
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Ba
ch

el
or

’s
pr

oj
ec

t

Oskar Goldhahn

A Look Into Homomorphic Cryptography
and the BV Homomorphic Encryption
Scheme

Bachelor’s project in Mathematical Sciences

Supervisor: Kristian Gjøsteen

May 2020

Oskar Goldhahn

A Look Into Homomorphic
Cryptography and the BV
Homomorphic Encryption Scheme

Bachelor’s project in Mathematical Sciences
Supervisor: Kristian Gjøsteen
May 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

Abstract

We take a look at the BV homomorphic encryption scheme and security, correctness, and com-
pactness proofs for this encryption scheme as an example of how homomorphic encryption is
done, and how proofs in the field are written. We expand the proofs in the original paper in an
attempt to make the arguments easier to follow.

Contents

1 Introduction 2

2 Theory 3
2.1 Homomorphic encryption . 3
2.2 Security . 4
2.3 Tools . 5
2.4 Bootstrapping . 7

3 BV Scheme 9
3.1 Overview . 9
3.2 Scheme description . 9
3.3 Correctness . 11
3.4 Compactness . 14
3.5 Security . 14
3.6 Bootstrapping . 16

4 Final remarks 17

1

Chapter 1

Introduction

The purpose of homomorphic encryption is to allow computation on encrypted data without the
need to decrypt first. This allows us to outsource computation without trust. This has numerous
applications in, for instance, cloud computing and encrypted databases.

A conventional encrypted database can only respond to data requests or do limited restruc-
turing of the data. With a database built upon homomorphic encryption we can do data analysis
on the database directly.

The idea was first brought up by Rivest, Adleman and Dertouzos in 1978[6]. It turns out
that several encryption schemes allow some computation on them, though this might not always
be intentional. RSA, for instance, allows us to multiply encrypted numbers.

The first encryption scheme that allows us to evaluate any binary circuit on encrypted data
was published by Gentry in 2009[4]. His paper includes a method called bootstrapping, that
extends the set of circuits an existing encryption scheme can evaluate. After his paper there has
been increased interest, and a number of papers have been written on the topic of homomorphic
encryption.

In this thesis we will investigate homomorphic encryption by looking at a scheme developed
by Brakerski and Vaikuntanathan[3]. The scheme is based on the DLWE1 problem, that asks us to
distinguish between inner products with an added noise term, and uniformly sampled numbers.
We will display a proof that the decryption of the scheme gives us the desired result and a proof
regarding the security of the scheme. Finally we will take a short look at possible improvements
to the scheme.

1Decision learning with errors

2

Chapter 2

Theory

Here we will display some basic definitions and theorems of homomorphic encryption and some
that will help us with proofs later.

The cryptographic definitions are taken from the paper on the BV Scheme[3], but modified
to fit the more modern language of A Guide to Fully Homomorphic Encryption[1].

2.1 Homomorphic encryption
A homomorphic encryption scheme is a regular encryption scheme endowed with the additional
property of evaluation, the ability to compute with ciphertexts. In this thesis we will formalize
computation using binary circuits made up from AND and XOR gates. By appending these

x
y AND x · y x

y XOR (x+ y) mod 2

gates to each other without cycles we can compute any Boolean function, and by using binary
representations of numbers and multiple circuits we can compute any function between finite
sets of integers, since the set of gates is universal. It might seem like the restriction to functions
between finite sets prevents us from doing arbitrary computation, but by looking at the number
of input bytes we can bound the size of the input and chose a circuit that can handle inputs
below that bound. The gates correspond to addition and multiplication modulo 2, which gives
us a very useful parallel to algebra.

Definition 2.1.1 (C-Evaluation Scheme[1, 3]). Let C be a set of binary circuits. A C-Evaluation
Scheme is a quadruple of probabilistic polynomial time algorithms as follows

• Key generation. The algorithm KGen(1κ) that takes a unary representation of the secu-
rity parameter κ and outputs a public encryption key pk, a public evaluation key evk and
a secret decryption key sk.

• Encryption. The algorithm Encpk(µ) takes a public encryption key pk, a single bit of
plaintext µ ∈ {0, 1} and outputs a ciphertext c.

• Homomorphic evaluation. The algorithm Evalevk(C, c1, . . . , cn) takes an evaluation key
evk, a circuit C ∈ C and a tuple of ciphertexts of length equal to the number of inputs to
the circuit. It outputs a ciphertext c.

• Decryption. The algorithm Decsk(c) takes a ciphertext c and a secret decryption key sk
and outputs a single bit of plaintext µ.

3

This is essentially the same as the definition of public key encryption schemes, only with
the addition of an algorithm that turns circuits and ciphertext into ciphertext. This gives us
a framework for computing on ciphertexts, but is not enough by itself. As stated, Eval could
return encryptions of 1 on every input, which would not be very useful. We want the algorithm
to actually use the circuit to do something. This motivates the following definition.

Definition 2.1.2 (Correct Evaluation[1, 3]). A C-evaluation scheme has correct evaluation if
for any C ∈ C and any set of plaintext bits µ1, . . . , µn with size corresponding to the input of C
we have

Pr[Decsk(Evalevk(C,Encpk(µ1), . . . ,Encpk(µn))) 6= C(µ1, . . . , µn)] = negl(κ)

In other words, correct evaluation means encrypting, evaluating and then decrypting with
overwhelming probability1 gives the same result as passing the plaintexts through the circuit.
With this property we can already evaluate circuits on encrypted data, but there is a little edge
case to take care of first. Consider an evaluation scheme where the evaluation algorithm returns
its inputs and the circuit, and the decryption algorithm decrypts the ciphertexts, passes them
into the circuit and returns the output. In this case the evaluation does little work. Most of
the work is done in the decryption, which defeats the purpose of homomorphic encryption. The
solution here is to limit the size of the output of Eval. If we limit the size enough we can not fit
the circuit anymore.

Definition 2.1.3 (Compactness[1]). A C-evaluation scheme is compact if there is a fixed poly-
nomial p such that for any key-triple (sk, pk, evk) output by KGen(1κ) and valid input to Eval
the size of the output is bounded by p(κ) bits.

So far we have allowed C to be an arbitrary set of circuits, but if this is small we might not
be able to do the computation we want, even if the circuit needed is very small. This motivates
the following definitions

Definition 2.1.4 (Fully homomorphic[1]). A C-evaluation scheme is fully homomorphic if it has
correct evaluation, is compact, and C is the set of all binary circuits.

Definition 2.1.5 (Leveled fully homomorphic[1]). A C-evaluation scheme is leveled homomor-
phic if KGen takes an additional input L which specifies the maximum depth of the circuits that
can be evaluated. Further requirements are correct evaluation and compactness for circuits with
depth less than L and that the length of the evaluation output does not depend on L. If C is the
set of all binary circuits we say that the scheme is leveled fully homomorphic.

The depth of a circuit is taken to be the maximal number of gates from an input to an
output2. Using a leveled homomorphic encryption scheme we can evaluate any circuit that is
smaller than our bound L. For most practical purposes this is enough, but we gain a bit more
flexibility from using a fully homomorphic encryption scheme since we then do not need a bound
of the circuit depth before we generate the keys and start encrypting.

2.2 Security
So far we have only talked about the functionality of encryption schemes, but there is also the
question of security. How do we make it hard to decrypt messages without the secret key? To
aid in this goal we first have to formalize what it means for a homomorphic encryption scheme
to be secure. Secure from what exactly?

1negl(n) is the class of functions whose inverse grows faster than any polynomial, but the takeaway is that the
probability is miniscule. The reason we allow a small probability of failure is mostly to simplify proofs.

2By padding with multiplication by 1 or addition by 0 we can make every path have the same number of gates.

4

Definition 2.2.1 (Adversaries). A distinguishing adversary is a probabilistic algorithm that
takes a sample from a distribution as input and outputs 0 or 1.

The purpose of the adversary here is to try to tell the difference between two distributions, for
example the distribution of encryptions of 0 and 1. We measure the performance of an adversary
as follows

Definition 2.2.2 (Advantage). Let X and Y be random variables. We define the advantage of
an adversary A distinguishing between X and Y as follows

Adv(X,Y)[A] def= |Pr[A[X] = 1]− Pr[A[Y] = 1]|

We use the term hybrid for a pair of random variables we calculate the advantage on.3

An adversary with high advantage is able to tell which distribution samples come from with
great certainty, while an adversary with low advantage is barely better than a guess. We get the
following definition for security

Definition 2.2.3 (IND-CPA security[3]). We say that a homomorphic encryption scheme HE is
(t, ε)-IND-CPA secure if for any adversary A that runs in time t it holds that

AdvCPA[A] def=
∣∣∣Pr[A(pk, evk,BV.Encpk(1)) = 1]− Pr[A(pk, evk,BV.Encpk(0)) = 1]

∣∣∣ ≤ ε
where pk and evk are obtained from HE.KGen.

It should be noted that the adversary has access to the public key and the evaluation key,
which means that it can generate as many encryptions as it wants and also homomorphically
evaluate them to gain a decryptable ciphertext.

This definition of security formalizes what it means for an efficiently computable adversary
to be able to tell the difference between encryptions of 1 and 0 (or not). It turns out that this
makes it hard to guess even for an adversary with additional information, for example that ones
are more likely than zeros. If an adversary could guess more precisely if the distribution of ones
and zeros is skewed, then it might as well skew it itself by pretending to get an encryption of 1
half the time, but in reality output 1 and 0 with equal probability.

2.3 Tools
When we introduce the scheme we study in this paper we will need a few additional theorems for
the security proof. Adversaries and advantage formalize what it means to be able to compute the
difference between two distributions, but as always there are stronger notions than computation.

Definition 2.3.1 (Statistical distance[7]). The statistical distance between random variables X
and Y taking values in the finite set S is defined as

∆[X,Y] def= 1
2
∑
s∈S
|Pr[X = s]− Pr[Y = s]|

One way to think about this is as the non-overlapping regions of the distributions.

Theorem 2.3.2. [7] Let X, Y and Z be random variables such that Z is independent from the
other two, then

∆[X,Y] = ∆[(X,Z), (Y,Z)]
3Hybrids can be more complicated, but this is enough for our purpose.

5

Spreading out both of the distributions in the same way will make them overlap neither more
nor less.

Theorem 2.3.3. [7] Let S and T be finite sets, X and Y random variables with support in S,
and f : S → T be a function, then

∆[f(X), f(Y)] ≤ ∆[X,Y]

Running the overlapping regions through a function will not separate them.
The same result also holds for probabilistic algorithms between finite sets, not just functions,

since we can always add an independent random variable as input to a function instead of using it
internally in the algorithm and adding independent random variables do not change the statistical
distance.

We also need the universal hash lemma, which relies on the following definitions

Definition 2.3.4 (Universal hashing[7]). Let X be a uniform random variable over the finite
set I. A family of functions {fi}i∈I between finite sets S and T is called a universal family of
hash functions if

Pr[fX(s) = fX(s′)] ≤ 1
|T |

for all s, s′ ∈ A with s 6= s′.

Definition 2.3.5 (Collision probability[7]). The collision probability of a random variable X
taking values in the finite set S is ∑

s∈S
Pr[X = s]2

Theorem 2.3.6 (Leftover hash lemma[7]). Let {fi}i∈I be a universal family of hash functions
from S to T . Let X, Y and Z be independent random variables, where X is uniform over I, Z
is uniform over T and Y takes values in S. If β is the collision probability of Y , then

∆[(X, fX(Y)), (X,Z)] ≤ 1
2
√
|S|β

The security of encryption schemes rely on a given difficult problem in computer science.
The scheme we study in this thesis uses the DLWE problem, that asks us to tell the difference
between noisy inner products and uniformly sampled numbers. Without the noise this is a very
easy problem that boils down to solving a system of linear equations, but once noise is added it
becomes very difficult.

Definition 2.3.7 (DLWE[3, 5]). Let q and k be integers, χ be a distribution over Zq and s be a
vector in Znq . The probabilistic algorithm As,χ chooses a vector a←$ Znq uniformly at random,
samples e←$χ and outputs (a, 〈a, s〉 + e) ∈ Zq × Znq . The goal of the DLWEn,q,χ-problem is to
distinguish between this algorithm and an algorithm that outputs uniform samples from Zq×Znq ,
given access to q, k, χ and infinitely many outputs from the algorithms.

This is the decision version of the learning with errors problem that asks us to find s. The
infinite set of outputs correspond to being given access to the algorithm itself without being
able to look at the inside. Such an algorithm that gives the adversary access to small pieces of
information is often called an oracle.

There are some guarantees for the difficulty of the problem, but for that we require an
additional definition.

Definition 2.3.8 (B-bounded[3]). We call a countable set of random variables {Xi}i∈N with
values in the integers B-bounded if

Pr[Xi > B] ≤ 2Ω̃(i)

6

For a given B ≥ n and weak conditions on q we can find a B-bounded distribution such that
often difficult and extensively studied lattice problems can be reduced to DLWEn,q,χ.[3, 5]

This gives the problem a bit firmer footing as a foundation for cryptography. As for why we
want to bound the size of the noise, we will see in the security proof.

2.4 Bootstrapping
Making a leveled fully homomorphic encryption scheme is a tall order, but there are tools to
help us get there. The first fully homomorphic encryption scheme[4] used a technique called
bootstrapping that allows us to turn some C-evaluation schemes into a leveled fully homomorphic
encryption scheme. To explain the bootstrapping process we need the following definition

Definition 2.4.1 (Bootstrappable[3, 4]). A C-evaluation scheme is called bootstrappable if it
has correct evaluation, the decryption algorithm can be represented as a circuit and

BV.Decsk(c) AND BV.Decsk(c′) and BV.Decsk(c) XOR BV.Decsk(c′) (2.1)

as circuits with inputs sk, c and c′ are both in C.

In other words, we want the scheme to correctly evaluate its own decryption in addition to
an arbitrary logic gate.

µ′

µ

µ′

µ

µ AND µ′

Enc

Enc

pk Eval

evksk

BV.Dec(−)(−) AND BV.Dec(−)(−)

Figure 2.1: Bootstrapping

The boxes are encryption layers.

Bootstrapping works by encrypting the ciphertexts a second time4, and then running Eval
with an encrypted secret key and the circuit in (2.1). Essentially we decrypt the inner layer of
the doubly encrypted ciphertexts and then use a logic gate afterwards. We can do the same with
the XOR gate, and by appending them together we can evaluate any circuit we want. It should
be noted that the number of encryptions of keys we provide limit the size of the circuits we can
evaluate, only making a leveled homomorphic encryption scheme.5

The important point is that correct evaluation only guarantees that we will get what we
want if we use a newly encrypted ciphertext, but since we encrypt right before we evaluate when
bootstrapping this is the case. When building large circuits this way, the probability of a failed
decryption increases, but it is never more than a sum of the probabilities for failure in each
gate. We can keep this small by using different sets of keys for each layer generated by different
security parameters. This way we can use a small security parameter for the final gate to get a
small output, but use larger for the others to keep the chance of failed decryption at bay. Using
more than one set of keys helps security as well.

This way of making leveled fully homomorphic encryption schemes is wasteful. Most of the
computing power is spent on computing encryptions and decryptions, not the actual logic gates.

4Since the evaluator is doing the encryption, it can chose all the randomness in the way it wants so that the
encryptions are trivial and possibly look the same as the original plaintext.

5With additional requirements for security we can also use it to make a fully homomorphic encryption scheme
by having the secret keys encrypted in a loop instead of a chain.

7

This can be optimized somewhat if we can evaluate more than one gate in addition to the
decryption circuit, but only to an extent.

As a final note on bootstrapping, we address security. The only extra tool the adversary gets
in the bootstrapped encryption scheme that we do not get in the original scheme, is a sequence of
encryptions of secret keys such that each is encrypted by the public key corresponding to the next
secret key. Being able to decrypt the message would mean that we could extract some additional
information from the encryption of these keys, but the last key is decrypted under a completely
unknown key, so it is hard to distinguish between this and a randomly sampled one. Likewise
it is hard to distinguish between the final ciphertext and an encryption of a random bit. This
argument continues until we see that it is hard to distinguish all the ciphertexts and encrypted
secret keys from random ones, so it is also hard to see the difference between an encryption of
one and an encryption of zero.

A formal proof would address how hard it is to distinguish by finding a bound for the advan-
tage, as we will do in the security proof for the BV encryption scheme.

Theorem 2.4.2 (Bootstrapping theorem[4]). Given a bootstrappable C-evaluation scheme we
can construct a leveled fully homomorphic encryption scheme.

8

Chapter 3

BV Scheme

The scheme we will investigate was introduced by Brakerski and Vaikuntanathan[3].

3.1 Overview
The BV encryption scheme is built upon the DLWE problem, with the ciphertexts having the
following structure

(a, µ+ 2e+ 〈a, s〉) ∈ Znq × Zq

Where µ is the plaintext, e←$χ is the noise from the DLWE problem, a is any vector, and s is
part of the secret key. Decryption is just subtracting the inner product from the right side of
the ciphertext and taking the remainder when dividing by two. The difficult part is obtaining
the homomorphic properties. Addition already works by adding the ciphertexts, but if we try
to multiply we end up with products of inner products, which has non-linear terms over the
secret key and does not let us decrypt using the inner product, which only has linear terms. The
solution here is to make the ciphertext linear in the secret key again by using encryptions of
products s[i]s[j] and s to replace the non-linear terms over the old secret key with linear terms
over a new secret key. This can be done many times to multiply without introducing non-linear
terms.

In addition we reduce the size of the decryption circuit by changing the modulus and dimen-
sion of the final ciphertext from q and n to p and k to facilitate bootstrapping. When doing this
we also need a different distribution χ̂ to sample the noise from.

The encryption scheme will be able to evaluate circuits with depth 2L, such that every even
layer only has multiplication (AND) gates and every odd layer has only addition (XOR) gates.
We require all signals to go through one gate on every layer. A circuit that does not meet this
final requirement can be padded by multiplying by 1 or adding 0 if necessary.

3.2 Scheme description
• Key generation BV.KGen(1κ)1: Sample L + 1 vectors s0, . . . , sL←$ Znq , a`,i,j,τ ←$ Znq and

e`,i,j,τ ←$χ. Define s`−1[0] def= 1 and compute, for all ` ∈ [L], 0 ≤ i ≤ j ≤ n, and
τ ∈ {0, . . . , blg qc}, the value

ψ`,i,j,τ :=
(

a`,i,j,τ , b`,i,j,τ := 〈a`,i,j,τ , s`〉+ 2 · e`,i,j,τ + 2τ · s`−1[i] · s`−1[j]
)
∈ Znq × Zq.

1The parameters depend on κ.

9

Define Ψ def= {ψ`,i,j,τ}`,i,j,τ .
Choose random matrix A←$ Zm×nq and a vector e←$χm, and compute b := As0 + 2e.

Sample ŝ←$ Zkp, âi,τ ←$ Zkp and êi,τ ←$ χ̂ and compute for all i ∈ [n] and τ ∈ {0, . . . , blg qc},
the value

ψ̂i,τ :=
(

âi,τ , b̂i,τ := 〈âi,τ , ŝ〉+ êi,τ +
⌊
p

q
· (2τ · sL[i])

⌉
mod p

)
∈ Zkp × Zp.

Define Ψ̂ def= {ψ̂i,τ}i,τ .

The output is the secret key sk = ŝ, the evaluation key evk = (Ψ, Ψ̂), and the public key
pk = (A,b).

• Encryption BV.Encpk(µ): pk = (A,b), µ ∈ Z2. Sample a vector r←$ {0, 1}m and set

v := AT r and w := 〈b, r〉+ µ

Output is the ciphertext c := (v, w, 0).

• Homomorphic evaluation BV.Evalevk(C, c1, . . . , ct) where C should be layered with only one
type of gates on each layer, odd layers being addition and even layers being multiplication.
There should be exactly 2L layers. Homomorphic addition of c = (v, w, `) and c′ =
(v′, w′, `) gives c′′ = (v + v′, w + w′, `).

For homomorphic multiplication of c = (v, w, `) and c′ = (v′, w′, `) define v[0] def= −w and
v′[0] def= −w′. We compute hi,j := v[i] · v′[j] and find a binary representation using bits
hi,j,τ such that hi,j =

∑blg qc
τ=0 hi,j,τ · 2τ . Using ψ`,i,j,τ = (a`,i,j,τ , b`,i,j,τ) we finally get the

output of the homomorphic multiplication(∑
0≤i≤j≤n

τ∈{0,...,blg qc}

hi,j,τ · a`+1,i,j,τ ,
∑

0≤i≤j≤n
τ∈{0,...,blg qc}

hi,j,τ · b`+1,i,j,τ , `+ 1
)

(3.1)

We use these homomorphic operations to iterate through C until we end up with a single
ciphertext c = (v, w, L).
For this ciphertext compute hi := q+1

2 v[i] mod p and its binary representation hi,τ such
that hi =

∑blg pc
τ=0 hi,j,τ · 2τ . Finally, we use ψ̂i,τ = (âi,τ , b̂i,τ) to compute

(v̂, ŵ) :=
(

2 ·
∑
i∈[0,n]

τ∈{0,...,blg pc}

hi,τ · âi,τ , 2 ·
∑
i∈[0,n]

τ∈{0,...,blg pc}

hi,τ · b̂i,τ

)
∈ Zkp × Zp

The output of the evaluation is ĉ := (v̂, ŵ).

• Decryption BV.Decsk(ĉ): We decrypt (v̂, ŵ) as follows

µ′ := ((ŵ − 〈v̂, ŝ〉) mod p) mod 2

where w′ = (w mod p) is the number in [−p/2, p/2) such that w ≡ w′ (mod p). The output
is µ′.

10

3.3 Correctness
An evaluation scheme would not be of much use without correct evaluation. We show this by
bounding the size of the noise. The proof is an extended version of the proof by Brakerski and
Vaikuntanathan[3].

To obtain correctness we need to restrict a few of the parameters. We restrict the distributions
χ and χ̂ to be B- and B̂-bounded respectively to at least bound the initial noise. As we will see
setting B = n and B̂ = k gives us the properties we need. We set m = b(n+ 1) lg q + 2κ+ 2c
to get a bound on the size of a newly encrypted ciphertext. We require both moduli to be odd
with p ≥ 16nk lg 2q and q ≤ 2nε for some fixed ε ∈ (0, 1). Finally we need both n and k to be
polynomial in the the security parameter κ. We do this by choosing a fixed positive integer c
and setting k = κ and n = kc.

Theorem 3.3.1. For fixed ε, we can find L ∈ Ω(ε lgn) such that BV has correct evaluation for
large enough parameters.

Proof. For the purpose of simplifying the algebra we will always be assuming that the integer
parameters are greater than 10. We start by establishing an equality for the ciphertexts that
have been produced through encryption and partial evaluation c = (v, w, `).

w − 〈v, s`〉 = µc + 2ec mod q (3.2)

where µc is the bit value that we would have gotten if we had done all the homomorphic operations
we did to get c on the original plaintexts instead and ec is a small noise term. Everything is
done modulo q. We proceed by induction.

For the base case recall that v = AT r, w = 〈b, r〉+µ and b = As0+2e. Since we have done no
homomorphic operations µc = µ. w−〈v, s`〉 = 〈As0 +2e, r〉+µ−〈AT r, s0〉 = 〈As0 +2e, r〉+µ−
〈As0, r〉 = µ+2〈e, r〉. Since r was sampled from {0, 1}m we get 〈e, r〉 ≤ |e| ≤ mmax1≤i≤m(|ei|).

Now we show that if c = (v, w, `) and c′ = (v′, w′, `) both obey the equality, then so will the
result of their homomorphic addition (v + v′, w + w′, `). w + w′ − 〈v + v′, s`〉 = w − 〈v, s`〉 +
w′−〈v′, s`〉 = µc + 2ec +µc′ + 2ec′ = µc +µc′ + 2(ec + ec′), which is of the form of equation (3.2)
with the noise being at most the sum of the noises of the summands plus one.

Now we show the same for homomorphic multiplication of c and c′. Recall the multiplication

11

computation (3.1), which gives the left side of equation (3.2) as∑
0≤i≤j≤n

τ∈{0,...,blg qc}

hi,j,τ b`+1,i,j,τ −
〈 ∑

0≤i≤j≤n
τ∈{0,...,blg qc}

hi,j,τa`+1,i,j,τ , s`+1

〉

=
∑

0≤i≤j≤n
τ∈{0,...,blg qc}

hi,j,τ

(
〈a`+1,i,j,τ , s`+1〉+ 2e`+1,i,j,τ + 2τs`[i]s`[j]

)
−
〈 ∑

0≤i≤j≤n
τ∈{0,...,blg qc}

hi,j,τa`+1,i,j,τ , s`+1

〉

=
∑

0≤i≤j≤n
τ∈{0,...,blg qc}

hi,j,τ (2e`+1,i,j,τ + 2τs`[i]s`[j])

= 2
∑

0≤i≤j≤n
τ∈{0,...,blg qc}

hi,j,τe`+1,i,j,τ +
∑

0≤i≤j≤n
hi,js`[i]s`[j]

= 2
∑

0≤i≤j≤n
τ∈{0,...,blg qc}

hi,j,τe`+1,i,j,τ +
∑

0≤i≤j≤n
v[i]v′[j]s`[i]s`[j]

= 2
∑

0≤i≤j≤n
τ∈{0,...,blg qc}

(hi,j,τe`+1,i,j,τ) + ww′ −
∑
j∈[1,n]

(v[j]w′s`[j] + wv′[j]s`[j]) +
∑

1≤i≤j≤n
v[i]v′[j]s`[i]s`[j]

= 2
∑

0≤i≤j≤n
τ∈{0,...,blg qc}

(hi,j,τe`+1,i,j,τ) + (µc + 2ec + 〈v, s`〉)(µc′ + 2ec′ + 〈v′, s`〉)

− 〈v, s`〉(µc′ + 2ec′ + 〈v′, s`〉)− 〈v′, s`〉(µc + 2ec + 〈v, s`〉) + 〈v, s`〉〈v′, s`〉
= 2

∑
0≤i≤j≤n

τ∈{0,...,blg qc}

(hi,j,τe`+1,i,j,τ) + (µc + 2ec)(µc′ + 2ec′)

= 2
(
ecµc′ + ec′µc + 2ecec′ +

∑
0≤i≤j≤n

τ∈{0,...,blg qc}

(hi,j,τe`+1,i,j,τ)
)

+ µcµc′

This is in the form of equation (3.2).
Finally we show that a similar equality

ŵ − 〈v̂, ŝ〉 = µĉ + 2ê mod p

holds for ciphertexts of the form ĉ = (v̂, ŵ) that have been fully evaluated. We again start with
the left side. All calculation is done mod p.

p+ 1
2 (ŵ − 〈v̂, ŝ〉) = (

∑
i∈[0,n]

τ∈{0,...,blg pc}

hi,τ b̂i,τ − 〈
∑
i∈[0,n]

τ∈{0,...,blg pc}

hi,τ âi,τ , ŝ〉)

=
∑
i∈[0,n]

τ∈{0,...,blg pc}

hi,τ (b̂i,τ − 〈âi,τ , ŝ〉)

=
∑
i∈[0,n]

τ∈{0,...,blg pc}

hi,τ (êi,τ +
⌊
p

q
2τsL[i]

⌉
)

12

We get rid of the rounding by adding another noise term |e| ≤ 1
2 .∑

i∈[0,n]
τ∈{0,...,blg pc}

hi,τ (êi,τ +
⌊
p

q
2τsL[i]

⌉
) =

∑
i∈[0,n]

τ∈{0,...,blg pc}

hi,τ (êi,τ + e+ p

q
2τsL[i])

=
∑
i∈[0,n]

τ∈{0,...,blg pc}

hi,τ (êi,τ + e) +
∑
i∈[0,n]

hisL[i]p
q

=
∑
i∈[0,n]

τ∈{0,...,blg pc}

hi,τ (êi,τ + e) +
∑
i∈[0,n]

q + 1
2 v[i]sL[i]p

q

=
∑
i∈[0,n]

τ∈{0,...,blg pc}

hi,τ (êi,τ + e) + q + 1
2

p

q
(〈v, sL〉 − w)

=
∑
i∈[0,n]

τ∈{0,...,blg pc}

hi,τ (êi,τ + e) + p(q + 1)
2q (µc + 2ec +Nq)

=
∑
i∈[0,n]

τ∈{0,...,blg pc}

hi,τ (êi,τ + e) + p(q + 1)
2q µc + p(q + 1)

q
ec

=
∑
i∈[0,n]

τ∈{0,...,blg pc}

hi,τ (êi,τ + e) + p(q + 1)
2q µc + p

q
ec

=
∑
i∈[0,n]

τ∈{0,...,blg pc}

hi,τ (êi,τ + e) + p+ 1
2 µc + (p

q
− 1)µc2 + p

q
ec

Clearly p+1
2 µc is an integer, which means that the sum of the rest of the terms is also an integer.

Multiplying p+1
2 µc by 2 yields µc mod p. Retrieving the expression we started with, gives

2p+ 1
2 (ŵ − 〈v̂, ŝ〉) = ŵ − 〈v̂, ŝ〉 = µc + 2ê mod p (3.3)

where

ê =
∑
i,τ

hi,τ (êi,τ + e) + (p
q
− 1)µc2 + p

q
ec.

The problem now, is to find out when the noise is small enough for ciphertexts to be decrypted
correctly. We want the final noise term plus evaluated plaintext to be less than p

2 in magnitude.
We define a function on a partly evaluated ciphertext c = (v, w, `) as follows

η(c) def= |µc + 2ec|

This is simply the magnitude of the invariant in (3.2) without taking the modulus. This is
not well defined, since the noise is not uniquely defined by the invariant, so we use the noise
that minimizes the function value. Since χ and χ̂ are B and B̂-bounded respectively, with all
but negligible probability the polynomial in n and k samples will all be less than the bounds2.
From now on we disregard that negligible case. Let η` be the maximal size of η for any of the
ciphertexts evaluated up to and including multiplicative layer ` and η̂ be the same for completely
evaluated ciphertexts.

2This is why we need n and k to be polynomial in κ.

13

Our earlier work gives η0 ≤ 2Bm+ 1 and the inequality

η` ≤ 2η2
`−1 + 2B (n+ 1)(n+ 2)

2 (lg q + 1) ≤ 2 max{2η`−1, (n+ 2)
√
B lg 2q}2

Using m > (n+ 1) lg q + 2κ we can bound the noise of freshly encrypted ciphers as follows

η0 ≤ 2Bm+ 1 = max{2Bm+ 1, (n+ 2)
√
B lg 2q},

which recursively gives us a bound for every multiplicative layer including the last one.

η` ≤ 8η2
`−1 ≤

(8η0)2`

8 ≤ (16Bm+ 8)2`

8
Using this and (3.3) with its bounds we get

η̂ ≤ (lg 2p)(n+ 1)(2B̂ + 1) + p

q
ηL + 2 ≤ 4 lg(2p)nB̂ + p

q
ηL

From the parameters we get
p

4 ≥ 4 lg(2p)nB̂

It remains to show that
p

4 >
p

q
ηL ⇔

1
4 >

1
q
ηL

Let us insert the parameters

ηL
q
≤ (16Bm+ 8)2L

8q ≤ (16n(n+ 1)nε + 32κ+ 32 + 8)2L

8 · 2nε ≤ (32n2+ε)2L

8 · 2nε

If L is a small enough fraction of ε lgn, then the denominator is asymptotically larger than the
numerator. This means that for large enough n the fraction is always smaller than 1

4 and we
have our result.

3.4 Compactness
When bootstrapping we get compactness for free, but compactness is still useful in case we want
to use the system without bootstrapping.

Theorem 3.4.1. The BV evaluation scheme is compact

Proof. The output of BV.Eval is an element of Zkp × Zp. These elements can be represented
using (k + 1) dlg pe bits. Since k = κ and p =

⌈
16κc+1κcε

⌉
are both polynomial in κ the result

follows.

3.5 Security
Even if correct, an evaluation scheme is not very useful if it can be exploited by adversaries. We
show that BV is secure on the condition that certain DLWE problems are hard. The proof is an
expanded version of the proof by Brakerski and Vaikuntanathan[3].

Our proof is a hybrid argument. We start with an adversary that gets the evaluation key,
the public key and an encryption of 0 or 1. We gradually change the information we give the
adversary until everything is uniform and for each change we show that the difference between the
advantages of the original and the changed distribution is bounded. In the final hybrid everything
is uniform, so the advantage is zero and we can sum up the differences in the advantages to get
a bound on the advantage of an adversary that gets all the information.

14

Theorem 3.5.1. Let n, k, q, p, L and κ be parameters as described in the scheme. Let χ and
χ̂ be distributions over the integers as described in the scheme. If DLWEn,q,χ and DLWEk,p,χ̂ are
both (t, ε)-hard, then the scheme is (t− poly(κ) , 2(L+ 1)(2−κ + ε))-IND-CPA.

Proof. Let A be an IND-CPA adversary for BV that runs in time t′. We proceed by a sequence
of hybrids.

• Hybrid Ĥ: The adversary gets pk and evk distributed as if generated by BV.KGen and an
encryption of 0 for one random variable and 1 for the other encrypted with BV.Enc. This
hybrid is the same as the situation in IND-CPA, so

Adv
Ĥ

[A] = AdvCPA[A] def= δ

• Hybrid HL+1: Same as previous hybrid except that Ψ̂ in the evaluation key is sampled
uniformly instead of being computed properly.
An adversary B̂ would then be able to solve the DLWEk,p,χ̂ problem in time t′ + poly(κ)
with advantage

AdvDLWEk,p,χ̂ [B̂] ≥ 1
2

∣∣∣AdvHL+1
[A]− Adv

Ĥ
[A]
∣∣∣ .

The adversary generates Ψ, pk and all the s0, . . . , sL as in BV.KGen, but generates Ψ̂
as n pairs given by the oracle in the DLWE problem, only adding the third term, bpq ·
(2τ · sL[i])e, to the inner product (or uniformly sampled number), just like BV.KGen
would. Then the adversary uniformly samples µ←$ {0, 1}. The adversary outputs 1 if
A(pk, (Ψ, Ψ̂),BV.Enc(µ)) = µ and 0 otherwise. Clearly the inputs fed to A correspond to
either HL+1 or Ĥ. Let P be the event that the first case holds.

AdvDLWEk,p,χ̂ [B̂] =
∣∣∣Pr
[
A(pk, (Ψ, Ψ̂),BV.Enc(µ)) = µ

∣∣∣P]
− Pr

[
A(pk, (Ψ, Ψ̂),BV.Enc(µ)) = µ

∣∣∣P]∣∣∣
= 1

2

∣∣∣Pr
[
A(pk, (Ψ, Ψ̂),BV.Enc(1)) = 1

∣∣∣P]+ 1

− Pr
[
A(pk, (Ψ, Ψ̂),BV.Enc(0)) = 1

∣∣∣P]
− Pr

[
A(pk, (Ψ, Ψ̂),BV.Enc(1)) = 1

∣∣∣P]− 1

+ Pr
[
A(pk, (Ψ, Ψ̂),BV.Enc(0)) = 1

∣∣∣P]∣∣∣
≥ 1

2

∣∣∣AdvHL+1
[A]− Adv

Ĥ
[A]
∣∣∣

The additional work required by B̂ corresponds to the execution of (parts of) BV.KGen,
one uniform sampling from {0, 1} and a comparison. The amount of additional work is
therefore polynomial in κ.

• Hybrid H` with ` ∈ [L]: Same as H`+1 except that ψ`,i,j,τ is sampled uniformly instead of
as in BV.KGen. Similar to the last hybrid there is an adversary B` that solves the DLWEn,q,χ
with time t′ + poly(κ) and advantage

AdvDLWEn,q,χ [B`] ≥ 1
2

∣∣∣AdvH` [A]− AdvH`+1
[A]
∣∣∣ .

The adversary generates the encryption key and s0, . . . , s`−1 as usual and uses them to
generate the corresponding parts of Ψ. The ψ`,i,j,τ are the pairs given by the oracle mul-
tiplied by 2 and having 2τs`−1[i][j] added to the inner product. Since the modulus is

15

odd, multiplication by 2 keeps uniform distributions uniform. The rest of the evalua-
tion key is sampled uniformly. Again the adversary samples µ←$ {0, 1} and outputs 1 if
A(pk, (Ψ, Ψ̂),BV.Enc(µ)) = µ and 0 otherwise. As in the previous proof we get one of two
hybrids depending on what the oracle gives us and the algebra is similar.
In hybrid H1 the entire evaluation key is uniform.

• Hybrid H0: This hybrid is identical to H1, except b is uniform instead of computed as
As0 + 2e.
There exists an adversary B0 solving the DLWEn,q,χ with time t′ + poly(κ) and advantage

AdvDLWEn,q,χ [B0] ≥ 1
2
∣∣AdvH0

[A]− AdvH1
[A]
∣∣ .

The adversary gets m samples from the oracle, multiplies them all by 2 and uses the result
as (A,b). The rest of the adversary is similar to the two above and so is the algebra.

• Hybrid Hrand: Identical to H0 except that the ciphertext is sampled uniformly instead of
computed as (AT r, 〈b, r〉+ µ).

Let A′ def= (A,b)T = pkT ←$ Z(n+1)×m
q , y′ def= (y, y)←$ Z(n+1)

q and r←$ {0, 1}m, be
treated as uniform independent random variables. Treating A′←$ Z(n+1)×m

q as a func-
tion by matrix-vector multiplication, the family of functions is a universal family of hash
functions from {0, 1}m to Z(n+1)

q , so we can use the leftover hash lemma (2.3.6). First we
need the collision probability of r, which is 2−m since it is uniform, then we need the size
of the target space, which is qn+1. Using m > (n+ 1) lg q + 2κ we get the bound

∆[(A′,A′r), (A′,y)] ≤ 1
2

√
2−mqn+1 < 1

2

√
2−2κ = 1

22−κ.

Using this statistical distance and the uniform independent random variables µ←$ {0, 1}
and evk we can bound the difference between advantages of A on the last two hybrids.

∆[(A′,A′r), (A′,y)] = ∆[(A′,A′r, µ, evk), (A′,y, µ, evk)]
≥∆[

∣∣∣A[pk, evk, (AT r, 〈b, r〉+ µ)]− µ
∣∣∣, ∣∣∣A[pk, evk, (y, y + µ)]− µ

∣∣∣]
≥ |Pr[A[H0] = µ]− Pr[A[Hrand] = µ]|
= 1

2 |Pr[A[H0] = 1 |µ = 1]− Pr[A[H0] = 1 |µ = 0]
− Pr[A[Hrand] = 1 |µ = 1] + Pr[A[Hrand] = 1 |µ = 0]|

≥ 1
2

∣∣∣AdvH0
[A]− AdvHrand

[A]
∣∣∣

In Hrand the public key, the evaluation key, the ciphertext and the message are all uniform
and independent, so

AdvHrand
[A] = 0

Adding up the differences we get

Adv
Ĥ

[A] ≤ 2−κ + 2(AdvDLWEk,p,χ̂ [B̂] +
L∑
`=0

AdvDLWEk,p,χ̂ [B`])

where A runs in time at least t− poly(κ), which gives the result.

3.6 Bootstrapping
We will not display a complete proof of bootstrapability. The idea is to show that the circuit
depth of the decryption circuit is asymptotically smaller than the depth of the circuits we can
evaluate. To do this we need to take advantage of parallelization and efficient computational
algorithms. A full proof can be found in the BV paper [3].

16

Chapter 4

Final remarks

Shortly after the BV scheme was published, Vaikuntanathan, Brakerski and Gentry wrote Fully
Homomorphic Encryption without Bootstrapping[2], which presents a similar scheme with a num-
ber of improvements. The main improvement comes from the observation that the modulus
switch that happens in the last step of BV.Eval actually reduces the size of the noise. It also
reduces the modulus by a similar amount, which means that the noise to modulus ratio does not
change much, but it turns out that it helps tremendously with keeping the noise in check when
multiplying.

In the BV scheme the noise is approximately squared every time we multiply. Multiplying
three times increases the noise from 2e to ∼ 28e8. If we divide the modulus by B every time we
multiply, we instead get ∼ 28e8/B7, which, if we chose B ≥ 2e, is similar to the original noise,
but the modulus is only reduced from q to ∼ q/B3. The ratio is a lot better than it is without
changing modulus. We can use this method to keep the noise essentially constant while slowly
whittling away at the modulus. Without modulus switching we get ∼ lg log2e(q) multiplications
before the noise becomes too large. With modulus switching we get ∼ logB(q), which grows
exponentially faster than the other in the worst case.

17

Bibliography

[1] Frederik Armknecht, Colin Boyd, Christopher Carr, Kristian Gjøsteen, Angela Jäschke,
Christian A. Reuter, and Martin Strand. A guide to fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2015/1192, 2015. http://eprint.iacr.org/2015/1192.

[2] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully homomorphic encryption
without bootstrapping. Cryptology ePrint Archive, Report 2011/277, 2011. http://eprint.
iacr.org/2011/277.

[3] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) LWE. Cryptology ePrint Archive, Report 2011/344, 2011. http://eprint.iacr.
org/2011/344.

[4] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher,
editor, 41st Annual ACM Symposium on Theory of Computing, pages 169–178, Bethesda,
MD, USA, May 31 – June 2, 2009. ACM Press.

[5] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Harold N. Gabow and Ronald Fagin, editors, 37th Annual ACM Symposium on Theory of
Computing, pages 84–93, Baltimore, MA, USA, May 22–24, 2005. ACM Press.

[6] R L Rivest, L Adleman, and M L Dertouzos. On data banks and privacy homomorphisms.
Foundations of Secure Computation, Academia Press, pages 169–179, 1978.

[7] Victor Shoup. A Computational Introduction to Number Theory and Algebra. Cambridge
University Press, USA, 2 edition, 2009. https://shoup.net/ntb/ntb-v2.pdf.

18

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Ba
ch

el
or

’s
pr

oj
ec

t

Oskar Goldhahn

A Look Into Homomorphic Cryptography
and the BV Homomorphic Encryption
Scheme

Bachelor’s project in Mathematical Sciences

Supervisor: Kristian Gjøsteen

May 2020

