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Existence of Fatou Components in Two Complex Variables

Mathias Reiersen

Sammendrag

I denne oppgaven viser vi at det eksisterer holomorfe funksjoner i C2 som har en invariant,
ikke-rekkurent Fatou komponent, som er tiltrekkende. Vi viser og at denne komponenten er
sammenhengende, men ikke enkeltsammenhengende.

Abstract

In this thesis we show that there exists holomorphic functions of C2 having an invariant, non-
recurrent Fatou component which is attracting. We also show that the component is connected,
but not simply connnected.
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1 Introduction

1.1 Preliminary Definitions

Complex dynamics studies iterations of complex valued function in Cn. When F is a function of
several complex variables, the study of the behavior of its iterates gives rise to the Fatou and Julia
sets. To properly define these we will first define what it means to be a normal family of function.

Definition 1.1. Let U ⊆ Cn and let F be a family of holomorphic functions f : U −→ Cn. The
family is normal if for every sequence of functions, there is a subsequence which converges uniformly
on compact subsets of U .

We will denote the iterates of functions as follows:

fk = f ◦ fk−1, f0 = Id.

Now we can properly define Fatou and Julia sets.

Definition 1.2. A point p ∈ Cn belongs to the Fatou set, if there is a neighborhood U of p so that
the family of iterates of {fk|U} is normal. The Julia set is the complement of the Fatou set.

A Fatou component is a connected subset of the Fatou set. We are after a Fatou component which
is not simply connected. Furthermore, a Fatou component W is said to invariant if F (W ) = W .
It’s attracting towards a fixed point, if there exists a point p ∈W so that limn→∞ Fn(p) = p for all
z ∈W . We say that if p ∈ ∂W , the component is non-recurrent.

The goal of this text will be to show existence of such a domain in C2, however the techniques
used can further be generalized to prove existence of Fatou components in Cn.

1.2 Outline of the Text

Through iteration of a germ of a biholomorphism we will use several tools to come to the desired
conclusion.

Choosing a suitable function we will first classify how it behaves through iterations, namely find
the domain in which we have convergence towards our fix point. Simultaneously we will be studying
rate of convergence and behaviour of iterates. Choosing a suitable domain near the fixed point in
the boundary will allow us to classify wherein the iterates converge.

Afterwards we will construct, through the local basin of attraction, an open set which will in the
end be the Fatou component and show look at its topology, namely that it is not simply connected.

Lastly before the terminal proof, we have a result thanks to Pöchel[2] regarding the divisors of
our constant λ. This will allow us to construct new coordinates for our function, to set up our proof.
We also consider hyperbolic distance via the Kobayashi metric to estimate distances close to the
fixed point.
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2 The Existence of Fatou Components in C2

2.1 The Local Basin of Attraction

Let

B := {(z, w) : −π
8
< arg(zw) <

π

8
, |zw| < ε, |z|100 < |zw|3, |w|100 < |zw|3}. (1)

We will show that this set is a local basin of attraction to the origin of the function

F (z, w) =
(
zλ(1− 1

2
zw), wλ(1− 1

2
zw)

)
+O(||(z, w)||100). (2)

This means that repeated iterations of points in our set, will converge towards the origin. To this
end we start with a result:

Lemma 2.1. Let F̃ : C2 −→ C2 be defined by

(z, w) −→ (zλ(1− 1

2
zw), wλ(1− 1

2
zw)) +O((zw)3) (3)

where λ = e2πir, r ∈ R \Q and let

B := {(z, w) : −π
8
< arg(zw) <

π

8
, |zw| < ε, |z|100 < |zw|3, |w|100 < |zw|3}, (4)

then F̃ (B) ⊂ B.

Proof. Pick an ε > 0, (z, w) ∈ B, and let F̃ (z, w) = (z1, w1). We can then evaluate the product

z1w1 = zw|λ|(1− 1

2
zw)2 +O((zw)3) = zw[(1− zw) +O((zw)2)]. (5)

First we evaluate the modulus

|z1w1| = |zw| |1− zw +O((zw)2)| (6)

(7)

This expression is less than ε, whenever

|1− zw +O((zw)2)|2 < 1. (8)

We can see this from

|1− zw +O((zw)2)|2 = 1− 2Re(zw +O((zw)2))) + |zw +O((zw2))|2

= 1− 2Re(zw)− 2Re(O((zw)2)) + |zw|2 |1 +O((zw))|2

≤ 1− 2Re(zw) + C|zw|2

= 1− 2|zw| cos(arg(zw)) + C|zw|2

≤ 1− 2|zw|1
2

+ C|zw|2

≤ 1− |zw|+ 1

2
|zw| = 1− 1

2
|zw|

(9)
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where we have chosen ε so that

0 < 1− 1

2
|zw| < 1 (10)

For the argument we do a coordinate change, X := 1
zw , so that

X1 =
1

1
X (1− 1

X +O( 1
X2 ))

(11)

=
X

1− 1
X +O( 1

X2 )
. (12)

and our region then changes to

W = {X ∈ C : −π
8
< arg(X) <

π

8
, |X| > 1

ε
} (13)

We recognize (12) as the sum of a geometric series, so we can write X1 as

X

∞∑
k=0

(
1

X
+O(

1

X2
))k = 1 +X +O(

1

X
) (14)

thus we can notice that

|arg(X1)| = | arctan(
Im(X1)

Re(X1)
)| = | arctan(

Im(X +O( 1
X ))

Re(X + 1 +O( 1
X ))

)| (15)

≤ |arg(X)| < π

8
(16)

as X is large, making O( 1
X ) negligible.

What remains is to show that

|z1|100 ≤ |z1w1|3

|w1|100 ≤ |z1w1|3.
(17)

We see this by

|z1|100 ≤ (|z||1− 1

2
zw|+O(|zw|3))100

≤ |z|100(|1− 1

2
zw|+O(|zw|2))100

≤ |zw|3(|1− 1

2
zw|+O(|zw|2))100

≤ |z1w1|3

(18)

as |z|100 ≤ |zw|3. We see by similar argument the same for |w1|. This then shows that F̃ (B) ⊂ B.
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Now, this leads us to

Corollary 2.2. Let F : C2 −→ C2 be given by

(z, w) −→ (zλ(1− 1

2
zw), wλ(1− 1

2
zw)) +O(||(z, w)||100) (19)

where λ = e2πir, r ∈ R \Q, and let B be as in (4). Then F (B) ⊂ B.

Proof. Write the product

z1w1 = zw(1− 1

2
zw)2 +O(z100, w100, (zw)100) = zw(1− 1

2
zw)2 +O(|zw|3)) (20)

and then the result follows from lemma 2.1.

Knowing that F is B-invariant, we can further tackle looking at repeated iteration of F . In
particular we will now show that

Fn(z, w) −→ (0, 0) (21)

as n −→∞. First, however, we state

Lemma 2.3. Let F be as before, and set (zn, wn) = Fn(z, w), then (znwn) −→ 0 as n −→ 0.
Furthermore, |znwn| ∼ 1

n for all n ≥ n0.

Proof. From (17) we have by induction

|zn|100 ≤ |znwn|3 (22)

|wn|100 ≤ |znwn|3. (23)

Using this and (9), we write

|zn+1wn+1| = |znwn|(1− |znwn|+O(|znwn|2)) (24)

≤ |znwn|(1−
1

2
|znwn|). (25)

This sequence is monotone non-increasing and bounded below by 0. Thus we know there exists a
limit point, |(zw)∗|. This point must satisfy

|(zw)∗| ≤ |(zw)∗|(1− 1

2
|(zw)∗|), (26)

which implies the point must be 0.
The rate of convergence we find by utilizing the same procedure and variable change as in (12).

This will then give us

X1 =
1

1
X (1− 1

X +O( 1
X2 ))

(27)

= 1 +X +O(
1

X
) (28)
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and then by iteration

Xn+1 = 1 +Xn +O(
1

Xn
) (29)

= [Xn−1 + 1 +O(
1

Xn−1
)] + 1 +O(

1

Xn
) (30)

= Xn−1 + 2 +O(
1

Xn−1
) +O(

1

Xn
) (31)

Continuing this process gives

Xn+1 = X + (n+ 1) +O(
1

X
) +O(

1

X1
) + ...+O(

1

Xn
)

= X + (n+ 1) +O(
1

X
) +

n∑
j=1

O(
1

Xj
)

.

(32)

From (32) we can recognize that

Re(Xk) = Re(X) + k + Re(O(
1

X
) +

k∑
j=1

O(
1

Xj
)) (33)

≥ Re(X) +
1

2
k (34)

as Re(O( 1
X ) +

∑k
j=1O( 1

Xj
)) is strictly positive.

| 1

Re(Xk)
| ≤ 1

Re(X) + 1
2k
≤ 1

1
ε + 1

2k
(35)

then gives further

| C
Xk
| ≤ |C|

1
ε + 1

2k
(36)

≤ |C|
( 1

1
kε + 1

2

)1

k
(37)

≤ 2|C|1
k
. (38)

By definition

O(
1

Xk
) =
|C|
Xk

+O(
1

X2
k

) (39)

6



This holds for all k, and now putting it into the series in (32),

n∑
j=1

O(
1

Xj
) ≤

n∑
j=1

2|C|
j

+O(
1

X2
j

) = O(log(n)) (40)

as the harmonic series is of O(log(n)). Now

Xn+1 = X + (n+ 1) +O(log(n)) (41)

= (n+ 1)[
X

n+ 1
+ 1 +

O(log(n))

n+ 1
] (42)

which then implies that as n −→∞ we get that

X

n+ 1
−→ 0 (43)

O(log(n))

n+ 1
−→ 0. (44)

This then yields, for all n ≥ n0, that

Xn ∼ n (45)

and now we see that

znwn ∼
1

n
. (46)

Now looking at the transform in each variable, we state

Proposition 2.4. Let F be as before and set (zn, wn) = Fn(z, w), then (zn, wn) −→ 0 as n −→∞
and |zn| ∼ |wn| ∼ 1√

n
.

Proof. Looking at the transform in each variable we have

z −→ zλ(1− 1

2
zw +O((zw)2) +O(||(z, w)||M ) (47)

w −→ wλ(1− 1

2
zw +O((zw)2) +O(||(z, w)||M ). (48)

We can, in B, write

z −→zλ( 1− 1

2
zw +O((zw)2) +O((zw)3) ) (49)

= zλ( 1− 1

2
zw +O((zw)2) ) (50)

w −→wλ( 1− 1

2
zw +O((zw)2) ) (51)
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We see that the logarithm is well defined in our region so

log(1− 1

2
zw +O((zw)2)) = −1

2
(zw) +O((zw)2) +

1

2
(−1

2
(zw) +O((zw)2))2+ (52)

...+
1

j
(−1

2
(zw) +O((zw)2))j + ... (53)

= −1

2
zw +O((zw)2) (54)

by using the Taylor series expansion of log(1 + x), where x = − 1
2zw +O((zw)2). Then we see that

(1− 1

2
zw +O((zw)2)) = elog(1− 1

2 zw+O((zw)2)) (55)

= e−
1
2 zw+O((zw)2), (56)

so the transforms then look like

zn+1 = znλ(e−
1
2 znwn+O((znwn)2)) (57)

wn+1 = wnλ(e−
1
2 znwn+O((znwn)2)). (58)

Again performing the coordinate change zw = 1
X , and iterating backwards from n, we get

zn = zλn exp
(
− 1

2
(

1

Xn
) +O(

1

X2
n

)− 1

2
(

1

Xn−1
) +O(

1

X2
n−1

)− ...− 1

2
(

1

X
) +O(

1

X2
)
)

(59)

wn = wλn exp
(
− 1

2
(

1

Xn
) +O(

1

X2
n

)− 1

2
(

1

Xn−1
) +O(

1

X2
n−1

)− ...− 1

2
(

1

X
) +O(

1

X2
)
)
. (60)

The exponential in each transform can be written

−1

2

( 1

X
+

n∑
j=1

1

Xj

)
+

n∑
j=0

O(
1

X2
j

) (61)

and from (40) in the previous lemma we have for some large j0 that

−1

2

( 1

X
+

n∑
j=1

1

Xj

)
= −1

2
log(n) +

1

2
log(j0) +G (62)

where G is some bounded function of Xj , ∀j < j0.
The sum

n∑
j=0

O(
1

X2
j

) ∼
∑
j

1

j2
(63)
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is also bounded. Hence we can write

zn = z e−
1
2 log(n)e−2πinreG (64)

= z
( 1

n

) 1
2 e2πinreG (65)

wn = w
( 1

n

) 1
2 e2πinreG (66)

which proves the claim.

2.2 Topological Properties

We have classified the local basin of attraction, B. Further we call

Ω =

∞⋃
k=0

F−k(B) (67)

the global basin of attraction. This turns out to be the sought after Fatou component, which we will
see next. However first we have a topological property:

Proposition 2.5. Ω is connected, but not simply connected.

Proof. To start we show that B is not simply connected, so for the sake of a contradiction we assume
B is simply connected.

Consider so the transform ψ : B −→ ψ(B) given by

ψ(z, w) = (zw,w). (68)

The transform is obviously surjective and holomorphic. Injectivity in the second variable is clear,
and in the first variable we have

z1w1 = z2w2 (69)

z1 = z2 (70)

showing injectivity. The inverse is

ψ−1(x, y) = (
x

y
, y) (71)

and is holomorphic for all y 6= 0. So ψ is a biholomorphism. Pick thereafter an r ∈ (0, ε) and
consider a path in B,

γ(t) = (re−it, reit) (72)

In new coordinates we have

ψ(γ(t)) = (r2, reit) (73)

9



which is a circle in the {r2} × C plane centered at (r2, 0). If B is simply connected, then we can
contract the closed path to (r2, 0). However (r2, 0) /∈ ψ(B). So B cannot be simply connected.

To then show that Ω is not simply connected, we again assume for the sake of contradiction that
it is simply connected.

We note that F k(γ) is not contractible in B. Indeed by looking at the transform in the w variable,
we have

w1 = wλ(1− 1

2
zw +O((zw)2)) (74)

in B. Now

| − 1

2
zw +O((zw)2)| ≤ 1

2
|zw|+ |O((zw)2)| < |w|, (75)

so we can apply Rouche’s theorem [4] to conclude that w1 and w have equally many zeros in the
region enclosed by ψ(γ) in the r2 × C plane. By the same argument, we can show that w2 and w1

have equally many zeros in the region, and w3 and w2 have equally many zeros in the region and
so on. Inductively this then gives that wk and w has equally many zeros in the region enclosed by
ψ(γ). This then shows that F k(γ) is not contractible in B for all k.

We construct the compact set

K =

1⋃
s=0

γs(t) ⊂ Ω (76)

where γ1 = γ(t) and γ0 is an arbitrary point in region enclosed by γ in the r2 × C plane. We know
F k(z, w) −→ 0 as k →∞, therefore we find an N so that

FN (K) ⊂ B. (77)

This would then imply that FN (γ1) would be contractible in B, which is a contradiction. Thus Ω
cannot be simply connected.

2.3 The Final Results

To now show that Ω is the desired Fatou component, we will use a couple of tools: the Kobayashi
metric and a theorem by Pöchel. These will allow us to set up nicely into the proof of the main
result. So let M ⊂ Cn with p ∈M . The Kobayashi metric is then given as:

kM (p, ξ) := inf
{ 1

|c|
: ∃f : ∆ −→M,f analytic, f(0) = p, f ′(0) = cξ

}
. (78)

Proposition 2.6. Let F : M −→ N be holomorphic with M ⊂ Cn, N ⊂ Ck. For p ∈M, ξ ∈ Cn we
have

kM (p, ξ) ≥ kN (F (p), F ′(p)ξ) (79)

10



Proof. Let f = (f1, ..., fn) : ∆ −→M be analytic with f(0) = p, then

(F ◦ f) : ∆ −→ N (80)

(F ◦ f)(0) = F (p). (81)

If f ′(0) = ξ then

(F ◦ f)′(0) = F ′(p)f ′(0) = F ′(p)ξ. (82)

We then have

inf
{ 1

|c|
: ∃g : ∆ −→ N, g analytic, g(0) = F (p), g′(0) = cF ′(p)ξ

}
(83)

≤ inf
{ 1

|c|
: ∃f : ∆ −→M, f analytic, (F ◦ f)(0) = F (p), (F ◦ f)′(0) = cF ′(p)ξ

}
(84)

= inf
{ 1

|c|
: ∃f : ∆ −→M, f analytic, f(0) = p, f ′(0) = cξ

}
(85)

as { 1

|c|
: ∃f : ∆ −→M, f analytic, (F ◦ f)(0) = F (p), (F ◦ f)′(0) = cF ′(p)ξ

}
⊆
{ 1

|c|
: ∃g : ∆ −→ N, g analytic, g(0) = F (p), g′(0) = cF ′(p)ξ

}
.

(86)

In particular the Kobayashi distance function is given by

DM
K (ζ, ζ ′) = inf

{∫ 1

0

kM (γ(t), γ′(t))dt
}

(87)

where the infimum is taken over all paths joining ζ to ζ ′.

Lemma 2.7. Let ∆∗ = {ζ ∈ C : 0 < |ζ| < 1}. For p, q ∈ ∆∗ we have

k∆∗(p, q) ≥
∣∣∣ log

∣∣ log |p|
log |q|

∣∣∣∣∣ (88)

Proof. In the disk, the Kobayashi metric and the Poincare metric coincide [3], and then in the
punctured disk we have

ds2 =
4

|q|2(log(|q|2)2
|dq|2 (89)
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Then we can evaluate

d(γ(0), γ(1)) =

∫ 1

0

λ∆∗
(
γ(t)

)
γ′(t)dt (90)

where γ(t) is a path between p and q. So∫ 1

0

1

|γ(t)| log |γ(t)|
|γ′(t)|dt ≥

∣∣∣ ∫ 1

0

1

γ(t) log(γ(t))
γ′(t)dt

∣∣∣ (91)

=

∣∣∣∣∣ log
(

log(γ(t))
)∣∣∣1

0

∣∣∣∣∣ (92)

and then

k∆∗(p, q) ≥
∣∣∣ log

∣∣ log |p|
log |q|

∣∣∣∣∣ (93)

Lemma 2.8. If F is as in (2), and λ is Brjuno, then there exist a biholomorphism G(z, w) =
(z, w) +O(||(z, w)||l) at (0, 0) so that

(G ◦ F ◦G−1)(z, w) = (λz + zwR1(z, w), λw + zwR2(z, w)) (94)

where R1, R2 are germs of holomorphic functions at (0, 0).

Proof. As λ is Brjuno, the divisors λk − λ and λk − λ are admissible in the sense of Pöchel[2] for all
k ≥ 2. So by theorem 1 in [2] there is, in a small disk around the origin, an injective holomorphic
map φ1 : Dδ −→ C2, such that φ1(0) = (0, 0), φ′1 = (1, 0) and

F (φ1(ζ)) = φ1(λζ) ∀ζ ∈ Dδ. (95)

As F is tangent to {w = 0} up to order l. We can, thanks to[2], implicitly write w = ψ1(z) defining
ψ1(ζ) = O(|ζ|l).

Similarly for λk − λ and λk − λ, we get the function ψ2(ζ) = O(|ζ|l). Thereafter we define
G(z, w) = (z − ψ2(w), w − ψ1(z)) = (z, w) + O(||(z, w)||l). This is a germ of a biholomorhpism at
(0, 0) and (G ◦ F ◦G−1) takes the desired form.

Now we are fully equipped to prove the result:

Theorem 2.9. Let F be as in (2) and let Ω be as in (67). Assume also that λ is Brjuno. Then Ω
is the desired Fatou component.

Proof. We know there exist a Fatou component containing Ω, so we assume for sake of a contradiction
that there exists a connected set D so that

12



1. Ω ⊂ D

2. Ω 6= D

3. q ∈ D \ Ω =⇒ Fn(q) −→ 0.

Now if q ∈ D \ Ω, then FN (q) /∈ B for any N . If this was the case then

q = F−N (FN (q)) ∈ F−N (B) ⊂ Ω, (96)

so FN (q) 6∈ B.
If q /∈ Fn(B) and znwn −→ 0, then we must have that

|z| ≥ |zw|α or |w| ≥ |zw|α (97)

for all α ∈ (0, 3
100 ) and also

|zn| ≥ |znwn|α or |wn| ≥ |znwn|α. (98)

This can alternate between the two cases in the iterates. To work around this we choose a sub-
sequence nj so that for all nj :

|znj | ≥ |znjwnj |α (99)

Then, as nj −→∞,

log
∣∣∣ log |znj |
log |wnj |

∣∣∣ 6−→ 0 (100)

because, from (98) we can compute

|znj | > |znj |α|wnj |α (101)

=⇒ |znj |
1−α
α > |wnj |. (102)

This will then yield ∣∣∣ log |znj |
log |wnj |

∣∣∣ > ∣∣∣ log |znj |
log |znj |

1−α
α

∣∣∣ (103)

=
∣∣∣ α

1− α

∣∣∣ 6= 0 (104)

and ∣∣∣ log
∣∣∣ log |znj |
log |wnj |

∣∣∣∣∣∣ > ∣∣∣ log
∣∣∣ α

1− α

∣∣∣∣∣∣ = log
∣∣∣1− α

α

∣∣∣ > 0. (105)
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as 1−α
α > 1.

As λ is Brjuno, lemma 2.8 holds. Thus we have an open neighborhood U of (0, 0) and a biholo-
morphism G : U −→ G(U), so the coordinate change (94) holds for all (z′, w′) ∈ G(U). In these
coordinates it also holds that D∩U ⊂ ∆∗×∆∗, as (94) is only a rotation on {z′ = 0} and {w′ = 0}.

As D is connected, there exists points p ∈ Ω, q ∈ D \ Ω so that

kU∩D(p, q) < δ (106)

for some small δ > 0. Choose then δ < 1
100 log | 1−αα |. We also know that

kD(FN (p), FN (q)) ≤ kU∩D(p, q) < δ ∀N ∈ N (107)

from the property of Kobayashi metric. From the properties of iteration of F , there is a subsequence
Nj such that

FNj (p), FNj (q) ∈ U (108)

where FNj (p) ∈ B and FNj (q) ∈ D \B. Set

FNj (p) = (zj , wj) (109)

FNj (q) = (xj , yj) (110)

and from the triangle inequality obtain

k∆∗(xj , yj) ≤ k∆∗(xj , zj) + k∆∗(zj , wj) + k∆∗(yj , wj). (111)

We can further estimate

k∆∗(xj , zj) = k∆∗(π1(FNj (p)), π1(FNj (q))) ≤ kD∩U (FNj (p), FNj (q)) < δ (112)

k∆∗(yj , wj) = k∆∗(π2(FNj (p)), π2(FNj (q))) ≤ kD∩U (FNj (p), FNj (q)) < δ (113)

again by the Kobayashi property and projection functions π1, π2. Further k∆∗(zj , wj) −→ 0, so we
have for sufficiently large j that

k∆∗(zj , wj) < δ. (114)

By then using an estimation from lemma 2.7 we can then see

log
∣∣∣1− α

α

∣∣∣ < ∣∣∣ log
∣∣∣ log |xj |
log |yj |

∣∣∣∣∣∣ ≤ k∆∗(xj , yj) < 3δ <
3

100
log
∣∣∣1− α

α

∣∣∣ (115)

which is a contradiction as FNj (q) 6−→ 0.
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