 1.75

Harmonic Network (3 streams)∗ 1.71

Harmonic Network (Worrall et al.) 1.69

Table 6.1: Test accuracy after converging on the rotated MNIST dataset.
∗Results from own testing.

Table 6.1 shows the test error rate ((1−Accuracy) · 100%) for the CNN
as well as various equivariant networks when learning to classify the rotated
MNIST dataset. The P4CNN reduces the error rate from the regular CNN
by 53.2%, and the harmonic network reduces the error rate from the regular
CNN by 65.4%.

In Figure 6.1, we see how the performance of the harmonic network and
the CNN scale with the dataset size n when the inputs are augmented. For
n < 104, the harmonic network performs better by a wide margin, but when
n > 105, the traditional CNN performs equally.

Figure 6.2 shows the performance on the rotated MNIST dataset when
neither of the models have ever seen a rotated image. The models are both
trained on a training set of n images from the regular MNIST dataset, then
tested on the rotated MNIST dataset. The harmonic network performs
better than the traditional CNN, but not by much.
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Figure 6.1: Test accuracies for the different models when varying the training
set size n and training for 10 epochs. For small n, the harmonic network
outperforms a CNN, even with an augmented dataset. For large n, the
difference is negligible.
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Figure 6.2: The two networks are trained on normal MNIST, but tested on
the rotated version. The harmonic network always outperforms a traditional
CNN.
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Chapter 7

Discussion

7.1 Summary

Constraining convolutional neural networks to be equivariant to operations
other than translation is not only possible — it can also be beneficial. There
are ways of doing this in a discrete manner, resulting in models like the
P4M CNN in subsection 4.3.1, and in a continuous manner, leading to the
harmonic network in chapter 5.

7.2 Interpretations

The results show that rotationally equivariant neural networks perform bet-
ter than other architectures for certain use-cases. When data availability is
an issue, harmonic neural networks perform well on tasks that demand ro-
tational understanding. When training on the regular MNIST dataset and
being tested on the rotated one, the harmonic network performs better, but
not by as much as initially expected. This discrepancy may be explained by
the model’s reliance on the final dense layer being trained to be invariant to
rotation.

7.3 Implications

The harmonic network is a useful model when rotational symmetries are
important. A possible use for this is in histopathology, where tissue samples
like the one in Figure 7.1 are analyzed for anomalies. In this application,
data is relatively scarce, and it is important that none of it goes to waste.
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Figure 7.1: Colored tissue sample of renal cell cancer. Detecting features on
top down images like this is a prime use of planar and rotational equivariance
and invariance.

Images are also taken top-down, so any orientation and reflection of the
input has no effect on the desired output.

There is also a possibility for equivariant blocks to be used as parts of
a larger network, much like planar convolutions are used as building blocks
greater models.

7.4 Recommendations

This paper only briefly considers applications of the explored methodologies,
and was tested only on the rotated MNIST dataset with the task of classi-
fication. It might be worth measuring the performance of this method for
other purposes on well known colored image datasets, such as segmentation
with BSD500 or classification with CIFAR10.

Future work could also consider expanding and tweaking the set of har-
monic layers in order to better the perfomance of harmonic networks.

In addition, the group convolutions in section 3.2 can easily be gener-
alized to act on other dimensions of input data. For example, it might be
possible to write convolutions that are equivariant to time. This may open
up possibilities for performing convolutions on video data that also relate to
the time component.
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Glossary

equivariance A property of a function that allows for its domain and
codomain to be acted on by the same symmetry group such that the
function commutes with the group action. 16

invariance The property of a function that actions in a symmetry group
on its domain have no effect on their mapping to the codomain. 21

non-linearity Also known as a non-linear map. A function that does not
preserve the operations of addition and scalar multiplication. 31

one-hot vector Vector with zeros everywhere but one field, often written

ei =
[
0, 0, . . . , 1

i-th element
, . . . , 0, 0

]ᵀ
. 34

quasimetric A function with all the properties of a metric except possibly
symmetry. 34

stream A portion of the intermediary data that has the same rotation
order. 27
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Appendix A

Mathematical Properties

A.1 Combining Translations and Rotations in R2

Given Tt ∈ T and Rθ ∈ R along with f : R2 → Rn an element of a T - and
R-set. Then

TtRθf(x) = Rθf(x− t)
= f(R−θ(x− t))
= f(R−θx−R−θt)
= TR−θtf(R−θx)

= RθTR−θtf(x), (A.1)

and the other way round

TtRθ = RθTR−θt

=⇒ RθTt = TRθtRθ. (A.2)

Using these properties we can now derive the composition of two roto-
translations:

Tt1Rθ1 · Tt2Rθ2 = Tt1(Rθ1Tt2)Rθ2
= Tt1(TRθ1 t2Rθ1)Rθ2
= (Tt1TRθ1 t2)(Rθ1Rθ2)

= Tt1+Rθ1 t2Rθ1+θ2 (A.3)
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A.2 Composite Convolution

Let Wn and Wn be harmonic filters, and F a continuous image. Then

[Wn ∗ Ts[Wm ∗ TtRθF ]] = [Wn ∗ Tseimθ[Wm ∗ TR−θtF ]] (A.4)

= eimθ[Wn ∗ Ts[Wm ∗ TR−θtF ]]. (A.5)

Let G(t) = [Wm ∗ TtF ]. Then

[RθG](t) = G(R−θ) = [Wm ∗ TR−θtF ], (A.6)

so

[Wn ∗ Ts[Wm ∗ TtRθF ]] = eimθ[Wn ∗ Ts[Wm ∗ TR−θtF ]] (A.7)

= eimθ[Wn ∗ TsRθG] (A.8)

= eimθeinθ[Wn ∗ TR−θsG] (A.9)

= ei(m+n)θ[Wn ∗ TR−θsG]. (A.10)

In particular, for s = 0, we get

[Wn ∗ [Wm ∗ TtRθF ]] = ei(m+n)θ[Wn ∗ [Wm ∗ TtF ]]. (A.11)
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