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Abstract

In 1945 George Barnard published an article that described a new
exact test for two by two contingency tables. He claimed that it was
more powerful than Fisher’s exact test, which resulted in a dispute
over a series of articles. Because of its complexity and his disputes
with Fisher himself, the CSM test has since been forgotten and is
rarely used in science today. The aim of this thesis is to test whether
or not the test has any merit by comparing it to some other, more
popular methods. The conclusion is that, for low values of n1 and n2,
Barnard’s CSM test performs better than any of its competitors and
should, therefore, see more usage when conducting research.
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1 Introduction

Assume that X1 is binomially distributed with parameters n1 and p1 and
that X2 is binomially distributed with parameters n2 and p2. In addition, as-
sume that X1 and X2 are independent. We want to test the null hypothesis
H0 : p1 = p2 against the alternative H1 : p1 6= p2 using the data X1 = x1 and
X2 = x2.

In this thesis, I consider 4 methods for testing this type (2 by 2 contingency
tables) of hypothesis.

• The asymptotic method

• Fisher’s exact test

• The supremum method (often erroneously called Barnard’s test)

• Barnard’s CSM test

The first part of the thesis is about introducing each of these methods.

Both the asymptotic method and Fisher’s exact test are commonly used
in science today, whereas the supremum method and Barnard’s test are not
too popular. The latter two are quite computationally intensive, which may
explain their low usage. However, with today’s computing power we have
no problem calculating the p-values for lower values of n1 and n2. Barnard
claims that his test is more powerful than Fisher’s. The question is whether
or not this is true, and whether the more computationally heavy tests have
merit than the more popular ones. This is explored in practice in the last
part of the thesis.

2 Valid P-values

The p-value is often defined as the probability of obtaining test results at least
as extreme as the observed result, given the null hypothesis being true. We
reject the hypothesis if the p-value is less than the significance level α ∈ [0, 1].

I will use a more general definition: A p-value p(X) is in its own a test
statistic satisfying 0 ≤ p(x) ≤ 1 for all sample points x. If p(X) is small,
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there is a low probability of obtaining the observed results (or even more
extreme) given that H0 is true. So if p(X) is small, H1 is probably true.

Let Θ be the space of all possible values of p1 and p2 and let Θ0 ⊂ Θ be
the subspace where H0 is true. In general, we say that p(X) is valid if, for
every θ ∈ Θ0 and every 0 ≤ α ≤ 1,

Pθ(p(X) ≤ α) ≤ α

(Casella and Berger, 2008, p. 397). In other words, if the probability of re-
jecting H0 on the basis of p(X) is less than α given that H0 is true, our
p-value is valid.

If a test produces a valid p-value, we will only conclude that H0 is true
if the data warrant it.

3 Introduction of the Methods

3.1 The Asymptotic Method

To determine how extreme an observation is, we can use a test statistic. A
test statistic often used by the asymptotic method is the z-pooled statistic,

T (x1, x2) =
x1
n1
− x2

n2√
( 1
n1

+ 1
n2

)( x1+x2
n1+n2

)(1− x1+x2
n1+n2

)
, (1)

which by the central limit theorem and other convergence theorems tends
towards the standard normal distribution when n1 and n2 increase. (Rejection
of H0 based on large values of |T | is equivalent to rejecting based on large
values of the chi-squared statistic commonly used for contingency tables.)
However, this method does not produce a valid p-value. We will see that for
lower n1 and n2, and when we go further out in the tails of the distribution
(lower significance levels), the approximation is quite bad. In these cases, the
most common method to use is Fisher’s exact test.
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3.2 Fisher’s Exact Test

The most common method that produces a valid p-value is Fisher’s exact
test. The test is based on

P (X1 = x1 | X1 +X2 = c) =
P (X1 = x1 ∩X1 +X2 = c)

P (X1 +X2 = c)

=
P (X1 = x1 ∩X2 = c−X1)

P (X1 +X2 = c)

=
P (X1 = x1)P (X2 = c−X1)

P (X1 +X2 = c)

=

(
n1

x1

)
px1(1− p)n1−x1

(
n2

c−x1

)
pc−x1(1− p)n2−c+x1(

n1+n2

c

)
pc(1− p)n1+n2−c

=

(
n1

x1

)(
n2

c−x1

)(
n1+n2

c

) ,

which is the pmf of a hypergeometric distribution with parameters n1+n2, n1

and c. Note that the nuisance parameter p disappeared when we conditioned
on c, the total number of successes, showing that X1 + X2 is a sufficient
statistic for p = p1 = p2 under H0.

Let T be the above test statistic. We define the p-value

p(x1, x2) = P (T (X1, X2) ≥ T (x1, x2) | X1 +X2 = x1 + x2)

=
∑

T (z,x1+x2−z)≥T (x1,x2)

P (z | X1 +X2 = x1 + x2)

=
∑

T (z,x1+x2−z)≥T (x1,x2)

f(z),

where f is the pmf of a hypergeometric distribution with parameters n1 +n2,
n1 and x1 + x2. That is, we calculate T (x1, x2) = t and sum over all the
probabilities for the combinations that sum to x1 + x2 and that are at least
as extreme with respect to our test statistic (Casella and Berger, 2008, p.
399).
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The use of an external test statistic is rather unusual for Fisher’s exact test.
Normally, one simply uses X1, where a more extreme observation is an ob-
servation where X1 gets a higher value than x1 (or lower, depending on the
“sidedness” of the test). It is then somewhat unclear how to deal with two-
sided tests, and several solutions exist. This is no problem in our case.

Proof that Fisher’s Method Produces a Valid P-value

Let X = (X1, X2) be the outcome of the experiment and let C = X1 + X2.
For each sample point x, define

p(x) = P (T (X) ≥ T (x) | C = c),

where c denotes x1 + x2. As was shown in the last section, p(x) is a valid
p-value for the test when we condition on C = c (no supremum needed since
the nuisance parameter has disappeared).

Now we need to show that p(x) is valid also when the statistical experiment
is performed unconditionally, as in our situation:

P (p(X) ≤ α) =
∑
c

P (p(X) ≤ α | C = c)P (C = c)

≤
∑
c

αP (C = c)

= α
∑
c

P (C = c)

= α.

Thus, p(X) is a valid p-value, which is what we wanted to show. However, as
we will see, this method is very conservative, which means that it produces
high p-values compared to other methods. In practice, this means that it
will reject a lot fewer null hypotheses. This is good if H0 is true. However,
if H0 is false, there will still be fewer null hypothesis rejected than the other
methods. In a sense we want our rejections to occur right below 100α% of
the time if H0 is true, so that even when p1 and p2 are just slightly different,
we get a power higher than the significance level.

6



3.3 The Supremum Method

For an outcome (x1, x2), its p-value is given by

p(x1, x2) = sup
p
Pp(T (X1, X2) ≥ T (x1, x2)),

where p = p1 = p2 is the common parameter under H0, and we will take T
to be the same test statistic as in (1) (Casella and Berger, 2008, p. 397). Let
T (X1, X2) = T and T (x1, x2) = t. For a given p,

Pp(|T | ≥ |t|) =
∑
x1,x2

where|T |≥|t|

Pp(X1 = x1 ∩X2 = x2),

where

Pp(X1 = x1 ∩X2 = x2) =

(
n1

x1

)
px1(1− p)n1−x1

(
n2

x2

)
px2(1− p)n2−x2 .

So we maximize with respect to p the sum of all the binomial probabilities
for all the more “extreme” combinations of x1 and x2.

Why the Supremum Method Produces a Valid P-value

H0 : θ ∈ Θ0, H1 : θ /∈ Θ0. Let X be the outcome of the experiment and let
T (X) be a test statistic such that large values of T give evidence that the
null hypothesis is false. Assume θ ∈ Θ0. For a given realization x, define

pθ(x) = Pθ(T (X) ≥ T (x)).

From this definition, it follows that

pθ(x
′) ≤ pθ(x) ⇐⇒ T (x′) ≥ T (x).

This implies that

pθ(X) ≤ pθ(x) ⇐⇒ T (X) ≥ T (x)

also when X is a random variable. Hence

Pθ(pθ(X) ≤ pθ(x)) = Pθ(T (X) ≥ T (x)) = pθ(x).
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Let α ∈ [0, 1], and let α′ = sup{pθ(x) | pθ(x) ≤ α}. (So, loosely, α′ is the
greatest pθ(x) possible no larger than α.) Then

Pθ(pθ(X) ≤ α) = Pθ(pθ(X) ≤ α′) = α′ ≤ α

This holds for all θ ∈ Θ0, so

sup
θ∈Θ0

Pθ(pθ(X) ≤ α) ≤ α

for all α, which is what we wanted to show.

3.4 Barnard’s CSM Test

The last test we will take a look at is Barnard’s exact CSM test. Barnard calls
his test progressive conservative, because of all the conservative tests, it is
the least conservative (Barnard, 1947). Because of its complexity, it has seen
a lot less usage than any of the previous tests we have looked at. However,
for low n1 and n2, today’s computers can definitely handle the computations.

Another reason for its low usage may come from Barnard’s disputes with
Fisher himself, the father of modern statistics. Fisher disagreed with Barnard’s
claim that his test was more powerful than his own (Barnard, 1945a). This
resulted in a series of articles exchanged between the two, and a couple of
years later, Barnard himself published an article where he explained how
Fisher was right (Barnard, 1949). I will go through some of the arguments
of this debate at the end of this section.

Until now, we have used the same test statistic to determine which observa-
tions are extreme and which are not. Barnard uses a more complex statistic.
It involves sequentially adding up the joint probabilities for the most extreme
observations when maximized with respect to p. The end result is that the
p-values themselves serve as the primary test statistic (together with rank).
Except for this bizarre test statistic, the test works in the same way as the
supremum method.

Like the name of the test suggests, there are three conditions that have
to be satisfied when making this test statistic. They all are meant to help
determine the extremeness of an observation.
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Like Barnard (1947) did, I will use a lattice diagram to help visualize these
concepts (Figure 1).

Figure 1: Lattice diagram copied from Barnard, 1947

Convexity (C): When considering the extremeness of an observation, the two
points with respectively the same abscissa or the same ordinate as (a, b), and
which also lies closer to the diagonal PR, will both be less extreme obser-
vations than (a, b) itself. For example, the points (2, 4) and (3, 5) are less
extreme than x = (2, 5) (Figure 1).

Symmetry (S): The points (n1 − x1, n2 − x2) and (x1, x2) have the same
rank of extremeness. This means that we only have to consider the develop-
ment of the statistic on one side of PR, since the other side will develop in
the same way. This will simplify formulations later. For example, (2, 5) and
(6, 1) have the same rank.

The convexity and symmetry requirements will always determine (n1, 0) and
(0, n2) to be the most extreme points, and they are given rank 1.

Maximum (M): For an observation (a, b), let

Pp(a, b) =

(
n1

a

)
pa(1− p)n1−a

(
n2

b

)
pb(1− p)n2−b.

Then define recursively

Pn,p(a, b) = Pp(a, b) + Pp(n1 − a, n2 − b) + Pn−1,p(c, d), (2)
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where the point (c, d) is an observation of rank n−1. When considering which
of the observations (a, b) and (a′, b′) are the most extreme, the maximum
condition says that if

sup
0<p<1

Pn,p(a, b) < sup
0<p<1

Pn,p(a
′, b′)

then observation (a, b) is the most extreme of the two, and vice versa (Barnard,
1947).

In an iteration of this algorithm, there will most of the time be two points
that are equally as extreme (as is the case in (2)). However, both a single most
extreme point and four most extreme points may occur. The first scenario
happens when (a, b) is on the diagonal, that is, if (a, b) = (n1 − a, n2 − b).
Then we would only include one of the two terms on the right-hand side of
(2). The second scenario usually happens when n1 = n2, so (a, b) and (b, a)
get the same rank. Here, we have to add all the joint probabilities for the
four points (instead of the two points in (2)) and give them all the same rank
(see Appendix for R-code). In testing, no other scenarios occurred. How-
ever, for large enough n1 and n2 one can probably observe other amounts
of equally extreme points. Thus, a more general definition of pn,p(a, b) for a
given amount of equally extreme points should be implemented:

Pn,p =

( ∑
(x,y) has

rank n

Pp(x, y)

)
+ Pn−1,p(c, d)

The p-value of Barnard’s CSM test is

p(x1, x2) = sup
0<p<1

Pn,p(x1, x2),

where n is the rank of (x1, x2).

3.5 Example of Barnard’s CSM Test

With these three concepts, let us now build Barnard’s test statistic for con-
crete values. We let n1 = 3 and n2 = 2. Condition C requires that the most
extreme points will always be (3, 0), and from S it then follows that (0, 2)
will be just as extreme. The p-value for both these observations will be

sup
0<p<1

P1,p(3, 0) = sup
0<p<1

(
Pp(3, 0) + Pp(0, 2)

)
= 0.0625,

10



where the maximum was attained at p = 0.5.

0 1 2 3

0

1

2

Figure 2: Diamond: p-value calculated, circle:
points to consider next, the rest are dots

0 1 2 3

2 0.0625 – – –

1 – – – –

0 – – – 0.0625

Table 1: Development of table of p-values for
Barnard’s CSM test

The only points to consider next will, because of C, be (2, 0) and (3, 1). Since

sup
0<p<1

P2,p(2, 0) = sup
0<p<1

(
Pp(2, 0) + Pp(1, 2) + P1,p(3, 0)

)
= 0.25

> 0.1998

= sup
0<p<1

(
Pp(3, 1) + Pp(0, 1) + P1,p(3, 0)

)
= sup

0<p<1
P2,p(3, 1),

we choose (3, 1) and (0, 1) as the most extreme value of the remaining points
and we plug in their p-values of 0.1998 in our table (Table 2). This time the
maxima were attained at p = 0.276 and p = 0.724. We still consider (2, 0) as
a candidate for the next highest rank, but condition C also adds the point
(0, 0) (and therefore (3, 2)), to our consideration (Figure 3).
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0 1 2 3

0

1

2

Figure 3: Diamond: p-value calculated, circle:
points to consider next and the rest are dots

0 1 2 3

2 0.0625 – – –

1 0.1998 – – 0.1998

0 – – – 0.0625

Table 2: Development of table of p-values for
Barnard’s CSM test

We have that

sup
0<p<1

P3,p(2, 0) = sup
0<p<1

(
Pp(2, 0) + Pp(1, 2) + P2,p(3, 0)

)
= 0.375

and

sup
0<p<1

P3,p(0, 0) = sup
0<p<1

(
Pp(0, 0) + Pp(3, 2) + P2,p(3, 0)

)
= 1.

Hence, we set the p-value of the observations (2, 0) and (1, 2) to 0.375 (max-
imum at p = 0.5) and add both (1, 0) and (2, 1) to consideration.

0 1 2 3

0

1

2

Figure 4: Diamond: p-value calculated, circle:
points to consider next and the rest are dots

0 1 2 3

2 0.0625 0.375 – –

1 0.1998 – – 0.1998

0 – – 0.375 0.0625

Table 3: Development of table of p-values for
Barnard’s CSM test
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Since

sup
0<p<1

P4,p(1, 0) = sup
0<p<1

(
Pp(1, 0) + Pp(2, 2) + P3,p(2, 0)

)
= 0.568,

sup
0<p<1

P4,p(2, 1) = sup
0<p<1

(
Pp(2, 1) + Pp(1, 1) + P3,p(2, 0)

)
= 0.75,

and

sup
0<p<1

P4,p(0, 0) = sup
0<p<1

(
Pp(0, 0) + Pp(3, 2) + P3,p(2, 0)

)
= 1,

we choose (1, 0) with a corresponding p-value of 0.568 (Table 4) (where p =
0.349 and p = 0.651 maximized the expression).

0 1 2 3

0

1

2

Figure 5: Diamond: p-value calculated, circle:
points to consider next and the rest are dots

0 1 2 3

2 0.0625 0.375 0.568 –

1 0.1998 – – 0.1998

0 – 0.568 0.375 0.0625

Table 4: Development of table of p-values for
Barnard’s CSM test

There are no more points to add to our list of considered points, so the last
comparison we have to make is between the points (3, 2) and (2, 1). They have
the respective p-values of 1 (maximized at p = 0.5) and 0.9375 (maximized
at p = 0.115 and p = 0.885). We have now obtained a table of p-values for
all possible outcomes when n1 = 3 and n2 = 2 (Table 5).
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0 1 2 3
2 0.0625 0.375 0.568 1
1 0.1998 0.9375 0.9375 0.1998
0 1 0.568 0.375 0.0625

Table 5: Final table of p-values for Barnard’s CSM test

Proof that Barnard’s CSM Test Produces a Valid P-value

By the way the p-values p(x1, x2) are constructed for Barnard’s CSM test,

p(x1, x2) = sup
0<p<1

Pp(rank of (X1, X2) ≤ rank of (x1, x2))

= sup
0<p<1

Pp(p(X1, X2) ≤ p(x1, x2)),

which is exactly the supremum method (with rejection of H0 for small values
of the statistic). This shows that the p-values are valid.

3.6 The Dispute Between Barnard and Fisher

In Barnard’s first article on his new test, he claims that the CSM test is,
in fact, more powerful than Fisher’s exact test (Barnard, 1945a). Later that
year, Fisher replied with his own article, where he (almost ideologically) ar-
gues why Barnard is wrong. To give the reader some context, they are talking
about testing whether two groups of animals have the same probability of dy-
ing. He writes: “In my view the notion of defining the level of significance by
repeated sampling of the same population is misleading in the theory small
samples just because it allows of the uncritical inclusion in the denomina-
tor of material irrelevant to a critical judgment of what has been observed.
In 2 of the 64 cases enumerated above, all animals die or all survive. The
fact that such an unhelpful outcome as these might occur, or must occur
with a certain probability, is surely no reason for enhancing our judgment of
significance in cases where it has not occurred...” (Fisher, 1945). So Fisher
argues that, for example, the case where all animals die is irrelevant to the
null hypothesis and that such cases therefore, just inflates the denominator.
Thus, the p-values gathered from the CSM test are too low.

14



Barnard later responds with introducing two examples of studies, one where
H0 : “blue-eyed people are just as likely to catch colds as non-blue-eyed
people”, and one where the H0 : “taking a daily dose of XYZ does not
affect the chance of having a cold” (Barnard, 1945b). In the first example,
if all our subjects catch a cold, we learn nothing. However, in the second
example, we learn that a daily dose of XYZ is unnecessary. This illustrates
how, in some experiments, a result where all outcomes are observed in one
category, still might be helpful. According to Barnard, their debate continued
in privacy and, sadly, in a later article he acknowledged that Fisher was right
and retracted his test (Barnard, 1949). Decades later, he elaborates: “Fisher
finally persuaded me that before calculating the P-value one should classify
the possible results of an experiment into sets which are equally informative
about the point at issue” (Barnard, 1992). We will now compare the tests in
practice.

4 Testing the Methods in Practice

In this section, we will look at several examples of the probability of rejecting
the null hypothesis for the different tests. The way I did this started with
implementing the methods in R to obtain p-values for all combinations of x1

and x2 in the region [0, n1]× [0, n2]. I then used the following fact:

Let α be the chosen significance level. Then the probability of rejecting H0

as a function of p1 and p2 is called the power function,

γ(p1, p2) = Pp1,p2(reject H0)

= Pp1,p2(p(X1, X2) ≤ α))

=
∑

p(x1,x2)≤α

Pp1,p2(X1 = x1, X2 = x2).

Hence, to compute power, we simply sum joint probabilities of outcomes
having p-value less than or equal to α. We will first look at the case where
H0 is true. Here we wish to see values lower than the significance level, since
we hope for valid tests. Then we look at cases where p1 6= p2, where higher
values are better.

15



In this section, the supremum method and Barnard’s CSM test will usually
perform very similarly. Thus, for easier reading, when I write “the supremum
methods”, I am referring to both the supremum method and the CSM test.

When we now are going to compare the tests against each other, it will
be interesting to see: How well the asymptotic method holds up against the
valid methods, how different the performance of Barnard’s tests is compared
to the supremum method, and if Fisher’s test is as conservative as people
have it.

4.1 Comparisons of Validity

Since we are testing for methods that produce valid p-values, p1 = p2 = p
in all examples in this subsection. All results can be found in Table 6, which
will be used for reference in this section. The calculations were done in R
with all methods built from scratch in the same way as described in Section
3 (see Appendix for details).

In our first example we let n1 = n2 = 10, α = 0.05 and p = 0.5. We see
that the rate of rejection is the same for the asymptotic method, the supre-
mum method, and Barnard’s CSM test, but Fisher’s test gets a much lower
value. Note that all rejection rates are below α, which is good. The approx-
imation of the test statistic to a standard normal distribution, seems to be
good at the α = 0.05 level of significance. However, the approximation should
get worse as we go further out in the tails of the distribution.

Let us try α = 0.01 and keep everything else the same. This example shows
that the asymptotic test is not valid (we get a rate of rejection larger than
α). The supremum methods are still equal. Fisher exact test is once again
much more conservative than the two other valid methods. When decreasing
n1 to 5, and set α back to 0.05, we again see that the asymptotic method
gets a probability of rejecting higher than alpha. This time, because the ap-
proximations get worse as n decreases.

The last parameter we can adjust is p. Let’s set it to 0.3. A lower value
of p results in more values being close to zero so that the data give less
information. To keep the rejection rate below α, the tests have to be more
conservative when rejecting null hypothesis. We should therefore, see less null

16



hypotheses rejected. As we can see from Table 6, this point becomes even
more apparent when setting p = 0.1.

Now that we have seen the effects on the probability of rejection, the dif-
ferent parameters have by themselves let us try to combine them. First,
when p = 0.5, α = 0.01 and n1 = 3, n2 = 6, we unsurprisingly see that the
asymptotic method does not hold up. Also, note that there are no rejections
made by Fisher’s test. In the next line, when p = 0.5, α = 0.01 and n1 = 3,
n2 = 12, we finally get an example where the supremum method gave a
different result than Barnard’s test. Barnard’s power is closer to 0.01. This
may indicate better powers for the CSM test in the next subsection. The
asymptotic method especially seems to be bad when there is a big relative
difference between n1 and n2.

But is the asymptotic method okay if n1 = n2 = 20 at α = 0.01? As we
see, this is not the case; the probability of rejection is still way above α.

Row p α n1 n2 Asymptotic Fisher Supremum Barnard
1 0.5 0.05 10 10 0.04219 0.01278 0.04219 0.04219
2 0.5 0.01 10 10 0.01278 0.002577 0.007956 0.007956
3 0.5 0.05 5 10 0.1575 0.01471 0.04797 0.04797
4 0.3 0.05 10 10 0.03711 0.01188 0.03711 0.03711
5 0.1 0.05 10 10 0.009040 0.001147 0.009040 0.009040
6 0.5 0.01 3 6 0.01367 0 0.003906 0.003906
7 0.5 0.01 3 12 0.3278 0.0007935 0.0009766 0.004822
8 0.5 0.01 20 20 0.2246 0.004253 0.007273 0.007273

Table 6: Probability of rejection for each method for different combinations of parameters

4.2 Comparisons of Power

In this section, we want to compare the power of the different methods. By
definition, this is the probability of rejecting the null hypothesis when H0

is false, i.e., when p1 6= p2. The numbers in this subsection can be found in
Table 7.

In our first example we let p1 = 0.3, p2 = 0.7, α = 0.05 and n1 = n2 = 10.
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Fisher’s test is the least powerful, and all the others gave the same power
(Table 7). The result of changing the significance level to 0.01 can be seen in
the second line. As could be expected, now the asymptotic method is by far
the most powerful. Fisher’s test still has the lowest power, and the supremum
methods are equal.

In the last subsection, we learned that deviations from p = 0.5 increased
the probability of rejecting H0. We can expect this to be the case when off-
setting the mean of p1 and p2. In row 3, we see that this drastically affected
the asymptotic method, somewhat Fisher’s test, but there is almost no de-
crease for the supremum tests.

From row 4 to 5, we see that increasing the relative difference between n1

and n2 to 0.6 separates Fisher from the supremum methods. However, it
does not separate the latter two. In row 6, we decrease the significance level
to α = 0.01. Here, Barnard’s method becomes more powerful than the other
valid methods. Offsetting p1 and p2, the CSM test does even better compared
to the supremum test (row 7, Table 7).

Let us see if similar results can be obtained when increasing n1 and n2 while
keeping the relative difference the same (row 8–11). We now see that even at
the α = 0.05 level of significance, the CSM test is slightly more powerful than
the supremum test. Also note that since n is higher than before, Fisher is
not too far behind. When lowering the level of significance, Fisher actually is
now more powerful than the supremum method. This time, offsetting p1 and
p2 did now increase the difference in power between the supremum methods.
When we increased n from row 7 to row 8, we see that the advantage in the
power of Barnard’s test increased. Doing the same three steps again, only
with n1 = n2 = 20, Barnard still gives the best results (of the tests that give
valid p-values).

In the next nine rows (14–22), this whole cycle is repeated, only with a
bigger gap between p1 and p2. This did not change much of what we already
knew. Barnard beats the other valid methods in all rows, except for the rows
where they are equal. In some of the rows, we also see that Fisher is more
powerful than the supremum method.
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It was difficult to find combinations where the supremum method was more
powerful than the CSM test, but in rows 23 and 25, we see that it is at least
possible.

Row p1 p2 α n1 n2 Asymptotic Fisher Supremum Barnard
1 0.3 0.7 0.05 10 10 0.4185 0.2433 0.4185 0.4185
2 0.3 0.7 0.01 10 10 0.2433 0.1071 0.1830 0.1830
3 0.2 0.6 0.01 10 10 0.2527 0.1012 0.1945 0.1945
4 0.3 0.7 0.05 3 9 0.7489 0.1766 0.1766 0.1766
5 0.3 0.7 0.05 3 12 0.9526 0.1751 0.2065 0.2065
6 0.3 0.7 0.01 3 12 0.8788 0.02916 0.03527 0.08672
7 0.2 0.6 0.01 3 12 0.7820 0.01003 0.01087 0.04275
8 0.3 0.7 0.05 5 20 0.9886 0.3211 0.3441 0.3493
9 0.3 0.7 0.01 5 20 0.9873 0.1152 0.08512 0.1707

10 0.2 0.6 0.01 5 20 0.9888 0.08341 0.04274 0.1429
11 0.3 0.7 0.05 20 20 0.5435 0.5994 0.7052 0.7114
12 0.3 0.7 0.01 20 20 0.5357 0.3722 0.4519 0.4519
13 0.2 0.6 0.01 20 20 0.8311 0.4130 0.4939 0.4939
14 0.2 0.8 0.05 3 12 0.9960 0.4332 0.5124 0.5124
15 0.2 0.8 0.01 3 12 0.9836 0.1407 0.1671 0.2859
16 0.1 0.7 0.01 3 12 0.9565 0.06198 0.06535 0.1843
17 0.2 0.8 0.05 5 20 0.9677 0.6990 0.7440 0.7447
18 0.2 0.8 0.01 5 20 0.9677 0.3860 0.3621 0.4998
19 0.1 0.7 0.01 5 20 0.9986 0.3707 0.2581 0.4917
20 0.2 0.8 0.05 20 20 0.5785 0.9610 0.9808 0.9815
21 0.2 0.8 0.01 20 20 0.5782 0.8745 0.9162 0.9162
22 0.1 0.7 0.01 20 20 0.9644 0.9156 0.9456 0.9456
23 0.3 0.7 0.1 10 15 0.9573 0.5605 0.6168 0.6055
24 0.3 0.7 0.01 10 15 0.8434 0.1999 0.2251 0.2261
25 0.3 0.7 0.001 10 15 0.6076 0.06000 0.08815 0.07492

Table 7: Power of each method for different combinations of parameters
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5 Discussing the Results

We have seen that of the three valid methods, Fisher produced the lowest
power. The asymptotic method was the most powerful. However, since it is
not valid, we have to be cautious when choosing to use this method, espe-
cially for low n1 and n2 and for low significance levels. In most situations, the
supremum methods do equally good. However, for lower significance levels,
and when the difference between n1 and n2, and between p1 and p2 was big,
Barnard’s test seemed to do slightly better. I found no cases where Fisher’s
test was more powerful than Barnard’s. However, there were rare cases where
it outperformed the supremum method. It is also important to note that these
power differences become minuscule when n1 × n1 reaches levels of ∼ 100.

Based on these results, both the CSM test and (to a lesser extent) the supre-
mum method should see an increase in usage when conducting experiments
on two by two contingency tables for low n1 and n2.

6 Conclusion

In this thesis, we have reviewed some common and some not so common
tests for two by two contingency tables. Of the valid methods, the two least
used methods turned out to be most powerful. It seems, however, that Fisher
and later also Barnard did not value power in itself, stating that including
unhelpful outcomes would automatically increase the power. To me, this is
almost an absurd stance since it takes the objectivity out of statistics by in-
troducing feelings on what are helpful and what are not helpful observations.
Hence, despite even Barnard himself disagreeing, I hope to see more people
using these two tests in scientific experiments.

20



7 References

• Barnard, G. A. (1992). Statistics and OR–Some Needed Interactions.
The Journal of the Operational Research Society, Vol. 43, p. 787–795.

• Barnard, G. A. (1949). Statistical Inference. The Journal of the Oper-
ational Research Society, Vol. 11, p. 115–149.

• Barnard, G. A. (1947). Significance Tests for 2 × 2 Tables. Biometrika,
Vol. 34. p. 123–138.

• Barnard, G. A. (1945a). A New Test for 2 × 2 Tables. Nature, Vol. 156,
p. 177.

• Barnard, G. A. (1945b). A New Test for 2 × 2 Tables. Nature, Vol.
156, p. 783.

• Casella G. and Berger, R. (2008). Chapter 8: Hypothesis testing. Sta-
tistical Inference: Second Edition, p. 397–399. USA: Duxbury.

• Fisher R. A. (1945). A New Test for 2 × 2 Tables. Nature, Vol. 156, p.
388.

A Appendix: R-Code

##################### Asymptotic Method ######################

calc_t <- function(x1, x2, n1 = 10, n2 = 10){
t <- (x1/n1 - x2/n2)/sqrt((1/n1 + 1/n2)*((x1+x2)/

(n1 + n2))*(1-(x1+x2)/(n1 + n2)))

if (is.nan(t)){ t <- 0 }
t

}

asympt_test <- function(x1, x2){
t <- -abs(calc_t(x1, x2))

2*pnorm(t)

}
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#################### Fisher's Exact Test #####################

fisher_test <- function(x1, x2, n1 = 10, n2 = 10){
p_value <- 0

c <- x1 + x2

table <- make_t_value_table(n1, n2)

t_0 <- table[x1+1, x2+1]

for (i in 0:n1){
for (j in 0:n2){

if (i + j == c){
t <- table[i+1, j+1]

if (t_0 - eps < t){
p_value <- p_value + dhyper(i, n1, n2, c)

}
}

}
}
p_value

}

###################### Supremum Method #######################

calc_prob<- function(x1, x2, p, n1 = 10, n2 = 10){
dbinom(x1, n1, p)*dbinom(x2, n2, p)

}

eps <- 1e-8

make_t_value_table <- function(n1 = 10, n2 = 10){
table <- matrix(0, n1+1, n2+1)

for (x1 in 1:(n1+1)){
for (x2 in 1:(n2+1)){

t <- abs(calc_t(x1-1, x2-1, n1, n2))

table[x1, x2] <- t

}
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}
table

}

sum_probs <- function(x1, x2, p, n1 = 10, n2 = 10, table){
t_0 <- abs(calc_t(x1, x2, n1, n2))

inds <- which(table > t_0 - eps, arr.ind = TRUE)

#indexes of extreme observations

sum <- 0

for (i in 1:nrow(inds)){
sum <- sum + calc_prob(inds[i,1] - 1, inds[i,2] - 1, p

, n1, n2)

}
sum

}

supremum_test <- function(x1, x2, n1 = 10, n2 = 10){
table <- make_t_value_table(n1, n2)

p_vec <- seq(0, 1, 1/1000)

p_max <- 0

for (p in p_vec){
p_val <- sum_probs(x1, x2, p, n1, n2, table = table)

p_max <- max(p_max, p_val)

}
p_max

}

##################### Barnard's CSM Test #####################

barnard_prob_calc <- function(x1, x2, n1, n2, x11 = 0, x22=0,

en_like = FALSE, to_like = FALSE, prev = rep(0, 1001)){
#prev contains sum of all the more extreme joint

#probabilities, one sum for each value of p

y1 <- n1 -x1

y2 <- n2 - x2

p_vec <- seq(0, 1, 1/1000)
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p_vals <- rep(0, 1001)

if(en_like){
for (i in 1:length(p_vec)){

p_vals[i] <- calc_prob(x1, x2, p_vec[i], n1, n2) + prev[i]

}
i <- which(p_vals == max(p_vals), arr.ind = TRUE)[1]

return(list(p_vals, p_vec[i]))

}
if (to_like){

y11 <- n1 - x11

y22 <- n2 - x22

for (i in 1:length(p_vec)){
p_vals[i] <- calc_prob(x1, x2, p_vec[i], n1, n2) +

calc_prob(y1, y2, p_vec[i], n1, n2) +

calc_prob(x11, x22, p_vec[i], n1, n2) +

calc_prob(y11, y22, p_vec[i], n1, n2) + prev[i]

}
i <- which(p_vals == max(p_vals), arr.ind = TRUE)[1]

return(list(p_vals, p_vec[i]))

}
else{

for (i in 1:length(p_vec)){
p_vals[i] <- calc_prob(x1, x2, p_vec[i], n1, n2) +

calc_prob(y1, y2, p_vec[i], n1, n2) + prev[i]

}
i <- which(p_vals == max(p_vals), arr.ind = TRUE)

return(list(p_vals, p_vec[i]))

}
}

barnard_matrix <- function(n1, n2){
p_matrix <- matrix(0, n1+1, n2+1)

p_matrix[1, n2+1] <- max(barnard_prob_calc(0, n2, n1,

n2)[[1]])

p_matrix[n1+1, 1] <- max(barnard_prob_calc(n1, 0, n1,
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n2)[[1]])

prev <- barnard_prob_calc(0, n2, n1, n2)[[1]]

queue_matrix <- matrix(0, n1+1, n2+1)

queue_matrix[1, n2+1] <- 2

queue_matrix[n1+1, 1] <- 2

queue_matrix[1, n2] <- 1

queue_matrix[2, n2+1] <- 1

queue_matrix[n1, 1] <- 1

queue_matrix[n1+1, 2] <- 1

while (min(queue_matrix) != 2){
calc_matrix <- matrix(100, n1+1, n2+1)

for (i in 0:n1+1){
for (j in 0:n2+1){

if (queue_matrix[i, j] == 1){
calc_matrix[i, j] <- 1

}
}

}

for (i in 0:n1+1){
for (j in 0:n2+1){

if (calc_matrix[i, j] == 1){
calc_matrix[i, j] <- max(barnard_prob_calc(i-1, j-1,

n1, n2, prev =prev)[[1]])

}
}

}

#matrix with indices for minimums (could be multiple)

min_mat <- which(calc_matrix == min(calc_matrix),

arr.ind = TRUE)

if (nrow(min_mat) == 1){
x1 <- as.numeric(which(calc_matrix == min(calc_matrix),

arr.ind = TRUE)[1, 1])
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x2 <- as.numeric(which(calc_matrix == min(calc_matrix),

arr.ind = TRUE)[1, 2])

p_matrix[x1, x2] <- max(barnard_prob_calc(x1-1, x2-1, n1,

n2, en_like = TRUE, prev =prev)[[1]])

queue_matrix[x1, x2] <- 2

prev <- barnard_prob_calc(x1-1, x2-1, n1, n2,

en_like = TRUE, prev =prev)[[1]]

}
if (nrow(min_mat) == 2){

x1 <- as.numeric(which(calc_matrix == min(calc_matrix),

arr.ind = TRUE)[1, 1])

x2 <- as.numeric(which(calc_matrix == min(calc_matrix),

arr.ind = TRUE)[1, 2])

y1 <- n1+1 - (x1-1)

y2 <- n2+1 - (x2-1)

p_matrix[x1, x2] <- max(barnard_prob_calc(x1-1, x2-1, n1,

n2, prev =prev)[[1]])

p_matrix[y1, y2] <- max(barnard_prob_calc(y1-1, y2-1, n1,

n2, prev=prev)[[1]])

queue_matrix[x1, x2] <- 2

queue_matrix[y1, y2] <- 2

if (x2 != n2+1){
if (queue_matrix[x1, x2+1] == 0){

if (x1 == n1+1){
queue_matrix[x1, x2+1] <- 1

queue_matrix[y1, y2-1] <- 1

}

else if (queue_matrix[x1+1, x2+1] != 1){
queue_matrix[x1, x2+1] <- 1

queue_matrix[y1, y2-1] <- 1

}
}
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}

if (x1 != n1+1){
if (queue_matrix[x1+1, x2] == 0){

if (x2 == n2+1){
queue_matrix[x1+1, x2] <- 1

queue_matrix[y1-1, y2] <- 1

}

else if (queue_matrix[x1+1, x2+1] != 1){
queue_matrix[x1+1, x2] <- 1

queue_matrix[y1-1, y2] <- 1

}
}

}

if (x2 != 1){
if (queue_matrix[x1, x2-1] == 0){

if (x1 == 1){
queue_matrix[x1, x2-1] <- 1

queue_matrix[y1, y2+1] <- 1

}

else if (queue_matrix[x1-1, x2+1] != 1){
queue_matrix[x1, x2-1] <- 1

queue_matrix[y1, y2+1] <- 1

}
}

}

if (x1 != 1){
if (queue_matrix[x1-1, x2] == 0){

if (x2 == 1){
queue_matrix[x1-1, x2] <- 1

queue_matrix[y1+1, y2] <- 1

}
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else if (queue_matrix[x1-1, x2-1] != 1){
queue_matrix[x1-1, x2] <- 1

queue_matrix[y1+1, y2] <- 1

}
}

}
prev <- barnard_prob_calc(x1-1, x2-1, n1, n2,

prev =prev)[[1]]

}
if (nrow(min_mat) == 4){

x1 <- as.numeric(which(calc_matrix == min(calc_matrix),

arr.ind = TRUE)[1, 1])

x2 <- as.numeric(which(calc_matrix == min(calc_matrix),

arr.ind = TRUE)[1, 2])

y1 <- n1+1 - (x1-1)

y2 <- n2+1 - (x2-1)

x11 <- as.numeric(which(calc_matrix == min(calc_matrix),

arr.ind = TRUE)[2, 1])

x22 <- as.numeric(which(calc_matrix == min(calc_matrix),

arr.ind = TRUE)[2, 2])

y11 <- n1+1 - (x11-1)

y22 <- n2+1 - (x22-1)

p_matrix[x1, x2] <- max(barnard_prob_calc(x1-1, x2-1, n1,

n2, x11 = x11-1, x22 = x22-1, to_like = TRUE,

prev =prev)[[1]])

p_matrix[y1, y2] <- max(barnard_prob_calc(y1-1, y2-1, n1,

n2, x11 = y11-1, x22 = y22-1, to_like = TRUE,

prev=prev)[[1]])

queue_matrix[x1, x2] <- 2

queue_matrix[y1, y2] <- 2

p_matrix[x11, x22] <- max(barnard_prob_calc(x1-1, x2-1,

n1, n2, x11 = x11-1, x22 = x22-1, to_like = TRUE,

prev=prev)[[1]])

p_matrix[y11, y22] <- max(barnard_prob_calc(y1-1, y2-1,
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n1, n2, x11 = y11-1, x22 = y22-1, to_like = TRUE,

prev=prev)[[1]])

queue_matrix[x11, x22] <- 2

queue_matrix[y11, y22] <- 2

if (x2 != n2+1){
if (queue_matrix[x1, x2+1] == 0){

if (x1 == n1+1){
queue_matrix[x1, x2+1] <- 1

queue_matrix[y1, y2-1] <- 1

}

else if (queue_matrix[x1+1, x2+1] != 1){
queue_matrix[x1, x2+1] <- 1

queue_matrix[y1, y2-1] <- 1

}
}

}

if (x1 != 1){
if (queue_matrix[x1-1, x2] == 0){

if (x2 == 1){
queue_matrix[x1-1, x2] <- 1

queue_matrix[y1+1, y2] <- 1

}

else if (queue_matrix[x1-1, x2-1] != 1){
queue_matrix[x1-1, x2] <- 1

queue_matrix[y1+1, y2] <- 1

}
}

}

if (x22 != n2+1){
if (queue_matrix[x11, x22+1] == 0){

if (x11 == n1+1){
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queue_matrix[x11, x22+1] <- 1

queue_matrix[y11, y22-1] <- 1

}

else if (queue_matrix[x11+1, x22+1] != 1){
queue_matrix[x11, x22+1] <- 1

queue_matrix[y11, y22-1] <- 1

}
}

}

if (x22 != 1){
if (queue_matrix[x11, x22-1] == 0){

if (x11 == 1){
queue_matrix[x11, x22-1] <- 1

queue_matrix[y11, y22+1] <- 1

}
else if (queue_matrix[x11, x22-1] != 1){

queue_matrix[x11, x22-1] <- 1

queue_matrix[y11, y22+1] <- 1

}
}

}

if (x11 != 1){
if (queue_matrix[x11-1, x22] == 0){

if (x22 == 1){
queue_matrix[x11-1, x22] <- 1

queue_matrix[y11+1, y22] <- 1

}

else if (queue_matrix[x11-1, x22-1] != 1){
queue_matrix[x11-1, x22] <- 1

queue_matrix[y11+1, y22] <- 1

}
}

}
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if (x11 != n1+1){
if (queue_matrix[x11+1, x22] == 0){

if (x22 == n2+1){
queue_matrix[x11+1, x22] <- 1

queue_matrix[y11-1, y22] <- 1

}

else if (queue_matrix[x11+1, x22+1] != 1){
queue_matrix[x11+1, x22] <- 1

queue_matrix[y11-1, y22] <- 1

}
}

}
prev <- barnard_prob_calc(x1-1, x2-1, n1, n2, x11 = x11-1,

x22 = x22-1, to_like = TRUE, prev = prev)[[1]]

}
}
for (i in nrow(p_matrix)){

for (j in ncol(p_matrix)){
if (p_matrix[i, j] == 0){

p_matrix[i, j] = 1

}
}

}
p_matrix

}

######################## Comparisons #########################

asympt_matrix <- function(n1, n2){
asympt <- matrix(0, n1+1, n2+1)

for (i in 1:(n1+1)){
for (j in 1:(n2+1)){

asympt[i, j] <- asympt_test(i-1, j-1)

}
}
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asympt

}

fisher_matrix <- function(n1, n2){
fish <- matrix(0, n1+1, n2+1)

for (i in 1:(n1+1)){
for (j in 1:(n2+1)){

fish[i, j] <- fisher_test(i-1, j-1, n1, n2)

}
}
fish

}

supremum_matrix <- function(n1, n2){
sup <- matrix(0, n1+1, n2+1)

for (i in 1:(n1+1)){
for (j in 1:(n2+1)){

sup[i, j] <- supremum_test(i-1, j-1, n1, n2)

}
}
sup

}

power_asympt <- function(p1, p2, alpha = 0.05, n1=10, n2=10){
asympt <- asympt_matrix(n1, n2)

sum <- 0

for (x1 in 1:(n1+1)){
for (x2 in 1:(n2+1)){

if (asympt[x1, x2] <= alpha){
sum <- sum + dbinom(x1-1, n1, p1)*dbinom(x2-1, n2, p2)

}
}

}
sum

}
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power_fish <- function(p1, p2, alpha = 0.05, n1 = 10, n2 = 10){
fish <- fisher_matrix(n1, n2)

sum <- 0

for (x1 in 1:(n1+1)){
for (x2 in 1:(n2+1)){

if (fish[x1, x2] <= alpha){
sum <- sum + dbinom(x1-1, n1, p1)*dbinom(x2-1, n2, p2)

}
}

}
sum

}

power_sup <- function(p1, p2, alpha = 0.05, n1 = 10, n2 = 10){
sup <- supremum_matrix(n1, n2)

sum <- 0

for (x1 in 1:(n1+1)){
for (x2 in 1:(n2+1)){

if (sup[x1, x2] <= alpha){
sum <- sum + dbinom(x1-1, n1, p1)*dbinom(x2-1, n2, p2)

}
}

}
sum

}

power_barnard <- function(p1, p2, alpha = 0.05, n1=10, n2=10){
barn <- barnard_matrix(n1, n2)

sum <- 0

for (x1 in 1:(n1+1)){
for (x2 in 1:(n2+1)){

if (barn[x1, x2] <= alpha){
sum <- sum + dbinom(x1-1, n1, p1)*dbinom(x2-1, n2, p2)

}
}

}
sum
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}

comparison_of_power <- function(p1, p2, alpha = 0.05,

n1 = 10, n2 = 10){
asympt <- power_asympt(p1, p2, alpha, n1, n2)

fish <- power_fish(p1, p2, alpha, n1, n2)

sup <- power_sup(p1, p2, alpha, n1, n2)

barn <- power_barnard(p1, p2, alpha, n1, n2)

cat("Asymptotic: ", asympt, "\n")
cat("Fisher: ", fish, "\n")
cat("Supremum: ", sup, "\n")
cat("Barnard: ", barn, "\n")

}

In the example of Barnard’s CSM test I simply ran the inside of the while-loop
in “Barnard-matrix” multiple times to monitor each iteration of the different
matrices and used “prev[[2]]” to access the value of p that maximized the
expression in each iteration.
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