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The Riemann hypothesis, the Lindelöf hypothesis and the
density hypothesis - consequences and relations

Lars Dalaker

Abstract

In this paper, we will discuss some important properties of the Riemann zeta function.
We will discuss the famous Riemann hypothesis, as well as the Lindelöf hypothesis and
the density hypothesis, and the connections between these. We begin by proving the
prime number theorem and seeing how it is related to the zeta function, and then moving
on to linking these hypotheses together.

1. Introduction

Our main object of study in this thesis will be the Riemann zeta function and the
zeros of it. The Riemann Zeta-function is defined as

ζ(s) = ζ(σ + it) =
∞∑
n=1

1
ns

(1)

for s ∈ {s ∈ C : σ = <(s) > 1}. Although named after Riemann, the zeta function was
first studied by Leonard Euler, who established the product representation:

ζ(s) =
∏
p

(1− p−s)−1 (2)

for σ > 1 and p runs over all the prime numbers. This product, since named the Euler
product, proves to be important for a number of reasons. Firstly, it shows us a clear
relationship between the primes and the zeta function, which we will spend most of our
time discussing. Secondly, it follows immediately that ζ(s) 6= 0 when σ > 1;

Consider ζ(s)
∏
p(1− p−s) = 1. We know that

∑
p−s converges absolutely, and hence∏

p(1 − p−s) converges absolutely, thus it is finite. Therefore, ζ(s) cannot be zero (as
0 · c 6= 1 for any finite number c).

Bernhard Riemann showed that this function has a meromorphic continuation to the
complex plane with a simple pole at s = 1. He proved much more about the function,
including the following functional equation:

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s) (3)

The gamma function has simple poles for non-negative integers, which cancel out the
zeros of the sin function. Further, we know of the gamma function that it is never equal to
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zero, and therefore does not give rise to any other zeros of zeta. Altogether, the functional
equation gives us ζ(s) = 0 for -2, -4, -6,..., These points are called the trivial zeros of the
zeta function. More importantly, it follows that all non-trivial zeros are symmetric about
the critical strip, σ = 1/2. Since we know there are no zeros in the half plane σ > 1, this
means there are no non-trivial zeros in the half plane σ < 0. We call the strip 0 ≤ σ ≤ 1
the critical strip.

The Riemann hypothesis states that every non-trivial zero of the Riemann zeta function
lies on the critical line. In spite of great efforts, no analytic proof of this claim exists. It
has, however, been numerically confirmed that the first 100 billion zeros lie on the critical
line. We will discuss some proven results related to the zeta function and some important
consequences of the truth of the Riemann hypothesis.

2. The prime number theorem

Theorem 1 (The prime number theorem): Let π(x) denote the number of primes
smaller to or equal to x. Then:

π(x) ∼ x

log x. (4)

To prove this, we will first need some machinery to put to use.
Theorem 2:1 For all t ∈ R, ζ(1 + it) 6= 0. In other words, no zero of ζ has real part

1.
Proof: First we find the logarithmic derivative of ζ by means of the Euler product:

log(ζ(s)) = −
∑
p

1− p−s =⇒ ζ(s)
ζ ′(s) = −

∑
p

p−s log p
1− p−s

= −
∑
p

log p
(

1
1− p−s − 1

)
= −

∑
p

log p
∑
n≥1

(p−ns)

= −
∑
n≥ 1

Λ(n)n−s

where Λ(n) is the Von Mangoldt function, defined by

Λ (n) =
{

log (p) : ∃m ∈ N, p prime, such thatn = pm

0 : otherwise.

We expand upon this further, to achieve

1[1] p. 28
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−ζ
′(s)
ζ(s) =

∑
n≥1

Λ(n)n−s =
∑
n≥1

Λ(n)n−σ exp(−it logn)

=
∑
n≥1

Λ(n)n−σ(cos(t logn)− i sin(t logn)).

Therefore,

−<
(
ζ ′(s)
ζ(s)

)
=
∑
n≥1

Λ(n)n−σ cos(t logn) (5)

Next, note that the inequality

3 + 4 cos θ + cos(2θ) = 2(1 + cos θ)2 ≥ 0

holds for all real values of θ. For all n ≥ 1, Λ(n)n−σ ≥ 0, and it follows by (5) that

0 ≤
∑
n≥1

Λ(n)n−σ {3 + 4 cos(t logn) + cos(2t logn)}

= −<
(

3ζ
′(σ)
ζ(σ) + 4ζ

′(σ + it)
ζ(σ + it) + ζ ′(σ + 2it)

ζ(σ + 2it)

)
. (6)

For convenience, define η(s) by η(s) = ζ(s)3 · ζ(s + it)4 · ζ(s + 2it). By the above
computation, we know that the real part of η

′(s)
η(s) is always non-positive.

Now assume for the sake of a contradiction that ζ has a zero of order d ≥ 1 at a
point 1 + it. Then, η has a zero of order k = 4d − 3 ≥ 0. In other words, we have
η(s) ∼ (s− 1)4d−3 as s→ 1+ along the real axis. Thus we have

η′(s)
η(s) ∼

4d− 3
s− 1

as s→ 1+. As <( 4d−3
s−1 )→ +∞ as s→ 1+, so does

<
(
η′(s)
η(s)

)
→∞.

But we already proved by (6) that <
(
η′(s)
η(s)

)
≤ 0. Thus we have a contradiction, and

1 + it cannot be a zero of ζ. �
Lemma 3: 2 We have the following bounds:

|ζ(s)| = O(log t) (σ ≥ 1, t ≥ 2) (7)
|ζ ′(s)| = O(log2 t) (σ ≥ 1, t ≥ 2) (8)
|ζ(s)| = O(t1−δ) (σ ≥ δ, t ≥ 1) (9)

2[1] p. 27
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Proof: Assume t,X ≥ 1 and σ ≥ 0. By applying partial summation to
∑
n≤X

1
ns , we

obtain (for X ≥ 1)

∑
n≤X

1
ns

= s

∫ X

1

[x]
xs+1 dx+ [X]

Xs

Write x = [x] + (x) to get

∑
n≤X

1
ns

= s

s− 1 −
s

(s− 1)Xs−1 − s
∫ X

1

(x)
xs+1 ds+ 1

Xs−1 −
(X)
Xs

. (10)

By taking X →∞ on both sides, we get

ζ(s) = s

s− 1 − s
∫ ∞

1

(x)
xs+1 dx. (11)

(This is an analytic continutation of ζ to the half plane σ > 0).

From here, we subtract our expressions for
∑
n≤X

1
ns from ζ(s) to get

ζ(s)−
∑
n≤X

1
ns

= 1
(s− 1)Xs−1 + (X)

Xs
− s

∫ ∞
X

(x)
xs+1 dx.

Hence

|ζ(s)| <
∑
n≤X

1
nσ

+ 1
tXσ−1 + 1

Xσ
+ |s|

∫ ∞
X

dx

xσ+1

<
∑
n≤X

1
nσ

+ 1
tXσ−1 + 1

Xσ
+ (1 + t

σ
) 1
Xσ

(12)

because |s| < σ + t. If σ ≥ 1, it follows that

|ζ(s)| <
∑
n≤X

1
n

+ 1
t

+ 1
X

+ 1 + t

X
≤ (logX + 1) + 3 + t

X
.

Set t = X and the first inequality (7) of the theorem is proved.

Now assume σ ≥ δ where 0 < δ < 1. Then we have by (12)

|ζ(s)| <
∑
n≤X

1
nδ

+ 1
tXδ−1 +

(
2 + t

δ

)
1
Xδ

<

∫ [X]

0

dx

xδ
+ X1−δ

t
+ 3t
δXδ

≤ X1−δ

1− δ +X1−δ + 3t
δXδ

.

By again setting X = t, we deduce

4



|ζ(s)| < t1−δ
(

1
1− δ + 1 + 3

δ

)
, (σ ≥ δ, t ≥ 1) (13)

which proves the third inequality (9) of the theorem.

To deduce the bound for |ζ ′(s)|, we consider any point s0 = σ0 + t0i in the region
σ ≥ 1, t ≥ 2 and denote by C the circle centered at s0 with radious ρ < 1

2 . Then, by
Cauchy’s integral formula, we have

|ζ ′(s0)| =
∣∣∣∣ 1
2πi

∮
C

ζ(s)ds
(s− s0)2

∣∣∣∣ ≤ 1
2π

∮
C

|ζ(s)|
|ρ2|

ds ≤ M

ρ

where M denotes, as usual, the maximum of |ζ(s)| on the circle. Now σ ≥ σ0 − ρ ≥ 1− ρ
and 1 < t < 2t0 for all points on C. Therefore, by (13),

M < (2t0)ρ
(

1
ρ

+ 1 + 3
1− ρ

)
<

10tρ0
ρ

since 1 < t < 2t0 and ρ < 1− ρ. Thus, so far, we have

|ζ ′(s)| < 10tρ0
ρ2 = 10e(log t0 + 2)2 (14)

by the substitution ρ = (log t0 + 2)−1 and by tρ0 = eρ log t0 < e.
Thus the lemma is concluded. �

Next, we will define some important prime counting functions and discuss some
properties of them.

Theorem 4:3 Define Chebyshev’s auxiliary functions ϑ(x) and ψ(x) by the following:

ϑ(x) =
∑
p≤x

log(p), ψ(x) =
∑
pm≤x

log(p)

Then, if one of the three quotients

ϑ(x)
x

,
ψ(x)
x

,
π(x)

x/ log(x))

converges to a limit as x→∞, then so do the others with the same limit.
Proof: First notice that by grouping together the terms of ψ(x) by the values of m,

we obtain

ψ(x) =
∞∑
n=1

ϑ(x1/n). (15)

For each x, this sum will only have a finite number of non-vanishing terms, as for
n > log2(x), we have ϑ(x1/n)) = 0.

If we group together the terms of ψ(x) by the values of p instead, we obtain

3[1] p. 13
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ψ(x) =
∑
p≤x

[
log(x)
log(p)

]
log(p) (16)

where for any real u, [u] denotes the largest integer not exceeding u. This expression
comes from the fact that the values associated with a given p is equal to the number of
positive integers m for which m log(p) ≤ log(x) holds, which is [ log(x)

log(p) ] .
Let Λ1,Λ2,Λ3 denote the upper limits and λ1, λ2, λ3 denote the lower limits of the

three quotients, respectively. By (15) and (16):

ϑ(x) ≥ ψ(x) ≤
∑
p≤x

log(x)
log(p) log(p) ≤ π(x) log(x), (17)

which implies Λ1 ≤ Λ2 ≤ Λ3.
Let 0 < α < 1, x > 1. Then

ϑ(x) ≤
∑

xα<p≤x

log(p) ≥ [π(x)− π(xα)] log(xα).

Thus, we get

ϑ(x)
x
≥ α

(
π(x) log(x)

x
− π(xα) log(x)

x

)
> α

(
π(x) log(x)

x
− log(x)

x1−α

)
.

(since π(xα) < xα).
Fix α and let x → ∞. log(x)/x1−α → 0, so we get that Λ1 ≥ αΛ3. Since we can

choose α arbitrarily close to 1, we conclude that Λ1 = Λ3. Combined with the inequality
Λ1 ≤ Λ2 ≤ Λ3, we conclude that the upper limits are equal. The same exact line of
argument will work for the lower limits, and we conclude that the limits of the quotients,
if they exist, are equal.�

We also notice, for future reference, that this theorem implies that the relations

π(x) ∼ x

log(x) , ϑ(x) ∼ x, ψ(x) ∼ x (18)

are equivalent. Thus, if we manage to prove either of the two latter, the prime number
theorem will follow directly. We will work our way towards proving ψ(x) ∼ x. Before we
get there, we have to prove the following:

Lemma 5:4 If k is a positive integer, c > 0 and y > 0, then

J = 1
2πi

∫ c+∞i

c−∞i

ysds

s(s+ 1)...(s+ k) =
{

0, if y ≤ 1
1
k! (1−

1
y )k, ify ≥ 1

(19)

Proof: Denote by JT the integral on the line segment from c− Ti to c+ Ti. Assume
first y ≥ 1. Denote by C the circle centered at 0 that passes trough the points c ± Ti,
and define its radius to be R, and make sure we pick a T large enough so that R > 2k.

4[1] p. 31
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Finally, denote by C1 the circle arc to the left of the line <(s) = σ = c. Cauchy’s theorem
of residues now gives us JT = S + J(C1), where S denotes the sum of all residues of the
integrand, and J(C1) denotes the integral along C1. Note that the poles of the integrand
are located at 0, -1, -2,...

On C1, we have that σ ≤ c and thus |ys| = yσ ≤ yc, since y ≥ 1. Also, for all s ∈ C1,
we have |s− n| ≥ R− k < R/2 for n = 0, 1, 2, ..., k.

Thus, by the estimation lemma, we get

|J(C1)| < 1
2π

yc

(R/2)k+1 2πR <
2k+1yc

Rk
<

2k+1yc

T k
−→ 0 (20)

as T →∞. Hence, by JT = S + J(C1), we get JT → S as T grows to infinity, i.e. J = S.
A quick calculation yields

S =
k∑

n=0

y−n

(−1)nn!(k − n)! = 1
k! (1− y

−1)k (21)

by the binomial theorem. The proof is analogous for y ≤ 1, but the circle arc to the right
of σ = c is used instead of the C1, so no poles are passed over and S vanishes. �

Theorem 6 (fundamental formula): 5 Define the function ψ1(x) by the following:

ψ1(x) =
∫ x

0
ψ(u)du =

∫ x

1
ψ(u)du =

∑
n≤x

(x− n)Λ(n) (22)

(the equality in the last two expressions comes from partial summation, and Λ(n) denotes
as before the Von Mangoldt function)

Then:

ψ1(x) = 1
2πi

∫ c+∞i

c−∞i

xs+1

s(s+ 1)

(
−ζ
′(s)
ζ(s)

)
ds (x > 0, c > 1). (23)

This is known as the fundamental formula.
Proof: For x > 0, we have, by lemma 5,(

1− n

x

)
= 1

2πi

∫ c+∞i

c−∞i

(x/n)s

(s+ 1)sds.

Thus we get

ψ1(x)
x

=
∑
n≤x

(
1− n

x

)
Λ(n) =

∞∑
n=1

Λ(n)
2πi

∫ c+∞i

c−∞i

(x/n)s

s(s+ 1)ds. (24)

Since c > 1, we get
∞∑
n=1

∫ c+∞i

c−∞i

∣∣∣∣Λ(n)(x/n)s

s(s+ 1) ds

∣∣∣∣ < xc
∞∑
n=1

|Λ(n)|
nc

∫ ∞
−∞

dt

c2 + t2

5[1] p. 32
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which is finite. Thus we can change the order of integration and summation in (24), and
we achieve

ψ1(x)
x

= 1
2πi

∫ c+∞i

c−∞i

xs

s(s+ 1)

∞∑
n=1

Λ(n)
ns

ds = 1
2πi

∫ c+∞i

c−∞i

xs

s(s+ 1)

(
−ζ
′(s)
ζ(s)

)
ds. (25)

�
Theorem 7:6

ψ1(x) ∼ 1
2x

2 as x→∞

Proof Suppose without loss of generality (since we will eventually let x expand
towards infinity) that x > 1. By the fundamental formula for ψ1(x), we have, with c > 1

ψ1(x)
x2 =

∫ c+∞i

c−∞i
g(s)xs−1ds

where g(s) is defined, for convenience, by

g(s) = 1
2πi

1
s(s+ 1)

(
−ζ
′(s)
ζ(s)

)
.

Since we have proved ζ(1 + it) 6= 0 for all t, we know that g(s) is holomorphic at all
points where σ ≥ 1 except at the point s = 1, at which ζ has a pole. Moreover, by lemma
3, we have the bound

|g(s)| < A1 · |t|−2 ·A2 log−2 |t| ·A3 logA4 |t| < |t|−3/2 (26)

when σ ≥ 1, |t| > t0 ≥ 2. Take ε > 0 and consider L = L(ε be the infinite broken line,
consisting of the following segments:

L1 = (1−∞i, 1− Ti)
L2 = (1− Ti, α− Ti)
L3 = (α− Ti, α+ Ti)
L4 = (α+ Ti, 1 + Ti)
L5 = (1 + Ti, 1 +∞i)

where T = T (ε) satisfies
∫∞
T
|g(1 + ti)|dt < ε, and 0 < α = α(ε) < 1 such that the

rectangle α ≤ σ ≤ 1,−T ≤ t ≤ T contains no zeros of ζ(s). This is possible, as we have
shown ζ has no zeros with real part 1, and since it is meromorphic, it contains at most a
finite number of zeros in the region 1/2 ≤ σ ≤ 1,−T ≤ t ≤ T . Apply Cauchy’s theorem
of integrals to ψ1(x)/x2 to obtain

ψ1(x)
x2 = c+

∫
L

g(s)xs−1ds = 1/2 + J (27)

6[1] p. 32
8



The constant 1/2 comes from the simple pole at s = 1 .By our construction of L, the
integrand is holomorphic (except at s = 1) on and in-between the lines L and σ = c. By
(26), we know J is absolutely convergent. Write J = J1 + ...+ J5 where Ji denotes the
integral along Li. Because g(s)xs−1 = g(s)xs−1, we have

|J1| = |J5| =
∣∣∣∣∫ ∞
T

g(1 + ti)xtidt
∣∣∣∣ ≤ ∫ ∞

T

|g(1 + ti)|dt < ε

by our definition of T . Further, we have

|J2| = |J4| =
∣∣∣∣∫ 1

α

g(σ + Ti)xσ+Ti−1dσ

∣∣∣∣ ≤M ∫ 1

α

xσ−1dσ <
M

log(x) ,

|J3| ≤ 2Mxα−1T.

where M = M(ε) is the maximum of |g(s)| on the line segments L2, L3 and L4.
Adding together the line integrals, we get∣∣∣∣ψ1(x)

x2 − 1
2

∣∣∣∣ = |J | < 2ε+ 2M
log(x) + 2MT

x1−α < 3ε (28)

for all x > x0 = x0(ε). Since ε is arbitarily small, this implies that ψ1(x)
x2 → 1

2 as x→∞.
�

Lemma 8: 7 Let c1, c2, ... be a given sequence of numbers and let

C(x) =
∑
n≤x

cn, C1(x) =
∫ x

0
C(u)du =

∑
n≤x

(x− n)cn (29)

(where the last equality again comes from partial summation). If cn ≥ 0 and C1(x) ∼ Cxc,
where C, c > 0 are constants, then C(x) ∼ Ccxc−1.

Proof: Let 0 < α < 1 < β. Because C(u) is a non-decreasing function, we have for
x > 0,

C(x) ≤ 1
βx− x

∫ βx

x

C(u)du = C1(βx)− C1(x)
βx− x

=⇒ C(x)
xc−1 ≤

1
β − 1(C1(βx)

(βx)c β
c − C1(x)

xc
.

Keep β fixed and let x→∞. Since C1(x)
xc → C when x→∞ by assumption), we get:

lim sup
x→∞

C(x)
xc−1 ≤ C

βc − 1
β − 1 . (30)

Similarly, we consider the interval (αx, x):

C(x) ≥ 1
x− αx

∫ x

αx

C(u)du = C1(x)− C1(αx)
x− αx

7[1] p. 35
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=⇒ C(x)
xc−1 ≥

1
1− α (C1(x)

(x)c −
C1(αx)
(αx)c α

c)

=⇒ lim inf
x→∞

C(x)
xc−1 ≥ C

1− αc

1− α . (31)

By letting α and β approach 1, we get arbitrarily close to Cc (easily seen by using
L’Hôpital’s rule, for example) in both expressions. Thus, finally, we get

lim sup
x→∞

C(x)
xc−1 = lim inf

x→∞

C(x)
xc−1 = Cc. (32)

which is equivalent to the theorem. �

We are now finally in a position to prove the prime number theorem, using all our
results so far.

Theorem 1 (The prime number theorem): Let π(x) denote the number of primes
smaller than or equal to x. Then:

π(x) ∼ x

log(x) (33)

Proof : Since ψ(x) =
∑
n≤x Λ(n) and Λ(n) ≥ 0, ψ1(x) ∼ 1

2x
2 and theorem B (with

C = 1
2 , c = 2) gives us ψ(x) ∼ x immediately. This, as we proved in lemma 8, is equivalent

the the prime number theorem. �
Notice that we used in our proof for theorem 7 that ζ(1 + it) 6= 0. This, as it turns

out is an essential property needed for the prime number theorem to be true. This led
many mathematicians to believe it to be impossible to prove the theorem without going
through the theory of complex functions; however, in 1949, Selberg and Erdos together
proved the theorem once and for all through elementary means.

Next, we will shift our gaze to the so-called Lindelöf hypothesis, and explain its
relation to the Riemann hypothesis. In order to understand the exact connection, we
need some more weapons in our arsenal.

3. Density of zeros

Before we go further, we need to know an important result about the density of zeros
in the critical strip. Before we get there, we prove a useful lemma:

Lemma 9: 8 Suppose f(z) is holomorphic in the cicle |z − z0| ≤ R, and has at least
n zeros in |z − z0| ≤ r < R, and f(z0) 6= 0. Then(

R

r

)n
≤ M

|f(z0)|
, where M is the maximum of |f(z)| on the circumference of the larger circle.

Proof:

8[1] p. 49
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Suppose without loss of generality that z0 = 0 (the general case reduces to this case
by the substition z = z0 + z′). Denote the zeros of f in the smaller circle by a1, a2, ..., an.
Note that by assumption, there can be more zeros than these, and any zero gets repeated
according to their order of multiplicity. We can write f as

f(z) = φ(z)
n∏
ν=1

R(z − aν)
R2 − aνz

where φ(z) is regular in the larger circle. On the circumference of the larger circle, |z| = R,
each factor in the product has modulus 1, so |φ(z)| = |f(z)| ≤M on the circle. The max
modulus principle tells us that |φ| achieves its maximum value on the circle, and therefore
|φ(0)| ≤M . Hence:

|f(0)| = |φ(0)|
n∏
ν=1

aν
R
≤M

( r
R

)n
.

Rearrange (and remember f(0) 6= 0, and the theorem is proven. �

Next, we begin by defining a useful function, namely ξ(s), by

ξ(s) = s(s− 1)
2 π−s/2Γ

(s
2

)
ζ(s) (34)

ξ(s) is carefully designed to have the useful functional equation ξ(s) = ξ(1− s), i.e. it is
symmetric about the line σ = 1

2 . Moreover, we have ξ(s) = ξ(s).
Recall Weierstrass’ definition of the gamma function (here s

2 is used for obvious
reasons),

1
Γ
(
s
2
) = s

2e
γ s2

∞∏
n= 1

((
1 + s

2n

)
e−

s
2n

)
. (35)

Thus the factor Γ( s2 ) in the definition of ξ(s) cancels out all the trivial zeros s = −2,−4, ....
Because of this, the zeros of ξ(s) are exactly the complex zeros of ζ(s)! We shall see why
this is useful to us in the following theorem.

Theorem 10: 9 Let ρ = β+iγ denote the non-trivial zeros of ζ(s) (i.e. ζ(ρ) = 0). Let
N(t) denote the total numbers of zeros in the critical strip with complex part 0 ≤ γ ≤ T .
Then, when T →∞,

N(T ) = T

2π log T

2π −
T

2π +O(log(T )).

Proof: Suppose T > 3 and T 6= γ for all ρ. Consider the rectangle C with vertices
2 ± Ti,−1 ± Ti. Because ξ and ζ share the same complex zeros, and since ξ(s) gives
conjugate values for conjugate s, we know that ξ(s) has exactly N(T ) zeros inside C and
none on its boundary. By the double symmetry of ξ(s) and by Cauchy’s principle of
argument, we get

4πiN(T ) = [arg ξ(s)]C

9[1] p. 68
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where [ arg f(s)]C denotes the increase of the argument of f along the rectangle C, going
counter-clockwise.

We write this as

[arg ξ(s)]C =
[
arg s(s+ 1)

2

]
C

+ [arg φ(s)]C

where φ(s) = π−
s
2 Γ( s2 )ζ(s). The first term on the right is easily calculated to be 4π.

Recall that ξ(s) = ξ(1− s) and ξ(s) = ξ(s). This implies that [ arg φ(s)]C = 4[ arg φ(s)]L,
where L is the broken line (2, 2 + Ti) ∪ (2 + Ti, 1

2 + Ti).
Now, let’s calculate [ arg φ(s)]L = [ arg π− s2 ]L + [ arg Γ( s2 )]L + [ arg ζ(s)]L termwise:[

arg π− s2
]
L

= [ =
(
log π− s2

)
]L = −T log π

2 (36)

[
arg Γ

(s
2

)]
L

=
[
=log Γ

(s
2

)]
L

= =log Γ
(

1
4 + 1

2Ti
)

)−=log Γ(1) (37)

Stirling’s formula can be fomulated as the following:

log Γ(z + a) = log z · (z + a− 1
2)− z + 1

2 log 2π +O(|z|−1)

By setting z = 1
2Ti and a = 1

4 , we obtain from (37)

[
arg Γ

(s
2

)]
L

= =
(
−1

4 + 1
2Ti

)
log
(

1
2Ti

)
− 1

2Ti+ 1
2 log 2π +O(T−1)

= 1
2T log 1

2T −
1
8π −

1
2T +O(T−1). (38)

The most difficult step in this proof is calculating S(T ) = [ arg ζ(s)]L.
We begin by letting m be the number of points s′ ∈ L such that <ζ(s′) = 0. We can

bound S(T ) by S(T ) ≤ (m+ 1)π, since arg ζ(s) cannot vary more than π between two
adjacent such points (as <ζ(s) does not change sign on these segments).

No such points s′ is located on (2, 2 + Ti), since

<ζ(2 + ti) ≥ 1−
∞∑
2

1
n2 = 1− (π

2

6 − 1) = 0.35507...

Thus m describes the number of distinct points 1
2 < σ < 2 such that <ζ(σ + Ti) = 0.

Define now the function g(s) by g(s) = 1
2ζ(s+ Ti) + 1

2ζ(s− Ti) for 1
2 < s < 2. The

number of points on this segment such that g(s) = 0 is now exactly equal to m. To see
this, just notice that g(σ) = <ζ(σ + Ti) for real σ, because ζ(s̄) = ζ(s).

Thus we have reduced the problem to counting the numbers of zeros m of an holomor-
phic (except at the points s = 1± Ti function. We bound m by applying theorem C to
g(s), using the circles |s− 2| ≤ 7

4 and |s− 2| ≤ 3
2 . Since we assumed T to be larger than

3, the poles of g(s) are outside of the circles. By theorem lemma 3 (iii), g also satisfies

|g(s)| < A1
1
2(|t+ T | 34 + |t− T | 34 ) < A1(T + 2) 3

4

12



because σ ≥ 1
4 and 1 < |t± T | < 2 + T at all points in the larger circle. Lastly, we need

that g(2) = <ζ(2 + Ti) ≈ 0.36 > 1
4 . Now we can apply theorem C:(

7
6

)m
< A1

(T + 2) 3
4

1
4

< T

for T ≥ T0 > 3, T0 large enough. Thus m < A2 log T for T > T0. Since we have
S(T ) ≤ (m+ 1)π, we can calculate

S(T ) ≤ (m+ 1)π = O(log T ) + π. (39)

Adding together the estimates we’ve now found in (36), (37) and (39), we get

[arg φ(s)]L = −1
2T log π + 1

2T log 1
2T −

1
8π −

1
2T +O(T−1) + π +O(log T )

= T

2 log T

2π −
T

2 +O log(T ).

Since 4πN(T ) = [arg ξ(s)]C = 4π + 4[arg φ(s)]L, the theorem is deduced. �
Corollary 11: 10 Let h be any fixed positive number. Then, as T →∞,

N(T + h)−N(t) = O(log T ).

Proof: Write
P (t) = t

2π log t

2π −
t

2π
Now write

P (T + h)− P (T ) = hP ′(T + αh)

for some 0 < α < 1. By differentiating P (t), we get

P ′(t) = 1
2π log t

2π = O(log t).

�

4. The Lindelöf hypothesis

Next we will discuss an important conjecture in number theory, namely the Lindelöf
hypothesis. The Lindelöf hypothesis is the (unproven) claim that:

ζ

(
1
2 + it

)
= O(tε)

for all ε > 0. A number of interesting consequences about the growth of the ζ-function
along vertical lines within the critical strip can be made from this statement. For this,
we define the Lindelöf µ(σ)-function:

10[1] p. 70
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µ(σ) = inf
A∈
{A|ζ(σ + it) = O(tA).

The Lindelöf hypothesis is equivalent to the statement µ
( 1

2
)

= 0. We see clearly from
the convergence of the infinite sum

∑∞
n

1
nσ that µ(σ) = 0 for σ ≥ 1. Next we will show

how µ(σ) behaves on the negative real line.
Theorem 12:11 We have, for all σ ∈ R:

µ(σ) = µ(1− σ)− σ + 1
2 .

Also, for all σ ≤ 0, we have:
µ(σ) = 1

2 − σ.

This is known as the convexity bound of µ(σ), and is an improvement of (9) in lemma 3.
Proof:
Let us recall the ξ(s)-function we defined ealier:

ξ(s) = s(s− 1)
2 π−s/2Γ

(s
2

)
ζ(s).

Using this in conjunction with Stirling’s formula for Γ(s), we get, as t→∞:

log |ξ(σ + it)| = < log ξ(σ + it)

= < log Γ
(
σ + it

2

)
− σ

2 log π + 1
2 log |σ − 1 + it|

+1
2 log |σ + it|+ log |ζ(σ + it)|

∼ σ + it

2 log
∣∣∣s2 ∣∣∣− t

2= log s2 −
σ

2 + 1
2 log 2π − σ

2 log π

+1
2 log |t|+ 1

2 log |t|+ log |ζ(σ + it)|

∼ σ

2

(
log t2 − 1− log π

)
− t

2 ·
π

2 + 3
2 log t− 1

2 log 2

+1
2 log 2π + log |ζ(σ + it)|

∼ σ

2 log t

2πe −
tπ

4 + 3
2 log t+ 1

2 log π

Here we used that |s| → t and = log z = arctan t
σ →

π
2 as t→∞. From this, we get

0 = log |ξ(σ + it)| − log |ξ(1− σ + it)|

∼ σ

2 log t

2πe −
1− σ

2 log t

2πe + log |ζ(σ + it)| − log |ζ(|1− σ + it)|

11[2] p.185
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whence

1 ∼
(

t

2πe

)σ− 1
2
∣∣∣∣ ζ(σ + it)
ζ(1− σ + it)

∣∣∣∣
From which the first part of the theorem follows. The second part follows directly from
the first, since the term µ(1− σ) vanishes when σ ≤ 0. �

Theorem 13:12 We have

µ(σ) ≤ 1
2(1− σ)

for all 0 ≤ σ ≤ 1. Moreover, if the Lindelöf hypothesis holds (i.e. µ( 1
2 ) = 0) then

µ(σ)
{

0, if σ ≥ 1
2

1
2 − σ, if σ ≤ 1

2
.

Proof:
Let M(σ, T ) = max1≤t≤T |ζ(σ + it)|. Fix 0 ≤ σ1 < σ < σ2 ≤ 1. Let C denote the

rectangle with vertices

σ2 − σ −
iT

2 , σ2 − σ + iT

2 , σ1 − σ + iT

2 , σ1 − σ −
iT

2 .

Notice that both −1 and 1 lie outside of this contour.
Consider the contour integral:

1
2πi

∮
C

ζ(σ + it+ w) xw

w(w + 1)dw = ζ(σ + it) (40)

The poles of the integrand are located at −1, 0, and 1. Only 0 lies inside the rectangle at
the equality follows directly from Cauchy’s theorem of residues.

Consider the contour integral as a sum of four line integrals. On the horizontal lines
H1, H2 of the contour, we have by the estimation lemma∣∣∣∣∫

Hi

ζ(σ + it+ w) xw

w(w + 1)dw
∣∣∣∣ ≤ max

σ1≤σ≤σ2
ζ

(
σ + iT

2

)
1

T
2 (T2 + 1)

→ 0

as T →∞. On the two vertical lines V1, V2, we have, again by the estimation lemma,∣∣∣∣∫
Vi

ζ(σ + it+ w) xw

w(w + 1)dw
∣∣∣∣ ≤ CiM(σ, 2T )xσi−σ

with some constants C1, C2.
Adding these line integrals together, we get

σ(σ + it) < C
(
M(σ1, 2T )xσ1−σ +M(σ2, 2T )xσ2−σ

)
for some C. By setting x =

(
M(σ1,2T )
M(σ2,2T )

) 1
σ2−σ1 , we get

12[3] p. 339
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M(σ, T ) = O
(
M(σ1, 2T )

σ2−σ
σ2−σ1 M(σ2, 2T )

σ−σ1
σ2−σ1

)
.

Letting T → ∞ and taking logarithms, we get by the definition of the Lindelöf µ(σ)-
function

µ(σ) ≤ σ2 − σ
σ2 − σ1

µ(σ1) + σ − σ1

σ2 − σ1
µ(σ2). (41)

Since µ(0) = 1
2 and µ(1) = 0 by theorem 12, the first part of the theorem is achieved by

setting σ1 = 0 and σ2 = 1.
Now assume the Lindelöf hypothesis, and setting σ1 = 1

2 , σ2 = 0. Then µ(σ) = 0 for
1
2 ≤ σ ≤ 1, and the statement follows from theorem 12. �

Lemma 14: 13 If f(s) is holomorphic, and satisfies∣∣∣∣ f(s)
f(s0)

∣∣∣∣ < eM (M > 1)

inside the circle centered at s0 with radius r, then∣∣∣∣∣f ′(s)f(s) −
∑
ρ

1
s− ρ

∣∣∣∣∣ < AM

r
,

(
|s− s0| ≤

1
4r
)

(42)

where ρ denotes the zeros of f(s) such that |ρ− s0| ≤ 1
4r.

Proof:
Define the function g(s) = f(s)

∏
ρ(s − ρ)−1. This function is holomorphic in the

circle |s− s0| ≤ r, and has no zeros in the concentric circle with radius 1
2r.

On the circumference of the circle, we have |s− ρ| ≥ 1
2r ≥ |s0 − ρ|, therefore we have∣∣∣∣ g(s)

g(s0

∣∣∣∣ =

∣∣∣∣∣ f(s)
f(s0

∏
ρ

(
s0 − ρ
s− ρ

)∣∣∣∣∣ ≤
∣∣∣∣ f(s)
f(s0

∣∣∣∣ < eM .

This inequality also holds on the inside of the circle, due to the maximum modulus
principle. Hence, the function

h(s) = log g(s)
g(s0)

is regular for |s− s0| ≤ 1
2r, h(s0) = 0 and <h(s) < M .

Recall the Borel-Caratheodory theorem:
If h(z) is holomorphic on a disk with radius R centered at z0 and 0 < R′ < R, then:

sup
|z−z0|≤R′

h(z) < 2R′

R−R′
sup

|z−z0|≤R
<h(z) + R+R′

R−R′
|h(z0)|. (43)

13[4] p. 56
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Applying this to our h(s)-function, using R = 1
2r,R

′ = 3
8r and z0 = s0, we find

|h(s)| < AM (|s− s0| ≤
3
8r).

By Cauchy’s integral formula, we get

|h′(s)| =

∣∣∣∣∣ 1
2πi

∮
|z−s|= 1

8 r

h(z)
(z − s)2

∣∣∣∣∣ < AM

r
.

Since
h′(s) = g′(s)

g(s) = (log g(s))′ = f ′(s)
f(s) −

∑
ρ

1
s− ρ

, (44)

we get the desired result. �
Theorem 15: 14 Let ρ = β + iγ denote the non-trivial zeros of ζ(s). Then, for

−1 ≤ σ ≤ 2, we have

ζ ′(s)
ζ(s) =

∑
|t−γ|≤1

1
s− ρ

+O(log t).

Proof: Apply lemma 14 with f(s) = ζ(s), s0 = 2 + iT, r = 12. Since we have∣∣∣∣ ζ(s)
ζ(s0)

∣∣∣∣ < TA = eA logT

in the circle |s− s0| = 12, we get M = A log T . Thus, the lemma above gives us

ζ ′(s)
ζ(s) =

∑
|ρ−s0|≤6

1
s− ρ

+O(log T ), (|s− s0| ≤ 3). (45)

Since this holds in the whole circle |s − s0| ≤ 3, it naturally also holds on the line
−1 ≤ σ ≤ 2, t = T . Next, we compare the two sums∑

|t−γ|≤1

1
s− ρ

,
∑

|ρ−s0|≤6

1
s− ρ

.

Any term that is included in the second sum and not in the first (denote these hj(s)) will
necessarily be bounded (hj(s) ≤ C). By corollary 11, we know that the amount of such
terms cannot exceed

N(t+ 6)−N(t− 6) = O(log t).

Thus we get, from (45):

14[4] p. 217
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ζ ′(s)
ζ(s) =

∑
|ρ−s0|≤6

1
s− ρ

+O(log t)

=
∑
|t−γ|≤1

1
s− ρ

+
∑
j

hj(s) +O(log t)

≤
∑
|t−γ|≤1

1
s− ρ

+ CO(log T ) +O(log t)

=
∑
|t−γ|≤1

1
s− ρ

+O(log T ).

�
Theorem 16 (Backlund’s reformulation of the Lindelöf hypothesis):
Let N(σ, T ) denote the number of zeros ρ = β + iγ of ζ(s) such that σ < β, 0 ≤ γ ≤.

Then the Lindelöf hypothesis holds if and only if for every σ ≥ 1
2 + δ, we have

N(σ, T + 1)−N(σ, T ) = o(log T ).

Proof:
We apply Jensen’s formula to ζ(s) to the circle centered at 2+it and radius r = 3

2−
1
4δ:

log rn

|a1| · ... · |an|
= 1

2π

∫ 2π

0
log |ζ(reiθ + 2 + it)|dθ − log |ζ(2 + ti)| (46)

where ai denotes the zeros of ζ(s+ 2 + ti) in the circle |s− 2− ti| ≤ r. On the Lindelöf
hypothesis, the right hand side is clearly o(log t). Now, let N denote the number of zeros
in the slightly smaller concentric circle with radius r0 = 3

2 −
1
2δ. We also notice that

log rn

|a1| · ... · |an|
=

n∑
i=1

log r

|ai|
>

N∑
n=1

log r

|ai|
> N log

3
2 −

1
4δ

3
2 −

1
2δ
.

Hence the number of zeros in the smaller circle is o(log t), since

N <

(
log

3
2 −

1
4δ

3
2 −

1
2δ

)−1 1
2π

∫ 2π

0
log |ζ(reiθ + 2 + it)|dθ − log |ζ(2 + ti)| = o(log T ).

To get the statement, cover the rectangle in question with a sufficient amount of such
circles (which depend only on δ).

Conversely, let us assume that N(σ, T + 1)−N(σ, T ) = o(log T ). Let C1 denote the
circle with centre 2 + iT and radius r1 = 3

2 − δ, and let
∑

1 denote the summation over
zeros ρ of ζ(s) in the circle C1. Let C2 be the slightly smaller concentric circle with radius
r2 = 3

2 − 2δ, and C3 the smaller again circle with radius r3 = 3
2 − 3δ. Notice that for each

term which is in one of the sums∑
1

1
s− ρ

,
∑
|t−γ|≤1

1
s− ρ

18



but not in the other, we have |s− ρ| ≥ δ. From corollary 11, the number of such terms is
O(log T ). Therefore, from theorem 15, we have for s ∈ C2:

g(s) = ζ ′(s)
ζ(s) −

∑
1

1
s− ρ

= O

(
log T
δ

)
. (47)

Denote by C one last concentric circle with radius 1
2 . There are no zeros inside this

circle, so clearly each term in the sum
∑

1 is bounded, and so is ζ′(s)
ζ(s) . By assumption,

the number of terms in the sum is o(log T ).
Recall Hadamard’s three circle theorem:
Let f(s) be holomorphic on the annulus r1 ≤ |s| ≤ r3. Let M(r) be the maximum of

|f(s)| on the circle |s| = r. Then:

[M(r2)]log r3
r1 ≤ [M(r1)]log r3

r2 [M(r3)]log r2
r1

=⇒ [M(r2)] ≤ [M(r1)]1−λ[M(r3)]λ, (0 < λ < 1)

for any three concentric circles with radii r1 < r2 < r3.
Apply this theorem, setting f(s) = g(s), to the circles C ⊂ C3 ⊂ C2. We get, for s in

C3:

|g(s)| < [o(log T )]1−λ
[
O

(
log T
δ

)]λ
where λ depends only on δ. Thus, for all s in C3 and for any given δ, we have

g(s) = o(log T ).

Now we can compute

∫ 2

1
2 +3δ

g(s)dσ = log ζ(2 + it)− log ζ(1
2 + 3δ + it)−

∑
1

log(2 + it− ρ) +
∑

1
log(1

2 + 3δ + it− ρ)

= O(1)− log ζ(1
2 + 3δ + it) + o(log T ) +

∑
1

log(1
2 + 3δ + it− ρ)

since there are o(log T ) terms in
∑

1 and each term is bounded. Also, by setting t = T ,
the integral on the left hand side is o(log T ). Taking real parts, we get

log
∣∣∣∣ζ (1

2 + 3δ + iT

)∣∣∣∣ = o(log T ) +
∑

1
log
∣∣∣∣12 + 3δ + iT − ρ

∣∣∣∣ .
Again by using the fact that

∑
1 has o(log T ) terms and each term is bounded, it follows

that

log
∣∣∣∣ζ (1

2 + 3δ + iT

)∣∣∣∣ < o(log T )
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=⇒ ζ

(
1
2 + iT

)
= O(T ε). (48)

�

5. The Density hypothesis

The density hypothesis is the unproven claim that the following bound holds

N(σ, T ) = O(T 2(1−σ) logB T
for some B. We will see how this ties in with our previous results shortly.

Theorem 17: Let f be holomorphic in the vertical strip σ ∈ [σ1, σ2]. Let

Jσ =
∫ ∞
−∞
|f(σ + it)|2 dt

and assume Jσ is convergent for all σ in the strip. Assume also limt→∞f(σ + it) = 0.
Then log Jσ is a convex function, i.e.

Jσ ≤ J
σ2−σ
σ2−σ1
σ1 · J

σ−σ1
σ2−σ1
σ2 .

Proof:
It is enough to show that

Jσ1+σ2
2
≤ J

1
2
σ1 · J

1
2
σ2 (49)

because a continuous function φ on an interval [x, y] satisfying

φ

(
x0 + y0

2

)
≤ φ(x0) + φ(y0)

2
for all x ≤ x0, y0 ≤ y is convex.

To prove (49), we define the midpoint σ0 = σ1+σ2
2 and the function f∗(s) = f(σ0 − s̄).

Notice that f∗(s) = f(s) on the line σ = σ1, and f∗(s) is analytic in the same strip as f .
Let L1 denote the broken line segment with vertices σ0−iT, σ1−iT, σ1+iT, σ0+iT and

similarly let L2 denote the broken line segment with vertices σ0−iT, σ2−iT, σ2+iT, σ0+iT .
Cauchy’s integral theorem gives us∫ σ0+iT

σ0−iT
|f(s)|2ds =

∫ σ0+iT

σ0−iT
f(s)f∗(s)ds =

∫
L2

f(s)f∗(s)ds.

The Cauchy-Schwarz inequality gives us

∣∣∣∣∣
∫ σ0+iT

σ0−iT
|f(s)|2ds

∣∣∣∣∣ ≤
(∫

L2

|f(s)|2|ds|
) 1

2
(∫

L2

|f∗(s)|2|ds|
) 1

2

=
(∫

L2

|f(s)|2|ds|
) 1

2
(∫

L1

|f(s)|2|ds|
) 1

2

. (50)
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By assumption, limt→∞ f(σ + it) = 0. Hence

∫ σ2+iT

σ0+iT
|f(s)|2|ds| T→∞−−−−→ 0, .

Thus the two integrals in (50) converge to Jσ1 and Jσ2 respectively. Thus midpoint
convexity is proven, and the theorem follows. �

(Note that in the following theorem, both the Lindelöf µ(σ) function and the unrelated
Möbius function µ(n) are used. The Möbius function is defined by µ(1) = 1, µ(n) = 0 if
n divides the square of a prime number, and µ(n) = (−1)k if n = p1p2 · · · · · pk where pi
are distinct primes. The Möbius function is only defined for positive integer values, and
will always be denoted accordingly.)

Lemma 18: 15 Let

fX(s) = ζ(s)
∑
n<X

µ(n)
ns
− 1 = ζ(s)MX(s)− 1 (51)

where µ(n) is the Möbius function. Assume the Lindelöf µ
( 1

2
)

= c. Then:∫ T

1
|fX(σ + ti)|2dt < C

T 4c(1−σ)

X2σ−1 (T +X) log4(T +X)

for 1
2 ≤ σ ≤ 1, T,X > 1, C > 0.
Proof:
Asumme without loss of generality that X ≥ 2, because fX(s) = f2(s) for 1 < X < 2.

We know from theorems 12 and 13 that c ≤ 1
2 .

For σ > 1, we have

fX(s) =
∑
n≥X

aX(n)
ns

where
aX(n) =

∑
d|n,d<X

µ(d).

Notice that aX(1) = 1, aX(n) = 0 for 1 < n < X and |aX(n)| ≤ τ(n) for all n, where
τ(n) is the number of divisors of n. Therefore, for 0 < δ < 1, we have

∫ T

0
|fX(1 + δ + it)|2dt =

∑
m,n≥X

aX(m)aX(n)
(mn)1+δ

∫ T

0

(m
n

)it
dt

=
∑

m=n≥X
+2<

∑
n>m≥X

≤ T
∑
n≥X

τ2(n)
n2+2δ + 4

∑
n>m≥X

τ(m)τ(n)
(mn)1+δ log

(
n
m

) .
15[5] Theorem 2
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We can bound these sums using the known inequalities∑
n≤x

τ(n)2 � x log3 x (52)

and ∑
m<n≤x

τ(m)τ(n)
(mn) 1

2 log
(
n
m

) � x log4 x. (53)

Using (52) we deduce that

∑
n≥X

τ2(n)
n2+2δ =

∑
n≥X

τ2(n)
∫ ∞
n

2 + δ

x3+2δ dx =
∫ ∞
n

2 + δ

x3+2δ

∑
X≤n≤x

τ2(n)dx

�
∫ ∞
X

(2 + 2δ) log3 x

x2+2δ dx� 1
X1+2δ log3 x (54)

by repeated integration by parts. Further, from (53) along with the inequality 1 <
log x+ 1

x < log x+ 1√
x
, we deduce

∑
n>m≥X

τ(m)τ(n)
(mn)1+δ log

(
n
m

) �
∑

n>m≥X

τ(m)τ(n)
(mn)1+δ +

∑
n>m≥X

τ(m)τ(n)n− 1
2m

1
2

(mn)1+δ log
(
n
m

)
�

( ∞∑
n=1

τ(n)
n1+δ

)2

+
∑

n>m≥1

τ(m)τ(n)
(mn) 1

2 log
(
n
m

) ∫ ∞
n

1 + δ

x2+δ dx

� ζ4(1 + δ) +
∫ ∞

1

1 + δ

x2+δ

∑
n>m≥1

τ(m)τ(n)
(mn) 1

2 log
(
n
m

) (x)dx

� δ−4 +
∫ ∞

1

1 + δ

x1+δ log4 xdx� δ−4.

Note that we have log3 X
X2δ < δ−3. Hence, we get the bound

∫ T

0
|fX(1 + δ + it)|2dt ≤ T

∑
n≥X

τ2(n)
n2+2δ + 4

∑
n>m≥X

τ(n)τ(m)
(mn)1+δ log

(
n
m

)
�

(
T

X
+ 1
)
δ−4. (55)

On the line σ = 1
2 , we use the inequality 1

log x <
x
x−1 < 1 +

√
x

x−1 to estimate
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∫ T

0
|fX(1

2 + it)|2dt �
∫ T

0
|ζ(1

2 + it)|2|MX(1
2 + it)|2dt+ T

� T 2c
∫ T

0
|MX(1

2 + it)|2dt+ T

� T 1+2c
∑
n<X

µ2(n)
n

+ 4T 2c
∑

m<n<X

|µ(m)µ(n)|
(mn) 1

2 log
(
n
m

)
� T 1+2c logX + 4T 2c

∑
m<n<X

(
1

(mn) 1
2

+ 1
n−m

)
� T 2c(T +X) logX. (56)

We now have bounds for the integral on the lines σ = 1
2 , σ = 1 + δ, and from these we

will deduce an inequality for all 1
2 ≤ σ ≤ 1 + δ. Begin by defining

Iσ(T ) =
∫ T

0
|fX(σ + it)|2dt, Jσ =

∫ ∞
−∞
|φ(σ + it)|2dt

where φ(s) = φX,τ (s) = s−1
s cos( s

2τ )fX(s), (τ > 3
π ).

In the strip 1
2 ≤ σ ≤ 1 + δ, φ(s) is holomorphic and satisfies

φ(s)|2 � e−
|t|
τ |fX(s)|2 (57)

and therefore is bounded for fixed X and τ . Further, we have for 1
2 ≤ σ ≤ 1 + δ, σ 6= 1,

Jσ � 2
∫ ∞

0
e−

t
τ |fX(σ + it)|2dt = 2

∫ ∞
0

e−uIσ(τu)du

by partial integration and the substitution t = τu. By estimaes (55) and (56), it follows
that

J1+δ �
∫ ∞

0
e−u (τuX + 1) δ−4du� (τuX + 1) δ−4,

J 1
2
�
∫ ∞

0
e−u(τu)2c(τu+X) logXdu� τ2c(τ +X) logX.

By theorem 17, it follows that for 1
2 ≤ σ ≤ 1 + δ

Jσ �
(( τ

X
+ 1
)
δ−4
)σ− 1

2
1
2 +δ (

τ2c(τ +X) logX
) 1+δ−σ

1
2 +δ

= X
1−2σ
1+2δ τ

4c(1+δ−σ)
1+2δ (τ +X)(δ−4 + logX). (58)

Now |φ(s)|2 � e−
t
τ |fX(s)|2 ( 1

2 ≤ σ ≤ 1 + δ, t ≥ 1) and (58) gives us
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e−
T
τ

∫ T

1
|fX(σ + it)|2dt� X

1−2σ
1+2δ τ

4c(1+δ−σ)
1+2δ (τ +X)(δ−4 + logX).

Setting τ = λT, δ = λ′

log(T+X) , we get

X
1−2σ
1+2δ ≤ X−(1−2δ)(2σ−1) ≤ X−(2σ−1)+2δ � X−(2σ−1)

and
T

4c(1+δ−σ)
1+2δ ≤ T 4c(1+δ−σ) ≤ T 4c(1−σ)2δ � T 4c(1−σ).

Plug these estimates into (59) and the theorem is deduced. �
Theorem 19:16 Let µ

( 1
2
)

= c. Then:

N(σ, T ) = O
(
T 2(1+2c)(1−σ) log5 T

)
(59)

for 1
2 ≤ σ ≤ 1 as T →∞.
Proof:
Define fX as in the previous lemma. Define functions g(s) = gX(s), hX(s) by

1− f2
X = ζMX(2− ζMX) = ζg = h

We note that g, h and holomorphic for all s 6= 1 and

log |h| ≤ log(1 + |fX |2) ≤ |fX |2. (60)

Moreover, for σ ≥ 2,

|fX |2 ≤

∑
x≥X

τ(n)
n2

2

<
1

2X <
1
2

for X large enough, whence

− log |h| ≤ − log(1− |fX |2) ≤ 2|fX |2 < X−1 (σ ≥ 2, X > 1). (61)

Now, set T > 4 and choose T1 and T2 such that 3 < T1 < 4 < T < T2 < T + 1 and
such that h(s) does not vanish when t = T1 or t = T2 when 1

2 ≤ σ ≤ 2. Let Nh(σ;T1, T2)
denote the number of zeros β + iγ of h(s) such that T1 ≤ γ ≤ T2.

Using Fubini’s theorem of integrals and Cauchy’s principal of argument, we get the
integral

∫ 2

σ

Nh(σ;T1, T2)dσ =
∫ T2

T1

(log |h(σo + it)| − log |h(2 + ti)|) dt

+
∫ 2

σ0

(arg h(σ + T2i)− arg h(σ + T1i)) dσ

16[1] Theorem 3
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for 1
2 ≤ σ0 ≤ 1.
The first integral is easily estimated by (60), (61) and lemma 18:

∫ T2

T1

(log |h(σo + it)| − log |h(2 + ti)|) dt <
∫ T2

T1

|fX(σ0 + it)|2 +X−1dt

� (T + 1)4c(1−σ0)X1−2σ0(T + 1 +X) log4(T + 1 +X) + TX−1 (62)

The second integral can be estimated in a similar fashion to a technique used in the
proof of theorem 10.

Define mr to be the total amount of points on the segment t = Tr, σ0 < σ < 2 such
that the real part of h(s) is zero. Then, by a familiar argument,

| arg h(σ + Tri)| ≤ (mr + 1)π (r = 1, 2). (63)

Note that mr is the number of zeros of the function

Hr(s) = 1
2 (h(s+ Tri) + h(s− Tri))

on the segment σ0 < σ < 2, and can therefore not exceed the number of zeros in the
circle |s− 2| ≤ 3

2 . Since Hr(s) is holomorphic in the concentric circle with radius 7
4 , we

get by lemma 9:

( 7
4
3
2

)mr
=
(

7
6

)mr
≤ max
|s−2|≤ 7

4

∣∣∣∣Hr(s)
Hr(2)

∣∣∣∣ ≤ max
σ≥ 1

4 ,1≤t≤T+3

|h(s)|
<h(2 + Tri)

< (T +X)C

for some constant C, by definition of h(s) and <h(s) > 1
2 (σ ≥ 1

2 ). Thus mr � log(T +X),
and therefore ∫ 2

σ0

(arg h(σ + T2i)− arg h(σ + T1i)) dσ � log(T +X). (64)

Using the inequalities TX−1 ≤ TX1−2σ0 and log(T +X) ≤ X2(1−σ0) log(T +X), we
get, by combining the estimates for the two integrals:∫ 2

σ0

Nh(σ;T1, T2)dσ � T 4c(1−σ0)(TX1−2σ0 +X2(1−σ0)) log4(T +X). (65)

Since Nh ≥ Nζ by definition of h(s), we get∫ 2

σ0

Nh(σ;T1, T2)dσ ≥
∫ σ0+δ

σ0

Nζ(σ;T1, T2)dσ ≥ δNζ(σ0 + δ;T1, T2) (66)

for 0 < δ < 1. Set σ = σ0 + δ. Since Nζ(σ, T )� Nζ(σ;T1, T2), we deduce from ((65) and
(66):

Nζ(σ, T )� 1
δ
T 4c(1−σ+δ)(TX1−2σ+2δ +X2(1−σ+δ) log4(T +X)

for 1
2 + δ ≤ σ ≤ 1. For 1

2 ≤ σ ≤
1
2 + δ, we have by theorem 10:
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Nζ(σ, T )� T log T ≤ T 2(1−σ+δ) log T.

The theorem thus holds for all 1
2 ≤ σ ≤ 1 by setting X = T > 4 and δ = 1

logT . �
According to the Lindelöf hypothesis, we have µ

( 1
2
)

= c = 0, which gives

N(σ, T ) = O(T 2(1−σ) log5 T ). (67)

In other words, the density hypothesis follows from the Lindelöf hypothesis, which again
follows from the Riemann hypothesis.

The density hypothesis is a much weaker assumption than the Riemann hypothesis,
yet under the assumption of the density hypothesis, we are able to bound gaps between
consecutive primes almost as well as under the Riemann hypothesis.

Let gn = pn+1 − pn where pn denotes the nth prime. Cramér showed that on the
Riemann hypothesis, we have the bound 17

gn = (√pn log pn),

which is to say that every interval [x, c
√
x log x] for some c when x large enough. This

is still a much wider estimate than the proposed Cramér’s conjecture which states
gn = O(log2(n), which remains to be proven, even under the assumption of the Riemann
hypothesis. Under the density hypothesis, gn can be shown to be O(p

1
2 +ε
n )

Hoheisel showed the following theorem (which we will not prove):
Theorem 20 (Hoheisel’s theorem):18 Suppose (i) that ζ(s) has no zeros in the

domain
σ > 1−A log log t

log t (A > 0, t > t0 > 3),

and (ii) that

N(σ, T ) = O(T b(1−σ) logB T )

uniformly for 1
2 ≤ σ ≤ 1 as T →∞, where b > 0 and B ≥ 0. Then, for any α satisfying

1− 1
b+ B

A

< α < 1,

we have

π(x+ xα)− π(x) ∼ xα

log x (68)

as x→∞, and therefore also

gn = pn+1 − pn = O(pαn). (69)

17[6]
18[5] Theorem 1
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Condition (i) of the theorem is met, as proven by Littlewood. The truth of the density
hypothesis clearly implies condition (ii), with b = 2. Hence, under the density hypothesis,
Hoheisel’s theorem tells us that (68) and (69) are valid for all α such that

lim
A→∞

1− 1
b+ B

A

= 1− 1
b

= 1
2 < α < 1. (70)

Hence gn = O(p
1
2 +ε
n ) under the density hypothesis.
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