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Abstract

For å analysere nestede datasett bruker vi metoden for flernivåmodellering. Med

nestede datasett mener vi at vi har en naturlig gruppering i datasettet. Ved å

bruke flernivåmodellering til å analysere dataen kan vi få innsikt i variasjon mellom

og innad i grupper og forskjellen i variabilitet for de forskjellige flernivåmodellene.

Vi bruker R-pakken lme4 og bruker funksjonen lmer() for å tilpasse de forskjellige

flernivåmodellene. For de forskjellige modellene lar vi enten skjæringspunktet eller

stigningstall variere. Dette gir oss tre forskjellige modeller, modellen med varierende

skjæringspunkt, modellen med varierende stigningstall, og til sist, modellen hvor vi

lar både stigningstall og skjæringspunkt variere. På modellene kan vi også legge

til prediktorer på de forskjellige nivåene. Vi bruker et eksempel på radondata der

vi vil måle radonnivåene i amerikanske hjem, dataen er strukturert slik at vi har

husholdninger inni de forskjellige fylkene. Vi tilpasser dataene våre og kan se, etter

modell sjekking, at en mer komplisert modell vil forbedre tilpasningen, og vi kan

også observere variansen i de forskjellige nivåene.
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Abstract

To analyse nested data we use the method of multilevel modeling. By nested

data we mean naturally structured groups within our data. With the information

we receive by fitting multilevel models, we can illustrate how the group variances

and the model variability change for the different multilevel models and how to

analyse the output from R code. We use the R package lme4 and use the function

lmer() to fit the different multilevel models. For the different models we allow either

the intercept or slope of the model to vary. This gives us three different models,

the random intercept model, the random slope model, or by allowing both to vary:

random intercept, random slope model. For the different models we are able to

add predictors at the different levels. We use an example of radon data where we

want to measure the radon levels in US homes, the data is structured so that we

have households nested within counties. We fit our data and observe with model

checking that the model fit will improve with more complex models and calculate

the explained variance at each level.
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1 Introduction

We have a dataset consisting of nested data. This means that we have data that is

naturally nested or grouped. Naturally nested data often occur in the social sciences, as

we deal with people, geographic locations or environments with people. How come data

depending on these factors become nested? Because this kind of data is more compli-

cated, in an environment within a school, different factors can yield different outcomes.

Students within the same class with the same teacher and same teaching environment

will likely perform more similarly than students from another class. Or students with

similar socioeconomic backgrounds can be more similar than children from different so-

cioeconomic backgrounds. The importance of the predictors or factors will depend on

what our outcome will be. If we look at test scores from a test performed by students in

different classes within different school districts, we would assume that students within

same school districts performs similarly, due to the economic status of the school district

or that students within a class perform similarly depending on the style of the teaching.

This is an example of a nested model which also shows that we can have predictors at

each level. Throughout the text we will describe the different levels as the individual-level

or level-1 (for individuals within groups) and the groups as group-level or level-2.

Choosing a multilevel model allows us to introduce group-effects in the model that cap-

ture between-group variation. The multilevel model allows us to estimate group averages

as fixed effects and between-group variation as a random effect. We assume that the

random effects are independent and identically distributed according to a normal distri-

bution. The multilevel model can then share information between the different groups,

which can improve the prediction for groups with small sample sizes. The most basic

multilevel model is the random intercept model, which has a different intercept in each

group. The intercept consists of a random part drawn from the normal distribution and

a joint intercept as a fixed effect. This gives each county a different intercept, but each

county has the same slope.

A more complicated model is the random slope model. The random slope model al-

lows each group to have a seperate slope. This is achieved by letting the covariate have

a different effect within the different groups by including a random effect to the slope

parameter.
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Throughout the text I will use the example of home radon measurement and remedi-

ation from Gelman and Hill (2007). They estimate the distribution of radon levels in

approximately 3000 counties in the United States. The data has a multilevel structure:

houses within counties. We have two important predictors:

1. An individual-level predictor: in which floor the measurement was taken (first floor

or basement). Necessary as the ground is the source of radon, the closer we measure to

the soil, the higher the level of radon.

2. Group-level predictor, the measurement of soil uranium at county-level. It is assumed

that the radon level in the ground is similar for houses within the same county.

A multilevel model lets us fit a regression model to all measurements that takes into

account the variation between the 3000 counties, houses and measurements (first-floor

or basement). I have used the datasets which are used in Gelman and Hill (2007) for the

radon datasets, which I have implemented into R. In Gelman and Hill (2007), they have

used Bugs but this is outdated, today we would have used STAN instead (Carpenter

et al., 2017).

Multilevel modeling, can be seen as a form of partial pooling, i.e as a compromise

between no-pooling, which fits a separate regression line for each group and complete

pooling, which fits the same regression line to each group. Complete-pooling ignores

between- group variation and gives the same estimate for each group. No-pooling overfit

the data and overestimates the between-county variation. In Figure 1 we can observe the

over-fitting from no-pooling, and how complete pooling ignores within-county variation.

We have fitted data to log radon for the all 85 counties in Minnesota, and chosen eight

to display the different levels from different counties in the US. The amount of pooling

will depend on the group-level variance and the number of houses within each group.

In the first section, we introduce the most used multilevel model, the random intercept

model. We then go on to the more complicated model, the random slope, random inter-

cept model. At last we will discuss model checking for the different models and examples

we have used throughout the text. Easy concepts can become more difficult in multilevel

modelling, such as explained variance. Variance is now measured at different levels, and
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Figure 1: Regression fit to radon data from all the 85 counties in Minnesota. Multilevel

(partial pooling) regression seen as the solid black line, no-pooling as the thin line and

thin dashed line is the complete pooling regression.

common methods such as R-squared must be calculated at each level of the model, we

will review this in the model checking section. The thesis ends with a discussion in sec-

tion 5.
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2 Random Intercept Model

The random intercept model is said to be the easiest version of the multilevel model, as

well as being one of the most used multilevel models. A random intercept model is a

model where we allow the intercept of the different groups to vary. Some of the groups

have a higher response Y, and some have a lower response, creating different regression

lines for different groups. For all multilevel models, we have combinations of random and

fixed effects, and in the random intercept model we have the intercept as the random

effect to make the intercept vary between the different groups. For this model the slope

parameter will stay fixed. We repeat the information from the introduction, where we

assume that we have predictors at each level in the multilevel model. j is the index

for the groups, where j = 1, ..., N. i is the index for the individuals within the groups,

i = 1, ..., nj. Yij is the response variable and the variables within the model will depend

on the indexes i and j, so that the notation xij describes the predictor for an individual

i in group j. As the individuals i are nested within group j, its natural that the index i

is always accompanied with the group index j. The random intercept model is given by

Yij = β0j + β1Xij + β2Zj + εij

for i = 1, ..., nj.

and for j = 1, ..., N.

(1)

where the β’s are the regression parameters: β0j is the intercept and β1, β2 are the fixed

slope coefficients. xij is the predictor at the individual-level and the group-level predictor

is given by zj. εij is namely the error at individual level and is normally distributed

with a zero mean and variance σ2ε giving that all residuals are independent with variance

constant across the groups.

We let the intercept vary between groups by adding a random part to the intercept. We

split the group intercept into two parts, the mean overall intercept, γ00, and the random

variable U0j, giving the unexplained group effects, also called the group-residuals. U0j is

a independent identically distributed random variable drawn from a normal distribution

with mean zero and variance τ20.

β0j = γ00 +U0j (2)

This model contains unexplained variability at two nested levels. One of the main pur-

poses of multilevel modeling is having a model for the response variable Y that takes

7



into account both an individual- and a group level variation. Thus taking the nested

structure of the data into account. By looking at Example 1, we can see the random

intercept model used in an example.

Example 1 Home Radon Measurements

For the home radon measurement we use Model (1), the random intercept

model, where the response variable Yij is the logarithm of the radon measure-

ment in house i (individual-level), in county j (group-level). On both levels

we have predictors. The individual-level predictor, Xij, is the floor in which

the measurement was taken (0 for basement, 1 for first floor). The group-

level predictor, Zj, is the measurement of soil uranium that was available at

county-level. εij is the within-county variation, this includes measurement

errors, natural variation in radon levels and variation between the different

houses in the county beyond what is explained by the floor predictor. From

Model (2), we have the group errors Uj, which in our example is the variation

between counties beyond what is explained by the county-level predictor.

2.1 Model without Predictors

We look at the simplest random intercept model, the model without any predictors. This

model contains a set of random groups with random variation within the groups. The

model can be explained as a model where dependent variables is the sum of the mean,

γ00, a random part at group level U0j, and a random part for the individual level, εij.

The random variables U0j and εij are assumed to have a mean of zero, to be mutually

independent, and to have variances τ20 and σ2ε (Snijders and Bosker, 2012)

Yij = γ00 +U0j + εij,

for i = 1, ..., nj.

and for j = 0, ..., N.

(3)

Model (3) does not have any predictors, but is important as it can describe the variability

in the data between the independent-level and group-level. For example, low variability

between the group-levels can suggest that we do not need to use multilevel modeling over

the classical linear regression model.
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The total variance in the observed values of Yij is the sum of the variances of

var(Yij) = τ20 + σ
2
ε . Estimating these parameters in the model without predictors gives

us the intraclass correlation coefficient (ICC). For the model without predictors the ICC

explains the percentage of the total explained variance in the response accounted for by

the belonging to a group:

ICC =
τ
2
0

τ20 + σ
2
ε

(4)

As we start adding predictors to the model, the understanding of ICC will change. The

model without predictors contains just one fixed term and the variance at both levels.

Calculating the ICC will give a proportion of the total variation at group-level and how

similar the individuals within groups are compared to individuals in different groups.

By adding variables to the fixed part at each level we can observe the change of the

unexplained variation.

The ICC ranges from 0 to 1. When ICC is close to 0, group gives no information,

but if the ICC is closer to 1, then there is no variance to explain at the individual level

and individuals are alike inside each group. The ICC is used to see if we want to use

a multilevel model or if the data is not grouped enough and we should return to the

classical linear regression model. The ICC can be simply understood as the proportion

of the variance that is explained by the grouping in the data.

Example 2 ICC from the Model without Predictors

We return to our example of home radon measurements in US homes. The

response variable Yij is the logarithm of the radon measurement in the houses

i (Level-1), within US counties j (Level-2). ha This gives us a nesting structure

with homes within counties. Both levels have a predictor, which we will not

take into account as we consider the model without predictors. We fit the

random intercept model with no predictors

9



lmer(formula = y ~ 1 + (1 | county))

coef.est coef.se

1.31 0.05

Error terms:

Groups Name Std.Dev.

county (Intercept) 0.31

Residual 0.80

Fitting the model without predictors model gives us the parameters as shown

in the code snippet above. The estimate τ0 (group residual) is given as 0.31,

while the estimate σε (individual residual) is 0.80. This gives us the intraclass

correlation coefficient τ
2
0

τ
2
0+σ

2
ε

= 0.0961
0.64+0.0961 ≈ 0.13. Approximately 10 percent

of the variability lies at county-level. The ICC is not adequate for us to

conclude upon the fact that we were right in choose the multilevel model.

2.2 Adding Predictors

The next step after making the model without predictors is to include predictors. Pre-

dictors are used to explain part of the variability of Y on both level-1 and level-2. Adding

only one predictor for the individual-level, we get the model

Yij = β0j + β1Xij + εij (5)

β0j = γ00 +U0j (6)

Here we assume that all residuals, U0j and εij have mean zero and are mutually in-

dependent given values Xij of the predictor. Both residual are drawn from a normal

distribution. The within-group residuals εij is the same across the groups and shown

as σ2ε . The U0j is symbolized by τ20 and can be seen as the residuals at group-level, or

the group-effects that are unexplained by X. As residuals includes the variability of the

dependent variable that is not modeled as a function of the predictors, the model has

unexplained variability at two nested levels. We have four parameters, γ00, β1 and the

two variance components τ20 and σ2ε . The overall intercept γ00 is the intercept for the

average group. β1 is the regression coefficient or slope parameter, a unit increase in X

gives an increase in the response of β1.
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The residual correlation between the Y values of two individuals in a group when con-

trolling for X is

ρ(Y|X) =
τ
2
0

σ2ε + τ20
. (7)

When we add predictors to the model, we see a change in the meaning of the ICC. We

now interpret the ICC as a proportion of variance in the response controlling for the the

predictors. We want to see if we by adding predictors at the different levels can see a

change in the unexplained variation (Snijders and Bosker, 2012).

So for Equation (4), if the ICC = 0, this means U0j = 0 for all of the groups j and

grouping is not important for the response Y conditional on X. This means that we,

in reality, could have used the classical linear regression model instead of the multilevel

regression model.

Example 3 ICC when adding one Predictor

We add the predictor X of the individual-group, where the measurements

were taken in the different houses (basement or first floor).

lmer(formula = y ~ x + (1 | county))

coef.est coef.se

(Intercept) 1.46 0.05

x -0.69 0.07

Error terms:

Groups Name Std.Dev.

county (Intercept) 0.33

Residual 0.76

The estimate τ0 (group residual) is given as 0.1089, while the estimate σε

(individual residual) is 0.5776. This gives us the intraclass correlation coeffi-

cient τ
2
0

τ
2
0+σ

2
ε

= 0.1089
0.5776+0.1089 ≈ 0.16. We observe a slight increase in the ICC

as the house-level predictor is added. As the predictor variable now accounts

for a bigger proportion of the residual variation than the variation between

the counties this makes sense.

We can now continue to add more predictors. Moving on we can add a predictor for the
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group-level. The predictors for the individual-level is written as the values X1i, ..., Xpi,

and we chose to give the group-level the values Z1, ..., Zq. The model with two predictors,

one for individual-level and one for county-level is given by Model (1).

Example 4 ICC when adding Predictors at both Levels

We add the county-level predictor Zj, the measurement of soil uranium that

is available at county-level. This gives the same equation as Equation (1).

We use R to retrieve the model when adding both predictors.

lmer (y ~ x + u.full + (1| county))

coef.est coef.se

(Intercept) 1.47 0.04

x -0.67 0.07

u.full 0.72 0.09

Error terms:

Groups Name Std.Dev.

county (Intercept) 0.16

Residual 0.76

ICC = 0.0256
0.0256+0.5576 ≈ 0.044. The ICC measure how much of the unexplained

variation can be accounted for by the class we are in. When we add a county-

level predictor, we are accounting for a bigger part of the variation between

the different counties. The random intercept has less variation for this model

than the ones without any county-level predictors, and so the ICC is also

lower.

The county-level predictor leave us with an unchanged within-county varia-

tion, which makes sense as the group-level predictor can not explain variation

within the counties. For small counties we are closer to complete pooling as

a county would need at least 23 (1/ 0.044) observations to be drawn towards

the no-pooling estimate rather than the complete-pooling estimate.

Figure 2 shows the multilevel regression line with uranium as a county-level

predictor. The dashed lines show the previous regression line without the

county-level predictor. For almost all counties, the addition of the predictor

12



does not seem to change the overall regression line, with the exception of two

of the counties with fairly small sample-sizes, Aitkin and Koochiching, which

have moved slightly towards the no-pooling estimate.
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Figure 2: Multilevel regression lines fit to radon data, given for eight counties where we

have included the county-level predictor, uranium. The dashed lines are the multilevel

estimates without uranium as a predictor.

2.3 Estimating Parameters and the Random Group Effects

To be able to estimate the fixed effects and variance components of the model we refer to

two different estimation methods (given that the residuals (εij and U0j) are normally dis-

tributed) maximum likelihood (ML) and residual maximum likelihood (REML) (Snijders

and Bosker, 2012). The ML estimation includes the variance components (τ20 and σ2ε) as

well as the regression coefficients, so both the fixed effects part and random effects part

in the likelihood function. The REML estimation includes only the variance components,

so the parameters that sets the random effects part in the model. The REML method

does however estimate the variance components as well as taking into account the loss

of degrees of freedom derived from the estimation of the regression parameters. The ML

method does not take into account the degrees of freedom lost when estimating the fixed

13



effects, giving the ML estimators for the variance components a negative incline (which

we do not get with REML). Meaning that the ML estimates are biased when we have less

observations. This difference can be important when the group sample-sizes are small.

For groups with sample-size of more than thirty (given as a rule of thumb), the difference

between the two methods will be insignificant (Snijders and Bosker, 2012).

Example 5 ML and REML

For the simple case of yi = μ + εi, the ML estimate of σ2 is
∑

(yi – y.)2/n,

which is biased for σε by a factor of (n-1)/n (Visscher et al., 2004). Here

the ML method uses all the observations in our dataset whereas the REML

method will use a likelihood function calculated from a transformed dataset,

which includes only linear combinations of the responses that are unaffected

by the intercept. The dimension of the data then n-1. For REML, the

likelihood does not contain fixed effects and contain fewer terms giving us

σ̂
2 =

∑
(yi–y.)

2

n–1 (Duchateau et al., 1998).

The random intercept model is given by the parameters γ00, β1, τ20 and σ2ε . Here the

random group effect U0j is not seen as a parameter, but rather a variable. For the groups

with large group-sizes we have more information and so the uncertainty reduced and we

see a larger effect of the estimates than on the groups with smaller sample-sizes. The

influence of the group-size on the estimate is given by the ICC. If we look at estimating

the mean intercept, γ00, if the ICC equals to zero the different groups will have an affect

on the estimated value of γ00, so that it is equal to the group-size. Given that the ICC

is one, every group will have the same affect, regardless of group-size. So, when the

residual ICC lies between 0 and 1, groups with bigger group-sizes will have a larger affect

(Snijders and Bosker, 2012).

The random group effects, the U0j, which are seen as a variables, are not estimated

as a part of the parameter estimation. But it can be interesting to ’estimate’ them

nevertheless. To estimate the group effects we use the empirical Bayes estimation. The

empirical Bayes estimation estimates U0j by using two different information sources: the

data from a given group j and that the U0j is a random variable with U0j ∼ N(0, τ20)

(Snijders and Bosker, 2012)

As γ00 is already an estimated parameter, estimating β0j will be the equivalent to the
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estimate U0j and adding the γ00. This means that estimating β0j and U0j is in theory

the same, and we can estimate either if we have the estimate of γ00. If we only estimate

for group j, the β0j would be estimated as the group mean

β̂0j = Y.j (8)

For the whole, we would estimate β0j by the sum of the general mean, γ00. We estimate

with the total mean

γ̂00 = Y.. =
N∑
j=1

nj
M

Y.j, (9)

where nj is the sample size of a given group j, and M is given as the total sample size,

M =
∑

j nj It is given that the optimal estimates for β0j is given by the weighted average

of the two estimates mentioned above, Equation (8) and Equation (9):

β̂
∗
0j = λjβ̂0j + (1 – λj)γ̂00 (10)

where λj is the reliability of the mean of group j.

λ̂j =
τ̂
2
0

τ̂20 +
σ̂
2
ε

nj

, (11)

where τ̂20 and σ̂2ε are found by REML. Equation (10) is called the empirical Bayes esti-

mate for β0j. The Equation (10) can be seen as the estimated group mean only pushed

slightly to the overall mean γ00, so that we have a shrinkage to the mean. When looking

at Equation (11) it is quite obvious that the group j will be larger when nj (sample size)

is larger. This means that for larger groups the empirical Bayes estimate will almost be

the same as the intercept estimated from data in group j, β̂0j.

Example 6 No-pooling vs. Partial-pooling

In Figure 3 we have the two plots where (a) shows the estimates for the county

intercepts for the no-pooling analysis plotted against number of houses. The

counties with fewer measurements have more variable estimates with higher

standard errors. This illustrates the problem of classical regression as we

deal with nested data, it makes us think that some counties are more ex-

treme, just because they have small sample sizes. (b) shows the multilevel

estimates for the county intercepts plotted against number of houses in the

county. If we compare the left (no-pooling) and the right plot, we observe

15



Figure 3: (a) The figure to the left. Estimates ± standard errors for the county intercepts

for the no-pooling analysis of the radon data, plotted against number of houses in the

county.

(b)The figure to the right. Multilevel (partial pooling) estimates ± standard error for

the county intercepts for the radon data plotted against number of houses in the county.

The horizontal line shows the complete-pooling estimate.
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that the multilevel estimate is closer to the complete pooling estimate for

counties with few houses, and closer to no-pooling for estimates for counties

with many observations Gelman and Hill (2007). This is because of how we

estimate with multilevel analysis. If we take a look at Equation (10) and

(11) this shows us how the groups with large sample-sizes moves towards the

no-pooling estimate and how the groups of small sample-sizes moves towards

the overall mean.

If we look at Figure 1, we can recognize the same pattern here. For coun-

ties with small sample-sizes (few houses), the regression line moves towards

the complete-pooling line. This is especially obvious for the county Lac Qui

Parle, which only has two observations.
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3 Random Slope Model

We have now looked at the simpler version of the multilevel model, where only the

intercepts would vary between groups. Here the intercept was the only random part in

the model. However, slopes can also be a random part in the multilevel model. For

some groups, the predictors can have a large effect on the response, and for some groups,

a small effect on the response. When this is the case, setting our slope to be random

could give us a model which better fits our data. The next step is therefore to allow the

regression coefficients to vary by group. By adding random slope to the random intercept

model we are allowing individual-level relationships to vary across groups. The random

slope, random intercept model is given by:

Yij = β0j + β1jXij + εij,

for i = 1, ..., nj.

and for j = 0, ..., N.

(12)

where β1j is the regression coefficient which contains a random part allowing for the

slopes to vary from different groups. This random part of the regression coefficient is the

only added part to Model (3). εij is normally distributed with mean zero and variance

σ
2
ε , given that all residuals are independent of each other and identically distributed with

variance constant across the groups. When we allow for the slope to be a random part in

the model, it will makes sense for the intercept to vary as well. If the individual predictor

varies by group, it will also makes sense that the intercept of the regression should too.

In the next section we explain how we allow for the slope parameter to vary, as well

as the intercept. Sometimes it is acceptable for the slope to vary without the intercept

varying, such as when we want to control for some conditions in a study with multiple

experiments while we let the treatments vary.

3.1 Random Intercept and Slope

As said, when allowing for the slope to vary, it is in most cases natural to let the intercept

vary as well. For a random slope, random intercept model, we add a random term to the

coefficient of X so that it can differ for all of the groups, and so the relationship between

the response and X is different between groups. Both the intercept β0j and the regression

coefficients β1j are now dependent by group. These are then split into the overall mean

γ00 and γ10 and the random effects U0j and U1j. For model (12) the parts allowed to
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vary are given by:

β0j = γ00 +U0j (13)

β1j = γ10 +U1j (14)

The pairs of random effects (U0j, U1j) are for different groups, independent and identically

distributed and drawn from a bivariate normal distribution with mean zero and variance

var(U0j) = τ00 = τ20, giving the variance in the effect of group j on the mean response

variable. And var(U1j) = τ11 = τ21, being the variance in the effect of group j on the

slope of the level-1 predictor. The covariance between level-1 intercepts and slopes is

given as: cov(U0j, U1j) = τ01. The individual residuals εij have mean zero and variance

σ
2
ε . The two group effects U0j and U1j will usually not be independent, but correlated.

We have: U0j

U1j

 ∼ N(0,Ωu), Ωu =

 τ20
τ01 τ

2
1


U1j is the added random part for slope, and is the given as the difference between the

slope of a group j and the slope of the overall line. The γ10 is given as the mean regression

coefficient. We put in the substitutions and get the model

Yij = γ00 + γ10Xij +U0j +U1jXij + εij (15)

The first part of Model (15), γ00 + γ10Xij, is now the fixed part of the model, γ10 is the

average regression coefficient while γ00 is the average intercept. The random part of the

model is U0j + U1jXij + εij, here U1jXij is the random interaction between group and

predictor X. Model (15) is a model where the groups are represented by two random ef-

fects, intercept and slope. The two group effects will be correlated and not independent,

as seen from the covariance matrix Ωu. For the different groups of the model, the pairs

of random effects U0j, U1j, are independent and identically distributed, and independent

of the individual-level residual, εij (Snijders and Bosker, 2012).

Random slopes can be understood as interactions between an individual-level predic-

tor and group indicators. The intercepts can be interpreted easier if the predictor is

centered, which can lead to lower correlation. It is not entirely wrong having a high cor-

relation between the intercepts and slopes, but the estimated intercepts are more difficult

to understand. It can therefore be favorable to remove the mean value of the continuous

x before adding it in the regression. So for the model Yij = β0j + β1jxij + εij, we get
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that xij = zij – z̄. This can lead to the correlation becoming closer to zero. Centering

the X will not necessarily delete the correlation between the intercept and slope, but the

remaining correlation can be more understandable and easier to explain.

3.2 Adding Predictors

We can expand the random intercept, random slope model by adding predictors. In

Example 7 we look at the random intercept, random slope model for the radon data with

only the individual-level predictor. In Example 8 we add the group-level predictor.

Example 7 Random intercept and slope with house-level predictor

We will illustrate Model (11) with the home radon example. This is an easy

example as we only have one individual-level predictor, x. So for the random

slope, random intercept model we include the house-level predictor x (floor

measurement), but without the county-level predictor of uranium.

lmer(formula = y ~ x + (1 + x | county))

coef.est coef.se

(Intercept) 1.46 0.05

x -0.68 0.09

Error terms:

Groups Name Std.Dev. Corr

county (Intercept) 0.35

x 0.34 -0.34

Residual 0.75

For this model, the unexplained within-county variation has the estimated

standard deviation of σε = 0.75 and the estimated standard deviation of the

county intercepts is τ0 = 0.35. THe estimated standard deviation of the

county slopes is τ1 = 0.34 and estimated correlation between intercepts and

slopes are -0.34.

We look at the average group coefficient and the estimated errors for each

county. First we get the fixed effects by typing fixef(M3) (the estimated

average coefficients.)

fixef (M3)

(Intercept) x

1.46 -0.68
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Then to see the random effects (the estimated group-level errors):

ranef (M3)

(Intercept) x

1 -0.32 0.14

2 -0.53 -0.09

3 0.009 0.012

4 0.07 -0.07

. . .

85 -0.083 0.027

We get the estimated intercept, β0j, and slope, β1j, for each county by adding

the errors to γ00 and γ10. We are given that the estimated regression line for

county 1 is (1.46 - 0.32) + (-0.68 + 0.14)X = 1.14 - 0.54X. The group-level

model for (β0j, β1j) allows for partial-pooling in the estimated intercepts and

slopes. Figure 4 shows the results as the estimated lines for the radon data

in eighth different counties.
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Figure 4: Multilevel regression for random slope and random intercept is seen as the

thick, solid black line, no-pooling as the thin solid line and light coloured dashed line is

the complete pooling regression.

Figure 4 shows the results of the random intercept, random slope estimated lines for

the radon data for the eight different counties. We can compare this to figure 1, where
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only the intercept is allowed to vary. We clearly observe a lot of pooling when the slope

coefficient is estimated in the multilevel model, this is because the slope coefficient in

each county are close to the complete-pooling estimate. At the same time we observe

that for two of the counties with a large sample-size, Stearns and Ramsay, that the slope

coefficient deviate from the common estimate. The high proportion of pooling for the

slope coefficient explains why the estimates in Figure 4 are fairly similar to the ones in

Figure 1.

Example 8 Random Intercept and Slope adding the Group-level

Predictor

We can expand the in Example 7 model by adding a group-level predictor,

the county-level predictor, soil uranium.

M4 <- lmer (y ~ x + u.full + x:u.full + (1 + x | county))

coef.est coef.se

(Intercept) 1.47 0.04

x -0.67 0.08

u.full 0.81 0.09

x:u.full -0.42 0.23

Error terms:

Groups Name Std.Dev. Corr

county (Intercept) 0.12

x 0.31 0.41

Residual 0.75

The estimates γ00, U0j, γ10 and U1j are the coefficients for the intercept, x,

u.full and x:u.full in the regression. The interaction corresponds to letting

uranium be a predictor in the regression for slopes.

When adding the group-level predictors we can see that it reduces the group-

level variation to 0.12, one third of the variation given in Example 7. This is

because the group-level estimate induces stronger pooling. We can therefore

make the assumption that this model would be better than the one portrayed

in Example 7.

We can combine the average coefficients with the county-level errors to com-

pute the intercepts and slopes as in Example 5.

If we were to expand the model we include more variables that have random effects, and

more variables to explain the random effects. Imagine that we have p number of level-1
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predictors X1, . . . , Xp and q level-2 predictors Z1, . . . , Zp. For individuals the model is a

regression model with p variables:

Yij = β0j + β1jx1ij + · · ·+ βpjxpij + εij (16)

The regression coefficients β0j to βpj is explained by the between-group model, which is

a q- variable regression model for the group-dependent coefficient βhj:

βhj = γh0 + γh1z1j + · · ·+ γhqzqj +Uhj (17)

Substituting and rearranging Model (16) and Model (17) gives us:

Yij = γh0 +
∑p

h=1 γh0xhij +
∑q

k=1 γ0kxkj+∑q
k=1

∑p
h=1 γzkzkjxhij +U0j +

∑p
h=1Uhjxhij + εij

(18)

(Snijders and Bosker, 2012)

3.3 Estimating Parameters of Random Slope

What we mention in Section 2.3 regarding estimation of random intercept parameters,

can to a certain degree be applied to the more complicated model of random slope as

well. The random intercept, random slope model contain the parameters γ00,γ10, β0j,

β1j, τ20, τ
2
1, τ

2
01 and σ2ε . The random effects are given by U0j and U1j, which we define

as variables in the estimation. The variance parameters can, as we do for the random

intercept model, be estimated with the ML or the REML method. The REML method

is preferable as it produces less biased estimates for the parameters in the random part.

When using lmer() method in R, the models are fit with REML. The random group

effects (U0j, U1j) can be ’estimated’ by the empirical Bayes method, and works similarly

mentioned in section 2.3. (Snijders and Bosker, 2012).

As we move on from the random intercept model, we only have two new parameters

to estimate, we’ve got the parameters τ21, τ
2
01. It is assumed that the level-2 residuals

U0j and U1jxij together with the level-1 residual εij, have means zero given the values

of the level-1 predictor variables X. So that γ01 is the average regression coefficient just

like γ00 is the average intercept. For random intercept, random slope, γ00 + γ01xij is

referred to as the fixed part of the Model (15).

These random parameter estimates can not be interpreted separately, but have to be
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done together due to correlation. At level-2 we got the random part U0j and U1jxij,

where the term U1jxij is the random interaction between group and the level-1 predictor

X. The model tells ut that the groups are defined by two random effects, the intercept

and slope. For the level-2 variance we have:

Var(U0j +U1jxij) = var(U0j) + 2cov(U0j, U1jxij) + var(U1jxij)

= τ20 + 2τ201xij + τ
2
1x

2
ij + σ

2
ε

Where for we for two different individuals i and k in the same group, with i 6= k:

cov(Yij, Ykj|xij, xkj) = τ
2
0 + τ

2
01(xij + xkj) + τ

2
1(xijxkj)
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4 Model Checking

Model checking for multilevel models is more complicated than model checking for clas-

sical linear regression models, as we have to take into account the different nested levels.

When we have chosen the model we want to use to fit our data, we would like to compare

fits with other models. Several assumptions are made when using the multilevel model,

such as: residuals being normally distributed, random effects being normally distributed

and uncorrelated etc. Ultimately we would like to compare fits with other models and

evaluate plausibility of assumptions.

4.1 AIC and DIC

Given a set of nested models, AIC (Akaike information criterion) is used to quantify the

fit of the different models. AIC is given as a number which we can use to compare models

and choose the one assumed to be the best fit. For this AIC uses log-likelihood evaluated

at the maximum likelihood estimates of the parameters, where the penalty is the number

of parameters. We want the model with the lowest AIC value. For nested data however,

it can be difficult the interpret the number of parameters. The AIC is defined as:

AIC = –2× log – likelihood + 2× number of parameters

where -2 times the log-likelihood is -2 times the logarithm of the likelihood of the data

given the estimated model parameters (Gelman and Hill, 2007). In classical regression

a new model is estimated to reduce out-of-sample prediction error if the AIC decreases

(Gelman and Hill, 2007)

For nested data it can be difficult to define a given number of parameters, as we in

multilevel models use different amounts of pooling. For a complete-pooling model one

parameter will equal one group of J parameters, while we with no-pooling a parameter

will be equivalent to the J independent parameters. For the partial pooling we will get

something in between complete pooling and no-pooling (Gelman and Hill, 2007).

For example, for the random intercept radon models, we have that the coefficients for the

85 county indicators represent less than about 85 independent parameters. For counties

with small sample sizes the group-level regression explains much of the variation in the

intercepts, so that in the multilevel model are not estimated independently. When the
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model is improved and the group-level variance lowers, so will the effective number of

independent variables (Gelman and Hill, 2007).

There are also other ways of performing model checking for nested data, for example

with the use of deviance information criterion (DIC). This is often used in Bayesian

statistics, which is out of the scope of this thesis. The idea, however, is that where we

with AIC have a penalty for the number of effective parameters. For DIC the models

also penalize by the value of the mean deviance, where the mean deviance is given as the

–2× log-likelihood. The measure of out-of-sample predictive error, DIC, is given as

DIC = mean deviance + 2× number of parameters.

To find deviance we have used Bugs, as seen in the examples used in Gelman and Hill

(2007) deviance is the –2× log – likelihood.

Example 9 DIC: Comparing the fit of the models

We illustrate the use of DIC by comparing the fit of the models fit from our

radon data.

Model DIC

Random intercept without predictors 2251

Random intercept w/ individual-level predictor 2156

Random intercept w/ individual- and group-level predictor 2111

Random intercept, random slope without predictors 2154

Random intercept, random slope with predictors 2106

The model fit improves for the random intercept model as we add predic-

tors. When the models get more complicated, the mean deviance decreases.

As we expected with more structure we can fit the data better. The best

model is given as the random intercept, random slope with predictors, where

we allow for both the intercept and the slope to vary. This model will do best

in predicting new houses (Gelman and Hill, 2007).
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4.2 R2

Different information criterias have often been used when comparing multilevel models.

AIC and DIC are commonly used for multilevel models. These are used to select the best

model or the model which is better than the others. There are however some limitations

to the use when comparing AIC and DIC to R2. While the information criteria gives

us an estimate of the relative fit of different models, they will not give us the absolute

model fit. Furthermore, AIC or DIC will not give any information about the variance

explained by the model (Nakagawa and Schielzeth, 2013).

Snijders and Bosker (2012) use the definition of R2 where the explained proportion of

variance is given as the proportional reduction of prediction error, at both levels of the

multilevel model. At level-1 we take a look at the prediction of the response variable

Yij, where we have the level-one unit of i within a level-two group j. If the values of

the predictors Xij are not known, then the best predictor for the response variable is

its expectation, so that the mean squared prediction error is var(Yij). If the predictor

values are known, the best linear predictor for Yij is the regression value Ŷij so the mean

squared prediction error is given as the sum of the residual variances at both levels. :

var(Yij – Ŷij) = σ2e + τ
2
0. (19)

the definition of the residual variances are the same as for Model (12). The level-1

explained proportion of variance is defined as the proportional reduction in mean squared

prediction error:

R2
1 = 1 –

var(Yij – Ŷij)
var(Yij)

=
σ
2
e + τ20

var(Yij)
(20)

For a sequence of nested models, the contribution to the estimated value of R2
1 when

adding predictors can be considered to be the contribution of the predictors to the ex-

plained variance at level 1 (Snijders and Bosker, 2012).

Example 10 Estimating the Level-1 Explained Variance

The easiest way to estimate R2
1 is to consider σ̂2ε + τ̂20 for the model with no

predictors and for the random intercept model. From the radon example we

have:
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1.Yij = γ00 +U0j + εij, σ
2
ε = 0.0961, τ20 = 0.64

2. Yij = β0j + β1Xij + β2Zj + εij σ
2
ε = 0.0256, τ20 = 0.5776

R2
1 = 1 –

(0.0256 + 0.5776)
(0.0961 + 0.64)

= 1 – 0.81945387854 ∼ 0.181

The level-2 explained proportion of variance can be defined as the proportional reduction

in mean squared prediction error, for the prediction of Ȳ.j for a group j, where Ȳ.j is the

group mean. If the values of the predictors are unknown, then the best predictor Ȳ.j is

the expectation, which is the mean squared prediction error var(Ȳ.j). Is the predictor

values are known, then the best predictor of Ȳ.j is the regression value Ȳ′.j, the associated

mean square prediction error is

var(Ȳ.j – Ȳ′.j) =
σ
2
e
n

+ τ20. (21)

where n is the number of level-1 units on which the average is based. The level-two

explained proportion of variance is now defined as the proportional reduction in mean

squared prediction error for var(Ȳ.j):

R2
2 = 1 –

var(Ȳ.j – Ȳ′.j)
var(Ȳ.j)

=
σ
2
e + τ20

var(Yij)
(22)

(Snijders and Bosker, 2012)

Example 11 Estimating the level-2 explained variance

In the radon example we have 919 observations from 85 counties, we give n

= 10 which is the representative value of the group size. We use the same

values as in Example 11. For level-2 we then have:

0.0256 / 10 + 0.5776 = 0.58016

0.0961 / 10 + 0.64 = 0.64961

R2
2 = 1 – 0.58016

0.64961 ∼ 0.1069

For the case of varying group sizes one possibility could have been to use

the harmonic mean, defined by N/
∑

j(1/nj) (Snijders and Bosker, 2012).
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5 Discussion

Multilevel modeling makes it possible to describe variation at the different levels of the

model. This is a consequence of the multilevel models ability to borrow strength from

other groups by shrinkage, or partial pooling. However, a problems frequently returned

to when dealing with multilevel models is uncertainty regarding the variability of the

model. As we deal with a lot of parameters this adds a challenge to the interpretation.

For our radon example we have 85 county-level coefficients for the random intercept

model and 170 if we allow for the slope to vary (Gelman and Hill, 2007).

We mention the ICC for the random intercept models, as it can be useful to under-

stand the relationship between groups. ICC is given as the correlation between two

observations within the same group, so the higher the correlation within the group the

lower the variability is within the cluster which means higher in between group variabil-

ity. When the ICC is high this indicates that we were correct in choosing the random

intercept model.

R squared is useful in the sense that we are able to understand how much of the vari-

ance is explained at the different levels in our model. R squared, which is fairly easily

explained for a classical linear regression model have become increasingly difficult to cal-

culate, as we now have to take into account the two levels. The ways of calculating R

squared for multilevel models are many, and not all methods are agreed upon by different

statisticians. For the radon data example we are left with the explained proportion of

variance in level 1 being 0.18 and 0.10 for Level 2. Despite the checks, a lot of the total

variation in radon levels across households in Minnesota remains unexplained with the

different models. The multilevel analysis confirms that the presence of a basement gives

an increased risk of higher radon levels in the household. Households in counties with

high levels of uranium are also associated with higher radon levels. This might not be a

shock to the reader, however, this is not necessarily the goal of the multilevel analysis.

We could be looking for better estimates of the individual county, in particular the ones

with smaller sample sizes. As we see from the model checking section, the DIC indicates

that adding county-level predictor uranium improves the model. Differences in uranium

measurements in counties helps explain not only the county difference in levels of radon,

but the effect basements have on the radon level.
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By using multilevel analysis we were able to get a number on the importance of variation

within groups and show how multilevel analysis handles pooling. Random effect drags

groups of large sample-sizes closer to no-pooling, while groups of small sample-sizes are

dragged towards complete-pooling. When we use multilevel modeling, pooling happens

automatically and we are able to rely more on the results as it is not something we have

had to steer ourselves.

As this text is a short introduction to multilevel models, there are certain topics I have

chosen not to get into. This includes generalized linear models and Bayesian analysis.

30



References

B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M. Betancourt,

M. Brubaker, J. Guo, P. Li, and A. Riddell. Stan: A probabilistic programming

language. Journal of Statistical Software, 76, 2017. doi: 10.18637/jss.v076.i01.

L. Duchateau, P. Janssen, and J. Rowlands. Linear mixed models. An introduction with

applications in veterinary research. ILRI (International Livestock Research Institute,

Nairobi, Kenya, 1998.

A. Gelman and J. Hill. Data Analysis Using Regression and Multilevel/Hierarchical

Models. Cambridge University Press, United Kingdom, 2007.

S. Nakagawa and H. Schielzeth. A general and simple method for obtaining r2 from

generalized linear mixed-effects models. Methods in Ecology and Evolution, 4:133–142,

2013. doi: 10.1111/j.2041-210x.2012.00261.x.

T. A. Snijders and R. J. Bosker. Multilevel Analysis: An Introduction to Basic and

Advanced Multilevel Modeling. Sage Publications, London ,United Kingdom, 2012.

P. M. Visscher, B. Benyamin, and I. White. The use of linear mixed models to estimate

variance components from data on twin pairs by maximum likelihood. Cambridge

University Press, page 670–674, 2004. doi: 10.1375/1369052042663742.

31



N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Ba
ch

el
or

’s 
pr

oj
ec

t

Louise Bauer-Nilsen

Analysing Nested Data with Multilevel
Models

Bachelor’s project in Mathematical Sciences

Supervisor: Geir-Arne Fuglstad

May 2020


