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Introduction

Quantum computation is a proposed model of computation that applies quan-
tum mechanics to perform information processing and store information in quan-
tum states. Quantum mechanics applies for many different phenomena, with
many possible systems in which it is possible to model and manipulate the
fundamental quantum information bit - the qubit - and thus there are hypo-
thetically many ways to construct a quantum computer. One proposed way of
quantum computation is to use non-abelian anyons to model qubits. These are
exotic quasi-particles whose wave functions evolve non-trivially when permuting
their positions. This allows for computation with qubits simply by permuting
anyons, a process called braiding since their trajectories in spacetime resemble
braids. The quantum states associated with the anyons evolve only when the
positions of anyons are permuted and do not depend on the paths the anyons
take. For this reason this model of quantum computation is called topological
quantum computation (TQC). One of the main advantages of TQC is that com-
putations are inherently fault tolerant: there is no noise due to anyons taking
strange paths since the quantum evolution is path independent. The goal of
this text is to investigate the mathematical framework for this proposed model
of quantum computation. The main results are the possible gates that can be
applied to two one-qubit topological computers. Given the key properties of
the anyons used, Theorem 5.2 states the possible one-qubit gates in an Ising
computer, and Theorem 7.1 states the possible one-qubit gates in a Fibonacci
computer.

The text is structured in the following way. Section 1 is a brief introduction to
quantum computing in general and introduces qubits and the operations that
act on them known as quantum gates. Section 2 introduces anyons and discusses
the properties of anyons that make them promising for quantum computation.
Here we will also briefly give an overview of all the key points in TQC and illus-
trate how a one-qubit operation might manifest itself in spacetime (Figure 2.2).
In Section 3 we go through Temperley-Lieb-Jones theory. Eventually we will
arrive at the Jones category which models TQC. The objects of the category
represent anyons and the morphisms represent the physical events that can take
place. There are two important physical events that can take place: fusion and
splitting, meaning that two anyons can fuse to one anyon and that one anyon
can split to two anyons. Fusion and splitting are the central processes that are
needed to initialize and measure qubits. Representation theory suffices to model
these processes, but the reason to model anyon processes in categorial language
is that we also want to braid anyon trajectories, a process that naturally has
an interpretation in the Jones category. This allows for finding unitary repre-
sentations of the braid group, which in fact will be the quantum gates of TQC.
Section 4 describes how to construct a qubit and how braiding evolves the state
of the qubit. In Section 5 we give an example of a specific topological one-qubit
computer using Ising anyons. The section shows how to construct a qubit us-
ing these anyons and applies the theory developed in the previous sections to
find all possible operations that can be applied to this qubit by braiding alone.
In Section 6 we introduce the F -matrix and the R-symbols, which simplifies
calculations when one tries to find the braid group representations on a set of
anyons. Finally in Section 7 we present a model of TQC using Fibonacci anyons:

3



a theoretically proposed anyon species for which there is yet no experimental
evidence. The Fibonacci anyons are superior to Ising anyons for TQC, since
they allow for all possible quantum gates to be implemented.
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1 Quantum Computing in General

In the following we go on to explain the mathematics of quantum computing
in general. A detailed introduction to this topic can be found in the book by
Nielsen and Chuang [1].

1.1 Qubits

Abstractly, a classical computer consists of bit strings and operations that ma-
nipulate such strings. A bit takes either the value 0 or 1 and lives in {0, 1}, and
we will use the convention that Z2 refers to this set. A bit string is a sequence of
bits, for instance 100101 or 10. The operations on bit strings are then functions
on the form

f : Zn2 → Zn2 . (1)

In a quantum computer, the fundamental information quantity is not a bit, but
a qubit. Just like a bit, a qubit also has a state. Two possible states are |0〉
and |1〉 which correspond to the classical bit states of 0 and 1. However, a qubit
may also be in a state that is a linear combination of |0〉 and |1〉. Any state

|ψ〉 ∈ {α|0〉+ β|1〉 : |α|2 + |β|2 = 1} (2)

is also an allowed state of a qubit. The numbers α and β are complex numbers
and the state of a qubit is a vector living in C2. The two states |0〉 and |1〉
are called a computational basis for the space C2, and they are orthogonal and
have norm 1. Recall that the norms of quantum states are induced by the inner
product associated with the space, since quantum states live in a Hilbert space.
Since the allowed states have unit length, computations in quantum computers
are unitary transformations

U : (C2)⊗n → (C2)⊗n. (3)

Although there are infinitely many states of a qubit, there are only two possible
states that can be measured. If one were to examine a qubit |ψ〉 = α|0〉+ β|1〉,
one loses information. Quantum mechanics tells us that during measurement the
state collapses, and that the result is probabilistic. The probability amplitudes
are the projections of |ψ〉 onto some basis. Therefore the act of examining a qubit
is called a projective measurement. For instance, if one wants to examine |ψ〉,
one can choose to project it to the basis {|0〉, |1〉} and one either obtains |0〉 with
probability |α|2 or |1〉 with probability |β|2. One could also choose another basis

to project the qubit onto, for instance
{
|+〉 = |0〉+|1〉√

2
, |−〉 = |0〉−|1〉√

2

}
, and one

would obtain either |+〉 with probability |α+β|
2

2 or |−〉 with probability |α−β|
2

2 .

1.2 Quantum Gates

A unitary transformation as in (3) is called a quantum gate, the analog of clas-
sical logic gates. Just as in a classical computer, all operations on a set of
qubits can be performed by manipulating them repeatedly with a finite set of
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gates. For instance, the following are typical one-qubit gates with respect to
the computational basis {|0〉, |1〉}:

NOT =

(
0 1
1 0

)
H =

1√
2

(
1 1
1 −1

)
σ

1
4
z =

(
1 0
0 eπi/4

)
(4)

where H is called the Hadamard gate. Let |mk〉 = |m〉 ⊗ |k〉, then a two qubit
gate with respect to the computational basis {|00〉, |01〉, |10〉, |11〉} is for instance

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (5)

and is called the controlled NOT gate since the state of the first qubit determines
whether the NOT gate should act on the second qubit. All gates swapping two
states is also called a CNOT, meaning that we also call the following gates
CNOTs: 

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 ,


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 (6)

1.3 Universal Gate Sets

We now define the language to describe the computational power of a quantum
computer:

Definition 1.1. 1. A gate set G is a set of quantum gates acting on a finite
number of qubits. The gates g ∈ G need not to act on the same number
of qubits.

2. Suppose there is a system with n qubits and with a gate set G. Having
n-qubits, there are 2n basis states. Moreover, let 1k be the k× k identity
matrix. An n-qubit quantum circuit is a composition of matrices of
the form 12p ⊕ g ⊕ 12q, where g ∈ G and p, q are natural numbers.

Example. For instance, a 3-qubit quantum circuit over {H,CNOT} with respect
to the basis {|abc〉}abc∈{0,1} is

(CNOT⊕14)(H ⊕ 16)(CNOT⊕14)(14 ⊕ CNOT) (7)

Quantum mechanical operations are in general unitary, but we may restrict
ourselves to special unitary matrices. The reasons for this is that quantum
states |φ〉 have a U(1) part that is not measurable. All states can be written on
the form

|φ〉 =
∑
j=1

rje
iθj |φj〉 = eiθ1

r1|φ1〉+
∑
j=2

rje
i(θj−θ1)|φj〉

 (8)

and since it is only the square of the projection of |φ〉 onto some basis state
that is measurable, it is impossible to determine the global phase eiθ1 . We can
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therefor, choose the global phase as we desire. A quantum unitary gate can be
written on the form U = eiθV , and since

det(U) = eiθ det(V ) = eiθeiφ2 (9)

we choose eiθ = e−iφ2 such that det(U) = 1. This means that we can restrict
our discussion to the special unitary group.

Definition 1.2. A gate set G is said to be universal if for all integral n the
set Q of all n-qubit quantum circuits is dense in SU(2n) up to a global phase,
meaning the quantum circuits in Q are allowed to carry an unimportant global
phase eiθ.

Theorem 1.1. The gate set {H,σ
1
4
z ,CNOT} is universal.

1.4 Proof of Theorem 1.1

The particular gate set in Theorem 1.1 is due to Boykin, Mor, Pulver, Roy-
chowdhury and Vatan [2]. However, to prove the theorem one needs some
intermediate results which are drawn from other sources as well.

Lemma 1.1. The one qubit gates H and σ
1
4
z generate a dense set in SU(2) up

to a global phase.

This statement appeared in [2] and the proof below is taken from that paper.
In the following we will use the Pauli matrices that are extensively used in
quantum mechanics:

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(10)

and define n̂ · σ ≡ nxσx + nyσy + nzσz, where n̂ is a three dimensional vector.
In general, an element U ∈ SU(2) can be written as

U = eiφU n̂U ·σ. (11)

The key point is that one can think of this as a three dimensional rotation. In
the rotation group SO(3), an element can be described by Euler angles as

Rn̂U (θ) = Rz(α)Ry(β)Rz(γ) (12)

and one can rewrite (13) in the similar form

U = eiφU n̂U ·σ = eiασzeiβσyeiγσz (13)

meaning that one can think of elements in SU(2) as two rotations around the
z axis and one rotation around the y axis. These directions are arbitrary; one
can choose any two directions that are not parallel. This is what we will use to

prove that H and σ
1/4
z form a dense set in SU(2) up to a global phase.

Proof. (Lemma 1.1)
We start by making the following definitions

σαz =

(
1 0
0 eiπα

)
, σαx = HσαzH, σαy = σ

1
2
z σ

α
xσ
− 1

2
z , Hα = σ

1
4
y σ

α
z σ
− 1

4
y , (14)
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and using these we define

R1 = eiλm̂·σ = σ
− 1

4
z σ

1
4
x , R2 = eiλn̂·σ = H−

1
2R1H

1
2 (15)

and using (15) one can calculate λ and m̂ and n̂. One can then show that λ is
irrational [2], and that m̂ and n̂ are orthogonal. The irrationality of λ can be
deduced by showing that e2πiλ is a root of the irreducible monic polynomial

x4 + x3 +
1

4
x2 + x+ 1. (16)

This polynomial is not cyclotomic, and thus λ is irrational. Since λ is irrational,
one can reach any number in [0, 2π) by an integer multiple of λ modulo 2π.
Hence, R1 and R2 reach all rotations around their respective axes, and every
element in SU(2) can be approximated arbitrary close by

Rk1R
l
2R

m
1 (17)

by integers k, l,m ∈ N.

Lemma 1.2. Any unitary gates can be constructed by a combination of two
level gates.

Proof. The basic idea is that one takes the relevant unitary matrix U and multi-
plies it from the left with two level unitary gates Ui until the identity is obtained,
that is, Uk . . . U2U1U = I. Since the inverse of unitary operations are given by
their adjoints, the unitary gate U can be decomposed as U = U†1U

†
2 . . . U

†
k . We

refer to [3] for a detailed proof.

Lemma 1.3. Up to a phase, SU(2) ∪ {CNOT} is universal.

Proof. The following proof is taken from the book by Nielsen and Chuang[1,
p. 191-193], and is due to [4]. Using Lemma 1.2, we only need to show that
single qubit gates and CNOT suffice to construct any two level unitary gate.
We do this by using Gray codes. Suppose we have a two level gate U acting
non-trivially only on the space spanned by the computational basis states |x〉
and |y〉 where x = x1 . . . xn and y = y1 . . . yn are the binary expansions of x
and y. Further, let Ũ by the unitary 2 × 2 submatrix of U acting on |x〉 and
|y〉. A Gray code connecting x and y is a sequence g of n bit strings where each
bit string gi differs from the adjacent bit string by exactly one bit. This means
that x = g1 and y = gn. For instance, a Gray code connecting 1001 and 1110 is

1001 (18)

1000 (19)

1010 (20)

1110 (21)

To idea is as follows: suppose g1 and g2 differ in the jth digit. We then swap
the states |g1〉 and |g2〉 by performing a control bit flip on the jth digit. After
this we swap |g2〉 and |g3〉, and continue to do this procedure until |gn−2〉 and
|gn−1〉 are swapped. Now, suppose gn−2 and gn−1 differ in the kth bit. Now
apply Ũ on the kth qubit, and undo the first step, that is: swap |gn−1〉 and
|gn−2〉 and then |gn−2〉 and |gn−3〉 until |g2〉 and |g1〉 are swapped.

8



Example. For clarity, we demonstrate the procedure described above on the two
level unitary gate

U =


a 0 0 c
0 1 0 0
0 0 1 0
b 0 0 d

 (22)

acting on the computationanl basis {|00〉{|01〉{|10〉{|11〉}. We see that U acts
non-trivially on {|00〉 and {|11〉 and where

Ũ =

(
a c
b d

)
(23)

is unitary. The relevant Gray code is

00 01 11 (24)

Now, 00 and 01 differ in the last bit, so we swap the first and second qubit.
This is done by applying a control-NOT gate on,

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 (25)

and then we do the second step and apply Ũ to the first qubit, and finally we
swap the qubits again. This means that

a 0 0 c
0 1 0 0
0 0 1 0
b 0 0 d

 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0



a c 0 0
b d 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 (26)

Proof. (Theorem 1.1) Combining Lemma 1.1 and Lemma 1.3 the result follows
immediately.
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2 Anyons

The properties of anyons are the fundamental physical phenomena that enable
TQC [5, 6, 7]. Anyons are exotic quasi-particles that differ from bosons and
fermions in that they exhibit non-trivial exchange statistics. Recall that the
statistics of a particle species is the relation that tells what happens when the
positions of two particles are permuted. Let ψB(ra, rb) be the wave function of
two bosons a and b with positions ra and rb. Permuting the bosons makes no
changes to the wave function, i.e.

ψB(ra, rb) = ψB(rb, ra). (27)

However if ψF (ra, rb) is the wave function of two fermions, then a permutation
results in a sign difference

ψF (ra, rb) = −ψF (rb, ra). (28)

Bosons and fermions are the particles that occurs in nature, and thus their
statistics is what one observes in nature as well. However, there are other possi-
ble statistics. There is, inter alia, experimental evidence for particles that obey
other statistics in the fractional quantum Hall effect. Such particles are called
anyons. Let ψA(ra, rb) be the wave function of two anyons, then permuting
their positions results in

ψA(ra, rb) = eiθψA(rb, ra) (29)

where eiθ can be any phase, hence the name of the particles.
Some theoretical models also predict further possibilities of anyons. If the
ground state is degenerate, that is if the state space for the lowest energy is
spanned by two or more eigenvectors of the Hamiltonian, then the statistics is
described by a matrix. Let {ψi(ra, rb)}ni=1 be a basis for the ground state man-
ifold of two anyons. Also, let σab be the operator that permutes the positions
of anyon a and b. That is

σabψi(ra, rb) = ψi(rb, ra), (30)

then the result of applying σab to the wave function results in the statistics

σabψi(ra, rb) =
∑
j

Uij(σab)ψj(ra, rb) (31)

where U(σab) is allowed to be any unitary n×n matrix. For a system with three
or more anyons these unitary matrices need not commute. That is, for a system
with three anyons a, b and c the relation U(σab)U(σbc) = U(σbc)U(σab) does
not hold in general. In that case the anyons are said to be non-abelian. It is the
non-abelian anyons that have applications for quantum computing. For certain
non-abelian anyons, the images of the different U(σ) are dense in SU(2n) and
thus makes for the possibility of making a universal quantum computer.

2.1 Anyons from Topology

Anyons only live in two spatial dimensions, and the reason for this is that the
class of trajectories in 2 + 1-spacetime is topologically different from the class
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of trajectories in 3 + 1 space time [5]. Consider Figure 2.1, where anyon a takes
either path µ or λ. If there are three spatial dimensions, µ and λ are equivalent
paths since each path can smoothly be contracted to a point at a. If there are
only two spatial dimensions however, only λ can smoothly be contracted to a
point at a since µ winds around b. This distinction is also manifested in that

Figure 1: Two anyons a and b. µ and λ are two different possible paths a can
take.

the fundamental group of the configuration space is not the same in dimension
two and three. Denote the configurations of n particles in m dimensional space
Cn(Rm), then one can show that

π1(Cn(Rm)) ∼=


1, m = 1,

Bn, m = 2

Sn, m ≥ 3.

(32)

where Sn is the symmetric group and Bn is the braid group generated by
{σ1, σ2, ..., σn−1} subject to the relations

1. σiσj = σjσi for |i− j| ≥ 2 (far commutativity)

2. σiσi+1σi = σi+1σiσi+1, i = 1, 2, ..., n− 2 (braid relation)

Remark. If one also requires that the generators be involutions, i.e. σi = σ−1i ,
then the resulting group is just the symmetric group.

The braid group has a diagrammatic representation that look like braids. We
now show this for B3, but it is easily generalized to any Bn. Let

σ1 = σ2 = 1B3
= (33)

where 1B3 is the group unit. Then group multiplication is performed by stacking
one diagram on top if the other, that is

σ2σ1 = (34)
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and the inverse is given by undoing the braid by reflecting the braid along the
horizontal axis:

1B3
= σ1σ

−1
1 = = . (35)

This diagrammatic representation also captures what happens physically. The
trajectories of anyons in 2 + 1-spacetime form braids. If one permutes the
position of two anyons, then their spacetime trajectories look exactly like the
diagrammatic representation of σ1 ∈ B2.

The key insight from our discussion is that the statistics of a particle species
is a representation of the fundamental group of the configuration space. Thus,
the statistics of anyons is a representation of the braid group. It is the fact that
the braid group is infinite that allows for a representation of it to be dense in
the special unitary matrices.

2.2 Quantum Computation using Anyons

A topological quantum computer is one way to realize a quantum computer.
The idea is to construct qubits from anyons. Since braiding evolves the wave
functions of the anyons, braiding corresponds to quantum gates. Recall that for
non-abelian anyons, the ground state is degenerate and braiding allows for the
wave function to evolve non trivially according to

σabψi(ra, rb) =
∑
j

Uij(σab)ψj(ra, rb). (36)

Although the wave function changes during braiding, the energy associated to
the wave function remains the same, and it is the energy that is measurable. This
means that if one were to model a qubit by two anyons, one is not immediately
able to measure what state the qubit is in. To experimentally distinguish the
different states of anyons, one needs additional interactions. This is done by
bringing the anyons close, a process called fusion. When bringing anyons close,
they start acting like a single composite particle and the energy degeneracy
lifts. The resulting composite anyon of two anyons that are fused is called
the fusion outcome. There might be different fusion outcomes, and different
fusion outcomes have different energies associated with it. The state of the
wave function before fusion that describes the two anyons determines the fusion
outcome. Similarly, one can start with a composite anyon and split it to new
anyons. Splitting is in fact the time reversed process of fusion, and so analogous
to fusion outcomes there are also different splitting outcomes. For instance, a
composite anyon may split to two anyons a and b, or to two other anyons c and
d.
There are three steps in TQC. First, one initialises the desired qubits. The
template of each qubit is a composite anyon. Then one initializes each qubit by
splitting them to more anyons. The state of a qubit is determined by a particular
splitting outcome. Second, one applies gates to the qubits by braiding the
anyons. This changes the wave functions of the system and alters the internal
state of the anyons. Third, one measures the state of the qubits by fusing
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the anyons. If the internal state is different after braiding, then the fusion
outcome might be different from the composite anyons that one started with.
As in the general case for measuring a quantum qubit, the fusion outcome is a
projective measurement of the qubit. Since fusion lifts the degeneracy, different
fusion outcomes give different energies. We illustrate a one-qubit computation
in Figure 2.2.

3 Temperley-Lieb-Jones Theories

This section introduces Temperley-Lieb categories, and the theory is covered in
[8, 9]. The goal is to obtain a fusion category with objects modeling anyons
and morphisms modeling the fusion and splitting processes of anyons. The
motivation for constructing these categories is that they are examples of braided
fusion categories, in which the morphisms also model braiding of anyons. When
we have obtained a fusion category that models these processes, we can then go
on to determine the quantum gates that act on the state space of anyons when
braiding them.

Definition 3.1. Consider the rectangle R×[0, 1] with the sets {1, 2, . . .m}×{0}
with {1, 2, . . . n} × {1} such that m + n is even. A Temperley-Lieb diagram
D is then a collection of m+n

2 arcs in the interior of the rectangle connecting
{1, 2, . . .m}× {0} and {1, 2, . . . n}× {1} plus any number of closed loops inside
the rectangle. All arcs and loops are disjoint and non intersecting. For brevity
we call these diagrams TL diagrams.

Definition 3.2. Let d ∈ C. If two TL diagrams D1 and D2 induce the same
pairing the |x|+ |y| boundary points they are said to be d-isotopic. If there are
n closed loops in a TL diagram, they may be factored out by dn. I.e. if there
are n more closed loops in D2 then D1 than dnD1 = D2.

Example. For instance, the following two diagrams D1, D2 are d-isotopic TL
diagrams from 3 to 1 points.

D1 = D2 = (37)

Remark. There are finitely many TL-diagrams up to d-isotopy from n to m
points, and the number of them is given by the Catalan number ck = 1

k+1

(
2k
k

)
where k = m+n

2 [8, 10].

Definition 3.3. The generic Temperley-Lieb category TL has non-negative
integers n ∈ N as objects. The morphisms in Hom(n,m) are given by the C-
linear span of all TL-diagrams from n to m points up to d-isotopy. Given
two morphisms f ∈ Hom(n,m) and g ∈ Hom(m, k) the composition f ◦ g ∈
Hom(m, k) is given by stacking the TL-diagram of f on top of the TL-diagram
of g. The identity 1n is the TL-diagram containing n vertical lines from n to n
points.

Proposition 3.1. TL is a C-linear monoidal category. For two objects n, n′

the tensor product is given by n ⊗ n′ = n + n′ and for morphisms f : n → m
and g : n′ → m′ define f ⊗ g : n ⊗ n′ → m ⊗ m′ by juxtaposition: place the
TL-diagram of f to the left of the TL-diagram of g.
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Figure 2: Visualization of computing with one qubit. A qubit is realised using
three anyons. A composite anyons d splits to m and c, and m splits to a and b.
The three anyons a, b and c are the qubit, and their internal state is defined to
be so that if one were to fuse a and b one would obtain m with certainty. This
internal state represents the qubit to be the state |0〉. If on the other hand a
and b would fuse to n with certainty, the qubit would have been in the state |1〉.
To perform a one-qubit operation, a, b and c are then braided. This changes
the internal state of the anyons so that one is no longer guaranteed to obtain m
from a and b. This means that the qubit is in a superposition of |0〉 and |1〉. In
the last step, a projective measurement is performed onto the basis {|0〉, |1〉},
and one obtains n from the fusion of a and b instead of m. This means that
when one examined the qubit one measured the qubit to be in the state |1〉.
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Example.

⊗ = (38)

Definition 3.4. Fix A ∈ C× and set d = −A2 − A−2. Then the Tempelery
Lieb algebra TLn(A) is the endomorphism space Hom(n, n) ∈ TL consisting
of the C-linear span of TL-diagrams from n to n points.

The algebra TLn(A) is generated by n− 1 simple diagrams

u1 = u2 = un−1 = (39)

and the identity is the same as the identity in TL. One can check that the
following relations hold:

1. uiuj = ujui |i− j| ≥ 2 (far commutativity)

2. uiui±1ui = ui (braid relation)

3. u2i = dui (Hecke relation)

which in fact defines the algebra if one does not provide the TL-diagrams [10,
p. 12-13].

Remark. We call the second relation in the above definition a braid relation
since setting ui = Aσi − A2 recovers the braid relation in Bn, except that it is
set to zero, i.e. σiσi+1σi = σi+1σiσi+1 = 0.

3.1 Markov Trace and Pairing

The Temperley-Lieb diagrams will eventually be used to model anyon trajecto-
ries, and we want to braid those trajectories and find a representation of the
braid group. To do this, we will need an inner product, in particular the Markov
pairing which is constructed from the Markov trace. In the following, let

∪n = , ∩n = , (40)

where ∪n and ∩n both have n arcs.

Definition 3.5. The Markov trace Tr : TLn(A) → C is the linear form
given by connecting the top and bottom n points in the diagram D ∈ TLn(A)
by n disjoint arcs and counting the number of loops which we denote as η.
Then Tr(D) = dη. That is,

Tr(D) = ∩n(D ⊗ 1n) ∪n . (41)

Example.

Tr

( )
= = d1 (42)
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We denote the involution of D as D̄ which is given by flipping the diagram
through the middle horizontal line, as illustrated in (44). Then we define the
following inner product:

Definition 3.6. The Markov pairing 〈·, ·〉 : TLn(A)× TLn(A)→ C is given
by

〈D1, D2〉 = Tr(D̄1D2) (43)

where D̄1 is the involution of D1.

Example.

D = D̄ = (44)

then

〈D,D〉 = Tr(D̄D) = = d3 (45)

The Markov pairing is a sesquilinear inner product, meaning that for all
D1, D2, D3 ∈ TLn(A) and for all a, b ∈ C the Markov pairing satisfies [10]

1. 〈D1 +D2, D3〉 = 〈D1, D3〉+ 〈D2, D3〉

2. 〈aD1, D2〉 = a〈D1, D2〉

3. 〈D1, D2〉 = 〈D2, D1〉

and is non-degenerate, meaning that if 〈D1, D2〉 = 0 for all D2 then D1 = 0.

3.2 Jones-Wenzl Projectors

We now introduce the Jones-Wenzl projectors that are special morphisms in
the Temperley-Lieb categories that will be used to model anyons. A specific
Jones-Wenzl projector corresponds to a particular anyon species.

Proposition 3.2. There exist a unique central idempotent pn ∈ TLn(A) char-
acterized by

1. pn 6= 0,

2. p2n = pn,

3. uipn = pnui = 0 for all 1 ≤ i ≤ n− 1.

Proof. See [8].

Definition 3.7. The idempotent pn in Proposition 3.2 is called a Jones-Wenzl
projector. By the third property we say that the idempotent kills any turn-
backs.
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Diagrammatically the Jones-Wenzl projectors are denoted

pn =

n

(46)

which means that the TL-diagram has n incoming and outgoing strands, mean-
ing we can also write

p1 =

1

= (47)

p2 =

2

= (48)

p3 =

3

= (49)

etc. The first two projectors are

p1 =

1

= (50)

p2 =

2

= − 1

d
(51)

(52)

Higher order projectors are found by using the recurrence relation given below:

Proposition 3.3. Let µn = [n−1]d
[n]d

, where [n]d = dn−d−n
d−d−1 . The Jones-Wenzl

projectors satisfy

n

= pn−1 − µn
pn−1

pn−1

. (53)

Proof. A proof can be found in [11] where the recurrence relation originally
appeared.

Remark. In general, d need not be invertible, and both [n]d and µn might not
be defined if a division by zero occurs. However, we can avoid these issues by
choosing A such that d−1, [n]d and µn are defined, which we will do when using
them later.
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3.3 Temperley-Lieb-Jones Category

The Jones-Wenzl projectors allow us to construct trivalent vertices. The triva-
lent vertices will be used to model fusion and splitting of anyons, and the differ-
ent anyons are modeled by Jones-Wenzl projectors: each anyon type corresponds
to a particular projector [8, 10, 12]. We now go on to construct a new category
from TL, called the Temperley-Lieb-Jones category TLJ.

Definition 3.8. The Temperley-Lieb-Jones category TLJ has as object
sets of Jones-Wenzl projectors. Given a, b ∈ TLJ0 a morphism f ∈ Hom(a, b) is
given by the C-linear span of TL-diagrams connecting the projectors a and b.
Composition of morphisms is the same as in TL. The identity morphism on an
object a ∈ TLJ0 is the object itself since the objects themselves are morphisms.
TLJ is also monoidal with a tensor product given by juxtaposition as in the
case of TL.

Remark. The generic TLJ is semi-simple since all objects can be written as a
finite sum of Jones-Wenzl projectors, which are simple. However, this is not
the case when A is a root of unity. For application to quantum computing, A
will be a root of unity, and so we need to take a quotient of TLJ to make it
semi-simple. Semi-simplicity is needed since we eventually want to construct a
matrix algebra of the endomorphism spaces in TLJ.

Anyons can fuse and split, and Jones-Wenzl projectors will represent anyons.
Thus, we need to be able to fuse and split the projectors if they are to represent
anyons. There are special morphisms in TLJ that do this and they are called
trivalent vertices. They model both fusion and splitting, by connecting three
projectors. In the following we will call a triplet of natural numbers a, b, c
admissible if

1. a+ b+ c is even, and if

2. a ≤ b+ c, b ≤ a+ c and c ≤ a+ b.

Definition 3.9. Given an admissible triplet a, b, c a trivalent vertex is a
morphism in Hom(pa ⊗ pb, pc) or Hom(pa, pc ⊗ pb). For the triplet a, b, c, there
are unique natural numbers k, l,m given by a = k + l, b = k + m and c =
l + m. Now, take k strands from pa and attach them to k strands of b. Take
the remaining l strands from pa and the remaining m strands from pb and
attach them to the l + m strands of pc. We are now left with a morphism in
either Hom(pa ⊗ pb, pc) or Hom(pa, pc ⊗ pb).

Example. For the triplet 1, 2, 3 the trivalent vertex attaching p1, p2, p3 is

p2 p1

p3

. (54)

Although a trivalent looks like (54), we will for short write

a b

c

. (55)
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since the strands are uniquely determined for a given admissible triplet a, b, c.

Proposition 3.4. The following holds for morphisms in TLJ [8]:

1. Hom(pa, pb) ∼=

{
C if a=b

0 otherwise

2. Hom(pa ⊗ pb, pc) ∼=

{
C if a,b and c are admissible

0 otherwise

At certain roots of unity, some Jones-Wenzl projectors are no longer defined.
This is seen in the recurrence relation for the projectors. If [n]d = 0 then there
is a division by zero and pn is not defined. In that case TLJ is no longer
semi-simple. To get around this we simply take a quotient of TLJ which is
semi-simple. This is accomplished in the following way:
pick an integer r ≥ 3 and choose A ∈ {±ie±2πi/4r}. Then the first projector
that is not defined is pr, and one can show that pr−1 = 0. Taking the quotient
by pr−1 of TLJ yields the Jones category.

Definition 3.10. Pick an integer k and choose A ∈ {±ie±2πi/4r} where r =
k+ 2. This determines the Jones category VA,k. The objects of VA,k are sets
of Jones-Wenzl projectors labeled by a label set L = {0, 1, ..., k}. For two objects
a, b ∈ VA,k

0, Hom(a, b) is the quotient space HomTLJ(a, b)/I(a, b) where I(a, b)
is the subspace of all homomorphisms in HomTLJ(a, b) on the form g ◦ pr−1 ◦ h
for g, h ∈ HomTLJ(a, b).

Remark. In the generic TLJ all Jones-Wenzl projectors are defined. Thus before
picking any specific k, the projectors pr−1 is non-zero. We only choose our
parameters after we have taken a quotient by pr−1.

Remark. From the recurrence relation it follows that only the Jones-Wenzl pro-
jectors labeled by L = {0, 1, ..., k} are present in VA,k.

The Jones category VA,k is a fusion category and it can model fusion and
splitting of anyons. However, there is no a priori notion of braiding in the
category. It is braiding that evolves the internal quantum states of the anyons,
and so to model TQC the morphisms in VA,k should also describe braids. To
make VA,k a braided fusion category we introduce the Kauffman bracket that
bridges the gap by providing a way to represent three dimensional braids as two
dimensional diagrams.

3.4 Kauffman Bracket

Anyon trajectories are three dimensional braids since anyons live in 2 + 1-
dimensional spacetime. We want to represent braids by TL-diagrams which
are two dimensional. To resolve this, one can write three dimensional crossings

as a linear combination of and [13].

Theorem 3.5. (Kauffman’s theorem) There is a unique algebra morphism 〈·〉 :
C[Bn]→ TLn(A) given by the rule

〈σi〉 =A1 +A−1ui

where σi and ui are the ith generators of Bn and TLn(A) respectively and 1 is
the identity in TLn(A). Additionally, 〈·〉 is surjective.

19



Definition 3.11. The algebra morphism 〈·〉 in Proposition 3.5 is called the
Kauffman bracket.

Proof. Uniqueness: This is clear since the group algebra C[Bn] is generated as
an algebra by the generators σi of the braid group.
As for existence, we need to check that the images of 〈σi〉 of the σis are invertible
and that they satisfy the braid relations.
Invertibility: Consider

(A1 +A−1ui)(A
−11 +Aui) = 1 +A−2ui +A2ui + u2i

and insert the relation u2i = (−A2−A−2)ui. Then the above expression evaluates
to 1. Hence (A−11 +Aui) is an inverse.
Far commutativity: We have

〈σi〉〈σj〉 = (A1 +A−1ui)(A1 +A−1uj)

= A21 + ui + uj +A−2uiuj

but A−2uiuj = A−2ujui when |i− j| ≥ 2, so the above evaluates to the same as

〈σj〉〈σi〉 = A21 + ui + uj +A−2ujui.

Braid relation:

〈σi〉〈σi+1〉〈σi〉 = (A1 +A−1ui)(A1 +A−1ui+1)(A1 +A−1ui)

= A31 + 2Aui +Aui+1 +A−1u2i +A−1(uiui+1 + ui+1ui) +A−3uiui+1ui

Using u2i = (−A2 −A−2)ui and uiui+1ui = ui one obtains

〈σi〉〈σi+1〉〈σi〉 = A31 +A(ui + ui+1) +A−1(uiui+1 + ui+1ui)

which is invariant by change of indices i 7→ i+ 1 and i+ 1 7→ i, hence the braid
relation holds

〈σi〉〈σi+1〉〈σi〉 = 〈σi+1〉〈σi〉〈σi+1〉

Surjectivity: Each ui is an image of 〈·〉 given by

〈Aσi −A21Bn〉 = ui

where 1Bn is the group unit of Bn. Then surjectivity follows since {ui} generates
TLn(A).

3.5 Braids in the Jones Category VA,k

The morphisms in the Jones category VA,k represent anyon trajectories, but
there is yet no interpretation for trajectories that are braided. To braid anyons,
we must braid Jones-Wenzl projectors, and we would like to have the diagram

b

a

a

b
(56)
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have an interpretation in the space Hom(pa⊗pb, pb⊗pa). The Kauffman bracket
is the bridge that makes (56) an allowed morphism in VA,k. There are a strands
that link the top and bottom pa, and likewise b strands that link the top and
bottom pb, Each of the a strands from pa cross over each of the b strands of pb.
Thus there are ab crossings in total. Now, resolve all ab crossings through the
Kauffman bracket and one is left with a linear combination of 2ab TL-diagrams
from pa ⊗ pb to pb ⊗ pa. We assign this result to be what we mean by (56).

Example. For clarity we show the case for the braid

2

1

1

2
(57)

in Hom(p1 ⊗ p2, p2 ⊗ p1). First we draw all strands:

(58)

Resolving the 4 crossings then yields

A2 + + +A−2 (59)
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4 Topological Qubits and Gates

We now have all we need to model qubits and quantum gates. The Jones
category VA,k models fusion and splitting of anyons, and the Kauffman bracket
provides a way to model braiding of anyons by morphisms in VA,k. Fusion,
splitting and braiding are all the events that happen in TQC. Anyons themselves
are modeled as Jones-Wenzl projectors being simple objects in the semi-simple
category VA,k. This means that objects in VA,k can be written as a direct sum
of Jones-Wenzl projectors. We will use this when we now go on to describe
topological qubits. This section is based on [12, 14, 8, 10].

4.1 Fusion Rules

To fully describe an anyon model for quantum computing we need to know
the possible fusion outcomes of two anyons that are fused, which is found by
studying the underlying topological quantum field theory [6, 7]. The possible
fusion outcomes are captured in a fusion rule for all anyon pairs. Given two
anyons a and b, the result of fusing them is captured in

a⊗ b ∼=
⊕
c

N c
abc (60)

where the sum is over all possible anyon types in the given anyon model. The
fusion coefficients N c

ab are integers telling the number of ways c can be made
by fusing a and b. For abelian anyons, there will only be one non-zero fusion
coefficient. For non-abelian anyons however, there will be multiple anyons ci
that a and b can fuse to. If this is the case then it is possible to define or-
thonormal energy eigenstates |ab; ci〉 of the Hamiltonian such that if a and b
are in the state |ab; ci〉 one is guaranteed to obtain ci when they are brought
together. By exchanging the positions of a and b, the state evolves non-trivially
to another state in the state space spanned by |ab; ci〉. The idea of TQC is to
identify this space with qubits, and that operations on qubits are quarried out
by exchanging a and b. Since exchanges are braids in 2+1-spacetime, the space
in which anyons lives, quantum gates are thus manifested physically as braids.

4.2 Initializing and Measuring Qubits

The states |ab; ci〉 represent the internal configuration of a and b, such that if
they were to be fused, one would obtain ci. If there are two orthogonal states
|ab; c1〉 and |ab; c2〉, then any normalized linear combination of the two would
also be a configuration of a and b, and the weight of each |ab; ci〉 would be the
probability amplitude to obtain ci after fusion. Although the two anyons can be
in any such state, quantum mechanics tells us that one can only initialize a and
b to either |ab; c1〉 or |ab; c2〉. Similarly, only those two states can be measured.
To get a linear combination of these states, one must braid the anyons. We will
come back to this in the next subsection.
We will use three anyons to represent a qubit. To initialize the qubit one starts
with one composite anyon which is split to three. This is a process in Hom(d, a⊗
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b⊗ c) in the Jones category VA,k, and we represent it diagrammatically as

a b c

d

. (61)

where we recall that the process goes from bottom to top. The space Hom(d, a⊗
b⊗ c) is isomorphic to C2 since there are only two fusion outcomes of a and b,
that is c1 and c2. Thus this space allows for representing a qubit. If the anyon
model has the fusion rules a⊗ b = m⊕ n, m⊗ c = d and n⊗ c = d, then there
are two allowed processes

e1 =

a b c

m

d

e2 =

a b c

n

d

. (62)

which are orthogonal as vectors. Strictly speaking, any linear combination of
them is also allowed, but it is only e1 and e2 one is able to measure by the
postulates of quantum mechanics. Without loss of generality we may assume e1
and e2 to be normalized, since one can always multiply by some constant to
make them have unit norm. If the composite anyon splits like in e1, we identify
that process as the initialization of the qubit in the state |0〉 and likewise e2 as
the initialization of the qubit in the state |1〉. For this reason we assign |0〉 = e1
and |1〉 = e2.
To measure the state of the qubit, a, b and c are brought together and fused.
Fusion is the reversed process of splitting, hence diagrammatically one just flips
the initialization diagrams around the horizontal line to get the diagram of
measurement. For instance, measuring |1〉 means that the fusion process

a b c

n
d

(63)

occurred when bringing the anyons together.

4.3 Quantum Gates and Braids

To obtain the possible gates that can be applied to topological qubits, one must
find out the effect of braiding the anyons that constitute the qubit. From Section
3.4 we know that braiding the strands of a, b and c in

a b c

d

(64)

has an interpretation in VA,k as a linear combination of e1 and e2. Thus, we
can define a representation of the braid group ρ : σ ∈ Bn 7→ ρ(σ) ∈ SU(2n)
for a system with n anyons. In the one-qubit case, e1 and e2 is a basis for the
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space. The amplitude of measuring ek after braiding the i and i+ 1th strand of
a qubit in the state ej is then given by 〈ek, σiej〉 where the innerproduct is the
Markov pairing defined in Section 3. For this purpose we define ρ on a one-qubit
computer by

ρ(σi) =

(
〈e1, σie1〉 〈e1, σie2〉
〈e2, σie1〉 〈e2, σie2〉

)
(65)

in the basis {e1, e2}. All one-qubit operations are then a finite combination of
ρ(σ1) and ρ(σ2). We will refer to the braid group representation on the form in
(65) as the Jones representation of the braid group.

Remark. For quantum computation to be useful one needs many qubits and
two-qubit operations that can act on any pair of qubits. For an n-qubit system,
align the qubits horizontally, and a two-qubit gate is given by braiding the
strands from each of the qubits. For instance, if each qubit consists of three
anyons, the two-qubit representation ρ(σi) is a representation of B6.
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5 Ising Model

Let’s set k = 2 in VA,k. Then A = ie−2πi/16, d =
√

2 and the Jones-Wenzl
projectors are {p0, p1, p2} in VA,k. This defines the Ising model. The Jones-
Wenzl projectors correspond to the anyons in the set {1, σ, ψ}: 1 is the vacuum,
σ is the Ising anyon and ψ is a Majorana fermion. We will use these labels
interchangeably with the projectors. The fusion rules are the trivial rules and

σ ⊗ σ = 1⊕ ψ ψ ⊗ σ = σ, (66)

where the non-abelian property is encoded in the first relation. The goal of this
example is to describe a one-qubit system and the gates that can be applied
to it by braiding. First we want to define the two states that will constitute a
basis for the qubit. To get started, we must provide a computational basis for
our qubit.

Proposition 5.1. The states

e1 =
1√
2

σ σ σ

1
σ

, e2 =

σ σ σ

ψ
σ

(67)

constitute an orthonormal basis for the one-qubit space C2.

Proof. We must check that 〈ei, ej〉 = δij , where δij is the Kronecker delta. First,

〈e1, e1〉 =
1

2
σ σ σ

σ σ σ

1

1

σ

σ

(68)

which reduces to

〈e1, e1〉 =
1

2
=

1

2
d2 = 1 (69)
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after inserting the respective Jones-Wenzl projectors. Similarly, we find

〈e1, e2〉 =
1√
2 σ σ σ

σ σ σ

ψ

1

σ

σ

=
1√
2

p2

(70)

where we have omitted drawing p0 and p1 since these are trivial. After expanding

p2 = in TL-diagrams we obtain

〈e1, e2〉 =
1√
2

− 1√
2d

=
d√
2
− 1√

2

d2

d
= 0. (71)

By symmetry this also implies that 〈e1, e2〉 = 0. Finally, if one computes 〈e2, e2〉
one finds that this is 1.

Having an orthonormal basis for C2 that can be identified with the basis
states of a qubit, we are now interested in the quantum gates that can be
applied to it.

Theorem 5.2. The one-qubit operations with respect to {e1, e2} that can be ap-
plied by braiding the Ising anyons is given by the Jones representation ρ(σ1), ρ(σ2) ∈
B3. They are:

ρ(σ1) = e
iπ
8

(
1 0

0 e
iπ
4

)
, ρ(σ2) =

e
iπ
8

√
2

(
1 −i
−i 1

)
. (72)

The gate ρ(σ1) is the σ
1
4
z gate up to an overall phase of e

iπ
8 and the second

gate implements the NOT-gate up to a phase by ρ(σ2)2.
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Proof. We show how to obtain the first matrix entry for ρ(σ1). The other entries
and ρ(σ2) are found similarly. The amplitude of applying ρ(σ1) to e1 and obtain
e1 is given by

〈e2, σ1e1〉 =
1

2
σ σ σ

σ σ σ

1

1

σ

σ

(73)

Resolving the braid through the Kauffman bracket yields

〈e2, σ1e1〉 =
A

2
+
A−1

2

=
Ad2

2
+
A−1d3

2
= e

iπ
8

(74)

Although the Ising model implements the NOT-gate, it is not universal.
One can show that the images of braiding in the Ising model is isomorphic to
the Clifford group [15]. The simplest anyons that allows for universal quantum
computations are the Fibonacci anyons presented in the last section.
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6 Change of Basis Matrix and Braiding Eigen-
values

The theory developed up to now is sufficient for determining the gates that can
be applied to a qubit built from anyons. However, there are two important
concepts that simplify calculations. These are called the F -matrix and the R-
symbols. For a more detailed treatment of the F -matrix and the R-symbols,
see [8].

6.1 F -Matrix and Change of Basis

In the previous sections we used
a b c

m

d

,

a b c

n

d

 (75)

as a basis for Hom(a⊗ b⊗ c, d) ∼= C2, where a and b fuse first. But this choice
is arbitrary. One could also choose to fuse b and c first, and instead use

a b c

m

d

,

a b c

n

d

 (76)

as a basis. Since the Jones category VA,k is linear, they must be related by a
linear transformation. Let F abcd be the change of basis matrix given by

a b c

i
d

=
∑
j

F abcd;ij

a b c

j

d

. (77)

We refer to this matrix as the F -matrix. Since the F -matrix relates the fusion
process of (a ⊗ b) ⊗ c to a ⊗ (b ⊗ c) this matrix must be an associator of the
Jones category which is monoidal, and hence, it must satisfy the pentagon axiom
(125). Schematically, this means that the F -matrix satisfies the following cyclic
relation:

F−→ F−→ F−→ F−→ F−→ (78)

6.2 R-Symbols and Braiding Eigenvalues

Consider Hom(a ⊗ b, c) and let σ1 ∈ B2 act on the trajectories of a and b by
braiding them. That is,

σ1

c

ba

=

c

ab

. (79)
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Since Hom(a ⊗ b, c) ∼= C braiding can only be a change by a scalar, and so we
write

σ1

c

ba

= Rabc

c

ab

. (80)

We refer to the braiding eigenvalue Rabc as an R-symbol. The scalar Rabc cannot

be any scalar, it must by a phase eiθ
ab
c since braiding is a unitary operation. Sim-

ilarly to the F -matrix, the R-symbols follow a specific consistency rule, called
the hexagon identity [8]. This requirement is rooted in that the Jones category
is a braided category (consult the Appendix for a definition). Schematically,
the requirement is that the R-symbols is consistent with the following:

=

F−1←−−−−−− R←−−−−

F−1−−−−−−→ R−−−−→

yx FR−1 . (81)

There is a general formula for the R-symbols, given by

Rabc = (−1)
a+b−c

2 A−
c(c−2)−a(a−2)−b(b−2)

2 . (82)

and we show this for the special cases R22
0 and R22

2 in the Fibonacci model in
the next section.
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7 Fibonacci Model

In the following we present the Fibonacci model. The goal is to build a one qubit
system and find the gates that can be applied to it by braiding. The Fibonacci
model has two anyons, the Fibonacci anyon τ and the vacuum 1. The Jones-
Wenzl projectors that correspond to them are p2 and p0 respectively in the Jones

category VA,k where A = ie
iπ
5 and k = 2. This sets d = φ, where φ = 1+

√
5

2 is
the golden ratio. The only non-trivial fusion rule is τ ⊗ τ = 1⊕ τ .The naming
comes from the amusing property that repeated fusion yields the Fibonacci
sequence:

τ ⊗ τ = 1⊕ τ
τ ⊗ τ ⊗ τ = 1⊕ 2τ

τ ⊗ τ ⊗ τ ⊗ τ = 2⊕ 3τ

τ ⊗ τ ⊗ τ ⊗ τ ⊗ τ = 3⊕ 5τ

τ ⊗ τ ⊗ τ ⊗ τ ⊗ τ ⊗ τ = 5⊕ 8τ

(83)

It is easily seen that two τ can fuse to both 1 and τ by seeing observing that
(2, 2, 0) and (2, 2, 2) are admissible triplets for a trivalent vertex. To have a
better feel for the calculations below, this is how it looks like when drawn:

∈ Hom(τ ⊗ τ, τ), ∈ Hom(τ ⊗ τ, 1) (84)

Our qubit is constructed from the two states

e1 = φ−1
τ τ τ

1
τ

, e2 = φ
3
2

τ τ τ

τ
τ

. (85)

One can check that 〈ei, ej〉 = δij , where δij is the usual Kronecker delta function.
Let’s also define another basis

ẽ1 = φ−1
τ τ τ

1
τ

, ẽ2 = φ
3
2

τ τ τ

τ
τ

(86)

We wish to find the Jones representation with respect to e1 and e2. We do this
by acquiring the F -matrix and R-symbols.

7.1 F-Matrix

Lemma 7.1. The F -matrix that relates {e1, e2} with {ẽ1, ẽ2} is

F =

(
φ−1 φ−

1
2

φ−
1
2 −φ−1

)
. (87)

Proof. The F -matrix is deduced from the property that

e1 = F11ẽ1 + F12ẽ2 (88)

e2 = F21ẽ1 + F22ẽ2. (89)
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Using the orthogonality relation 〈ei, ej〉 = δij this means that Fij = 1
〈ei,ẽj〉 . We

now calculate these matrix elements. First, let’s calculate F11.〈e1, ẽ1〉−1 is φ−2

times

τ τ τ

τ

τ

1

1

(90)

which after inserting the projectors reduces to

2
(91)

and expanding p2 yields

− 1

d
(92)

which is d2 − 1. Since d is the golden ratio φ - and the golden ratio is defined
to satisfy φ2 − 1 = φ, this is also φ. Thus, F11 = φ−1.
Now, let’s calculate F12 and F21 which must be equal by symmetry. The inner-
product 〈e1, ẽ2〉 is φ

1
2 times

τ τ τ

τ

τ

1

τ

(93)

which can be written as

= − 1

d
, (94)

where the second term is the same as (92) since for projectors pkn = pn for all
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k ∈ N holds. The first term can be reshaped to

= , (95)

and expanding the projectors then yields

= − 2

d
+

1

d2
(96)

which evaluates to d3 − 2d+ 1
d = φ. Combining this with the above results one

obtains F12 = F21 = φ−
1
2 .

Lastly, 〈e2, ẽ2〉 is φ3 times

τ τ τ

τ

τ

τ

τ

(97)

which is

= − 1

d
(98)

where the second term were found in the last steps to be 1. Further, we find by
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stretching that

= = − 1

d
(99)

Since

= − 2

d
+

1

d2
(100)

=

(
d− 2

d

)
+

1

d2
(101)

it follows that

=

(
d− 2

d

)2

+

(
2

d2

(
d− 2

d

)
+

1

d3

)
(102)

Inserting (100) and (102) into (99) then yields

= d2
(
d− 2

d

)2

+ d

(
2

d2

(
d− 2

d

)
+

1

d3

)
− d

(
d− 2

d

)
− 1

d2

(103)

which for d = φ evaluates to φ− 2 + φ−1. Hence

τ τ τ

τ

τ

τ

τ

= φ− 2 (104)
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and

F22 =
1

φ3(φ− 2)
= −φ−1 (105)

7.2 Braiding Eigenvalues

The two braiding eigenvalues we wish to find is Rττ1 and Rτττ .

Lemma 7.2. The braiding eigenvalues of two Fibonacci anyons are

Rττ1 = A−8, Rτττ = −A−4. (106)

Proof. Using the defining property that

Rττ1

1

ττ

=

1

ττ

(107)

and taking the inner product with itself we find

Rττ1 τ τ

1

= τ τ

1

(108)

where the left hand side is is just

Rττ1
2

(109)

and a loop with a projector p2 were previously found to be d2 − 1, which is φ.
The right hand side has a braid. Since each projector has two strands, there
are four crossings to be resolved. Doing this one finds

= A4 + (2A2 + 2A−1 + d) + 2A2 (110)

+ 4 + + 2A−2 +A−4 (111)
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if one treats the mirror diagrams through the vertical and horizontal lines as
the same diagram. We do this since mirror diagrams count the same in the
following calculations. Using d = φ and

= − 1

d
= − = 0 (112)

one is left with

= A4 − φ A−4 . (113)

Hence the right hand side in (116) is

= A4 − φ A−4 . (114)

which is easily shown to be φA−8. Hence Rττ1 = A−8. The second braiding
eigenvalue is found similarly by taking the inner product of the defining relation

Rτττ

τ

ττ

=

τ

ττ

(115)

with itself, that is

Rτττ τ τ

τ

= τ τ

τ

. (116)

First,

τ τ

τ
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is actually identical to (93) which was found to be φ−1. The right hand side is

τ τ

τ

= (117)

= − 1

d
(118)

= −A−8 (119)

and using (114) we find

=A4 − φ +A4 (120)

= (A4 +A−4) − φ (121)
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which is easily shown to be −1. Hence

τ τ

τ

= −1

d
A−4 (122)

and Rτττ = −A−4.

Having both the change of basis matrix and the braiding eigenvalues we can
then easily calculate the Jones representation.

Theorem 7.1. The Jones representation in the one-qubit Fibonacci model with
respect to {e1, e2} is

ρ(σ1) =

(
e

−4πi
5 0

0 −e−πi5

)
, ρ(σ2) =

(
φ−1e

4πi
5 −φ− 1

2 e
2πi
5

−φ− 1
2 e

2πi
5 −φ−1

)
(123)

Proof. From the pentagon and hexagon identities the Jones representation must
satisfy

ρ(σ1) =

(
Rττ1 0

0 Rτττ

)
, ρ(σ2) = F

(
Rττ1 0

0 Rτττ

)
F−1. (124)

Inserting the F -matrix and R-symbols and substituting A = ie
iπ
5 gives the

result.

It can be shown that the images of the braid group representations of the
Fibonacci anyons are dense in SU(2n) for n anyons, see [10] for details.
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Appendix

In the following we define some notions in category theory that are used in this
text. The definitions can be found in [16].

Definition 7.1. Let Λ0 be the set of objects of a category Λ. The category
Λ is said to be F-linear if for any x, y ∈ Λ0 the morphism set Hom(x, y) is a
F-vector space and if the composition of morphisms is bilinear.

Remark. Endomorphism spaces of F-linear categories are F-algebras with mul-
tiplication given by composition of morphisms.

Definition 7.2. A monoidal category Λ is equipped with the following struc-
ture:

1. a bifunctor ⊗ : Λ×Λ→ Λ called the tensor product.

2. a object 1 called the unit object

3. a natural isomorphism α with components αxyz : (x⊗ y)⊗ z ∼= x⊗ (y⊗ z)
called the associator.

4. a natural isomorphism λ with components λx : 1 ⊗ x ∼= x called the left
unitor.

5. a natural isomorphism ρ with components ρx : x⊗ 1 ∼= x called the right
unitor.

such that ∀x, y, z, w ∈ λ the pentagon identity

((w ⊗ x)⊗ y)⊗ z

αw⊗x,y,z

��

αw,x,y⊗1z // (w ⊗ (x⊗ y))⊗ z
αw,x⊗y,z // w ⊗ ((x⊗ y)⊗ z)

1w⊗αx,y,z
��

(w ⊗ x)⊗ (y ⊗ z)
αw,x,y⊗z

// w ⊗ (x⊗ (y ⊗ z))
(125)

and the triangle identity

(x⊗ 1)⊗ y x⊗ (1⊗ y)

x⊗ y
ρx⊗1y

αx1y

1x⊗λy

both commute.

Definition 7.3. An object a in a category λ with a zero object is called simple
if there are precisely two quotient objects of a: a and 0.

Definition 7.4. A monoidal linear category is called semi-simple if there is a
collection of simple objects such that any object is a direct sum of finitely many
simple objects.
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Definition 7.5. A braided monoidal category is a monoidal category C
equipped with a natrual isomorphism

Bx,y : x⊗ y → y ⊗ x

called the braiding such that the two hegaxon identities

(x⊗ y)⊗ z ax,y,z→ x⊗ (y ⊗ z) Bx,y⊗z→ (y ⊗ z)⊗ x
↓Bx,y⊗Id ↓ay,z,x

(y ⊗ x)⊗ z ay,x,z→ y ⊗ (x⊗ z) Id⊗Bx,z→ y ⊗ (z ⊗ x)

and

x⊗ (y ⊗ z)
a−1
x,y,z→ (x⊗ y)⊗ z Bx⊗y,z→ z ⊗ (x⊗ y)

↓Id⊗By,z ↓a
−1
z,x,y

x⊗ (z ⊗ y)
a−1
x,z,y→ (x⊗ z)⊗ y Bx,z⊗Id→ (z ⊗ x)⊗ y

commute for all objects involved. Here ax,y,z : (x⊗ y)⊗ z → x⊗ (y⊗ z) denotes
the components of the associator of C⊗.
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