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Abstract

Abrupt changes in a data source can weaken models that fail at ad-
dressing these. Structural change detection has traditionally been done
with a frequentist approach, but recently approaches based on Bayesian
models and Markov Chain Monte Carlo (MCMC) schemes have seen more
use. The Integrated Nested Laplace Approximation (INLA) method was
developed as a computationally e�cient alternative to MCMC sampling.
This text experiments with how the INLA approach can be applied in
detecting breaks in time series of counts.

It is investigated how di�erent metrics such as, marginal likelihood,
comparison of posterior marginals with the L2 norm, and the Deviance
Information Criterion (DIC) perform in detecting two types of breaks.
The �rst break type is in correlation structure and the second break type
is in the variance structure. The results show that marginal posterior
likelihood and DIC perform best when correlation breaks, and that the
L2 norm is the best metric of the three with variance structure change.

Lastly the methods presented in this text are used to detect break
points in the correlation structure of trading volume data on the TSLA-
stock. Two breakpoints were found.
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1 Introduction

Parameters are often unstable in models with large predictor space. The data
generating process might change with the predictors causing instability in the
parameters. A goal of statistical modeling is to be able to predict accurately,
and failing to address structural process changes would leave a model weaker.
Changing parameters with partitions of the predictor space is a simple method
for dealing with this issue. Instead of assuming stability of a parameter over the
whole predictor space one rather assumes stability in each partition. Usually one

Figure 1: Display of how one can partition the predictor space for an arbitrary
modelM(θ,X ) over the predictor space X opening for the use of di�erent values
for θ in the two new partitions.

has predictor space X and �nds optimal parameters θ∗ for the modelM(θ∗,X )
see Figure 1. However if there is some structural break dividing the predictor
space into disjoint spaces X1 and X2 the true parameters might be θ1 and θ2

and not θ∗. Consequently basing inference on θ∗ might introduce unnecessary
errors, and in cases with data prone to parameter instability being able to
reliably detect such changes and �nd such partitions becomes important. A
simple example could be modeling a trait of a speci�c species of a plant that
changes behavior in di�erent biomes. A natural solution would be to partition
after biome.

This text will focus on investigating the following hypothesis, H0 that there
is a break in the parameter structure versus H1 stating that there is no break.
More speci�cally the focus will be on breakpoint detection in time series of
counts. Partitioning the predictor space then means to �nd segments of time
where the count process behaves similarly. A lot of work has already been done
in structural break tests on time series, and breakpoint detection in time series
has been widely studied in �elds such as econometrics and signal analysis. Most
research on time series of counts has been done in the recent years as evaluation
of these types of models are more computationally intensive.

We take a Bayesian approach to model �tting, and will assume that the
parameters of our models follow some distribution and adopt the use of the
integrated nested Laplacian approximation (INLA) scheme for model �tting. It
is assumed that all breaks happen at a distinct point in time. An alternative,
however out of the scope of this text, would be to let breakpoints follow some
probability distribution over the predictor space.
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1.1 Current approaches to breakpoint detection

Methods in breakpoint detection often take a frequentist approach. For break-
point detection in time series models, the cumulative sum (CUSUM) is one of the
most well known approaches. It was presented in Page (1954) and the method is
relatively �exible. Andrews (1993) and Tsay (1988) both develop statistics that
can be used to test for breaks using CUSUM. Brown et al. (1975) develop the
CUSUM and the CUSUM of squares test to �nd parameter instability in linear
models, basing the tests on the residuals of the model �t. For more complex
models tests based on ML-statistics are often used Hjort and Koning (2002)
and Zeileis and Hornik (2007) both develop techniques using ML-estimates of
parameters. Zeileis for instance applies the functional central limit theorem in
order to show convergence of some score function to a Brownian bridge. An
alternative is to take a Bayesian approach as Chen and Lee (2016) who uses
MCMC and bases model choice and splitting criterion on the DIC statistic.

Time series of counts are widely dealt with in econometrics such as in Winkel-
mann (2008). There are several di�erent techniques and model frameworks used
in breakpoints detection for count processes. Lee et al. (2016) develop a CUSUM
like residual test. Abujiya (2017) presents ways of transforming the intensity
approximation in a count processes to something that is approximately normal.
Doukhan and Kengne (2013) use a frequentist approach to �nd breakpoints
in the INGARCH model, they use the likelihood connected to the maximum
likelihood estimates of the parameters to split points and transform it to some-
thing asymptotically equivalent to a Brownian bridge. Chen and Lee (2016)
take a di�erent approach and applies MCMC with Metropolis Hastings to the
ZIGP INGARCH model to detect breakpoints, with zero-in�ation to handle
over-dispersion.

The text has the following structure. Section 2.1 and Section 2.2 explain
the model more in depth. Section 2.3 explains the INLA scheme. Section 3 and
Section 4 explain and test a framework based on INLA to detect change points.
To illustrate a possible application of the work in this text, real data is analyzed
in Section 5, and the text tests for breakpoints in the correlation structure of
the daily trading volume of the TSLA-stock1 . The data is displayed in Figure
2.

2 Latent Gaussian models and INLA

2.1 Model speci�cation

Among the simplest time series models is the autoregressive model of order 1,
denoted AR(1). This text will use the following model for the AR(1),

X1 = ε1 ∼ N(µ, σ2(1− ρ2)−1), Xt = ρXt−1 + εt (1)

εt ∼ N(0, σ2), 2 ≤ t ≤ n.

LetX = (X1, . . . , Xn)T . To ensure stationarity we restrict |ρ| < 1. The variance
of X1 is set to give constant variance at all times. The notation N(·, ·) means

1Trading data based on Tesla, Inc. (TSLA) from Yahoo! Finance https:

//finance.yahoo.com/quote/TSLA retrieved 27/04/2020 from https://www.kaggle.com/

timoboz/tesla-stock-data-from-2010-to-2020
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Figure 2: Display of the daily trading volume of the TSLA-stock. Trade volume
is a count value.

a Gaussian variable with speci�ed mean and variance. Noise terms, ε1, . . . , εn
are assumed to be zero-centered Gaussian and independently distributed. The
time series Xt could for instance represent the change of the price of a stock at
time t > 0 after some initial t = 0. The model would assume correlation to the
day before, with some added noise.

The goal of this text is to be able to detect breakpoints, for the aforemen-
tioned model there could for instance exist some 1 < T < n that alters the
model into,

Xt+1 =


ρ1Xt + ε1t, 1 < t ≤ T
ρ2Xt + ε2t, T < t

ε1, t = 1,

(2)

where ε1t ∼ N(0, σ2
1), ε2t ∼ N(0, σ2

2) and ε1 ∼ N(µ, σ2
1(1 − ρ21)−1), again as-

suming |ρ1| < 1 and |ρ2| < 1. In the case of the stock-market, some event
might have happened at T that changed the underlying price determining pro-
cess. More breaks can be introduced in a similar fashion. Note that vary-
ing number of breakpoints would give di�erent dimensional parameter space
to ease notation a models parameters will be denoted with the following θ =
(ρ1, ρ2, . . . , σ1, σ2, . . . ), the elements of θ will be assumed to follow some inde-
pendent distributions.

Figure 3a displays a time series without any breakpoints. Figure 3b illus-
trates a simulated case of (2) with a change in variance. Increasing the variance
gives larger di�erence between consecutive observations. In this case the break-
points segments the predictor space into two partitions. If one knows the value
of T it is easy to build that into the model, but if its position is unknown picking
a value for T might prove more di�cult. Another possibility is that correlation
of the time series varies, i.e. ρ11 6= ρ21 . A simulated case of this is displayed in
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Figure 3: Di�erent simulated AR(1) time series. a) No breaks ρ = 0.5, σ = 1.
b) change at T = 100 in variance σ1 = 0.25, σ2 = 1, ρ = 0.5. c) change at
T = 100 in correlation ρ1 = 0.5, ρ2 = 0.8, σ = 1.

Figure 3c. From Figure 3c we see that the increased correlation creates chunks
with high and low centered mostly around 0.

In many cases, however, it is favorable to assume that such a temporal model
is latent in some other process. This can be done when dealing with time series
of counts. A model could for instance be,

Yt|λt ∼ Poisson(λt), (3)

λt = exp(Xt),

where Xt is modeled as in (1) and where Y1|λ1, . . . , Yn|λn are independent and
Poisson distributed. Poisson(·) denotes a Poisson distributed variable with a
given intensity parameter. One says that the observations Y = (Y1, . . . , Yn)T

are conditionally independent given the intensity in the Poisson process and the
intensity is a latent AR(1) process. Here, the term, latent simply means that
the AR(1) time series is not directly observed. The text focuses on methods to
detect structural breaks in cases where one only observe Y.

Figure 4 displays possible observations based on simulations of (3). Even
though the time series is now wrapped in a Poisson distribution much of the same
as observed in Figure 3. Increased correlation gives chunks of highs and lows,
while increased variance gives larger di�erences and jumps between consecutive
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days. Note that the display in Figure 3 is the latent time series of the respective
realizations displayed in Figure 4. The model described in (3) has a hierarchical

Figure 4: Simulated time series of count with latent AR(1) following (3). The
latent time series are displayed in Figure 3. a) No breaks ρ = 0.5, σ2 = 1. b)
change at T = 100 in variance σ1 = 0.25, σ2 = 1, ρ = 0.5. c) change at T = 100
in correlation ρ1 = 0.5, ρ2 = 0.8, σ = 1.

structure and its probability structure is studied closer in the following section.

2.2 Latent Gaussian count model

Given a latent time series x with parameters θ the count process y would have
the following conditional probability density function,

π(y|x) =

n∏
t=1

e−λtλytt /yt!, (4)

by knowing what the latent time series is one knows each Yi up to some Poisson
distribution. Probability density functions (pdf) are denoted using π. For in-
stance π(y|x) denotes the point density function of the counts y = (y1, . . . , yn)T

given the latent AR(1) time series x = (x1, . . . , xn)T .
The variance and correlation in every i-th segment are assumed to follow

some priors π(σ2
i ) and π(ρi), respectively, and independence is assumed between

the two. So with m as the number of breaks, π(θ) =
∏m
i=1 π(ρi)π(σ2

i ) is the
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prior of θ. Choice of priors will be brie�y discussed in Section 2.4. From Bayes'
theorem and the law of total probability one has the following,

π(x,θ|y) =
π(y|x,θ)π(x|θ)π(θ)∫

π(y|x,θ)π(x|θ)π(θ)d(x,θ)
= kπ(y|x,θ)π(x|θ)π(θ), (5)

where k ∈ R is a normalizing constant.
We now specify each of the probability densities above, �rstly without breaks,

π(x|σ2, ρ) = φ(x1; 0, σ2(1− ρ2)−1)

n∏
t=2

φ(xt; ρxt−1, σ
2)

= (2π)−n/2σ−n(1− ρ2)1/2 exp

[
− 1

2σ2

(
(1− ρ2)x21 +

n∑
t=2

(xt − ρxt−1)2

)]

= (2π)−n/2σ−n(1− ρ2)1/2 exp

[
−1

2
xTQ(ρ, σ2)x

]
.

(6)

φ(·;µ, σ2) denotes the point density function of the normal distribution with
mean µ and variance σ2, the precision (inverse covariance) matrix is,

Q(ρ, σ2) =
1

σ2



1 −ρ

−ρ 1 + ρ2
. . .

. . .
. . .

1 + ρ2 −ρ
−ρ 1

 . (7)

Now introduce a breakpoint 1 < T < n into the latent model and change the
latent model into 2. This gives,

πT (x|ρ1, ρ2, σ2
1 , σ

2
2) = φ(x1; 0, σ2

1(1− ρ21)−1)

T∏
t=2

φ(xt; ρ1xt−1, σ
2
1)

n∏
t=T+1

φ(xt; ρ2xt−1, σ
2
2)

πT (x|ρ1, ρ2, σ2
1 , σ

2
2) =(2π)−n/2σ−T1 σ

−(n−T−1)
2 (1− ρ21)1/2

· exp

[
−1

2

(
σ−21 (1− ρ21)x21 + σ−21

T∑
t=2

(xt − ρ1xt−1)2 + σ−22

n∑
t=T+1

(xt − ρ2xt−1)2

)]
(8)

πT (x|ρ1, ρ2, σ2
1 , σ

2
2) = (2π)−n/2σ−T1 σ

−(n−T−1)
2 (1−ρ21)1/2 exp

[
−1

2
xTQ(ρ1, ρ2, σ

2
1 , σ

2
2)x

]
(9)

Q(ρ1, ρ2, σ
2
1 , σ

2
2) =

[
Q1(ρ1, ρ2, σ

2
1 , σ

2
2) A

AT Q2(ρ1, ρ2, σ
2
1 , σ

2
2)

]
(10)

Q1(ρ1, ρ2, σ
2
1 , σ

2
2) = σ−21



1 −ρ1

−ρ1 1 + ρ21
. . .

. . .
. . .

1 + ρ21 −ρ1
−ρ1 1 + σ2

1σ
−2
2 ρ22

 (11)
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Q2(ρ1, ρ2, σ
2
1 , σ

2
2) = σ−22



1 + ρ22 −ρ2

−ρ2 1 + ρ22
. . .

. . .
. . .

1 + ρ22 −ρ2
−ρ2 1

 (12)

A =

[
0 0
−ρ2 0

]
. (13)

Q is (n×n), Q1 is (T ×T ) and Q2 is (n−T )× (n−T ), while A is a T × (n−T )
matrix. For a situation with more change points we can easily extend this model
by introducing parameters σ2

3 , . . . , and ρ3, . . . in a similar fashion. Note that
both (6) and (9) are multivariate Gaussian centered around 0 with varianceQ−1.
Q is in both cases a sparse band matrix, because of the properties of AR(1)
models. With a traditional time series as response instead of a count values
(4) would change to the probability of the product of independent Gaussian
variables.

An option is to also allow for large jumps in the value of xT at a break.
This can e.g. be done by letting xt = µi + ρixt−1 + εit, where one assumes µi
to follow some Gaussian distribution. We, however, choose to focus on variance
and correlation changes here which are usually more di�cult to detect, and
considered to be nuisance parameters in the statistical model. Another potential
issue is that in cases with high correlation the time series can often seem jump
a consequence of a break in the value of µ.

2.3 INLA

A test for deciding whether or not to introduce a split could be based on the
marginals of the hyperparameters. This text will base hypothesis testing on just
that. We will either decide on splitting based on overall metrics of quality of �t
or base decisions on comparing posterior marginals as π(θ|y). To calculate these
we use the INLA scheme. A brief explanation on how INLA approximates the
posteriors, based on Rue et al. (2009),Martino and Riebler (2019), the homepage
of the INLA project (www.r-inla.org), and the documentation of the R library
will now be given.

Instead of simulating data the INLA scheme uses numerical approximation.
INLA builds on latent Gaussian models, where given some latent gaussian model
one assumes conditional independence of the response. The model described
in (3) is such a model, conditioned on the latent time series the response is
independent. As a consequence of (6) and (9) and from the fact that Q is
sparse, the model a perfect case for INLA, as model �tting is likely to be fast.
For models without breakpoint denote the hyperparameters with θ = (ρ, σ2)
and similarly θ = (ρ1, ρ2, σ

2
1 , σ

2
2) for models with break.

One aim of INLA is to �nd accurate descriptions of the hyperparameter
posteriors, in the case when (1) is latent that would be π(ρ|y) and π(σ2|y).
Another goal of the scheme is to approximate the marginal posteriors of the hy-
perparameters θ and the marginal posteriors of x. That will say to approximate
the following integrals,

π(xi|y) =

∫
π(xi|θ,y)π(θ|y)dθ, (14)

9
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π(θj |y) =

∫
π(θ|y)dθ−j , (15)

where θ−j is the vector θ with the j-th component removed.
To numerical approximate the posterior marginals each component in the

integrand needs to be approximated. We explain how the scheme goes forth in
doing so. Depending on whether or not there is a breakpoint one can insert (6)
or (9) to get,

π(x,θ|y) ∝ π(θ)|Q(θ)|n/2 exp

(
−1

2
xTQ(θ)x +

n∑
i=1

log π(yi|xi,θ)

)
. (16)

This can in turn be used to �nd parts of the integrands in (14) and (15). The
following approximation is used in creating the joint marginal posterior of the
hyperparamters,

π̃(θ|y) ∝ π(x,y,θ)

π̃G(x|θ,y)

∣∣∣∣
x=x∗(θ)

. (17)

π̃G(x|θ,y) is a Gaussian approximation to π(x|θ,y) built by matching the mode
and curvature at the mode x∗(θ). In short, π̃G(x|θ,y) can be looked upon as a
Taylor approximation to the second order around the mode, and is equivalent
to the Laplace approximation. With the above expression, and some more,
explained in the aforementioned papers �nding (15) is achievable.

Next the scheme creates an approximation of π(xi|θ,y) by using the same
trick,

π(xi|θ,y) ∝ π(y|x,θ)π(x|θ)π(θ)

π(x−i|xi,θ,y)
≈ π(y|x,θ)π(x|θ)π(θ)

π̃G(x−i|xi,θ,y)

∣∣∣∣
x−i=x∗

−i(xi,θ)

= π̃(xi|θ,y),

(18)
Laplace approximation is used at the mode to estimate the denominator, now
with xi �xed. The idea is then to investigate π̃(θ|y) at grid of θ and create the
approximations,

π̃(xi|y) =
∑
k

π̃(xi|θ(k),y)π̃(θ(k)|y)∆θ(k), (19)

where θ(k) is part of selected support points, ∆θ(k) being the distance in between
points. With the R INLA package implementing the above becomes a relatively
easy task.

2.4 Choosing priors

We base our discussion of priors on Simpson et al. (2015) and the INLA doc-
umentation. For the models �tted in this text INLA's default priors for the
AR(1) latent time series which are types of Penalized Complexity (PC) priors
are used. PC priors are used due to their �exibility. They have the form πξ(θ)
where ξ alter the complexity of the prior, changing the parameters for instance
allows a reduction of over-�tting.

The prior that is used for precision of the time series is on the following
form,

π(σ2) =
λ

2σ
exp(−λσ) (20)
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λ = − ln(α)

u
. (21)

The parameters of the model are u and α and its defaults are u = 1, α = 5e−5.
The idea is that the parameters alter the following probability,

P (σ > u) = α. (22)

For instance, increasing α keeping u constant increase the chance of a higher
variance in the latent time series.

The prior for ρ is,

π(ρ) = λ exp(−λψ(ρ))J(ρ), (23)

where,
ψ(ρ) = (− log(1− ρ2))−1/2 (24)

J(ρ) =
|ρ|

ψ(ρ)(1− ρ2)
(25)

λ = − log(α)/ψ(u). (26)

By default parameters u = 0, α = 0.15 are used. The idea is again to use
the prior and the parameters to alter the probability of large values of the
hyperparameter. In this case the idea is that the parameters of the PC prior
alter,

P (|ρ| > u) = α. (27)

3 Methods for change point detection

This text takes two approaches in structural break detection, the �rst is when
the quality of model �t varies, described in Section 3.1 and 3.2. The second
approach is to classify a break as to when the posterior marginals of a given
parameter over a break di�ers signi�cantly explained more in depth in Section
3.3.

Now that the model which will be used has been speci�ed, we now how
breakpoints will be identi�ed. It is required that each split node contains at
least 50 observation points. As a consequence, if one has a time series of 150
points one can only �nd breakpoints on observation point 50 to 100. This is
to ensure that the metrics has some chance on converging to their true values.
It will be assumed that breaks only happen in-between observation point, if
one has observations of trade volume over a span of 150 days, a break can i.e.
happen at the following days:

50.5, 51.5, 62.5, . . . 99.5. (28)

The method used is based on Algorithm 1. In the algorithm, the main idea is
to evaluate models at di�erent break points. One calculates metrics of model �t
at possible split points and compare the models with breaks to one without. It
is then evaluated whether or not to introduce a split found at the optimal split
point. To avoid �tting models at all possible split points smoothed splines are
used to create a estimation the value of the metric against the split points that
have not been evaluated. In Algorithm 1, k is the number of initial �ts and m

11



Algorithm 1 Find most likely break point

1: Fit initial modelM0 assuming no break point.
2: Fit initial modelsM11,M1k assuming breaks at p1, . . . pk respectively.
3: With some metric calculated using a function, f : M0,M1i → d, �t a

smoothing spline.
4: for i in 1, ...,m do

5: Fit a new model M1(k+i) At the best possible not searched point pk+i
estimated from spline.

6: Update the smoothed spline.
7: end for

8: Return the found model for the best split point.

is the number of spline model �ts done. In the simulations in the later section
k = 50 split points are initially calculated and used to create a smoothed spline.
One then �t and calculate the metric value at the estimated maximum of the
spline. This is repeated m = 25 times. The point with the optimal metric value
that favor splitting will be deemed as the best split point.

A brief summary on the theory behind smoothing splines based on James
et al. (2013) is given. Assume one has observed pairs of (xi, yi) and wants to
�nd a g(x) such that g(xi) ≈ yi is as good as possible smooth approximation.
Choose to �nd g(x) by minimizing,∑

(yi − g(xi))
2 + λ

∫
g′′(t)2dt, (29)

where λ > 0 is a tuning paramater. James et al. (2013) gives that this is
equivalent to �tting a natural cubic spline with knots at each observation point.
An example of how a spline if �tted is displayed in Figure 5. When hypothesis

Figure 5: Spline �t (black) against �tting at all split points (red), dots are
�tted models in the spline case. a) Case with break in correlation with T =
250. ρ1 = 0.5, ρ2 = −0.5, σ = 1. b) Case without break ρ1 = 0.5, σ = 1.

H0 is true the parameters stable across the whole predictor space and thus
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introducing a breakpoints should at least asymptotically have no e�ect on the
metric as the estimated parameters should be the same. This is re�ected in
Figure 5b. If hypothesis H1 is true likelihood at the correct split point would
be higher than without one, and the likelihood would have a maxima similar
to that of a) in Figure 5. The metric seems to be good at identifying splits, at
least in the simulated case displayed in the �gure.

In practice decision boundaries for the di�erent metrics when deciding on a
split will be simulated. Algorithm 2 describes how this threshold is found in the
real data application. In the real data application we use k = 25.

Algorithm 2 Simulate a decision boundary.

1: Fit a modelM0 assuming there is no break point using observation data y.

2: Fit a modelM1 at optimal break point using observation data y as described
in Algorithm 1.

3: Using found model parameters inM∗0 simulate data y∗1, . . .y∗k assuming that
there is no break point.

4: Fit modelsM∗01, . . .M∗0k on y∗1, . . .y
∗
k assuming no break.

5: Fit models M∗11, . . .M∗1k on y∗1, . . .y
∗
k assuming break at same points as

M1.
6: Using model pairs (M∗01,M∗11), . . . calculate metrics d∗1, . . . d

∗
k and use these

to estimate a con�dence interval for the metric.
7: Using model pair (M0,M1) calculate metric d.
8: If d is outside of the con�dence interval decide on splitting, else decide on

not introducing a split.

3.1 Model comparison using marginal likelihood

The main metric we use to compare models is the marginal likelihood. It is com-
monly used in comparing Bayesian models and with the INLA-package evaluat-
ing the marginal model likelihood is also quite fast. Hubin and Storvik (2016)
discuss the use and calculation of marginal likelihoods in the INLA-package, but
in short INLA estimates the marginal likelihood by approximating the following,

p(y) ≈
∫

π(y,θ,x)

π̃G(x|y,θ)

∣∣∣∣
x=x∗(θ)

dθ, (30)

the integrand here is made up of parts that are already calculated by the frame-
work. Furthermore, as p(y) is the normalizing constant in (17), there is little
additional work that needs to be done to evaluate the marginal likelihood.

When comparing models using marginal log likelihood we use the following
statistic:

LR = log p1(y)− log p0(y), (31)

where p0(y) is the marginal log likelihood of the model assuming that there is
no break, and p1(y) is the marginal log likeliood of the model assuming there
is a break. A high value of LR would mean that the model with break is more
likely, and that we should consider including a breakpoint. Figure 5 displays
realizations of splines �tted with marginal log likelihoods.
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3.2 Splitting by using the deviance information criteria

Another common metric to used when comparing Bayesian models is the De-
viance information criteria (DIC). Chen and Lee (2016) for instance uses this
approach when evaluating a split. The DIC is a measure of complexity and �t,
and can be written as,

DIC = D̄ + pD. (32)

The metric is presented in Spiegelhalter et al. (2002). D̄ is the posterior mean
of the deviance, and pD is the e�ective number of parameters. So smaller values
of DIC is preferred. With INLA it is easy to produce the DIC metric as the
DIC is a few calculations a way from the calculations in the INLA scheme. In
our simulation study we test how well DIC functions as a splitting criteria.

When comparing models using DIC we use the following statistic,

d = DIC1 −DIC0, (33)

where DIC0 is the DIC of the model assuming that there is no break, and DIC1

is the DIC of the the model assuming there is a break. An idea is to accept a
split when d < 0, similarly to what is done in Chen and Lee (2016). However, we
experienced that doing this gave relatively unstable results, and we thus decide
on simulating the decision boundary.

3.3 Splitting based on marginal posteriors

As the marginal posterior densities of the hyperparameters are found, an idea
could be to compare the posterior densities of the di�erent nodes. A thought
would be to use Kullback Leibler divergence as a metric for di�erence, it is
described in Kullback (1968) and can be written as,

kbl(p(θ), q(θ)) =

∫
p(θ) log

(
p(θ)

q(θ)

)
dθ. (34)

p(θ), and q(θ) would be the marginal posteriors of the hyperparameter θ that we
want to compare at di�erent nodes. A large value would mean large di�erence
between the two. However, in our case these point densities often take the value
of something close to 0, making the aforementioned metric di�cult to handle.

As a consequence we choose to use the L2 norm as an alternative in com-
paring the marginal posteriors. Using,

d = ||p(θ)− q(θ)||22 =

∫
(p(θ)− q(θ))

2
dθ (35)

as a metric. In both cases decide on whether or not a split is made when the
statistic above is over a given threshold, in practice this threshold is found by
simulation. It is expected that this metric will perform relatively well in cases
with large di�erences. However, it is likely that it will struggle in cases where
there are small di�erences between the parameters.

4 Simulation Study

We now want to test how well our method fares, and want to compare di�erent
decision metrics that can be used. In section 4.1 we check the model behaviour
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for a single simulation case using marginal log likelihoods as a split metric. In
section 4.2 and in section 4.3 we check how well the methods presented earlier
perform at �nding breakpoints.

4.1 Breakpoint detection on simulated data

In Figure 6 breakpoint detection with the method described above is applied
on simulated data, marginal likelihood is used as a criteria for splitting and the
best change point is accepted without any further testing. The simulated case is
with a break in correlation and the following parameters are used ρ1 = 0.5, ρ2 =
0.8, σ = 1, T = 100. The latent AR(1) is the realization displayed in Figure 4c.
The estimated 95% credible intervals are displayed both for the latent AR(1)
and for the response. The model �t seems to �t the true data well, the true
latent AR(1) is mostly within the 95% credible band and the found split is close
to the true split value. Furthermore the marginals of the hyperparameters seem
to be centered around their true values, which indicated a good model �t. The
model does not seem to over �t the data, so the complexity of the PC prior does
not need to be changed.

4.2 Finding structural change in correlation with constant

variance

Assume now a time series with count data is given. The null hypohtesis on
the data is that it follows the setup described in (1), but one want to test if
(2) describes the data better, more speci�cally the hypothesis are, H0 there is
no breakpoint and H1 there is some breakpoint 1 < T < n where correlation
changes. We want to see how well the methods described in Section 3 performs.
We simulate data for both when H0 is true and for when H1 is true. We use the
results from H0 to estimate a decision boundary for the di�erent metrics, and
test how it performs in detecting splits when applied to data simulated when H1

is true. The numbers of count observations are n = 150, 300, 500, 1000. When
H1 is true we set the break-point to be bn/2 + ue where u ∼ Uniform(0, 10).
We run 500 simulations assuming H0 to be true, and 500 cases assuming H1 is
true. We evaluate how decision metrics based on the 0.95 quantile of the H0

data (0.05 when using DIC) would fare when applied to the H1. We then look
at the Type II error. We calculate the LR di�erence, DIC di�erence, and the
L2 norm di�erence of posterior marginals of the correlation hyperparameters
and use them as metrics to detect breakpoints. The parameters we simulate
are displayed in Table 1 and the results are displayed as estimated density plots
for the di�erent metrics, parameters in Figure 7, Figure 8, Figure 9 and Figure
10. Note that the in the display blue represent cases when synthetic data is
generated when H0 is true and green when H1 is true.

We study the results and �rst turn to Figure 7 to see how marginal log
likelihood performed as a splitting criterion. For the easiest cases (a-d) the
method seems to perform quite well. The densities with break and without
break di�er consistently from each other, indicating that the metric have high
enough resolution to spot the cases from each other. For n = 150 it seems to
have high power, and for n ≥ 300 it reaches powers close to 1. The same is
the case for the medium cases (e-h). However, for the more di�cult cases (i-l)
power is quite low and does not seem to to increase before one have n = 1000
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Table 1: Parameters used in simulation, di�culty increases with rows

H0 true (σ
2 = 1) H1 true (σ

2 = 1)
ρ0 ρ1 ρ2
0.75 -0.5 0.75
0.5 -0.5 0.5
0.75 0.5 0.75

observations. Turning to Figure 7 and the DIC the same seems to be the case,
the splitting criterion however performs somewhat better at the di�cult cases
with low observation counts (i-j). The L2 norm, displayed in Figure 9 seems to
perform consistently bad in all cases and achieves low levels of power.

We also include a plot that displays the absolute distance in between the
mode of the posterior marginals when �tting a model with breakpoint, dis-
played in Figure 10. For each model �t simulation this e�ectively is the distance
between the modes of the posterior densities equivalent to those displayed in
Figure 4.1d). We include this display to ensure that model manages to re�ect
the true data. From looking at Figure 10 it seems that the models capture the
real distance between the hyperparameters. With data generated under H0 dis-
tances are close to 0 and in cases when H1 is true the distances seem to re�ect
the real parameter di�erence. In cases with large di�erence as the easy and
medium case (a-h) the distances are large, while in more di�cult cases (i-l) the
model struggels di�erentiating the two hyperparameters.
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Figure 6: Breakpoint detection with marginal likelihood as split metric. Simu-
lated case with break in correlation, ρ1 = 0.5, ρ2 = 0.8, σ = 1, T = 100. Case
is same as Figure 4c. Display with 95% con�dence (skyblue), posterior mean
(dashed blue) and the true values (black). a) Time series of counts. b) La-
tent AR(1). c) Marginal log likelihood with split at t. True break displayed as
vertical red line, found break is vertical blue line. d) Marginal posterior of the
correlation parameter with 95% con�dence and mode, left of break is blue, right
of break is purple.
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Figure 7: LR of simulations with �xed variance and changing correlation. Each cell display estimation of density of the metrics for
simulation with break (green) and without break (blue). Parameters become more di�cult to resolve by increasing row. Higher observation
count with increased columns. Display 95% quantile of density in cases without break and use it as decision boundary (red vertical line).
Applying this boundary on cases with breakpoint the power of the method is estimated.
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Figure 8: DIC di�erence of simulations with �xed variance and changing correlation for di�erent parameters. . Each cell display estimation
of density of the metrics for simulation with break (green) and without break (blue). Parameters become more di�cult to resolve by
increasing row. Higher observation count with increased columns. Display 5% quantile of density in cases without break and use it as
decission boundary (red vertical line). Applying this boundary on cases with breakpoint the power of the method is estimated.
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Figure 9: Distribution of L2 distance between marginal posteriors of hyperparameters in simulations with �xed variance and changing
correlation. . Each cell display estimation of density of the metrics for simulation with break (green) and without break (blue). Parameters
become more di�cult to resolve by increasing row. Higher observation count with increased columns. Display 95% quantile of density in
cases without break and use it as decission boundary (red vertical line). Applying this boundary on cases with breakpoint the power of
the method is estimated.
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Figure 10: Distribution of distance between mode of marginal posteriors of hyperparameters in simulations with �xed variance and
changing correlation.
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4.3 Finding structural change in variance with �xed cor-

relation

We now want to test how the di�erent methods presented in Section 3 fare when
there is a structural change in variance and �xed correlation. Again, the model
follows the setup described in (1), but we want to test if (2) describe the data
better. More speci�cally we again test how well our method is at �nding which
of the hypothesis H0 there is no breakpoint and H1: there is some breakpoint
1 < T < n where variance changes is true. The parameters used are displayed
in Table 2, other than that the setup is equivalent to the simulations in section
4.2. The results are displayed in Figure 11, Figure 12, Figure 13 and Figure 14.

H0 true (ρ = 0.8) H1 true (ρ = 0.8)
σ2
0 σ2

1 σ2
2

0.25 0.25 1
0.5 0.5 1
0.8 0.8 1

Table 2: Parameters used in simulations, becomes increasingly more di�cult by
increasing row number.

Turning to the results, we �rst study the display in Figure 11 and the
marginal log likelihood. Marginal likelihood seems to performs worse compared
to the results in the last section. Power drops in the medium case, and you
are dependent on having a lot of observations for it to be high. In the most
di�cult cases the metric struggles at separating the cases with a break from
the cases without, the density plots (k-l) seems to match completely. Turning
to DIC and Figure 12 much of the same seems to be the case. However, the
metric performs somewhat better in the medium cases (e-h) compared to the
marginal likelihood. Lastly we turn to Figure 13 where we used the L2 norm
as a metric, compared to the two earlier metrics the L2 achieves higher power
levels in nearly all cases.

A plot the absolute distance between the mode of the hyperparameters mode
when �tting a model with break point in Figure 14 is also included. There only
seem to be a slight di�erence in the models between the cases when H0 is true
and when H1 is true for the more di�cult cases, explaining the low power levels,
as our break point models only seemed to be able to capture the real di�erence
in a few cases.
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Figure 11: LR of simulations with changing variance and �xed correlation. Each cell display estimation of density of the metrics
for simulation with break (green) and without break (blue). Parameters become more di�cult to resolve by increasing row. Higher
observation count with increased columns. Display 95% quantile of density in cases without break and use it as decision boundary (red
vertical line). Applying this boundary on cases with breakpoint the power of the method is estimated.
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Figure 12: DIC of simulations with changing variance and �xed correlation. Each cell display estimation of density of the metrics for
simulation with break (green) and without break (blue). Parameters become more di�cult to resolve by increasing row. Higher observation
count with increased columns. Display 5% quantile of density in cases without break and use it as decision boundary (red vertical line).
Applying this boundary on cases with breakpoint the power of the method is estimated.
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Figure 13: Distribution of F2 distance between marginal posteriors of hyperparameters in simulations with �xed variance and changing
correlation. Each cell display estimation of density of the metrics for simulation with break (green) and without break (blue). Parameters
become more di�cult to resolve by increasing row. Higher observation count with increased columns. Display 95% quantile of density in
cases without break and use it as decision boundary (red vertical line). Applying this boundary on cases with breakpoint the power of
the method is estimated.
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Figure 14: Distribution of distance between mode of marginal posteriors of hyperparameters in simulations with changing variance and
�xed correlation.
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5 Real data application: Detecting breaks in cor-

relation structure of trading volume

We now turn to real data application, and breakpoint detection in daily trading
volume of the TSLA-stock. Trading volume is a measure of how many stocks
have been traded in a day. We only look at a segment of the data set, with data
after late 2013. The TSLA stock is the stock of the american car producer Tesla
and is registered on the NASDAQ stock exchange. The data was retrived from
Kaggle. Kaggle is a repository for data sets that can be used in data science and
machine learning. The method is applied to check for breaks in the correlation
structure in day dependence of the trading volume. A recursive approach is
used to detect breaks is implemented, it can be described in two steps,

1. Detect a change point and test for signi�cance using Algorithm 1 and
Algorithm 2. Use parameters for initial �t without breakpoints as base
for H0. If not signi�cant at 0.95 signi�cance stop the search.

2. Split the time series in two at found break and start from step 1. using
the smaller pieces.

For each partition we do 50 initial break evaluation, this is followed by 25
evaluations where we maximize spline �ts based on marginal log likelihood,
variance is �xed to what is observed in the initial �t. (In this case σ2

0 = 1/3.226).
Algorithm 2 is used with 25 repetitions at step 1. and the 95-th quantile is used
for deciding whether or not to introduce a split.

Running the above method on the trade volume data yields two signi�cant
breakpoints, the change points found are displayed in Figure 15 Considering

Figure 15: Detected breakpoints in daily trading volume data. Red vertical
lines indicates detected breakpoint.
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Figure 16: Marginal likelihood given change point when applying breakpoint
detection data on the TSLA-stock trading volume data. Found breakspoints
are displayed as vertical lines.

the number of days we have data from it is surprising how stable levels the
correlation seems to be. The mode of the found correlation coe�cients for the
respective parts in the �nal model were ρ1 = 0.555, ρ2 = 0.443 and ρ3 = 0.564.
The �rst and the third segment of the count observations seem to match by
having relatively equal correlation, while the second has lower levels of correla-
tion between days. We also note, indicated from the simulations, that we are
in area of correlation di�erences where we have power that likely is far under
50%, which hurts our ability to detect more change points, and potential other
breakpoints might pose as false negatives.

Figure 16 displays the likelihood given a breakpoint at a given position for
the di�erent searches. In general these seems relatively �at except a few spikes,
this indicates that there are no more breaks as earlier sections discuss. We
also display the mode of the estimated latent AR(1) time series in Figure 17,
it seems to mirror the count data, with that the latent AR(1) might be a bit
over�t. A possibility to improve the model is thus to change the PC prior used
for correlation, we however doubt that doing this would have any signi�cant
e�ect on the detected breakpoints.

6 Discussion and conclusion

There are plenty of ways to discover and classify breakpoints in time series of
counts. The methods implemented in this text seemed to perform relatively
well and achieved high power for the easiest and medium di�cult cases. The
marginal likelihood and the DIC statistic proved to be the best at detecting
change in the correlation structure and comparing posterior marginals for the
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Figure 17: Latent AR(1) in �nal model with breakpoints of TSLA trade volume
model. Found breakspoints are displayed as vertical lines.

variance parameter with the L2 norm seemed to be best at detecting breaks in
variances.

The method naturally performed worse when breaks were small. A possible
remedy to this could be to assume that parameters in di�erent partitions are
from same distribution but of di�erent samples. This might allow detection of
�ner di�erences. Another extension of the method would be to test for both
changes in variance and structure at the same time.

The method implemented is relatively slow and could be improved by rewrit-
ing the INLA scheme to utilize that one does several evaluations with data that
only di�ers by some summation. This could for instance be done by dynami-
cally storing point likelihoods as these are the same, in our implementation these
were also revaluated at each break test. Another option might be to cut any
calculation of posteriors of the latent variables and only calculate the posterior
marginals of the hyperparameters.

On the real data application, the method produced reasonable breaks, but
again might have been too strict in allowing for breaks. An improvement on the
recursive partitioning could also be done by considering family wise error rate.

One could introduce some way of connecting areas where parameters are
similar, i.e. in the TSLA stock case trading might occur in the same pattern
after a product release or some similar event that causes trading pattern to stay
the same. A possibility is to create a time series that assumes that these periods
follow the same model and to use that to improve parameter estimation. A less
strict version of this is to say that parameters in these periods come from the
same distribution.

Time series is of course not the only model type that breakpoint detection
can be applied to. Robert B. Gramacy and Lee (2012) for instance create a
framework for detecting breakpoints in Gaussian Processes using MCMC. While
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Zeileis et al. (2002), Zeileis (2006) and Zeileis and Hornik (2007) create a more
general breakpoint detection method. An idea could be to apply the methods
presented here on other types of models.
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