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Abstract

This Bachelor’s thesis is submitted for the course MA2002 at NTNU which is 15 credits
over one semester.

In this thesis we discuss how to do linear regression when the data is collected using a
complex sampling design. We use a different paradigm from classical regression, where we
assume an infinite population and that the response observed for each individual is random.
Here, we instead acknowledge that the population is finite and assume the value of each
individual is fixed and the randomness arises from which individuals are included in the
sample. The major issues are accounting for different sampling designs to prevent bias and
incorrect uncertainty estimates.

We explain three different sampling techniques: the first sampling technique we look at
is a Simple Random Sample. First, we choose the size of the sample. Then we let each
possible subset of the population, of that sample size, have the same probability of being
chosen as the sample. A Simple Random Sample has the advantage that all the sampled
units are independent. The second sampling technique we look at is stratification. Here
we split the population into a partition and sample independently from each subset. This
allows us to get independent regression lines from each subset. The third sampling technique
we look at is clustering. Here we again split the population into a partition, but instead of
sampling from all subsets of the partition we instead sample only from some of the subsets,
chosen by taking a sample of the subsets. Clustering is used to reduce costs when doing
surveys. Often the clusters are geographical areas, which means that sampling only inside
some subsets allow us to save travel time. When performing large surveys, these techniques
are usually combined into what is called a complex survey. For example, by first doing
stratification on the whole population and then using clustering inside each subset.

If the sampling units inside the strata are similar, then stratification will reduce the
uncertainty compared to a SRS of the same size. With clustering, however, we usually get
larger uncertainty, as units inside clusters are usually more similar than units across clusters.
This causes the sample to carry less information than a non clustered sample. This leads to
hypothesis tests regarding the regression line having less power and the prediction intervals
to become larger. The non-linear nature of the regression coefficients means that estimating
their variance becomes complicated. We therefore show an approximation technique called
linearization.

Denne bacheloroppgaven er en del av emnet MA2002 p̊a NTNU, som er 15 studiepoeng
over ett semester.

I denne oppgaven diskuterer vi hvordan man gjør linear regresjon n̊ar et komplekst
utvalgsdesign er brukt for å samle inn dataene. Vi bruker et annet paradigme enn i klassisk
regresjon hvor vi antar en uendelig populasjon og at hver observerte verdi er tilfeldig. Her
aksepterer vi istedenfor at populasjonen er endelig og antar at hver respons er fastsatt og
det tilfeldige kommer fra hvilke individer som er med i utvalget. De største problemene
er å ta hensyn til de forskjellige utvalgsdesignene for å unng̊a bias i resultatene, samt feil
variansestimater.

Vi skal g̊a gjennom tre ulike utvalgsteknikker: Den første utvalgsteknikken vi ser p̊a er
en SRS. Her velger man først størrelsen p̊a utvalget. S̊a lar man hvert mulige utvalg, med
den valgte størrelsen av populasjonen, ha samme sannsynlighet for å bli valgt. En SRS har
fordelen at alle individer i utvalget er uavhengige. Den andre utvalgsteknikken vi ser p̊a
er stratifisering. Her deler vi populasjonen i en partisjon og gjør et uavhengig utvalg fra
hver delmengde. Dette gjør at vi kan lage uavhengige regresjonslinjer for hver delmengde.
Den tredje utvalgsmetoden vi ser p̊a er klyngeutvalg. Her deler vi igjen populasjonen inn
i en partisjon, men istedenfor å gjøre et utvalg fra alle delmengdene gjør vi bare et utvalg
fra noen av dem, valgt ved å gjøre et utvalg av delmengdene. Klyngeutvalg er brukt for
å redusere kostnadene ved å gjøre utvalg. Ofte er delmengdene geografiske omr̊ader, som
betyr at å bare gjøre utvalg innen noen delmengder sparer reisetid. N̊ar man utfører store
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undersøkelser er ofte disse metodene kombinert til det som kalles en kompleks undersøkelse.
For eksempel gjør man ofte først stratifisering p̊a hele populasjonen, og s̊a bruker man
klyngeutvalg innen hver delmengde.

Hvis individene innen delmengdene i stratifisering er like s̊a vil stratifisering redusere
usikkerheten i estimatene sammenlignet med en SRS av samme størrelse. Ved klyngeutvalg,
derimot, vil vi som regel f̊a større usikkerheter i estimatene ettersom individene inne i
delmengdene ofte er mer like enn individer p̊a tvers av delmengdene. Dette gjør at utvalget
inneholder mindre informasjon om populasjonen enn et ikke-klusteret utvalg. Dette fører til
at hypotesetester ang̊aende regresjonslinjen for lavere styrke og at prediksjonsintervallene
blir større. Det at regresjonskoeffisientene er ikke-lineære uttrykk gjør at variansestimasjon
er komplisert. Vi viser derfor en approksimasjonsmetode som heter linearisering.
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Figure 1: Illustration of residuals. The red line is a regression line. The dis-
tances between the points and the line are illustrated by the vertical black lines.
https://upload.wikimedia.org/wikipedia/commons/e/ed/Residuals for Linear Regression Fit.png

1 Introduction

Linear regression is a useful tool to describe relationships between variables. When we want to
investigate possible associations, linear regression is one of the most common tools we use. It can
be used to show correlation between variables, and in some cases, where experiments are designed
very carefully, it can even suggest causation. It can, for example, be used in the social sciences
to try to show a relationship between income and age of death. In simple linear regression, we
want to determine the line that best describes the relationship between the predictor and the
response. Since the relationship is usually not exactly linear, there is almost always some noise
around the line, which gives us residuals, the vertical vectors that are between the points and
the linear line. The residuals are illustrated in Figure 1. If the relationship was exactly linear we
would just need to sample two individuals, with different predictor values, to find the regression
line. When doing linear regression, the goal is to find the line that minimizes the sum of the
residuals squared.

Since we are doing measurements on a real population, it is also finite. If we knew the
measurements for the whole population, there would be no uncertainty. In that case we could
just calculate whatever quantity we wanted, including the regression intercept and slope. When
we generalize from a sample to the whole population, however, we get uncertainty because we
can never know the values of the individuals not in the sample. There are different approaches of
modeling this uncertainty, and which method we should choose depends on what we know about
the data. For example, which methods were used in collecting the data? What is the probability
of each individual being included in the sample? Are the individuals sampled independently?

One approach to model the data is called the model based approach and is based on the
fact that we usually sample from large populations. We assume that the relationship between
the predictor and the response is split in two: a linear deterministic part and a stochastic part
representing the error, which can be described by a continuous distribution. We assume that
the population is large enough that the probability of sampling the same unit again if we take
a new sample is negligible. This allows us to assume that when we sample an unit, the residual
can be thought of as being sampled from the distribution. We can use the structure from this
assumption to model the uncertainty of the coefficients and predictions. The only thing we
need to know about the data collection method is the fact that the individuals were sampled
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independently. In the model based approach, we assume there exists a line representing the
deterministic part of the relationshiop between the predictor and response. Our goal is to use a
sample of the population to get a estimate of the true line. The assumption that the probability
of sampling the same unit again is negligible if we resample is often not realistic, however, nor
the fact that the residuals follow a distribution. This motivates another approach to model the
data.

A, perhaps, more realistic approach to modeling the data is to assume that the responses are
fixed, in which case we can not pretend to be drawing values from a distribution. To model the
uncertainty in this approach, we look at the sampling probabilities, i.e, the probability of each
individual being included in the sample. Or, said another way, the random part of the model is
who is sampled as opposed to the values of the sampled units. Knowing the sampling probabilities
is enough to estimate the regression intercept and slope, but to estimate the uncertainties, we
also need information regarding how the sample was collected. Using this type of information,
and the fact the the random part is now who is in the sample, is called a design based approach.
The design based approach requires more information about the sampling scheme than the model
based approach. The estimated variances with a design based approach are often larger than
when using a model based approach. This is because the assumption that the residuals are drawn
from a specific distribution gives a lot of extra structure. In the design based approach our goal
in regression is to find the line minimizing the residual sum of squares for the whole population.

The population we are sampling from could be heterogenuous, i.e, different parts of the
population have very different response values. Say, for example, we want to find the mean
income of residents of Oslo. When sampling, we could risk getting only people living in the west
part of Oslo, which is the most wealthy area of the city. This would result in the estimate being
much higher than the true mean income of the residents of Oslo. To fix this, we could split
the city population into subsets; one for each city district. We can then sample from each of
these districts independently. Doing that, we are guaranteed to get a sample including people
from different parts of the city, and therefore more likely to get correct estimates. This can
dramatically decrease the uncertainty of the estimates when the subsets are chosen smartly.
Doing this also allows us to make separate estimates of the quantity of interest for different parts
of the population, i.e, we could make a separate estimate of the mean income for each city district
in addition to the estimate for the city as a whole. This method is called stratification.

Another potential problem is that researchers are often on a limited budget, and it can be
expensive to sample randomly from the whole population. Say, for example, that each sampled
individual requires a visit from an interviewer. If the sample is spread randomly in the country,
this can get expensive as the interviewers would need to use much time to travel. One often
solves this by splitting the country into geographic parts, for example municipalities, and then
randomly choose some municipalities to sample people from. One then pick independent samples
from the chosen municipalities. This has the advantage that it saves travel time, and, therefore,
makes it cheaper to conduct the survey. The problem with this approach, however, is that the
sampled units become dependent since we sample from only some municipalities. This results in
larger variances. This can be remedied by the fact that we can sample more individuals inside
just some municipalities for the same cost as having a smaller sample from the whole population.
This is called clustering.

We often combine stratification and clustering, which results in complicated sampling schemes
where we, for example, first cluster on municipalities, then within each municipality we may, for
example, split the population by age and sample from all the age groups. Because this gets
complicated, it is often difficult to find explicit formulas for the variance, and we usually have
to estimate the variance instead. The fact that we have a finite population, also influences the
variance, since we get something called the finite population correction. This is a factor 1− n

N ,
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where n is the size of the sample and N is the size of the population. This factor takes into
account the fact that as we get a larger and larger sample we can learn everything about the
population, and therefore the variance goes to zero.

This thesis shows how to fit a linear regression model when data is collected through a complex
survey design, i.e, a survey including unequal sampling probabilities, stratification and clustering.
To do analysis in these cases weights are used. Each observation gets a weight value which can
be interpreted as the number of individuals in the population that observation represents. So a
unit with a small chance of being included in the sample would have a larger weight than a unit
with a high chance of being included. In classical regression each individual in the population
has the same chance of being included so each observation therefore has the same weight.

We start with an example illustrating what can go wrong if the design used in collecting the
data is not taken into account.

Example 1. We use a dataset from a study of the relationship between the length of a persons left
middle finger and their height. The researcher oversampled short people and undersampled tall
people. The dataset contains 200 samples, each containing the length of the persons left middle
finger (cm), their height (cm) and the probability that they would be chosen for the sample.

To illustrate the difference, the top left plot in Figure 2 shows a random sample where every
person had an equal chance of being included. While the top right plot in Figure 2 shows the
sample where short people had a higher chance of being included than tall people. The observations
in the right panel are much more concentrated in the bottom. This means that fitting a linear
regression model to the unequal probabilities sample will result in the slope being smaller than it
should be.

The bottom row of Figure 2 illustrates the difference between classical regression, assuming
a normal distribution for the residuals, and regression taking the sampling probabilities into
account. The bottom left plot shows regressions based on a sample where every person has the
same probability of being included. We can see only one regression line in this plot, this is because
both regression lines are exactly equal in this case. In the bottom right plot of Figure 2, we see
there are two different lines: the red line is from classical regression while the blue line is from
regression taking sampling probabilities into account. The shaded areas represent 95% prediction
intervals. We can see that the red line seems to fit the sample better than the blue one which
seems too steep. This is because the blue line takes the oversampling of people with short fingers
into account. The blue line is almost identical to the regression line in the bottom left plot, which
has no bias from unequal sampling probabilities.

These differences show that it is important to take the design of the survey into account when
analyzing the data, because classical linear regression can give misleading estimates.

The rest of the thesis focuses on a dataset on the performance of students in schools in
California. The dataset has data on all 6194 schools that have more than 100 students in
California. The data collected includes: API scores in 1999 and 2000, which level of school it
is (elementary, middle, high), name of school, location of school, percentage of students tested
at the school, API targets, economic factors for students at the school, class sizes, information
of education of parents and qualification of teachers. Each school gets a API score, which is a
metric quantifying the academic performance of the students at the school. We will use this data
as the population we will sample from, and we will take different kinds of samples to illustrate
the concepts introduces in this thesis. See ((Lumley, 2010, Section 1.2)) for more details on the
dataset.

In this thesis we will use the “survey” package in R to make computations, Lumley ((2020)).
Section 2 will give a overview of model based simple linear regression, which is assumed known

and only a brief repetition will be given. Section 3 will explain how to do linear regression in
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Figure 2: The top row shows the two samples from the finger length versus height dataset. The
top left plot shows a sample where everyone has the same chance of being included in the sample.
The top right plot shows a sample where people with short fingers are oversampled. The bottom
row shows estimated regression lines based on the samples. Each bottom plot shows estimated
regression lines for the sample in the plot above. The red lines are estimated regression lines using
classical regression while the blue lines are estimated regression lines taking the probabilities of
being included in the sample into account. The shaded areas represent the 95% prediction
intervals. Observe that in the bottom left plot the two approaches agree while in the bottom
right plot, they do not agree.
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the context of finite populations using survey statistics. Section 3.1 explains the general theory
behind regression in finite population, while Section 3.2 will show how to do linear regression
when we have a Simple Random Sample. Section 4 talks about estimating quantities with
more complex survey designs: Section 4.1 will go through estimation when we have a sample
using stratification. Section 4.2 will explain estimation when we have a sample using clustering
and Section 4.3 will show how to do estimation when we have surveys combining stratification
and clustering into a complex survey. Section 5 is about estimating the variance of non-linear
expressions, while Section 6 is the discussion.

2 Classical simple linear regression

In classical simple linear regression, each observation i consists of a response variable, yi, and a
predictor, xi for i = 1, ..., n, where n is the number of observations. The relationship between
the response and the covariates is assumed to be

Yi = β0 + β1xi + εi, i = 1, . . . , n,

where ε1, ε2, . . . , εn are stochastic variables describing the error. The intercept, β0, and the slope,
β1, are constants that describe the deterministic part of this relationship. We do not know the
values of β0 and β1, so we have to estimate them from observed data points.

We call the data points (x1, y1), (x2, y2)...(xn, yn). To estimate the deterministic part of the

relationship we want to find estimators β̂0 and β̂1 that minimize the Residual Sum of Squared
(RSS). The RSS is defined by

RSS =

n∑
i=1

(yi − ŷi)2 =

n∑
i=1

(
yi − β̂0 − β̂1xi

)2
.

RSS can be geometrically thought of as the sum of the squared distances of the data points in
the sample from the regression line, see Figure 1. We want the line to follow the linear trend in
the sample as closely as possible, and minimizing the RSS is one way to find a close line.

The estimators β̂0 and β̂1 that minimizes the RSS are

β̂1 =

∑n
i=1 (xi − x̄)Yi∑n
i=1 (xi − x̄)

2 , (1)

β̂0 = Ȳ − β̂1x̄, (2)

where x̄ = 1
n

∑n
i=1 xi and ȳ = 1

n

∑n
i=1 yi. ((Larsen and Marx, 2012, Chapter 11))

Assume the following conditions:

1. E (εi) = 0 ∀ i = 1, 2, ..., n

2. Var (εi) = σ2 ∀ i = 1, 2, ..., n

3. All the ε are independent of any predictor or observation number.

4. All ε1, ε2, ..., εn are independent of each other,

Here item 1 means that data points should on average lie on the line.
Item 2 means that the data points should have the same variance around the regression line.
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Item 3 and 4 means that there should be no pattern in whether the data points is over or under
the regression line and on the vertical Euclidean distance from the regression line.

Under these conditions we get some useful properties, including that β̂0 and β̂1 are unbiased
estimators of β0 and β1. In addition we have unbiased estimates for the variance of the estimators
β̂0 and β̂1

V̂ar
(
β̂0

)
=

1

n− 2

n∑
i=1

(
yi − β̂0 − β̂1xi

)2 ∑n
i=1 x

2
i

n
∑n

i=1 (xi − x̄)
2

V̂ar
(
β̂1

)
=

1

n− 2

n∑
i=1

(
yi − β̂0 − β̂1xi

)2 1∑n
i=1 (xi − x̄)

2 ,

where 1
n−2

∑n
i=1

(
yi − β̂0 − β̂1xi

)2
is an unbiased estimator for the unknown σ2, ((Larsen

and Marx, 2012, Chapter 11)).
This is based on the fact that we assume the response is random, i.e, that we can think of

the residuals as coming from some stochastic distribution. We will now consider what happens
if we instead assume that the responses are fixed and the randomness comes from how we select
individuals instead. This approach is called survey statistics

3 Regression in the context of finite populations

3.1 General results

Now consider the case where the population is finite, i.e, the population consists of
(x1, y1), (x2, y2), . . . , (xN , yN ), where the xi’s are the covariates we use to predict yi and N is
the size of the population. The goal of linear regression in this case is that we want to find the
line, y = B0 + B1x, that best describes the relationship between xi and yi in this population.
We define the best line as the one that minimizes RSS =

∑N
i=1(yi − B0 − B1xi)

2. Minimizing
the RSS means that we minimize the squared Euclidian distance of each point in the population
from the line.

This differs from model based linear regression where we want to estimate the deterministic
part of the relationship between xi and yi, but we can never get an exact answer as the estimates
will differ when they are based on different samples, no matter how large the samples are. Here,
however, it is possible to find B0 and B1, because we can simply sample the whole population,
even if that typically is not possible in practice.

If we, however, knew the whole population, we could just compute B0 and B1 using the same
formulas as in Section 2. For our purposes we will rewrite Equations 1 and 2, so that they are
expressed by totals of the population. They therefore become

B0 =
1

N

(
ty −

txytx − 1
N tyt

2
x

tx2 − 1
N t

2
x

,

)
(3)

B1 =
txy − 1

N tytx

tx2 − 1
N t

2
x

, (4)

where tx =
∑N

i=1 xi, ty =
∑N

i=1 yi, tx2 =
∑N

i=1 x
2
i and txy =

∑N
i=1 xiyi, ((Lohr, 2009, Chapter

11)).
The case where we know the whole population is not realistic. We are interested in the case

where we have to sample from the population to estimate B0 and B1. To do that we have to
introduce some terms.
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Definition 1. A sampling unit is one ”element” we can sample. The sampling population,
or universe, U = {1, 2, 3, ..., N}, is a finite set containing all the sampling units we can sample.

In the case of our API dataset, our sampling units are schools, while the sampling population
is all the schools in California having more than 100 students.

Definition 2. A sampling frame is a list of sampling units that one uses to draw a sample.

The sampling frame would be all schools in California that the researchers know about and
that the researchers think have more than 100 students. Ideally the sampling frame and the
sampling population would be the same, but that is not always the case. When taking different
types of samples from the API dataset, the sampling population and the sampling frame are
equal, since we have a table of all the data and we will just choose rows from that table for
our samples. But there are cases where this is not the case. An example of this could be if we
were doing a political survey to try to predict who will win the next election. In that case our
sampling population, who we are interested in information about, would be everyone who are
going to vote in the next election. It is, however, impossible to get a list of them, so we instead
have to use some other part of the population we have information about as our sampling frame.
We might have a list of all who voted last election, which might be a good approximation of
those who are going to vote this election, but then we would miss out on all the new eligible
voters and people who might have decided to vote this election but didn’t do it the last one.
Choosing the correct sampling frame to match the target sampling population is difficult and if
they do not match it may influence the results.

We will assign an unique integer index to each sampling unit and list them in an arbitrary
order. This simplifies notation.

Definition 3. A sample, S ⊆ U , is a subset of the sampling frame. This is the data we will
analyse to learn about the sampling population. A probability sample is a sample where the
sampling units included are chosen randomly. The sampling probability of a sampling unit is
the probability that a specific sampling unit will be included in the sample.

If we let t̂x, t̂y, t̂x2 , t̂xy, N̂ be estimators for tx, ty, tx2 , txy, N, respectively, we get estimators
for B0 and B1 by replacing quantities by estimated quantities in Equations 4 and 3 respectively

B̂1 =
t̂xy − 1

N̂
t̂y t̂x

t̂x2 − 1

N̂
t̂2x

B̂0 =
1

N̂

(
t̂y −

t̂xy t̂x − 1

N̂
t̂y t̂

2
x

t̂x2 − 1

N̂
t̂2x

)
=
t̂y

N̂
− B̂1

t̂x

N̂

Since B̂0 and B̂1 are non linear expressions of dependent statistics, deriving exact expressions
for the variances is complicated. We, therefore, often have to settle with having estimates of the
variances instead. There are several ways to do so, but a common one, and the one we use in
this thesis, is linearization. Linearization takes a non-linear expression of stochastic variables
we want to do inference about and uses the first two terms of the Taylor expansion to make it
linear. One can show that

Var(B̂1) ≈
V̂ar

(∑
i∈S wiqi

)(∑
i∈S wix2i −

(
∑

i∈S wixi)
2∑

i∈S wi

)2
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where qi = (yi−B̂0−B̂1xi)(xi− ˆ̄x). V̂ar
(∑

i∈S wiqi
)

is easier to work with as
∑

i∈S wiqi estimates
a total. See ((Lohr, 2009, Chapter 11.2.2)) for details on derivation. We describe linearization
in more detail in Section 5.

To calculate the estimated regression coefficients we need to know how to create estimates of
the totals we need for different sampling designs.

3.2 Simple random sample

The simplest probability sample is the Simple Random Sample (SRS). A sample of size n ≤ N
is an SRS if every subset S ⊆ U has the same probability of being chosen. If, for example,
U = {1, 2, 3, 4} and we want a sample, S, of size 3, then there are

(
4
3

)
= 4 possible samples:

S1 = {1, 2, 3}, S2 = {1, 2, 4}, S3 = {1, 3, 4} and S4 = {2, 3, 4}.
For this to be a SRS each of these subsets need to have the same probability of being chosen,

i.e, P (S1) = P (S2) = P (S3) = P (S4) = 0.25. A consequence of having a SRS is that all the
sampling probabilities are equal, P (1 ∈ S) = P (2 ∈ S) = P (3 ∈ S) = P (4 ∈ S) = 0.75.
But having equal sampling probabilities is not sufficient for the sample to be an SRS. Look, for
example, at this case: Assume we want a sample of size 2 from a population of size 4, and that
P ({1, 3}) = 0.5 and P ({2, 4}) = 0.5 while the probabilities of all the other possible samples are
0. Then P (1 ∈ S) = P (2 ∈ S) = P (3 ∈ S) = P (4 ∈ S) = 0.5 but this is not a SRS since
all possible subsets of size 2 do not have equal probability of being chosen. This is actually an
example of a cluster sample which is discussed in Section 4.2.

We need estimates of several different totals of the population to estimate the regression
coefficients, see Equations 3 and 4. We need the total of, among others, the yi’s, the xi’s and
the xiyi’s, to calculate the estimates. We will do inference on the total of the yi’s in this thesis.
The other totals are equivalent and not shown.

Let ty =
∑N

i=1 yi be the value we want to estimate. The natural estimator of this total, if
we sample n elements, would be t̂y = N

n

∑
i∈S yi where we take the average of the values in our

sample and then scale it up to the whole population. It can be shown, using indicator variables
and sampling probabilities, that t̂y is an unbiased estimator for ty.

It can also be shown that the variance of the estimator is of the form

Var
(
t̂y
)

=
N2

n (N − 1)

(
1− n

N

) N∑
i=1

(yi − ȳ)2

where 1
N−1

∑N
i=1(yi − ȳ)2 is the variance of the whole population, see ((Lohr, 2009, Chapter

2)). We do not, however, know the population variance, as that would require us to know the y
values for the whole population, U . Instead we estimate the population variance by the unbiased

estimator 1
n−1

∑
i∈S
(
yi − ˆ̄y

)2
, where ˆ̄y = 1

n

∑
i∈S yi, which gives us the estimate of Var(t̂y)

̂Var(t̂y) =
N2

(n− 1)n

(
1− n

N

)∑
i∈S

(
yi − ˆ̄y

)2
Since 1

n−1
∑

i∈S
(
yi − ˆ̄y

)2
is an unbiased estimator of 1

N−1
∑N

i=1(yi − ȳ)2, we have that ̂Var(t̂y)

is an unbiased estimator of the variance of t̂y.
We see that all these estimators for totals and means are the same as in the model based

case. Therefore, the estimates for the coefficients in the regression model are also the same. The
variance of the estimators for the coefficients are different however. The factor

(
1− n

N

)
in the

variances is what differs in the variance estimate compared to the model based one. It is called
the finite population correction (fpc) and comes from the fact that we are sampling without
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replacement from a finite population. For an intuitive explanation of the fpc, consider we take a
sample of size 10. If the population size is just 15 we would expect to have a lot more information
about the whole population than if the population size was large. The fpc also makes sure that
the variance is 0 if we sample the whole population. Note, however, that we will not have a
deterministic model, even if we sample the whole population. This is because the data points
lay around the line and not on it, so there will always be uncertainty when predicting.

Using linearization we get this estimate for the variance of B̂1 when the sample is from an
SRS, see ((Lohr, 2009, Chapter 11.2))

V̂ar(B̂1) =
(

1− n

N

) n

n− 1

∑
i∈S (xi − x̄)

2
(
yi − B̂0 − B̂1xi

)2
(∑

i∈S (xi − x̄)
2
)2 (5)

which we can compare to the estimate of the variance for β̂1 in the model based case

V̂ar
(
β̂1

)
=

∑n
i=1

(
yi − β̂0 − β̂1xi

)2
(n− 2)

∑n
i=1 (xi − x̄)

2 , (6)

where x̄ = 1
n

∑
i∈S xi.

One important difference between the variance estimates is that in Equation 5 we have the
fpc, which comes from the fact that we sample from a finite population.

When doing surveys, SRSs are often not used. Instead one uses more complex survey tech-
niques which can make the estimated quantities have smaller uncertainties and make the survey
cheaper to perform. We will therefore now look at different sampling designs that are often
used. Not taking the sampling design into account can lead to a bias in the results and too small
or too large variances. We will focus on estimating totals of the population, as the regression
coefficients are expressed as functions of totals in Equations 3 and 4.

4 Accounting for survey design

4.1 Stratification

In stratification we split the sampling frame into a partition, i.e, H non-overlapping subsets
that together comprise the whole sampling frame. These subsets are called strata. We let each
stratum have Ni, i = 1, . . . ,H, elements. Thus N1 + N2 + · · · + NH = N . When sampling we
independently draw samples from each stratum, S1, S2, . . . , SH , with ni, i = 1, . . . ,H, elements.
When estimating a total we can first estimate the total of each stratum and then add these
estimated totals to get an estimate of the population total. If we let ty,h be the total in stratum

h, for h = 1, 2, . . . ,H, we get t̂y =
∑H

h=1 t̂y,h, where we can use different sampling schemes
to estimate each ty,h. If we let the sample of each stratum be a simple SRS, we get t̂y =∑H

h=1

∑
i∈Sh

Nh

nh
yi. Since the estimate for each stratum total is unbiased (see Section 3.2), the

estimate of the population total is unbiased.
Since we often sample differently in the different strata, the individuals sampled from the dif-

ferent stratum usually have different sampling probabilities. This means that different sampling
units should be weighted differently when making estimates, as illustrated in Example 2.

Example 2. Suppose a population is divided into two strata, each with a subpopulation of 1000
individuals. Let one subpopulation be values with mean 0 and variance 1 and one subpopulation

12



be values with mean 10 and variance 1, called A and B respectively. Our goal is to estimate the
sum of the values.

The true sum of the population values is 10058.59. If we sample the same proportion of
values from A and B we can estimate the sum the same way as in a SRS. Let SA,100 and SB,100

be SRS’s of size 100 from A and B respectively. Then an unbiased estimate of the total is∑
i∈SA,100∪SB,100

2000
200 yi = 10104.81. The bias is only 46.22 which is only 0.46% of the value.

If the proportion of units sampled from A is different from the proportion of units sampled
from B, however, we can’t use this simple estimate. Let SA,50 be a SRS of size 50 from A. If
we use the same SRS estimate again we get

∑
i∈SA,50∪SB,100

2000
150 yi = 13560.02. The bias is here

3501.425 which is 34.8% of the value. This is a much larger error. This is because we have more
samples from B than A, and B has a higher mean than A. Since each sampled value is counted
the same this causes the estimate to become too large. To fix this we need to let the sampled
values from A count, or weigh, more than the ones from B. This is because the values in SA,50

have to represent the same size population as the values in SB,100, but there are only half as
many values in SA,50 as in SB,100. Therefore, each value in SA,50 has to count two times as
much as the values in SB,100.

Doing this the estimate becomes
∑

i∈SA,50

1000
50 yi +

∑
i∈SB,100

1000
100 = 10174.61 which has a

bias of 116 which is 1.15%, a huge improvement over the 34.8% bias where we did not take the
different sampling probabilities into account.

This illustrates how important it is to take the sampling probabilities into account. To do
this we usually give each sampled unit a weight value,

Definition 4. The weight of a sampling unit is the inverse of the sampling probability of the
sampling unit. We denote the weight of unit i as wi.

An intuitive way to interpret weights is that the weight of an observation is how many
sampling units in the population they represent. If we sample few units from a large strata, each
of these sampled units represents many more individuals than in a strata where we sample almost
the whole subpopulation. The name weight makes sense, as an observation representing many
unobserved units should “weigh” more when estimating values than observations representing
few unobserved units.

Specifically, in Example 2, the 50 sampled units from SA,50 represent a population of 1000, so
each sampled unit represents 20 units including itself. This is opposed to the 100 sampled units
in SB,100 which also represent a population of 1000. Here each sampled unit only represents 10
units including itself.

Using weights, we can rewrite the estimate of ty in a more general form, which is valid for
any sampling scheme, t̂y =

∑
i∈S wiyi, where the full sample is S = S1 ∪ S2 ∪ · · · ∪ SH . This

is a convenient way to calculate estimates of more complicated surveys, as one only needs to
calculate the weights once, and then one can use them to estimate many different quantities.
This also works for an SRS as it can be shown that the sampling probability of a sampling unit
in a SRS is n

N . This means that the weight of each sampling unit is N
n . Therefore the estimator

using weights is the same as the one introduced in Section 3.2, t̂y =
∑

i∈S
N
n yi.

Since the samples from the different strata are independent, the variance of the estimator

is also easy to calculate, Var(t̂) = Var
(∑H

h=1 t̂y,h

)
=
∑H

h=1 Var
(
t̂y,h
)
. This means that to

minimize the variance of t̂ we should choose the strata such that the internal variance in each
stratum is as small as possible.

Stratification is used for several reasons: making it possible to analyze subpopulations indi-
vidually, making sure subgroups are included in the sample, and reducing uncertainty.
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Elementary schools Middle schools High schools

Estimates (95% confidence interval) 169.1 (136.9, 201.3) 145 (121, 169) 143.8 (119.7, 167.9)
True value 144.5 157.7 152.2

Table 1: Table of slope coefficients for the different school levels. The first row has estimates
from the sample, with 95% confidnce intervals in parenthesis. The second row has the values, as
we know the whole population.

If we have a population with several different interesting subgroups, it can be useful to let
each of these subgroups be their own strata. This will allow us to create a seperate regression
line for each stratum, which will allow us to analyze them by themselves. We can then compare
the slopes to see if there is a difference in the relationship between the response and predictor for
the different strata. We could of course make regression lines for different subgroups after doing
a sample without stratification, but then we would have no guarantee that each of the subgroups
would have enough samples to be able to make a useful regression line. Using stratification, we
can choose how many samples we want from each subgroup.

Example 3. Suppose that we want to investigate the relationship between the API score of a
school and the average level of education of the student’s parents. We might be interested in
knowing if the effect the parents education level has on their childs performance changes as the
child gets older. It would therefore make sense to stratify on which level the school is, elementary
school, middle school or high school. We can then see if the estimated slope coefficient is different
in each of these strata. The sampling frame has 4421 elementary schools, 755 middle schools and
1018 high schools and we choose to sample 50 schools from each strata.

Table 3 shows the estimated slope with 95% confidence intervals along with true slopes for
each school level. We observe that all the true values are inside the confidence intervals. We can
see that parent education level seems to have a higher effect in Elementary schools than higher
school levels. Regression on all the strata together gives the slope 158, which is somewhere in
between all the individual slopes. Not doing stratification would make us loose the information
for each school type.

4.2 Clustering

In clustering we split the sampling frame into a partition as in stratification. Here, however, we
do a probability sample to choose which of the subsets we will collect data from. Then we have
to do a probability sample inside of each of these chosen subsets, S1, S2, . . . , Sn.

Definition 5. Primary sampling unit (psu) are subsets of the sampling frame, that are
sampled first in a sampling scheme. These are also often called clusters.

There are two types of cluster sampling; one-stage cluster sampling and multi-stage cluster
sampling. In one-stage cluster sampling we sample all the elements in the chosen subsets, or
clusters, of S, so each element in these clusters have probability 1 of being included. In multi-
stage cluster sampling, however, we make a sample of the secondary sampling units (ssus),
which are individuals inside the clusters. Here not all ssus, or individuals, inside the clusters are
included. Multi-stage cluster sampling is often what is used in practice, but since the ideas are
similar to one-stage cluster sampling and the formulas get much more complicated in multi-stage
cluster sampling, we will restrict outselves to one-stage cluster sampling in this thesis.
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Let N be the number of clusters (psus) in the population and let Mi, i = 1, 2, . . . , N be
the number of individuals (ssus) in each cluster. Let ty,i be the total of the y’s in cluster
i. Since we sample all the ssus inside the clusters, we know the totals for the clusters in the
sample. We can therefore consider each cluster a sampling unit as we have done earlier in
the thesis. Instead of letting the y’s be the sampled values, we let ty,i, i ∈ S be the sampled
values. In one-stage cluster sampling, an SRS is usually taken to choose which clusters to
include in the sample. This gives a similar estimator for the total as for a SRS, except that the
sampling units here are the totals for each cluster instead of individuals as in a normal SRS,
t̂y =

∑
i∈S

N
n ty,i =

∑
i∈S wity,i. This also gives the same estimate for the variance as in an SRS,

V̂ar (ty) = N2

n

(
1− n

N

)
V̂ar (ty,i) = N2

(n−1)n
(
1− n

N

)∑
i∈S

(
ty,i − ˆ̄ty

)2
, where ˆ̄ty = 1

n

∑
i∈S ty,i.

Larger populations often mean that the totals for that population is also large, for example,
when we are measuring API scores for schools, the total of all the schools in a population will
increase as the number of schools we sample increases, as the score is always positive. This means
that the variance of the total estimates will usually increase if the clusters have very different
population sizes. It can therefore be useful to try to keep the population sizes of the different
clusters as similar as possible. But one should be careful not to put too much weight on keeping
the population sizes equal, as that may cause some clusters to become too large physically which
will make it expensive to measure all individuals in it, which defeats the purpose of clustering in
the first place.

A cluster sample will almost always have a larger variance than a SRS of the same size.
This is because individuals inside a cluster will usually be more similar than individuals across
clusters. This means that measuring say 10 people inside one cluster will give less information
than measuring 10 people randomly chosen in the whole population. This causes cluster sam-
pling to have a larger uncertainty. Measuring inside a cluster is often cheaper than measuring
people sampled randomly from the whole population, though. For example, if the clusters are
geographical areas, which they often are, and each individual sampled needs a researcher or in-
terviewer to physically travel to them, then one will save time and money not having to travel to
so many different places. This means that it is often possible to sample many more individuals
in cluster sampling than when doing samples from the whole population, which will decrease the
uncertainty and make cluster sampling more competitive with other sampling methods.

Example 4. We again consider the API dataset and want to see if average class size for kinder-
garden through third grade impacts the API score for a school. Suppose that to collect the data,
an interviewer has to travel to each school. Then it would take much time and become expensive
if the interviewer had to travel to random schools all across California. It would be cheaper and
take less time to collect data in just some school districts. We therefore choose to cluster on the
school districts. There are 757 school districts in California and we take a SRS to get a sample
of size 15. The resulting sample of clusters gives us a sample of 183 schools. Based on the data
collected from these schools we can now make a regression line and confidence intervals for the
regression coefficients. To make the regression line and to accurately estimate the variance we
have to take the correlation between the individuals in the same cluster into account. If we do
not take this into account we will get a different result and a too small variance estimate.

Observe from Table 2 that the standard error of the model where the clustering is ignored
is significantly smaller than the standard error of the model where the clustering is accounted
for. This is because we assume schools inside each district are more similar than schools in
different districts. This causes a sample with many schools in the same districts to carry less
information about the whole population than one where schools in all districts have a chance of
being included in the sample. The different standard errors means that the hypothesis test, where
the null-hypothesis is that the slope is zero, gives different results for the two models. Ignoring

15



Slope Std. Error P-value
Clustering taken into account 3.232 9.254 0.732

Clustering not taken into account 3.232 0.593 7.49 ∗ 10−8

Table 2: Slope for regression lines along with uncertainty and P-value for the null-hypothesis
that the slope is zero. The first row is for the case where the clustering is taken into account. In
the second row the clustering was ignored, the samples were assumed to be independent.

the clustering leads to the belief that larger average class size for kindergarden through third grade
leads to a higher API score for the school. The sample does, however, suggests no such thing, as
the P-value of the model where the clustering is taken into account is 0.732.

4.3 Complex surveys

In practice, we often combine clustering and stratification to what is called a complex survey.
We usually first create strata for the different subpopulations we are interested in data from.
Then we use clustering to make it practically possible to perform the survey.

A real example, where survey statistics with a complex survey design is used, is the Demo-
graphic and Health Survey (DHS) in Kenya. This survey collects, among other things, informa-
tion regarding the birth rates and mortality rates in Kenya. This type of survey is important
because no one has any overview of vital statistics in many developing countries. Ideally, one
would of course do a full census of the population, but that is not possible in practice as it
would be extremely expensive. Each household that is surveyed has to be visited by a trained
interviewer. Visiting households that are spread through the whole country would need both
much travel time and many interviewers who have to be trained. Instead one designs a complex
survey combining the sampling methods introduced earlier in Section 3. This is cheaper, and if
the survey is well designed one will get good data as well.

In the DHS in Kenya the researchers wanted data on both urban and rural populations in
each county, so they first started with splitting the country into strata. Two strata for each
county, one for the urban population and one for the rural population, except for two counties
which only have an urban population. Each of these strata were then further divided into smaller
geographic units, these are the clusters. The researchers then do a SRS of the clusters inside
each stratum to choose which ones to visit. Kenya National Bureau of Statistics et al. ((2015))

Inside each cluster the researchers then sample 25 households to actually visit. The fact
that the researchers make a new sample inside the cluster is, as mentioned in Section 4.2, called
two-stage clustering. It has not been a topic of this thesis, but the principles used are the same
as the ones used in one-stage clustering. Kenya National Bureau of Statistics et al. ((2015))

Counterintuively, one can often get better results doing a smaller well designed survey than
sampling as many as possible. This is because, if we have a small sample, we need fewer inter-
viewers and can therefore make sure they are all well trained and suited to the job. If we just
focus on getting as large samples as possible one often has to compromise on the quality of the
training the interviewer get. This can lead to poorly trained interviewers introducing errors to
the data. For example, if no one from the household they are supposed to visit are home, they
might visit their neighbours instead of coming back later. This compromises the results of the
survey, as some demographics might be more likely to be home than others.
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5 Variance estimation

A central part of doing statistics is the calculation of uncertainties. We usually express the
uncertainty by the variance. Without an idea of the variance of an estimated quantity, the
estimate is all but useless, as the variance could be so large that almost any confidence interval
will include all possible values. It is therefore important to have a reasonable estimate of the
variance. The problem, however, is that in regression the values we are interested in are non-
linear expressions of observations. We therefore can not find a closed form expression for the
variance estimate using normal rules, so we instead have to use other techniques to find variance
estimates. One of the more commonly used methods in survey statistics, and one which will give
a closed form expression for the estimate, is linearization.

Example 5. Let Ŵ =
t̂y
t̂x

, where t̂y and t̂x are stochastic variables. We are interested in

finding Var
(
Ŵ
)

= Var
(

t̂y
t̂x

)
. Since this is a non-linear expression, there is no easy formula to

calculate it. We do, however, know how to calculate the variance of a linear combination. We

can therefore take advantage of the fact that we can approximate Ŵ =
t̂y
t̂x

by using a first degree

Taylor approximation, which is linear.
Let h(a, b) = a

b . Then Ŵ = h(t̂y, t̂x) and h′(a, b) =
[
1
b − a

b2

]
.

This means that

Ŵ = h(t̂y, t̂x) ≈ h(ty, tx) + h′(ty, tx)

([
t̂y
t̂x

]
−
[
ty
tx

])
=
ty
tx

+
[

1
tx
− ty

t2x

] [t̂y − ty
t̂x − tx

]
=
ty
tx

+
1

tx

(
t̂y − ty

)
− ty
t2x

(
t̂x − tx

)
Since ty and tx are deterministic values, they have zero variance and we can treat them as

any other constants in the variance expression. We can therefore apply the standard rules for
calculating variances of linear expressions and we get that

Var
(
Ŵ
)
≈ Var

(
ty
tx

+
1

tx

(
t̂y − ty

)
− ty
t2x

(
t̂x − tx

))
=

1

t2x
Var

(
t̂y
)

+
t2y
t4x

Var
(
t̂x
)
− 2

ty
t3x

Cov(t̂x, t̂y),

which gives the simple expression

V̂ar
(
Ŵ
)

=
1

t̂2x
V̂ar

(
t̂y
)

+
t̂2y

t̂4x
V̂ar

(
t̂x
)
− 2

t̂y

t̂3x
Ĉov(t̂x, t̂y)

Taylor approximation works best if the point we are approximating around is near the point
we want the function value at. This means that in this case we should choose a fixed point near
(t̂x, t̂y). Since this is an approximation of (tx, ty), that point is a natural choice to approximate
around. Another advantage of approximating around (tx, ty) is the fact that to get a variance
approximation, we can exchange tx and ty with t̂x and t̂y and get a numeric value. Since t̂y and
t̂x are linear expressions we are able to find closed form expressions for their variance estimates

and we can therefore calculate V̂ar
(
Ŵ
)

.

To illustrate this with a concrete example, suppose t̂x = 100 with V̂ar
(
t̂x
)

= 5 and t̂y = 230

with V̂ar
(
t̂y
)

= 23 and that they are independent such that Cov
(
t̂x, t̂y

)
= 0.

Then we have V̂ar
(
Ŵ
)

= 1
1002 23 + 2302

1004 5 = 0.0049.
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More generally, let h(x), where x = (x1, x2, . . . , xp), be a function such that h(x) = θ, where

θ is the quantity we are interested in. Further, let x̂ be an estimate of x, such that h(x̂) = θ̂.
If h is linear, there is no problem finding a closed form for the variance estimate, so we assume
here that h is a non-linear function.

By Taylor’s theorem, we know that h(x̂) = h(x) + h′(x)(x̂ − x) +
∫ x̂

x
(x̂ − t)h′′(t)dt, Lind-

strøm ((2016)), where the last term is usually small compared to the first two in statistics,
((Lohr, 2009, Chapter 9)). This allows us to use the approximation h(x̂) ≈ h(x) + h′(x)(x̂− x).

h(x) =
[

∂h
∂x1

(x1) ∂h
∂x2

(x2) . . . ∂h
∂xp

(xp)
]
, which means that h(x̂) ≈ h(x) + h′(x)(x̂ − x) =

h(x) +
∑p

i=1
∂h
∂xi

(xi) (x̂i − xi), which is a linear expression in x̂. Using known rules for variance
estimation of linear expressions we have

Var
(
θ̂
)

= Var (h(x̂)) ≈ Var

(
h(x) +

p∑
i=1

∂h

∂xi
(xi) (x̂i − xi)

)

=

p∑
i=1

(
∂h

∂xi
(xi)

)2

Var (x̂i) +
∑
i 6=j

∂h

∂xi
(xi)

∂h

∂xj
(xj)Cov (x̂i, x̂j)

We do not, however, know x, as that is the true values we are trying to estimate. But by replacing
x with x̂, and by replacing the variances of x̂ with estimated variances in the expression we get
an estimate of the variance

V̂ar
(
θ̂
)

=

p∑
i=1

(
∂h

∂xi
(x̂i)

)2

V̂ar (x̂i) +
∑
i 6=j

∂h

∂xi
(x̂i)

∂h

∂xj
(x̂j)Ĉov (x̂i, x̂j)

In the regression case, the differentiation and the estimates of covariance are complicated, so
we will not show the derivation here. However, it can be shown that

Var(B̂1) = Var
(
h( ˆtxy, t̂x, t̂y, t̂x2 , N̂))

)
≈

V̂ar
(∑

i∈S wiqi
)(∑

i∈S wix2i −
(
∑

i∈S wixi)
2∑

i∈S wi

)2

where qi = (yi− B̂0− B̂1xi)(xi− ˆ̄x), and x̄ = t̂x
N̂

, see ((Lohr, 2009, Chapter 11)) for more details.

6 Discussion

When using sampling designs where the sampling probabilities differ, we risk the chance of having
a bias in our results if we do not take the sampling design into account. This is illustrated in
Example 1 where the regression line where we ignore the unequal sampling probabilities is too
flat, and in Example 2, where we get different estimates of the totals. A bias in the regression
line can quickly make one reach conclusions, about the relationship between the predictor and
the response, not actually supported by the data.

Since we can use weights, calculating estimates of most quantities is straight forward, in-
cluding estimates of regression coefficients. The non-linear nature of the regression coefficients,
however, makes it difficult to estimate the variances. There are several methods to get variance
estimates, including using resampling techniques, but the one used in this thesis is linearization.
Using linearization allows us to get reasonable variance estimates for the regression coefficients.
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As seen in Section 5 linearization has given us a closed form expression for the variance estimates
of the slope parameter, and a similar one for the intercept is also possible to derive.

Ignoring sampling design can cause major problems with variance estimation. In many sam-
pling designs, clustering is used, which means the sampled units are correlated. This means that
the sample carries less information than if the units were sampled independently. Assuming that
the sampled units are independent when they are not will cause underestimation of the variance.
Believing the variance is smaller than it actually is can lead to a stronger belief in the results
than warranted. In regression one is often interested in whether the regression line is flat or not,
as a flat regression line means no relationship between predictor and response. Having a too
small variance estimate might cause us to reject the null hypothesis that the slope is zero, while
we with a more correct variance would not reject that null hypothesis. Ignoring the fact that one
samples from a finite population might cause the opposite problem: believing that one has more
uncertainty than there actually is. This happens when one forgets to take the fpc into account,
which reduces the variance as one samples a larger proportion of the population. This would
reduce the power of the hypothesis test as it would become harder to reject the null hypothesis,
even when it is false.

It is important to note that using survey statistics will never give wrong results. As illustrated
in the bottom left panel of Figure 2, the regression line from classical linear regression is the
exact same as the one from survey statistics where we assume each observation is independently
sampled. This is also true in general. A disadvantage of survey statistics, however, is that one in
general needs more data to achieve good results. This is because in model based statistics, the
assumptions one make gives additional structure to the data. This is structure which we would
have to “estimate” using survey statistics, causing us to “use up” some of the statistical power
we want to use for estimating regression coefficients and variance. If we do not have enough data
to get robust conclusions we would need to collect more data if we want to keep using survey
statistics. Another option, however, if it looks like the assumptions regarding the distribution is
fulfilled, is to switch to a model based regression. In addition, one would have to make sure that
clustering and stratification will not cause problems by violating independence. If observations
inside clusters are no more similar than observations in different clusters one can disregard the
clustering and still get good results. One can correct for different sampling probabilities by
incorporating weights in the model based regression. The correct choice is always to use survey
statistics, but if you don’t have enough data and the model seems to fit it can sometimes be an
acceptable alternative to use model based regression instead.
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