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Introduction

Let V be a vector space and Vi ⊆ V be a subspace ∀i ∈ {1, ..., n} for some
n ∈ N. Then the system (V ;V1, ..., Vn) is said to be decomposable⇔ there
exist non-trivial vector spaces W ′ and W ′′ such that

1. V = W ′ ⊕W ′′

2. Vi = (Vi ∩W ′)⊕ (Vi ∩W ′′) ∀i ∈ {1, ..., n}.

Summary

The 4 subspace problem is the issue of finding all indecomposable systems
consisting of a vector space with four subspaces. This paper translates the
notion of systems into subspace representations of star quivers and finds
a sequence with indecomposable representations as its elements, as well as
a few representations which are not in the sequence, but are related to it
nonetheless.

1 Representations and decomposability

As a first step on our journey towards the desired sequence we described
in the summary, we substitute the somewhat ambiguous ”systems” with
something called ”representations of quivers”. To explain what that means,
we first define what a quiver is.

Definition 1.1. A quiver Γ = (Γ0,Γ1) is a directed graph where

1. Γ0 = {vertices}

2. Γ1 = {arrows}.
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Remark 1.1. It is common to represent the vertices of a quiver by natural
numbers, so that Γ0 = {1, ..., n}, where n is the number of vertices of the
quiver. Let α ∈ Γ1 such that α : i → j for some i, j ∈ Γ0. We denote
α = αj,i, and we use this as the standard notation for arrows. 4

Example 1.1. These are some examples of how quivers can be illustrated.

1. Γ = ({1, 2}, {α2,1}) can be illustrated as 1 2
α2,1

.

2. Γ = ({1}, {α1,1}) can be illustrated as 1 α1,1 .

3. Γ = ({1, 2, 3, 4, 5}, {α5,1, α5,2, α5,3, α5,4}) can be illustrated as

2

1 5 3

4

α5,2

α5,1

α5,3

α5,4

.

4

Remark 1.2. The quiver ({1, 2, 3, 4, 5}, {α5,1, α5,2, α5,3, α5,4}) in Example
1.1.3 is going to be used several times on our path. We therefore give it
the name Q = (Q0,Q1). Every mention of Q,Q0 or Q1 from now on will
implicitly refer to this remark. 4

Q is a certain kind of quiver that is important to us, which we give a
unique name and describe in the following definition.

Definition 1.2. A star quiver Γ∗ = (Γ∗0,Γ
∗
1) is a quiver with n ∈ N vertices

and n− 1 arrows such that ∃!αn,i ∈ Γ∗1 for each i ∈ Γ∗0 \ {n}. 4

We now define the concept that will replace systems, namely represen-
tations of quivers.
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Definition 1.3. A representation (V, f) of a quiver Γ = (Γ0,Γ1) over a
field k is a collection V = {V (i)}ni=1 of vector spaces over k and a collection
f of k-linear maps such that for every arrow αj,i ∈ Γ1 there exists a unique
map fαj,i ∈ f where fαj,i : V (i)→ V (j). 4

Example 1.2. Let (V, f) be a representation of Q over some field k where
V (i) ⊆ V (5) and fα5,i , which corresponds to α5,i ∈ Q1, is the inclusion
map fα5,i : V (i) → V (5) such that v 7→ v ∀v ∈ V (i), ∀i ∈ {1, 2, 3, 4}. We
illustrate this representation as

V (2)

V (1) V (5) V (3)

V (4)

.

4

Remark 1.3. The representation in the example above is a special case of
what we call subspace representation. We explain what that is next. 4

Definition 1.4. A subspace representation is a representation (V, f) of
a quiver Γ = (Γ0,Γ1) over a field k where V (i) ⊆ V (j) and fα is injective
∀αj,i ∈ Γ1. 4

Remark 1.4. If the k-linear maps of a subspace representation are inclu-
sions, it is sufficient to give the collection of vector spaces to define a subspace
representation of a quiver. We can then denote f by ↪→. 4

Now that know what representations of quivers are, we can use them
instead of systems. Still, if we want to arrive at the sequence we desire, we
will need to translate the concept of decomposability into the language of
representations. This we do by defining the direct sum of representations,
followed by the definition of decomposability.

Definition 1.5. Let {(Vr, fr)}tr=1 be a collection of representations of a

quiver Γ = (Γ0,Γ1) over a field k for some t ∈ N. The direct sum
t⊕

r=1
(Vr, fr)

of these representations is a representation (V, f) of Γ over k where V (i) =

3



t⊕
r=1

Vr(i) ∀i ∈ Γ0 and

fαj,i =

t⊕
r=1

(fr)αj,i : V (i)→ V (j) ∀αj,i ∈ Γ1.

4

Remark 1.5. We say that a representation (V, f) over a field k is finite-
dimensional over k ⇔ each vector space in V is finite-dimensional over
k. Then, if a collection {(Vr, fr)}tr=1 of representations over k is finite-

dimensional over k and n ∈ N, their direct sum (V, f) =
t⊕

r=1
(Vr, fr) is

finite-dimensional over k because each element in V is a finite direct sum of
finite-dimensional vector spaces. In this case,

fαj,i :=


(f1)αj,i 0 · · · 0

0 (f2)αj,i · · · 0
...

...
. . .

...
0 0 · · · (ft)αj,i

 ∀αj,i ∈ Γ1.

Even if (V, f) is infinite-dimensional, it is still possible to use matrix notation
for the k-linear maps, though the notation would only be symbolic in that
case. 4

Example 1.3. Let (W ′, f ′) and (W ′′, f ′′) be two representations of Q that
are finite-dimensional over some field k. Then (W ′, f ′) ⊕ (W ′′, f ′′) can be
illustrated as

W ′(2)

W ′(1) W ′(5) W ′(3)

W ′(4)

f ′α5,2
f ′α5,1

f ′α5,3
f ′α5,4

⊕

W ′′(2)

W ′′(1) W ′′(5) W ′′(3)

W ′′(4)

f ′′α5,2
f ′′α5,1

f ′′α5,3
f ′′α5,4

4



=

W ′(2)⊕W ′′(2)

W ′(1)⊕W ′′(1) W ′(5)⊕W ′′(5) W ′(3)⊕W ′′(3)

W ′(4)⊕W ′′(4)

f ′α5,2 0

0 f ′′α5,2

f ′α5,1 0

0 f ′′α5,1


f ′α5,3 0

0 f ′′α5,3

f ′α5,4 0

0 f ′′α5,4


.

4

Definition 1.6. A representation (V, f) of a quiver Γ over a field k is de-
composable⇔ there exist non-trivial representations (W ′, f ′) and (W ′′, f ′′)
of Γ over k such that (V, f) = (W ′, f ′)⊕ (W ′′, f ′′). 4

Remark 1.6. The trivial representation (V, f) of a quiver Γ = (Γ0,Γ1) is
the representation where V (i) = 0 ∀i ∈ Γ0 and fαj,i = 0 ∀αj,i ∈ Γ1. Note
that V (i) = 0 ∀i ∈ Γ0 necessarily implies fαj,i = 0 ∀αj,i ∈ Γ1. 4

Theorem 1.1. Let (V, f) be a subspace representation of a star quiver
Γ∗ = (Γ∗0,Γ

∗
1) with n vertices. Then

(V, f) is decomposable ⇔ the system
(
V (n);V (1), ..., V (n−1)

)
is decompos-

able.

Proof. Before we prove the implications, we should verify that V (i) ⊆ V (n)
∀i ∈ Γ∗0, so that it is actually possible for

(
V (n);V (1), ..., V (n − 1)

)
to be

decomposable.
First of all, Γ∗ is a star quiver, so ∃αn,i ∈ Γ∗1 ∀i ∈ Γ∗0. Then, because (V, f)
is a subspace representation, V (i) ⊆ V (n) ∀i ∈ Γ∗0.

(⇒) (V, f) is decomposable ⇒ there exist non-trivial representations
(W ′, f ′) and (W ′′, f ′′) such that (V, f) = (W ′, f ′) ⊕ (W ′′, f ′′). Let us
investigate if (W ′, f ′) and (W ′′, f ′′) are subspace representations.
Let αn,i ∈ Γ1. Then

V (i) = W ′(i)⊕W ′′(i) ⊆W ′(n)⊕W ′′(n) = V (n),

and fαj,i = f ′αj,i ⊕ f ′′αj,i where fαj,i : W ′(i) → W ′(n) and f ′′αj,i :
W ′′(i) → W ′′(n). fαj,i is injective, so f ′αj,i and f ′′αj,i are also injec-
tive.
Thus, since W ′(i) ⊆ W ′(n) ⊕W ′′(n) and W ′′(i) ⊆ W ′(n) ⊕W ′′(n),
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W ′(i) ⊆W ′(n) and W ′′(i) ⊆W ′′(n) ∀i ∈ Γ∗0, and all the k-linear maps
in f ′ and f ′′ are inclusions, so (W ′, f ′) and (W ′′, f ′′) are subspace rep-
resentations. Having shown this, we can show that

V (i) =
[
V (i) ∩W ′(n)

]
⊕
[
V (i) ∩W ′′(n)

]
∀i ∈ Γ∗0.

We have that

V (i) ∩W ′(n) =
[
W ′(i)⊕W ′′(i)

]
∩W ′(n)

=
[
W ′(i) ∩W ′(n)

]
⊕
[
W ′′(i) ∩W ′(n)

]
=
[
W ′(i) ∩W ′(n)

]
⊕ 0

= W ′(i) ∩W ′(n) = W ′(i)

and dually
W ′′(i) = V (i) ∩W ′′(n)

since W ′(i) ⊆ W ′(n), W ′′(i) ⊆ W ′′(n), V (i) = W ′(i) ⊕W ′′(i) when
i ∈ Γ∗0. Thus

V (i) = W ′(i)⊕W ′′(i) =
[
V (i) ∩W ′(n)

]
⊕
[
V (i) ∩W ′′(n)

]
∀i ∈ Γ∗0.

This coupled with the fact that V (n) = W ′(n) ⊕W ′′(n) implies that
the system

(
V (n);V (1), ..., V (n− 1)

)
is decomposable.

(⇐) Suppose the system
(
V (n);V (1), ..., V (n− 1)

)
is decomposable. Then

there exist non-trivial vector spaces W ′ and W ′′ such that

V (n) = W ′ ⊕W ′′

and
V (i) =

[
V (i) ∩W ′

]
⊕
[
V (i) ∩W ′′

]
∀i ∈ Γ∗0.

Thus we can construct representations (U ′, f ′) and (U ′′, f ′′) of Γ∗ over
k where

U ′ = {W ′} ∪ {V (i) ∩W ′}n−1
i=1 ,

U ′′ = {W ′′} ∪ {V (i) ∩W ′′}n−1
i=1 ,

f ′αn,i(u
′) = fαn,i(u

′) ∀u′ ∈ U ′(i),

f ′′αn,i(u
′′) = fαn,i(u

′′) ∀u′′ ∈ U ′′(i),

where αn,i ∈ Γ∗1. To clarify, we let U ′(n) = W ′ and U ′′(n) = W ′′, and
U ′(i) = V (i) ∩W ′ and U ′′(i) = V (i) ∩W ′′ when i ∈ Γ∗0. Hence f ′ and
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f ′′ are collections of injective maps. W ′ ⊕W ′′ = V (n) and[
V (i) ∩W ′

]
⊕
[
V (i) ∩W ′′

]
= V (i) ∀i ∈ Γ∗0 imply

{W ′ ⊕W ′′} ∪
{[
V (i) ∩W ′

]
⊕
[
V (i) ∩W ′′

]}n−1

i=1
= {V (i)}ni=1 = V.

Now let αn,i ∈ Γ∗1 and v ∈ V (i). Then, since V (i) =
[
V (i) ∩W ′

]
⊕[

V (i) ∩W ′′
]
, there are elements w′ ∈ V (i) ∩W ′ and w′′ ∈ Vi ∩W ′′

such that v = w′ + w′′. Hence

(f ′αn,i ⊕ f
′′
αn,i)(v) = (f ′αn,i ⊕ f

′′
αn,i)(w

′ + w′′) = f ′αn,i(w
′) + f ′′αn,i(w

′′)

= fαn,i(w
′) + fαn,i(w

′′) = fαn,i(w
′ + w′′) = fαn,i(v),

so fαn,i = f ′αn,i ⊕ f
′′
αn,i .

Thus (U ′, f ′)⊕ (U ′′, f ′′) = (V, f), so (V, f) is decomposable.

Hence (V, f) is decomposable⇔
(
V (n);V (1), ..., V (n−1)

)
is decomposable,

which proves the theorem.

Now we have the equivalence we wanted between certain representations
and systems. Thus we can restate the 4 subspace problem into the problem
of finding all indecomposable subspace representations of the star quiver Q.
Our next step towards the sequence of indecomposables is to find an equiv-
alent way to define decomposability of representations using endomorphism
rings. To do this, we first define homomorphisms of representations, which
endomorphisms are a special case of.

Definition 1.7. Let (V, f) and (V ′, f ′) be representations of a quiver Γ =
(Γ0,Γ1) with n ∈ N vertices over a field k. A homomorphism of repre-
sentations between (V, f) and (V ′, f ′) is a collection h of n k-linear maps
h(i) : V (i)→ V ′(i) such that the following diagram commutes ∀αj,i ∈ Γ1.

V (i) V (j)

V ′(i) V ′(j)

fαj,i

h(i) h(j)
f ′αj,i

That is,
(
f ′αj,i ◦ h(i)

)
(vi) =

(
h(j) ◦ fαj,i

)
(vi) ∀vi ∈ V (i). 4

Definition 1.8. Let (V, f) and (V ′, f ′) be representations of a quiver Γ =
(Γ0,Γ1) with n ∈ N vertices over a field k. (V, f) is a subrepresentation
of (V ′, f ′) ⇔ V (i) ⊆ V ′(i) ∀i ∈ Γ0 and fαj,i = f ′αj,i |V (i) ∀αj,i ∈ Γ1. 4

7



Remark 1.7. If (V, f) is a subrepresentation of (V ′, f ′), then there exists
a collection of maps h : (V, f)→ (V ′, f ′) such that

[
h(i)

]
(v) = v ∀v ∈ V (i)

∀i ∈ Γ0.
Let αj,i ∈ Γ1 and v ∈ V (i). Then[

f ′αj,i ◦ h(i)
]
(v) = f ′αj,i

([
h(i)

]
(v)
)

= f ′αj,i(v)

= f ′αj,i |V (i)(v) = fαj,i(v) =
[
h(j)

][
fαj,i(v)

]
=
[
h(j) ◦ fαj,i

]
(v),

so h is a homomorphism.
h is called an inclusion homomorphism. 4

Definition 1.9. An endomorphism on a representation is a homomor-
phism of representations between a representation (V, f) and itself. 4

Theorem 1.2. Let (V, f) be a representation of a quiver Γ = (Γ0,Γ1) with
n vertices over a field k. Then the set of endomorphisms on (V, f), denoted
by End(V, f), form a ring under homomorphism addition and composition.

Proof. Addition of homomorphisms is defined such that the sum h1 + h2

of two homomorphisms h1 and h2 between two representations (V ′, f ′) and
(V ′′, f ′′) of the same quiver satisfies[

(h1 + h2)(i)
]
(x) =

[
h1(i)

]
(x) +

[
h2(i)

]
(x) ∀x ∈ V ′(i) ∀i ∈ Γ0.

Homomorphism composition is defined such that the composition h1 ◦ h2 of
two homomorphisms h2 : (V ′′, f ′′) → (V ′′′, f ′′′) and h1 : (V ′, f ′) → (V, f),
where (V ′, f ′), (V ′′, f ′′) and (V ′′′, f ′′′) are three representations of the same
quiver, satisfies[

(h1 ◦ h2)(i)
]
(x) =

([
h1(i)

]
◦
[
h2(i)

])
(x) ∀x ∈ V ′(i) ∀i ∈ Γ0.

To prove that End(V, f) is a ring, we prove that

1. End(V, f) is closed under addition and composition

2. End(V, f) is an abelian group under addition

3. End(V, f) is a monoid, i.e. composition is associative and there is an
identity under composition in End(V, f) and

4. composition is distributive.

Let’s get to it.
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1. Let h1, h2 ∈ End(V, f).
Then the following diagrams commute ∀αj,i ∈ Γ1.

V (i) V (j) V (i) V (j)

V (i) V (j) V (i) V (j)

fαj,i

h1(i) h1(j)

fαj,i

h2(i) h2(j)

fαj,i fαj,i

We show that these diagrams commute as well.

V (i) V (j) V (i) V (j)

V (i) V (j) V (i) V (j)

fαj,i

(h1+h2)(i) (h1+h2)(j)

fαj,i

(h1◦h2)(i) (h1◦h2)(j)

fαj,i fαj,i

Let x ∈ V (i).

1.1. We show that the diagram to the left commutes.([
(h1 + h2)(j)

]
◦ fαj,i

)
(x) =

[
(h1 + h2)(j)

][
fαj,i(x)

]
=
[
h1(j)

][
fαj,i(x)

]
+
[
h2(j)

][
fαj,i(x)

]
=
([
h1(j)

]
◦ fαj,i

)
(x) +

([
h2(j)

]
◦ fαj,i

)
(x)

=
(
fαj,i ◦

[
h1(i)

])
(x) +

(
fαj,i ◦

[
h2(i)

])
(x)

= fαj,i

([
h1(i)

]
(x)
)

+ fαj,i

([
h2(i)

]
(x)
)

= fαj,i

([
h1(i)

]
(x) +

[
h2(i)

]
(x)
)

= fαj,i

([
(h1 + h2)(i)

]
(x)
)

=
(
fαj,i ◦

[
(h1 + h2)(i)

])
(x).

Thus the diagram

V (i) V (j)

V (i) V (j)

fαj,i

(h1+h2)(i) (h1+h2)(j)

fαj,i

commutes, so End(V, f) is closed under addition.
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1.2. We show that the diagram to the right commutes.([
(h1 ◦ h2)(j)

]
◦ fαj,i

)
(x) =

[([
h1(j)

]
◦
[
h2(j)

])
◦ fαj,i

]
(x)

=

[[
h1(j)

]
◦
([
h2(j)

]
◦fαj,i

)]
(x) =

[[
h1(j)

]
◦
(
fαj,i ◦

[
h2(i)

])]
(x)

=

[([
h1(j)

]
◦fαj,i

)
◦
[
h2(i)

]]
(x) =

[(
fαj,i ◦

[
h1(i)

])
◦
[
h2(i)

]]
(x)

=

[
fαj,i ◦

([
h1(i)

]
◦
[
h2(i)

])]
(x) =

(
fαj,i ◦

[
(h1 ◦ h2)(i)

])
(x).

Thus the diagram

V (i) V (j)

V (i) V (j)

fαj,i

(h1◦h2)(i) (h1◦h2)(j)

fαj,i

commutes, so End(V, f) is closed under composition.

Hence End(V, f) is closed under addition and composition.

2. To get that End(V, f) is an abelian group under addition, we need to
show that addition is associative, End(V, f) has an additive identity,
every element in End(V, f) has an additive inverse and addition is
commutative.

2.1. Let h1, h2, h3 ∈ End(V, f), i ∈ Γ0 and x ∈ V (i).([
(h1 + h2) + h3

]
(i)
)

(x) =
[
(h1 + h2)(i)

]
(x) +

[
h3(i)

]
(x)

=
([
h1(i)

]
(x) +

[
h2(i)

]
(x)
)

+
[
h3(i)

]
(x)

=
[
h1(i)

]
(x) +

([
h2(i)

]
(x) +

[
h3(i)

]
(x)
)

=
[
h1(i)

]
(x) +

[
(h2 + h3)(i)

]
(x) =

([
h1 + (h2 + h3)

]
(i)
)

(x),

which is possible since addition is associative in vector spaces.
Thus (h1 + h2) + h3 = h1 + (h2 + h3), so addition is associative.
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2.2. Let h ∈ End(V, f).
Consider the collection 0hom of k-linear maps such that[

0hom(i)
]
(x) = 0 ∀x ∈ V (i) ∀i ∈ Γ0.

0hom ∈ End(V, f) since every vector space has an additive iden-
tity. Then[

(h+ 0hom)(i)
]
(x) =

[
h(i)

]
(x) +

[
0hom(i)

]
(x) =

[
h(i)

]
(x) + 0

=
[
h(i)

]
(x)

= 0 +
[
h(i)

]
(x) =

[
0hom(i)

]
(x) +

[
h(i)

]
(x) =

[
(0hom + h)(i)

]
(x).

Thus h+ 0hom = h = 0hom + h, so 0hom is an additive identity in
End(V, f).

2.3. Let h ∈ End(V, f).
Consider the collection −h of k-linear maps such that[

(−h)(i)
]
(x) = −

[
h(i)

]
(x) ∀x ∈ V (i) ∀i ∈ Γ0.

−h ∈ End(V, f) since every vector space has an additive inverse
for each element in it. Then([

h+ (−h)
]
(i)
)

(x) =
[
h(i)

]
(x) +

[
(−h)(i)

]
(x)

=
[
h(i)

]
(x) +

(
−
[
h(i)

]
(x)
)

= 0

= −
[
h(i)

]
(x) +

[
h(i)

]
(x)

=
[
(−h)(i)

]
(x) +

[
h(i)

]
(x) =

[
(−h+ h)(i)

]
(x).

Thus h + (−h) = −h + h, so −h is an additive inverse of h in
End(V, f).

2.4. Let h1, h2 ∈ End(V, f) and x ∈ V (i) for some i ∈ Γ0. Then[
(h1 + h2)(i)

]
(x) =

[
h1(i)

]
(x) +

[
h2(i)

]
(x)

=
[
h2(i)

]
(x) +

[
h1(i)

]
(x) =

[
(h2 + h1)(i)

]
(x),

since
[
h1(i)

]
(x),

[
h2(i)

]
(x) ∈ V (i) and vector spaces are abelian

groups under addition.
Thus h1 + h2 = h2 + h1 addition is commutative in End(V, f).
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Hence End(V, f) is an abelian group under addition.

3. Now we show that End(V, f) is a monoid under composition.

3.1. We first show that composition is associative.
Let h1, h2, h3 ∈ End(V, f) and x ∈ V (i) for some i ∈ Γ0. Then([

(h1 ◦ h2) ◦ h3

]
(i)
)

(x) =
[
(h1 ◦ h2)(i) ◦ (h3)(i)

]
(x)

=
([
h1(i) ◦ h2(i)

]
◦ h3(i)

)
(x) =

(
h1(i) ◦

[
h2(i) ◦ h3(i)

])
(x)

=
[
h1(i) ◦ (h2 ◦ h3)(i)

]
(x) =

([
h1 ◦ (h2 ◦ h3)

]
(i)
)

(x),

which is possible since composition of linear transformations is
associative.
Thus, (h1 ◦ h2) ◦ h3 = h1 ◦ (h2 ◦ h3), so composition of endomor-
phisms is associative.

3.2. Now we show that there is a compositional identity in End(V, f).
Let h ∈ End(V, f).
Consider the collection idV of fixed maps such that[

idV (i)
]
(x) = x ∀x ∈ V (i) ∀i ∈ Γ0.

idV ∈ End(V, f), since every vector space has a fixed linear trans-
formation for each element in the vector space. Then[

(h ◦ idV )(i)
]
(x)

=
[
h(i) ◦ idV (i)

]
(x) =

[
h(i)

]([
idV (i)

]
(x)
)

=
[
h(i)

]
(x)

=
[
idV (i)

]([
h(i)

]
(x)
)

=
[
idV (i) ◦ h(i)

]
(x)

=
[
(idV ◦ h)(i)

]
(x).

Thus h◦ idV = idV ◦h, so End(V, f) has a compositional identity.
Note that this point can be omitted if we use the definition of a
ring that does not require a multiplicative identity.

Hence End(V, f) is a monoid under composition.
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4. Now we show that composition is distributive by proving that both of
the distribute laws hold.
Let h1, h2, h3 ∈ End(V, f) and x ∈ V (i) for some i ∈ Γ0.

4.1. We prove the left distributive law.([
h1 ◦ (h2 + h3)

]
(i)
)

(x) =
[
h1(i) ◦ (h2 + h3)(i)

]
(x)

=
[
h1(i)

]([
(h2 + h3)(i)

]
(x)
)

=
[
h1(i)

]([
h2(i)

]
(x) +

[
h3(i)

]
(x)
)

=
[
h1(i)

]([
h2(i)

]
(x)
)

+
[
h1(i)

]([
h3(i)

]
(x)
)

=
[
h1(i) ◦ h2(i)

]
(x) +

[
h1(i) ◦ h3(i)

]
(x)

=
[
(h1 ◦ h2)(i)

]
(x) +

[
(h1 ◦ h3)(i)

]
(x),

which is possible since composition of linear transformations is
distributive.
Thus h1 ◦ (h2 +h3) = h1 ◦h2 +h1 ◦h3, so the left distributive law
holds.

4.2 We prove the right distributive law.([
(h2 + h3) ◦ h1

]
(i)
)

(x) =
[
(h2 + h3)(i) ◦ h1(i)

]
(x)

=
[
(h2 + h3)(i)

]([
h1(i)

]
(x)
)

=
[
h2(i)

]([
h1(i)

]
(x)
)

+
[
h3(i)

]([
h1(i)

]
(x)
)

=
[
h2(i) ◦ h1(i)

]
(x) +

[
h3(i) ◦ h1(i)

]
(x)

=
[
(h2 ◦ h1)(i)

]
(x) +

[
(h3 ◦ h1)(i)

]
(x).

Thus (h2 + h3) ◦ h1 = h2 ◦ h1 + h3 ◦ h1, so the right distributive
law holds.

Hence composition is distributive.

Thus End(V, f) is a ring under homomorphism addition and composition.

With this result in our toolbox, we go on to state the next theorem, which
is about a condition that implies indecomposability of representations.
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Theorem 1.3. Let (V, f) be a representation of a quiver Γ = (Γ0,Γ1) over
a field k. Then
End(V, f) ∼= k ⇒ (V, f) is indecomposable.

Proof. We first find a subfield of End(V, f) that is isomorphic to k. This
will aid us in proving the theorem.
Let a ∈ k and define ha : (V, f)→ (V, f) such that[

ha(i)
]
(v) = av ∀v ∈ V (i) ∀i ∈ Γ0.

Every fαj,i is k-linear, that is,

fαj,i(λx) = λfαj,i(x) ∀λ ∈ k, x ∈ V (i), αj,i ∈ Γ1,

so then[
ha(j) ◦ fαj,i

]
(v) =

[
ha(j)

][
fαj,i(v)

]
= a

[
fαj,i(v)

]
= fαj,i(av)

= fαj,i

([
ha(i)

]
(v)
)

=
[
fαj,i ◦ ha(i)

]
(v).

Thus ha is an endomorphism on (V, f). Now define

k(V, f) =
{
ha ∈ End(V, f)

∣∣[ha(i)](v) = av ∀v ∈ V (i), i ∈ Γ0 a ∈ k
}
.

Hence, there is a natural bijection Φ : k(V, f)→ k such that ha 7→ a ∀a ∈ k.
Furthermore, if b ∈ k and v ∈ V (i) for some i ∈ Γ0, then[
(ha+hb)(i)

]
(v) =

[
ha(i)

]
(v)+

[
hb(i)

]
(v) = av+bv = (a+b)v =

[
ha+b(i)

]
(v)

and[
(ha ◦ hb)(i)

]
(v) =

[
ha(i) ◦ hb(i)

]
(v) =

[
ha(i)

]([
hb(i)

]
(v)
)

=
[
ha(i)

]
(bv)

= a(bv) = (ab)v =
[
hab(i)

]
(v).

Thus Φ(ha + hb) = Φ(ha+b) = a+ b = Φ(ha) + Φ(hb)
and Φ(ha ◦ hb) = Φ(hab) = ab = Φ(ha)Φ(hb),
so Φ is a ring homomorphism and therefore an isomorphism.
Hence k(V, f) ∼= k.
Having shown this, we are finally ready to prove the statement of the theo-
rem.
Suppose End(V, f) ∼= k. Then End(V, f) = k(V, f) since k(V, f) ⊆ End(V, f).
Let αj,i ∈ Γ1 and suppose there are representations (V ′, f ′) and (V ′′, f ′′)
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such that (V, f) = (V ′, f ′) ⊕ (V ′′, f ′′). For every v ∈ V (i) there are unique
vectors v′ ∈ V ′(i) and v′′ ∈ V ′′(i) such that v = v′ + v′′. Define a collection
of maps hV ′ : (V, f) → (V, f) such that v 7→ h(v′) for each v ∈ V (i). It is
clear that

[
hV ′(i)

][
V (i)

]
= V ′(i) and ker

[
hV ′(i)

]
= V ′′(i) ∀i ∈ Γ0. We also

have [
hV ′(i)

][
λ(v1 + v2)

]
=
[
hV ′(i)

]
(λv1 + λv2)

= (λv1 + λv2)′ = (λv1)′ + (λv2)′ = λv′1 + λv′2

= λ
[
hV ′(i)

]
(v1) + λ

[
hV ′(i)

]
(v2)

= λ
([
hV ′(i)

]
(v1) +

[
hV ′(i)

]
(v2)

)
∀v1, v2 ∈ V (i), λ ∈ k,

so hV ′(i) is k-linear. Then[
hV ′(j) ◦ fαj,i

]
(v) =

[
hV ′(j)

][
fαj,i(v)

]
=
[
hV ′(j)

]([
f ′αj,i ⊕ f

′′
αj,i

]
(v)
)

=
[
hV ′(j)

][
f ′αj,i(v

′)⊕ f ′′αj,i(v
′′)
]

=
[
hV ′(j)

][
f ′αj,i(v

′)
]
⊕
[
hV ′(j)

][
f ′′αj,i(v

′′)
]

=
[
hV ′(j)

][
f ′αj,i(v

′)
]
⊕ 0 =

[
hV ′(j)

][
f ′αj,i(v

′)
]

= f ′αj,i(v
′)

= f ′αj,i

([
hV ′(i)

]
(v′)
)

= f ′αj,i

([
hV ′(i)

]
(v′)
)
⊕ 0

= f ′αj,i

([
hV ′(i)

]
(v′)
)
⊕ f ′′αj,i(0)

= f ′αj,i

([
hV ′(i)

]
(v′)
)
⊕ f ′′αj,i

([
hV ′(i)

]
(v′′)

)
= (f ′αj,i ⊕ f

′′
αj,i)

([
hV ′(i)

]
(v)
)

= fαj,i

([
hV ′(i)

]
(v)
)

=
[
fαj,i ◦ hV ′(i)

]
(v),

so hV ′ is a homomorphism of representations, and since[
hV ′(i)

]
: V (i)→ V (i), we see that hV ′ is an endomorphism on (V, f). Then

hV ′ ∈ End(V, f) = k(V, f), so hV ′ = ha for some a ∈ k. If a = 0, then[
hV ′(i)

][
V (i)

]
= 0, so V ′(i) = 0 and V ′′(i) = V (i) ∀i ∈ Γ0, which results

in (V ′, f ′) being the trivial representation. If a 6= 0, then hV ′(i) is injective
since av1 = av2 ⇒ a1 = a2 for a ∈ k, a1, a2 ∈ V (i), so ker

[
hV ′(i)

]
= 0. Then

V ′′(i) = 0 and V ′(i) = V (i) ∀i ∈ Γ0, which yields (V ′′, f ′′) being the trivial
representation. In either case, (V, f) is indecomposable.

The result above is what we will use to determine which representations
are indecomposable.
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Theorem 1.4. Let (V, f) be a finite-dimensional representation of a quiver
Γ = (Γ0,Γ1) over a field k. Then (V, f) is isomorphic to a representation
(V ′, f ′) of Γ over k where V ′ = {kni}i∈Γ0 and ni = dimk[V (i)] ∀i ∈ Γ0.

Proof. Let B = {β1, ..., βni} be a basis of V (i). Then an arbitrary element

a ∈ V (i) can be expressed as a =
ni∑
m=1

amβm. Let αj,i ∈ Γ1 and and define

f ′αj,i(a1, a2, ..., ani) =
(
fαj,i(a1), fαj,i(a2), ..., fαj,i(amin{ni,nj}}, 0, ..., 0)

)
,

where the number of zeros after fαj,i(amin{ni,nj}} equals nj − ni if nj ≥ ni
and 0 otherwise.
Then define h : (V, f)→ (V ′, f ′) such that[
h(i)

]
(a) =

[
h(i)

]( ni∑
m=1

amβm

)
= (a1, a2, ..., ani) ∀i ∈ Γ. Thus

[
h(i)

]
(β1) = (1, 0, ..., 0),[

h(i)
]
(β2) = (0, 1, ..., 0),

...[
h(i)

]
(βni) = (0, ..., 0, 1),

so h(i) sends B to a basis of kni , hence h(i) is an bijective k-linear map.
Now we show that h is a homomorphism.

(
f ′αj,i ◦

[
h(i)

])( ni∑
m=1

amβm

)
= f ′αj,i

([
h(i)

] [ ni∑
m=1

amβm

])
= f ′αj,i(a1, a2, ..., ani) =

(
fαj,i(a1), fαj,i(a2), ..., fαj,i(amin{ni,nj}), 0, ..., 0

)
=
[
h(j)

]min{ni,nj}∑
m=1

fαj,i(am)βm

 =
[
h(j)

] [
fαj,i

(
ni∑
m=1

amβm

)]

=
([
h(j)

]
◦ f ′αj,i

)( ni∑
m=1

amβm

)
.

Thus h is a homomorphism, and since it is bijective, it is also an isomor-
phism.
Hence (V, f) ∼= (V ′, f ′).
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Remark 1.8. In the case where (V, f) is a subspace representation we get
that for any αj,i ∈ Γ1,

f ′αj,i(a1, a2, ..., ani) = (fαj,i(a1), fαj,i(a2), ..., fαj,i(ani), 0, ..., 0),

where the number of zeros after ani is equal to nj−ni, since fαj,i is injective.
Then f ′αj,i is injective as well. Thus (V ′, f ′) is a subspace representation. 4

The theorem above constrains the amount of representations we need to
look at when we want to find indecomposable representations. Now we only
need to look at representations whose vector spaces are powers of k.
We conclude this section with investigating the endomorphism rings of a few
representations. Perhaps some of them are indecomposable?

Example 1.4. We want to find the endomorphism rings of the following
subspace representations of Q over some field k.

V0,5 = ({0, 0, 0, 0, k}, f0,5),

V1,1 = ({k, 0, 0, 0, k}, f1,1),

V1,2 = ({0, k, 0, 0, k}, f1,2),

V1,3 = ({0, 0, k, 0, k}, f1,3),

V1,4 = ({0, 0, 0, k, k}, f1,4).

We also visualize them, so it is easier to see what we are dealing with.

V0,5 =

0

0 k 0

0

V1,1 =

0

k k 0

0

,V1,2 =

k

0 k 0

0
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V1,3 =

0

0 k k

0

,V1,4 =

0

0 k 0

k

1. Now we find End(V0,5). Let h ∈ End(V0,5). Then h satisfies
[
h(5) ◦

(f0,5)α5,i

]
(v) =

[
(f0,5)α5,i ◦ h(i)

]
(v) ∀v ∈ 0, i ∈ {1, 2, 3, 4}, and since

(f0,5)α5,i are maps whose domain are 0, the equation yields 0 = 0,
which means that these maps do not constrain h. If i ∈ {1, 2, 3, 4},
then

[
h(i)

]
(v) = 0 v ∈ 0, meaning that this does not constrain h

either. If i = 5, then
[
h(i)

]
(v) = av for some a ∈ k. Thus h = ha for

some a ∈ k. Hence End(V0,5) ∼= k.

2. To find the endomorphism rings of V1,1, V1,2, V1,3 and V1,4, we only look
at V1,1, since the others only are ”rotations” of V1,1 which will yield the
same endomorphism rings as V1,1. Let h ∈ End(V1,1). If i ∈ {2, 3, 4},
then

[
h(5) ◦ (f1,1)α5,i

]
(v) =

[
(f1,1)α5,i ◦ h(i)

]
(v) ∀v ∈ 0 yields 0 = 0. If

i = 1, it yields acv = cbv where (f1,1)α5,1(v) = cv for some c ∈ k such
that c 6= 0,

[
h(1)

]
(v) = av and

[
h(5)

]
(v) = bv for a, b ∈ k, so av = bv

which gives a = b. Then h = ha for some a ∈ k. Thus End(V1,1) ∼= k
and dually we get End(V1,2) ∼= End(V1,3) ∼= End(V1,4) ∼= k.

Hence V0,5, V1,1, V1,2, V1,3 and V1,4 are all indecomposable. 4

Remark 1.9. We continue using the notation V0,5, V1,1, V1,2, V1,3 and V1,4

for the representations in the example above as we proceed. 4

2 Kernels, cokernels and dimension vectors

In this section, we define a few terms and state some facts which will be
helpful when constructing the sequence we are building towards. The central
concepts are kernels, cokernels and dimension vectors of representations.

Definition 2.1. Let h : (V, f) → (V ′, f) be a homomorphism between
representations of a quiver Γ = (Γ0,Γ1) over a field k. The kernel of h is a
tuple ker(h) =

[
kerob(h), kerhom(h)

]
where

1. kerob(h) = (V ′′, f ′′) consists of a collection V ′′ of sets V ′′(i) such that

V ′′(i) = ker
[
h(i)

]
∀i ∈ Γ0
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and a collection f ′′ of maps f ′′αj,i such that

f ′′αj,i(v) = fαj,i(v) ∀v ∈ V ′′(i), αj,i ∈ Γ1.

2. kerhom(h) : kerob(h)→ (V, f) is a collection of maps[
kerhom(h)

]
(i) :

[
(kerob)0(h)

]
(i)→ V (i) such that([

kerhom(h)
]
(i)
)

(v) = v∀v ∈
[
(kerob)0(h)

]
(i), i ∈ Γ0.

4

Remark 2.1. We show that kerob(h) is a representation over k and kerhom(h)
is a homomorphism between representations.

1. Since V ′′(i) = ker
[
h(i)

]
⊆ V (i) ∀i ∈ Γ0, V ′′(i) is a vector space over

k. Then V ′′ is a collection of vector spaces over k.
f ′′αj,i(v) = fαj,i(v) ∀v ∈ V ′′(i) ∀αj,i ∈ Γ1 ⇒ f ′′αj,i = fαj,i |V ′′(i), so f ′′αj,i
is k-linear.
We also need to show that f ′′αj,i : V ′′(i)→ V ′′(j). Let v ∈ V ′′(i). Then[
h(i)

]
(v) = 0 and[

h(j)
][
f ′′αj,i(v)

]
=
[
h(j)

][
fαj,i(v)

]
=
[
h(j) ◦ fαj,i

]
(v) =

[
fαj,i ◦ h(i)

]
(v)

= fαj,i

([
h(i)

]
(v)
)

= fαj,i(0) = 0.

Thus f ′′αj,i(v) ∈ V ′′(j), so f ′′αj,i : V ′′(i)→ V ′′(j).
Hence kerob(h) is a representation over k.
From the arguments above we also obtain that kerob(h) is a subrepre-
sentation of (V, f).

2. We see that kerhom(h) is a collection of inclusion maps. It is then a
homomorphism.

4

Remark 2.2. We typically denote kerob(h) =
[
(kerob)0(h), (kerob)1(h)

]
such that

[
(kerob)0(h)

]
(i) is the vector space corresponding to vertex i

∀i ∈ Γ0 and
[
(kerob)1(h)

]
αj,i

is the k-linear map corresponding to arrow

αj,i ∀αj,i ∈ Γ1. 4
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Definition 2.2. Let g be an R-homomorphism between R-modules M and
N where R is a ring.
The cokernel of g is a tuple cok(g) =

(
cokob(g), cokhom(g)

)
such that

1. cokob(g) is the quotient module N/g(M) over R,

2. cokhom(g)
)

is the R-homomorphism cokhom(g)
)

: N → N/g(M) such
that cokhom(g)(n) = n+ g(M) ∀n ∈ N .

4

This definition is not that interesting to us by itself. We really just need
it in order to define cokernels of homomorphisms of representeations, which
is what we do next.

Definition 2.3. Let h be a homomorphism between two representations
(V, f) and (V ′, f ′) of a quiver Γ = (Γ0,Γ1) with n vertices over a field k.
The cokernel of h is a tuple cok(h) =

(
cokob(h), cokhom(h)

)
where

1. cokob(h) = (V ′, f ′)/h(V, f) = (V ′′, f ′′) is a collection V ′′ of sets V ′′(i)
such that

V ′′(i) =
V ′(i)[

h(i)
][
V (i)

] ∀i ∈ Γ0

and a collection f ′′ of maps f ′′αj,i such that

f ′′αj,i

(
v′ +

[
h(i)

][
V (i)

])
= f ′αj,i(v

′) +
[
h(j)

][
V (j)

]
∀v′ ∈ V ′(i), αj,i ∈ Γ1,

2. cokhom(h) : (V ′, f ′)→ (V ′′, f ′′) is a collection of maps[
cokhom(h)

]
(i) : V ′(i)→ V ′′(i) such that([

cokhom(h)
]
(i)
)

(v′) =
(

cokhom

[
h(i)

])
(v′) = v′ +

[
h(i)

][
V (i)

]
∀v′ ∈ V ′(i), i ∈ Γ0.

4

Remark 2.3. We can show that cokob(h) is a representation and cokhom(h)
is a homomorphism.
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1. We recognize that V ′′(i) = cokob

[
h(i)

]
, which by definition is a k-

module, i.e. a vector space over k, since h(i) is k-linear. Thus V ′′ is
a collection of vector spaces over k. Furthermore, if v′ ∈ V ′(i), then
v′ +

[
h(i)

][
V (i)

]
∈ V ′′(i) and for each v′′ ∈ V ′′(i) ∃v′ ∈ V ′(i) such

that v′′ = v′+
[
h(i)

][
V (i)

]
∀i ∈ Γ0. Thus the domain of f ′′αj,i is V ′′(i).

We also have that for any v′ ∈ V ′(i), f ′αj,i(v
′) ∈ V ′(j), so

f ′′αj,i

(
v′ +

[
h(i)

][
V (i)

])
= f ′αj,i(v

′) +
[
h(j)

][
V (j)

]
∈ V ′′(j).

Thus f ′′αj,i : V ′′(i) → V ′′(j). Additionally, since f ′αj,i is k-linear, f ′′αj,i
is k-linear as well.
Hence cokob(h) is a representation of Γ over k.

2. We show that f ′′ ◦ cokhom(h) = cokhom(h) ◦ f ′. k-linearity follows
from the way addition and scalar multiplication are defined in quotient
modules.
Let αj,i ∈ Γ1 and v′ ∈ V ′(i). Then(

f ′′αj,i ◦
[
cokhom(h)

]
(i)
)

(v′) = f ′′αj,i

[([
cokhom(h)

]
(i)
)

(v′)

]
= f ′′αj,i

(
v′ +

[
h(i)

][
V (i)

])
= f ′αj,i(v

′) +
[
h(j)

][
V (j)

]
=
([

cokhom(h)
]
(i)
)[
f ′αj,i(v

′)
]

=
([

cokhom(h)
]
(i) ◦ f ′αj,i

)
(v′).

Thus cokhom(h) is a homomorphism.

4

Remark 2.4. We will usually denote cokob(h) =
[
(cokob)0(h), (cokob)1(h)

]
such that

[
(cokob)0(h)

]
(i) is the vector space corresponding to vertex i ∀i ∈

Γ0 and
[
(cokob)1(h)

]
αj,i

is the k-linear map corresponding to arrow αj,i
∀αj,i ∈ Γ1. 4

Theorem 2.1. Let h1 : (V, f) → (V ′, f ′), h2 : (W, g) → (W ′, g′), L2 :
(V, f)→ (W, g) and L3 : (V ′, f ′)→ (W ′, g′) be four homomorphisms between
representations of a common quiver Γ = (Γ0,Γ1) over a field k such that that
the diagram

(V, f) (V ′, f ′)

(W, g) (W ′, g′)

L2

h1

L3

h2
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commutes. Then two homomorphisms

L1 : kerob(h1)→ kerob(h2)

and
L4 : cokob(h1)→ cokob(h2)

are induced such that the diagram

kerob(h1) (V, f) (V ′, f ′) cokob(h1)

kerob(h2) (W, g) (W ′, g′) cokob(h2)

L1

kerhom(h1)

L2

h1

L3

cokhom(h1)

L4

kerhom(h2) h2 cokhom(h2)

commutes.

Proof. We first show the kernel homomorphism and then the cokernel ho-
momorphism.

1. Define L1, a collection of maps such that[
L1(i)

]
(v) =

[
L2(i)

]
(v) ∀v ∈ ker

[
h1(i)

]
, ∀i ∈ Γ0.

Since kerhom(h1) and kerhom(h2) are inclusion, the diagram without
cokernels commutes. Is the codomain of L1 really kerob(h2)? Suppose
i ∈ Γ0 and v ∈ ker

[
h(i)

]
. Then[

h2(i) ◦ L1(i)
]
(v) =

[
h2(i)

]([
L1(i)

]
(v)
)

=
[
h2(i)

]([
L2(i)

]
(v)
)

[
h2(i) ◦ L2(i)

]
(v) =

[
L3(i) ◦ h1(i)

]
(v) =

[
L3(i)

]([
h1(i)

]
(v)
)

=
[
L3(i)

]
(0) = 0

⇒
[
L1(i)

]
(v) ∈ ker

[
h2(i)

]
.

Thus L1 is well-defined.
Now we show that L1 is a homomorphism.
Let αj,i ∈ Γ1 and v ∈ kerob(h1). Then([

(kerhom)1(h2)
]
αj,i
◦
[
L1(i)

])
(v) =

[
(kerhom)1(h2)

]
αj,i

([
L1(i)

]
(v)
)

=
[
(kerhom)1(h2)

]
αj,i

([
L2(i)

]
(v)
)

= gαj,i

([
L2(i)

]
(v)
)

=
[
L2(i)

][
fαj,i(v)

]
=
[
L2(i)

]([
(kerhom)1(h2)

]
αj,i

(v)
)

=
[
L1(i)

]([
(kerhom)1(h2)

]
αj,i

(v)
)

=
(
L1(i) ◦

[
(kerhom)1(h2)

]
αj,i

)
(v).

Hence L1 is a homomorphism.
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2. Define L4, a collection of maps such that[
L4(i)

](
v +

[
h1(i)

][
V (i)

])
=
[
L3(i)

]
(v) +

[
h2(i)

][
W ′(i)

]
∀v ∈ V ′(i) ∀i ∈ Γ0.

We see that the digram above commutes by the definition of L4.
Is L4 well-defined? Let i ∈ Γ0 and v′ ∈

[
h1(i)

][
V (i)

]
. Then ∃v ∈ V (i)

such that v′ =
[
h1(i)

]
(v), so

L3(v′) =
[
L3(i)

]([
h1(i)

]
(v)
)

=
[
h3(i)

]([
L2(i)

]
(v)
)
∈
[
h2(i)

][
W (i)

]
.

Thus, since h1, h2, L2 and L3 are well-defined, it follows that L4 is
well-defined.

We prove that L4 is a homomorphism. Let αj,i ∈ Γ1.([
(cokob)1(h2)

]
αj,i
◦
[
L4(i)

])(
v +

[
h1(i)

][
V (i)

])
=
[
(cokob)1(h2)

]
αj,i

[[
L4(i)

](
v +

[
h1(i)

][
V (i)

])]
=
[
(cokob)1(h2)

]
αj,i

([
L3(i)

]
(v) +

[
h2(i)

][
W ′(i)

])
= g′′αj,i

([
L3(i)

]
(v)
)

+
[
h2(j)

][
W ′(j)

]
=
(
g′′αj,i ◦

[
L3(i)

])
(v) +

[
h2(j)

][
W ′(j)

]
=
([
L3(j)

]
◦ g′′αj,i

)
(v) +

[
h2(j)

][
W ′(j)

]
=
[
L3(j)

][
g′′αj,i(v)

]
+
[
h2(j)

][
W ′(j)

]
=
[
L4(j)

](
g′′αj,i(v) +

[
h2(j)

][
W ′(j)

])
=
[
L4(j)

][
(cokob)1(h2)

]
αj,i

(
v +

[
h1(i)

][
V (i)

])]
=
([
L4(j)

]
◦
[
(cokob)1(h2)

]
αj,i

)(
v +

[
h1(i)

][
V (i)

])
.

Thus L4 is a homomorphism.
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Theorem 2.2. Let h1 : (V, f) → (V ′, f ′) and h2 : (V ′, f ′) → (V ′′, f ′′) be
two homomorphisms between three representations of a quiver Γ = (Γ0,Γ1)
over a field k, where h1 is injective and h2 is surjective. Then[

(V, f), h1

] ∼= ker(h2)⇔
[
(V ′′, f ′′), h2

] ∼= cok(h1).

Proof. Suppose
[
(V, f), h1

] ∼= ker(h2) and let i ∈ Γ0. Then
[
h1(i)

][
V (i)

]
=

V (i) = ker
[
h2(i)

]
. Thus, by the fundamental theorem of homomorphisms

and h2 being surjective,

V ′′(i) ∼=
V ′(i)

V (i)
.

Let αj,i ∈ Γ1 and v′′ ∈ V ′′(i). Then ∃v′ ∈ V ′(i) such that v′′ =
[
h2(i)

]
(v′).

Then
f ′′αj,i(v

′′) = f ′′αj,i

([
h2(i)

]
(v′)
)

=
[
h2(i)

][
f ′αj,i(v

′)
]
,

so if h2 = cokhom(h1), then f ′′ satisfies the property of the collection of maps
in kerob(h2). Let i ∈ Γ0 and v′ ∈ V ′(i). Then

[
h2(i)

]
(v′) ∈ V ′′(i) ∼=

V ′(i)

V (i)
,

so h2 behaves like the cokernel homomorphism of h1.
Now suppose

[
(V ′′, f ′′), h2

] ∼= cok(h1) and let i ∈ Γ0.

V ′′(i) =
V ′(i)[

h1(i)
][
V (i)

] ,
so V (i) ∼= ker

[
h2

]
. Let αj,i ∈ Γ1 and v ∈ V (i). Since h1 is injective,

h1(v) = 0⇔ v = 0. Then[
h1(j)

][
fαj,i(v)

]
= f ′αj,i

([
h(i)

]
(v)
)
,

and if h1 = kerhom(h2), h1 will be an inclusion, which will give us our desired
result.
V (i) ∼= ker

[
h2

]
, so h1 acts like kerhom(h2).

This proves the theorem.

Sequences like the one in the theorem above are called short exact.

Definition 2.4. Let (V, f) be a finite-dimensional representation of a quiver
Γ = (Γ0,Γ1) with n ∈ N vertices over a field k. The dimension vector of
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(V, f) over k is the n-tuple

dimk(V, f) =


dimk

[
V (1)

]
dimk

[
V (2)

]
...

dimk

[
V (n)

]
 ∈ Zn.

4

Theorem 2.3. Let h be a homomorphism between finite-dimensional rep-
resentations (V, f) and (V ′, f ′) of a quiver Γ = (Γ0,Γ1) with n ∈ N vertices
over k. Then

1. dimk

[
kerob(h)

]
= dimk(V, f)− dimk

[
h(V, f)

]
,

2. dimk

[
cokob(h)

]
= dimk(V

′, f ′)− dimk

[
h(V, f)

]
.

Proof. We first verify that h(V, f) =
(
h(V ), h(f)

)
is a finite-dimensional

representation over k.
h(V ) = {

[
h(i)]

[
V (i)

]}
i∈Γ0

is a collection of vector spaces. Let αj,i ∈ Γ1 and

consider the restriction map f ′αj,i |[h(i)][V (i)] such that

f ′αj,i |[h(i)][V (i)](v
′) = f ′αj,i(v

′) ∀v′ ∈
[
h(i)

][
V (i)

]
.

We want this to be a map in h(f) such that h(V, f) can be a representation,
and on the surface it might seem like it automatically is, but we should
reassure ourselves that

f ′αj,i |[h(i)][V (i)] :
[
h(i)

][
V (i)

]
→
[
h(j)

][
V (j)

]
.

Since h is a homomorphism,

f ′αj,i |[h(i)][V (i)]

([
h(i)

][
V (i)

])
= f ′αj,i

([
h(i)

][
V (i)

])
=
[
f ′αj,i ◦ h(i)

][
V (i)

]
=
[
h(j) ◦ fαj,i

][
V (i)

]
=
[
h(j)

](
fαj,i

[
V (i)

])
⊆
[
h(j)

][
V (i)

]
.

Thus, if f ′αj,i |[h(i)][V (i)] ∈ h(f), h(V, f) =
(
h(V ), h(f)

)
is a representation.

Next,
[
h(i)

][
V (i)

]
⊂ V ′(i) implies

[
h(i)

][
V (i)

]
is finite-dimensional since

by assumption V ′(i) is finite-dimensional ∀i ∈ Γ0. Thus h(V, f) is finite-
dimensional. Now we go on to prove the theorem.
Let i ∈ Γ0.
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1. We first find dimk

[
kerob(h)

]
.

dimk

([
kerob(h)

]
(i)
)

= dimk

(
ker
[
h(i)

])
= dimk

[
V (i)

]
−dimk

([
h(i)

][
V (i)

])
= dimk

[
V (i)

]
−dimk

([
h(V )

]
(i)
)

⇒ dimk

[
kerob(h)

]
= dimk(V, f)− dimk

[
h(V, f)

]
.

2. Now we find dimk

[
cokob(h)

]
.

dimk

([
(cokob)0(h)

]
(i)
)

= dimk

(
V ′(i)[

h(i)
][
V (i)

])

= dimk

[
V ′(i)

]
−dimk

([
h(i)

][
V (i)

])
= dimk

[
V ′(i)

]
−dimk

([
h(V )

]
(i)
)

⇒ dimk

[
cokob(h)

]
= dimk(V

′, f ′)− dimk

[
h(V, f)

]
.

This concludes the proof.

3 A sequence of indecomposable representations

In this section, we define a sequence of representations of Q over some
arbitrary common field k. The sequence is to be derived by means of kernels
and cokernels, and when it is determined, we show that (almost) all elements
of the sequence are indecomposable.

We describe a sequence of representations, which will be derived using
cokernels. We consider Q and the representations V0,5, V1,1, V1,2, V1,3 and
V1,4. Let Hi,5 : Vi,5 → Vi+1,1 ⊕ Vi+1,2 ⊕ Vi+1,3 ⊕ Vi+1,4 and hi,j : Vi,j → Vi,5
be homomorphisms of representations, and define the sequence V such that

Vi,5 = cokob(Hi,5)

and
Vi,j = cokob(hi,j), j ∈ {1, 2, 3, 4},

are the elements of V ∀i ∈ N0 = N ∪ {0}, assuming the inductor maps,
i.e. the maps we induce the sequence from, are injective. Additionally, for
future use we write Vi,j =

[
(Vi,j)0, (Vi,j)1

]
∀i ∈ N, j ∈ {1, 2, 3, 4, 5}, and also
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V0,5 =
[
(V0,5)0, (V0,5)1

]
.

To make things a bit clearer, we visualize the sequence.

V1,1 V2,1 V3,1

V1,2 V2,2 V3,2

V0,5 V1,5 V2,5 · · ·

V1,3 V2,3 V3,3

V1,4 V2,4 V3,4

Say we want to find out what the representations in this sequence look like.
To do this we use the dimension vectors of the representations. Note that
the maps Hm,5 and hm,n are injective ∀m ∈ N, n ∈ {1, 2, 3, 4}.

dimk(V0,5) =


0
0
0
0
1

 ,

dimk(V1,1) =


1
0
0
0
1

 ,dimk(V1,2) =


0
1
0
0
1

 ,

dimk(V1,3) =


0
0
1
0
1

 ,dimk(V1,4) =


0
0
0
1
1

 .

⇒ dimk(V1,5) = dimk

 4⊕
j=1

V1,j

−dimk(V0,5) =
4∑
j=1

dimk(V1,j)−dimk(V0,5)
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=


1
0
0
0
1

+


0
1
0
0
1

+


0
0
1
0
1

+


0
0
0
1
1

−


0
0
0
0
1

 =


1
1
1
1
3



dimk(V2,1) = dimk(V1,5)− dimk(V1,1) =


1
1
1
1
3

−


1
0
0
0
1

 =


0
1
1
1
2

 ,

dimk(V2,2) = dimk(V1,5)− dimk(V1,2) =


1
1
1
1
3

−


0
1
0
0
1

 =


1
0
1
1
2

 ,

dimk(V2,3) = dimk(V1,5)− dimk(V1,3) =


1
1
1
1
3

−


0
0
1
0
1

 =


1
1
0
1
2

 ,

dimk(V2,4) = dimk(V1,5)− dimk(V1,4) =


1
1
1
1
3

−


0
0
0
1
1

 =


1
1
1
0
2


Continuing the process a few more times, we obtain

dimk(V2,5) =


2
2
2
2
5

 ,

dimk(V3,1) =


2
1
1
1
3

 ,dimk(V3,2) =


1
2
1
1
3

 ,
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dimk(V3,3) =


1
1
2
1
3

 , dimk(V3,4) =


1
1
1
2
3

 ,

dimk(V3,5) =


3
3
3
3
7

 ,

dimk(V4,1) =


1
2
2
2
4

 ,dimk(V4,2) =


2
1
2
2
4

 ,

dimk(V4,3) =


2
2
1
2
4

 ,dimk(V4,4) =


2
2
2
1
4

 .
Remark 3.1. Notice that

dimk(V1,5)− dimk(V0,5) =


1
1
1
1
3

−


0
0
0
0
1

 =


1
1
1
1
2


= dimk(V2,5)− dimk(V1,5),

dimk(V3,1)− dimk(V1,1) =


2
1
1
1
3

−


1
0
0
0
1

 =


1
1
1
1
2


= dimk(V3,2)− dimk(V1,2)

= dimk(V3,3)− dimk(V1,3)

= dimk(V3,4)− dimk(V1,4).
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dimk(V4,1)− dimk(V2,1) =


1
2
2
2
4

−


0
1
1
1
2

 =


1
1
1
1
2


= dimk(V4,2)− dimk(V2,2)

= dimk(V4,3)− dimk(V2,3)

= dimk(V4,4)− dimk(V2,4),

We should then investigate if

dimk(Vi,5)− dimk(Vi−1,5) =


1
1
1
1
2

 ∀i ∈ N

and if

dimk(Vi+2,j)− dimk(Vi,j) =


1
1
1
1
2

 ∀i ∈ N, j ∈ {1, 2, 3, 4}.

These statements together with the fact that we already know what the first
few elements of V are, are equivalent to saying that

dimk(Vl,5) = dimk(V0,5) + l


1
1
1
1
2

 =


l
l
l
l

2l + 1

 ∀l ∈ N, (1)

dimk(V2m+1,1) = dimk(V1,1) +m


1
1
1
1
2

 =


m+ 1
m
m
m

2m+ 1

 , (2)
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dimk(V2m+2,1) = dimk(V2,1) +m


1
1
1
1
2

 =


m

m+ 1
m+ 1
m+ 1
2m+ 2

 , (3)

dimk(V2m+1,2) = dimk(V1,2) +m


1
1
1
1
2

 =


m

m+ 1
m
m

2m+ 1

 , (4)

dimk(V2m+2,2) = dimk(V2,2) +m


1
1
1
1
2

 =


m+ 1
m

m+ 1
m+ 1
2m+ 2

 , (5)

dimk(V2m+1,3) = dimk(V1,3) +m


1
1
1
1
2

 =


m
m

m+ 1
m

2m+ 1

 , (6)

dimk(V2m+2,3) = dimk(V2,3) +m


1
1
1
1
2

 =


m+ 1
m+ 1
m

m+ 1
2m+ 2

 , (7)

dimk(V2m+1,4) = dimk(V1,4) +m


1
1
1
1
2

 =


m
m
m

m+ 1
2m+ 1

 , (8)

dimk(V2m+2,4) = dimk(V2,4) +m


1
1
1
1
2

 =


m+ 1
m+ 1
m+ 1
m

2m+ 2

 , (9)
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∀m ∈ N0.

4

Proof. Suppose l = 2m + 1 and that these statements hold for all n ∈ N0

such that n ≤ l. Then
dimk(V2m+2,5)

= dimk

[
cokob(V2m+1,5 ↪→ V2m+2,1 ⊕ V2m+2,2 ⊕ V2m+2,3 ⊕ V2m+2,4)

]
= dimk(V2m+2,1 ⊕ V2m+2,2 ⊕ V2m+2,3 ⊕ V2m+2,4)− dimk(V2m+1,5)

= dimk(V2m+2,1) + dimk(V2m+2,2) + dimk(V2m+2,3) + dimk(V2m+2,4)

−dimk(V2m+1,5)

=


m

m+ 1
m+ 1
m+ 1
2m+ 2

+


m+ 1
m

m+ 1
m+ 1
2m+ 2

+


m+ 1
m+ 1
m

m+ 1
2m+ 2

+


m+ 1
m+ 1
m+ 1
m

2m+ 2

−


2m+ 1
2m+ 1
2m+ 1
2m+ 1
4m+ 3



=


2m+ 2
2m+ 2
2m+ 2
2m+ 2

2(2m+ 2) + 1


⇒ dimk(V2m+3,1) = dimk

[
cokob(V2m+2,1 ↪→ V2m+2,5)

]
= dimk(V2m+2,5)− dimk(V2m+2,1)

=


2m+ 2
2m+ 2
2m+ 2
2m+ 2

2(2m+ 2) + 1

−


m
m+ 1
m+ 1
m+ 1
2m+ 2

 =


m+ 2
m+ 1
m+ 1
m+ 1

2m+ 2 + 1

 ,
and we can in a similar way show that

dimk(V2m+3,2) =


m+ 1
m+ 2
m+ 1
m+ 1

2m+ 2 + 1

 , dimk(V2m+3,3) =


m+ 1
m+ 1
m+ 2
m+ 1

2m+ 2 + 1

 ,
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dimk(V2m+3,4) =


m+ 1
m+ 1
m+ 1
m+ 2

2m+ 2 + 1

 .
This again implies that

dimk(V2m+3,5) =

4∑
j=1

dimk(V2m+3,j)− dimk(V2m+2,5)

=


m+ 2
m+ 1
m+ 1
m+ 1
2m+ 3

+


m+ 1
m+ 2
m+ 1
m+ 1
2m+ 3

+


m+ 1
m+ 1
m+ 2
m+ 1
2m+ 3

+


m+ 1
m+ 1
m+ 1
m+ 2
2m+ 3



−


2m+ 2
2m+ 2
2m+ 2
2m+ 2
4m+ 5

 =


2m+ 3
2m+ 3
2m+ 3
2m+ 3

2(2m+ 3) + 1


⇒ dimk(V2m+4,1) = dimk(V2m+3,5)− dimk(V2m+3,1)

=


2m+ 3
2m+ 3
2m+ 3
2m+ 3
4m+ 7

−


m+ 2
m+ 1
m+ 1
m+ 1

2m+ 2 + 1

 =


m+ 1
m+ 2
m+ 2
m+ 2

2m+ 2 + 2

 ,
and we can in a similar way show that

dimk(V2m+4,2) =


m+ 2
m+ 1
m+ 2
m+ 2

2m+ 2 + 2

 ,dimk(V2m+4,3) =


m+ 2
m+ 2
m+ 1
m+ 2

2m+ 2 + 2

 ,

dimk(V2m+4,4) =


m+ 2
m+ 2
m+ 2
m+ 1

2m+ 2 + 2

 .
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Thus the equations (1), ..., (9) we wanted to show, hold by strong induction
on m, since we already have shown all the necessary base cases.

Hence, we now have an explicit form for all the elements of V.
After some meandering, we will finally show that the elements of V are

indecomposable. But first, some notation. When a map is just multiplica-
tion of some constant scalar a in some field k, we denote the map by a. For
example, we denote inclusions by 1.

Remark 3.2. To show indecomposability, first specify how we construct V
a little more carefully. In particular, we define the injective inductor maps.
We first define the inclusion maps H0,j : V0,5 → V1,j ∀j ∈ {1, 2, 3, 4} such
that

[
H0,j(i)

]
(v) = v ∀v ∈ (V0,5)0(i) ∀i ∈ Q0. Consider h2 ∈ End(V1,j),

j ∈ {1, 2, 3, 4}. We have shown that End(V1,j) ∼= k, so h2 = (h2)a, which
is scalar multiplication of with a ∈ k. Since End(V0,5) ∼= k, there is an
endomorphism h1 = (h1)a on V0,5 that is also scalar multiplication with a.
Then [

h0,j ◦ (h1)a
]
(v) = av =

[
(h2)a ◦ h0,j

]
(v).

Now we conjoin the inclusion maps H0,j from above into H0,5 : V0,5 → V1,1⊕
V1,2⊕V1,3⊕V1,4 such that

[
H0,5(i)

]
(v) = (v, v, v, v) ∀v ∈ (V0,5)0(i) ∀i ∈ Q0.

From what we said above this, the endomorphisms on V1,1⊕V1,2⊕V1,3⊕V1,4

are on the form of

h =


a1 0 0 0
0 a2 0 0
0 0 a3 0
0 0 0 a4

 ,
where a1, a2, a3, a4 ∈ k. We want a scalar multiplication endomorphism a
on V0,5) such that a ∈ k.

(h ◦H0,5)(v) = (H0,5 ◦ ha)(v) ∀v ∈ (V0,5)0(i) ∀i ∈ Q0.

(h ◦H0,5)(v) =


a1 0 0 0
0 a2 0 0
0 0 a3 0
0 0 0 a4



v
v
v
v

 =


a1v
a2v
a3v
a4v

 ,

(H0,5 ◦ a)(v) =


1
1
1
1

 av =


av
av
av
av


⇒ a = a1 = a2 = a3 = a4.

34



We now define the rest of the inductor maps.
Let hm,5 : Vm,1 ⊕ Vm,2 ⊕ Vm,3 ⊕ Vm,4 → Vm,5 such that

hm,5 =
[
hm,1 hm,2 hm,3 hm,4

]
= cokhom(Hm−1,5),

hm,n : Vm,n → Vm,5 ∀n ∈ {1, 2, 3, 4},
where, unless m = 1, Hm−1,5 : Vm−1,5 → Vm,1 ⊕ Vm,2 ⊕ Vm,3 ⊕ Vm,4 where

Hm−1,5 =


Hm−1,1

Hm−1,2

Hm−1,3

Hm−1,4

 ,
in which Hm−1,n : Vm−1,5 → Vm,n is a map satisfying

Hm−1,n = cokhom(hm−1,n) ∀n ∈ {1, 2, 3, 4} ∀m ∈ N.

We now claim that all representations in V are indecomposable. 4

Proof. Let m ∈ N and suppose the endomorphism rings of Vm−1,5, Vm,1,
Vm,2, Vm,3 and Vm,4 are isomorphic to k. Let h ∈ End(Vm,5). Then, since
Vm,5) = cokob(Hm−1,5), ∃h1 ∈ End(Vm,1 ⊕ Vm,2 ⊕ Vm,3 ⊕ Vm,4) such that
hm,5 ◦ h1 = h ◦ hm,5. End(Vm,1 ⊕ Vm,2 ⊕ Vm,3 ⊕ Vm,4) ∼= k4 implies

h1 =


a1 0 0 0
0 a2 0 0
0 0 a3 0
0 0 0 a4

 , a1, a2, a3, a4 ∈ k.

If m = 1, then ∃a ∈ k such that

h1 =


a 0 0 0
0 a 0 0
0 0 a 0
0 0 0 a

 .
Then

hm,5 ◦ h1 = hm,5 ◦ aI4 = ahm,5 = h ◦ hm,5,

so h = a since hm,5 is a cokernel mapping ⇒ End(Vm,5) ∼= k.
If m ≥ 2, then Vm,n = cokob(hm−1,n) n ∈ {1, 2, 3, 4}. Then for any h2 ∈
End

(⊕4
n=1 Vm,n

)
, ∃a ∈ End(Vm−1,5) such that Hm−1,n ◦ a = h2 ◦Hm−1,n

⇒ h2 = a ∀n ∈ {1, 2, 3, 4}. Then h1 = aI4.
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In either case, h = a, implying that End(Vm,5) ∼= k.
Now suppose the endomorphism ring of Vm,5 is isomorphic to k. Let h ∈
End(Vm+1,n)∀n ∈ {1, 2, 3, 4}. Since Vm+1,n = cokob(hm,n), ∃h1 ∈ End(Vm,n)
such that Hm,n ◦ h1 = h ◦Hm,n. End(Vm,5) ∼= k, so h1 = a for some a ∈ k.
Then Hm,n ◦ a = aHm,n = h ◦Hm,n ⇒ h = a.
Thus, by induction, all elements of V are indecomposable.

Moving forward, we find a Z-linear map related to V as motivation for
finding more indecomposables.

Remark 3.3. The particular map we want, is L : Z5 → Z5 such that

L


0
0
0
0
1

 =


1
1
1
1
3

 , L


1
0
0
0
1

 =


0
1
1
1
2

 , L


0
1
0
0
1

 =


1
0
1
1
2

 , L


0
0
1
0
1

 =


1
1
0
1
2

 , L


0
0
0
1
1

 =


1
1
1
0
2

 .
Then

L


1
0
0
0
0

 = L




1
0
0
0
1

−


0
0
0
0
1


 =


0
1
1
1
2

−


1
1
1
1
3

 =


−1
0
0
0
−1

 ,

L


0
1
0
0
0

 = L




0
1
0
0
1

−


0
0
0
0
1


 =


1
0
1
1
2

−


1
1
1
1
3

 =


0
−1
0
0
−1

 ,

L


0
0
1
0
0

 = L




0
0
1
0
1

−


0
0
0
0
1


 =


1
1
0
1
2

−


1
1
1
1
3

 =


0
0
−1
0
−1

 ,

L


0
0
0
1
0

 = L




0
0
0
1
1

−


0
0
0
0
1


 =


1
1
1
0
2

−


1
1
1
1
3

 =


0
0
0
−1
−1

 .
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Thus

L = L


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 =


−1 0 0 0 1
0 −1 0 0 1
0 0 −1 0 1
0 0 0 −1 1
−1 −1 −1 −1 3

 .
4

Remark 3.4. Now notice that

L


1
1
1
1
2

 =


1
1
1
1
2

⇒ Ln


1
1
1
1
2

 =


1
1
1
1
2

 ,∀n ∈ N.

We have that 
1
1
1
1
3

 = L


0
0
0
0
1

 =


0
0
0
0
1

+


1
1
1
1
2

 ,
meaning

L2


0
0
0
0
1

 = L




0
0
0
0
1

+


1
1
1
1
2


 =


0
0
0
0
1

+ 2


1
1
1
1
2



⇒ Ln


0
0
0
0
1

 =


0
0
0
0
1

+ n


1
1
1
1
2

 = dimk(Vn,5) ∀n ∈ N.

We also have that

L2


1
0
0
0
1

 = L


0
1
1
1
2

 =


2
1
1
1
3

 =


1
0
0
0
1

+


1
1
1
1
2

 ,
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and similarly

L2


0
1
0
0
1

 =


1
2
1
1
3

 =


0
1
0
0
1

+


1
1
1
1
2

 ,

L2


0
0
1
0
1

 =


1
1
2
1
3

 =


0
0
1
0
1

+


1
1
1
1
2

 ,

L2


0
0
0
1
1

 =


1
1
1
2
3

 =


0
0
0
1
1

+


1
1
1
1
2

 ,
in addition to

L2


0
1
1
1
2

 = L


2
1
1
1
3

 =


1
2
2
2
4

 =


0
1
1
1
2

+


1
1
1
1
2

 ,
and

L2


1
0
1
1
2

 =


2
1
2
2
4

 =


1
0
1
1
2

+


1
1
1
1
2

 ,

L2


1
1
0
1
2

 =


2
2
1
2
4

 =


1
1
0
1
2

+


1
1
1
1
2

 ,

L2


1
1
1
0
2

 =


2
2
2
1
4

 =


1
1
1
0
2

+


1
1
1
1
2

 .
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These equations then yield the following equations.

L2m


1
0
0
0
1

 =


1
0
0
0
1

+m


1
1
1
1
2

 = dimk(V2m+1,1),

L2m+1


1
0
0
0
1

 =


0
1
1
1
2

+m


1
1
1
1
2

 = dimk(V2m+2,1),

L2m


0
1
0
0
1

 =


0
1
0
0
1

+m


1
1
1
1
2

 = dimk(V2m+1,2),

L2m+1


0
1
0
0
1

 =


1
0
1
1
2

+m


1
1
1
1
2

 = dimk(V2m+2,2),

L2m


0
0
1
0
1

 =


0
0
1
0
1

+m


1
1
1
1
2

 = dimk(V2m+1,3),

L2m+1


0
0
1
0
1

 =


1
1
0
1
2

+m


1
1
1
1
2

 = dimk(V2m+2,3),

L2m


0
0
0
1
1

 =


0
0
0
1
1

+m


1
1
1
1
2

 = dimk(V2m+1,4),

39



L2m+1


0
0
0
1
1

 =


1
1
1
0
2

+m


1
1
1
1
2

 = dimk(V2m+2,4),

∀m ∈ N0.

Thus we see that there is a strong relationship between L and V as the
dimension vector of every element in V can be determined by applying L to

0
0
0
0
1

 ,


1
0
0
0
1

 ,


0
1
0
0
1

 ,


0
0
1
0
1

 or


0
0
0
1
1


some number of times. This is one of the reasons why we’re interested in L.

4

What we do next, is to gain some motivation for defining a new sequence
of indecomposable representations. This sequence has strong ties to V, as
its elements could almost be obtained if we began with the same representa-
tions as we started with in V and instead took kernels instead of cokernels.
Hopefully all of this will become clearer as we proceed.

Remark 3.5. We consider the matrix

M =


0 1 1 1 −1
1 0 1 1 −1
1 1 0 1 −1
1 1 1 0 −1
1 1 1 1 −1


and see that

LM =


−1 0 0 0 1
0 −1 0 0 1
0 0 −1 0 1
0 0 0 −1 1
−1 −1 −1 −1 3




0 1 1 1 −1
1 0 1 1 −1
1 1 0 1 −1
1 1 1 0 −1
1 1 1 1 −1

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


= ML.
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Thus M is the inverse of L. Next we get that

M


1
1
1
1
2

 = M

L


1
1
1
1
2


 = I5


1
1
1
1
2

 =


1
1
1
1
2

 .
and

M


1
0
0
0
1

 =


−1
0
0
0
0

 ,M


0
1
0
0
1

 =


0
−1
0
0
0

 ,M


0
0
1
0
1

 =


0
0
−1
0
0

 ,M


0
0
0
1
1

 =


0
0
0
−1
0

 ,

M


0
0
0
0
1

 =


−1
−1
−1
−1
−1

 =


0
0
0
0
1

−


1
1
1
1
2



⇒M2


1
0
0
0
1

 = M


−1
0
0
0
0

 =


0
−1
−1
−1
−1

 =


1
0
0
0
1

−


1
1
1
1
2

 ,

M2


0
1
0
0
1

 = M


0
−1
0
0
0

 =


0
−1
−1
−1
−1

 =


0
1
0
0
1

−


1
1
1
1
2

 ,

M2


0
0
1
0
1

 = M


0
0
−1
0
0

 =


−1
−1
0
−1
−1

 =


0
0
1
0
1

−


1
1
1
1
2

 ,

M2


0
0
0
1
1

 = M


0
0
0
−1
0

 =


−1
−1
−1
0
−1

 =


0
0
0
1
1

−


1
1
1
1
2

 ,
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M2


−1
0
0
0
0

 = M


0
−1
−1
−1
−1

 =


−2
−1
−1
−1
−2

 =


−1
0
0
0
0

−


1
1
1
1
2

 ,

M2


0
−1
0
0
0

 = M


−1
0
−1
−1
−1

 =


−1
−2
−1
−1
−2

 =


0
−1
0
0
0

−


1
1
1
1
2

 ,

M2


0
0
−1
0
0

 = M


−1
−1
0
−1
−1

 =


−1
−1
−2
−1
−2

 =


0
0
−1
0
0

−


1
1
1
1
2

 ,

M2


0
0
0
−1
0

 = M


−1
−1
−1
0
−1

 =


−1
−1
−1
−2
−2

 =


0
0
0
−1
0

−


1
1
1
1
2

 ,
⇒

Mn


−1
−1
−1
−1
−1

 =


−1
−1
−1
−1
−1

− n


1
1
1
1
2

 ∀n ∈ N0

M2m


0
−1
−1
−1
−1

 =


0
−1
−1
−1
−1

−m


1
1
1
1
2

 ,

M2m+1


0
−1
−1
−1
−1

 =


0
−1
−1
−1
−1

− (m+ 1)


1
1
1
1
2

 ,
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M2m


−1
0
−1
−1
−1

 =


−1
0
−1
−1
−1

−m


1
1
1
1
2

 ,

M2m+1


−1
0
−1
−1
−1

 =


−1
0
−1
−1
−1

− (m+ 1)


1
1
1
1
2

 ,

M2m


−1
−1
0
−1
−1

 =


−1
−1
0
−1
−1

−m


1
1
1
1
2

 ,

M2m+1


−1
−1
0
−1
−1

 =


−1
−1
0
−1
−1

− (m+ 1)


1
1
1
1
2

 ,

M2m


−1
−1
−1
0
−1

 =


−1
−1
−1
0
−1

−m


1
1
1
1
2

 ,

M2m+1


−1
−1
−1
0
−1

 =


−1
−1
−1
0
−1

− (m+ 1)


1
1
1
1
2

 ,
∀m ∈ N0.

4

We will later see that the equations above will be the negative of the
dimension vectors of the elements of a sequence. We will now define that
sequence.
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Let
V−1,5 = ({k, k, k, k, k}, f−1,5),

V−1,1 = ({0, k, k, k, k}, f−1,1),

V−1,2 = ({k, 0, k, k, k}, f−1,2),

V−1,3 = ({k, k, 0, k, k}, f−1,3)

and
V−1,4 = ({k, k, k, 0, k}, f−1,4)

be subspace representations of Q. Define h−1,n : V−1,n → V−1,5 such that
h−1,n is the inclusion map, i.e. h−1,n = 1 ∀n ∈ {1, 2, 3, 4}.
Let h−1,5 : V−1,1 ⊕ V−1,2 ⊕ V−1,3 ⊕ V−1,4 → V−1,5 be the map such that

h−1,5 =
[
h−1,1 h−1,2 h−1,3 h−1,4

]
=
[
1 1 1 1

]
.

Define H−m,5 : V−m,5 → V−m+1,1 ⊕V−m+1,2 ⊕V−m+1,3 ⊕V−m+1,4 such that

H−m,5 =


H−m,1
H−m,2
H−m,3
H−m,4

 = kerhom(h−m+1,5),

where, unless m = 2, h−m+1,5 : V−m+1,1 ⊕ V−m+1,2 ⊕ V−m+1,3 ⊕ V−m+1,4 →
V−m+1,5 is a map such that

h−m+1,5 =
[
h−m+1,1 h−m+1,2 h−m+1,3 h−m+1,4

]
,

in which h−m+1,n : V−m+1,n → V−m+1,5 is a map satisfying

h−m+1,n = kerhom(H−m+1,n) ∀n ∈ {1, 2, 3, 4},

∀m ∈ N \ {1}.

For this to make sense, we also define

V−m,5 = kerob(h−m+1,5)

and
V−m,n = kerob(H−m,n) ∀n ∈ {1, 2, 3, 4},

∀m ∈ N \ {1}.
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We can visualize the sequence as

· · · V−2,1 V−1,1

· · · V−2,2 V−1,2

V−3,5 V−2,5 V−1,5

· · · V−2,3 V−1,3

· · · V−2,4 V−1,4

Remark 3.6. V−m,n is indecomposable ∀m ∈ N ∀n ∈ {1, 2, 3, 4, 5}. 4

Proof. We prove this by induction on m, and begin with showing that the
endomorphism rings of V−1,1, V−1,2, V−1,3, V−1,4 and V−1,5 are isomorphic
to k.
Let h ∈ End(V−1,5) such that h = {a1, a2, a3, a4, a5}, a1, a2, a3, a4, a5 ∈ k.
Let f−1,5 = {b1, b2, b3, b4}, b1, b2, b3, b4 ∈ k. The assumptions above are
possible since the domain and co-domain of each map is k. Then, since h is
a homomorphism, we obtain

a5b1 = b1a1 ⇒ b1a5 = b1a1 ⇒ a5 = a1,

a5b2 = b2a2 ⇒ b2a5 = b2a2 ⇒ a5 = a2,

a5b3 = b3a3 ⇒ b3a5 = b3a3 ⇒ a5 = a3,

a5b4 = b4a4 ⇒ b4a5 = b4a4 ⇒ a5 = a4,

since k a commutative division ring. Thus h = a5, so End(V−1,5) ∼= k.
Let h ∈ End(V−1,1) such that h = {0, a2, a3, a4, a5}, a2, a3, a4, a5 ∈ k. Let
f−1,1 = {0, b2, b3, b4}, b2, b3, b4 ∈ k. The assumptions above are possible
since the domain and co-domain of each map is k. Then, since h is a homo-
morphism, we obtain

a50 = 0 · 0⇒ 0 = 0,

a5b2 = b2a2 ⇒ b2a5 = b2a2 ⇒ a5 = a2,

a5b3 = b3a3 ⇒ b3a5 = b3a3 ⇒ a5 = a3,
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a5b4 = b4a4 ⇒ b4a5 = b4a4 ⇒ a5 = a4.

Since a5 · 0 = 0, we then obtain that h = a5, so End(V−1,1) ∼= k.
The proofs for V−1,2, V−1,3 and V−1,4 are similar to that of V−1,1, so we omit
them.
Hence

End(V−1,2) ∼= End(V−1,3) ∼= End(V−1,4) ∼= k.

Now suppose m ∈ N and

End(V−m,1) ∼= End(V−m,2) ∼= End(V−m,3) ∼= End(V−m,4) ∼= V−m,5) ∼= k.

Let h ∈ End(V−m−1,5). Then, since V−m−1,5 = kerob(h−m,5),
∃h1 ∈ End(V−m,1 ⊕ V−m,2 ⊕ V−m,3 ⊕ V−m,4) such that
H−m−1,5 ◦ h1 = h ◦H−m−1,5. Since

End(V−m,1) ∼= End(V−m,2) ∼= End(V−m,3) ∼= End(V−m,4) ∼= k,

h1 =


a1 0 0 0
0 a2 0 0
0 0 a3 0
0 0 0 a4

 , a1, a2, a3, a4 ∈ k.

h−m,5 = cokhom(H−m,5), so ∃a ∈ End(V−m,5) such that
h−m,5 ◦ h1 = a ◦ h−m,5

⇒
[
h−m,1 ◦ a1 h−m,2 ◦ a2 h−m,3 ◦ a3 h−m,4 ◦ a4

]
=[

a ◦ h−m,1 a ◦ h−m,2 a ◦ h−m,3 a ◦ h−m,4
]

⇒

h−m,1 ◦ a1 = a ◦ h−m,1 ⇒ a1 = a,

h−m,2 ◦ a2 = a ◦ h−m,2 ⇒ a2 = a,

h−m,3 ◦ a3 = a ◦ h−m,3 ⇒ a3 = a,

h−m,4 ◦ a4 = a ◦ h−m,4 ⇒ a4 = a,

since h−m,n is a kernel homomorphism, i.e. an inclusion, ∀n ∈ {1, 2, 3, 4}.
Thus h1 = a, so H−m−1,5 ◦ a = h ◦ H−m−1,5, and since H−m,5 is a kernel
homomorphism, we obtain h = a. Hence End(V−m−1,5) ∼= k.
Now let h2 ∈ End(V−m−1,n) for some n ∈ {1, 2, 3, 4}. Then, since h−m−1,n is
a kernel homomorphism, ∃a ∈ End(V−m−1,5), a ∈ k such that h−m−1,n ◦ a =
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h2 ◦ h−m−1,n. We then get a = h2, hence End(V−m−1,n) ∼= k.
Thus, by induction,

End(V−m,1) ∼= End(V−m,2) ∼= End(V−m,3) ∼= End(V−m,4) ∼= V−m,5) ∼= k

∀m ∈ N, hence V−m,1, V−m,2, V−m,3, V−m,4, V−m,5 are indecomposable
∀m ∈ N.

Just as we did with the other sequence, we find explicit form of the
dimensions vectors of all the representations.

Remark 3.7. We state some forms we suspect the representations to have.

dimk(V−n−1,5) =


1
1
1
1
1

+ n


1
1
1
1
2

 , ∀n ∈ N0,

dimk(V−2m−1,1) =


0
1
1
1
1

+m


1
1
1
1
2

 ,

dimk(V−2m−2,1) =


2
1
1
1
2

+m


1
1
1
1
2

 ,

dimk(V−2m−1,2) =


1
0
1
1
1

+m


1
1
1
1
2

 ,

dimk(V−2m−2,2) =


1
2
1
1
2

+m


1
1
1
1
2

 ,
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dimk(V−2m−1,3) =


1
1
0
1
1

+m


1
1
1
1
2

 ,

dimk(V−2m−1,3) =


1
1
2
1
2

+m


1
1
1
1
2

 ,

dimk(V−2m−1,4) =


1
1
1
0
1

+m


1
1
1
1
2

 ,

dimk(V−2m−1,4) =


1
1
1
2
2

+m


1
1
1
1
2

 ,
∀m ∈ N0.

4

Proof. We prove the assertions by induction on m.
For starters, we calculate enough representations to build a base case. When
calculating, we use the fact that h−m,5, H−m,1, H−m,2, H−m,3 and H−m,4
are inclusions.

dimk(V−2,5) =
4∑
i=1

dimk(V−1,i)− dimk(V−1,5)

=


0
1
1
1
1

+


1
0
1
1
1

+


1
1
0
1
1

+


1
1
1
0
1

−


1
1
1
1
1

 =


2
2
2
2
3

 =


1
1
1
1
1

+


1
1
1
1
2

 ,

dimk(V−2,1) = dimk(V−2,5)− dimk(V−1,1)
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=


2
2
2
2
3

−


0
1
1
1
1

 =


2
1
1
1
2

 ,
dimk(V−2,2) = dimk(V−2,5)− dimk(V−1,2)

=


2
2
2
2
3

−


1
0
1
1
1

 =


1
2
1
1
2

 ,
dimk(V−2,3) = dimk(V−2,5)− dimk(V−1,3)

=


2
2
2
2
3

−


1
1
0
1
1

 =


1
1
2
1
2

 ,
dimk(V−2,4) = dimk(V−2,5)− dimk(V−1,4)

=


2
2
2
2
3

−


1
1
1
0
1

 =


1
1
1
2
2

 ,

dimk(V−3,5) =


2
1
1
1
2

+


1
2
1
1
2

+


1
1
2
1
2

+


1
1
1
2
2

−


2
2
2
2
3

 =


3
3
3
3
5



=


1
1
1
1
1

+ 2


1
1
1
1
2

 ,
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dimk(V−3,1) =


3
3
3
3
5

−


2
1
1
1
2

 =


1
2
2
2
3

 =


0
1
1
1
1

+


1
1
1
1
2

 ,

dimk(V−3,2) =


3
3
3
3
5

−


1
2
1
1
2

 =


2
1
2
2
3

 =


1
0
1
1
1

+


1
1
1
1
2

 ,

dimk(V−3,3) =


3
3
3
3
5

−


1
1
2
1
2

 =


2
2
1
2
3

 =


1
1
0
1
1

+


1
1
1
1
2

 ,

dimk(V−3,4) =


3
3
3
3
5

−


1
1
1
2
2

 =


2
2
2
1
3

 =


1
1
1
0
1

+


1
1
1
1
2

 ,

dimk(V−3,5) =


1
2
2
2
3

+


2
1
2
2
3

+


2
2
1
2
3

+


2
2
2
1
3

−


3
3
3
3
5

 =


4
4
4
4
7



=


1
1
1
1
1

+ 3


1
1
1
1
2

 ,

dimk(V−4,1) =


4
4
4
4
7

−


1
2
2
2
3

 =


3
2
2
2
4

 =


2
1
1
1
2

+


1
1
1
1
2

 ,
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dimk(V−4,2) =


4
4
4
4
7

−


2
1
2
2
3

 =


2
3
2
2
4

 =


1
2
1
1
2

+


1
1
1
1
2

 ,

dimk(V−4,3) =


4
4
4
4
7

−


2
2
1
2
3

 =


2
2
3
2
4

 =


1
1
2
1
2

+


1
1
1
1
2

 ,

dimk(V−4,4) =


4
4
4
4
7

−


2
2
2
1
3

 =


2
2
2
3
4

 =


1
1
1
2
2

+


1
1
1
1
2

 .
Now suppose the suspected forms are true for all natural numbers lesser
than or equal to n = 2m+ 1. Then

dimk(V−2m−2,5) =
4∑
i=1

dimk(V−2m−1,i)− dimk(V−2m−1,5)

=


0
1
1
1
1

+


1
0
1
1
1

+


1
1
0
1
1

+


1
1
1
0
1

−


1
1
1
1
1

+ (4m− 2m)


1
1
1
1
2



=


2
2
2
2
3

+ 2m


1
1
1
1
2

 =


1
1
1
1
1

+ (2m+ 1)


1
1
1
1
2


⇒

dimk(V−2m−2,1) = dimk(V−2m−2,5)− dimk(V−2m−1,1)

=


1
1
1
1
1

+ (2m+ 1)


1
1
1
1
2

−


0
1
1
1
1

−m


1
1
1
1
2

 =


1
0
0
0
0

+ (2m+ 1)


1
1
1
1
2


51



=


2
1
1
1
2

+m


1
1
1
1
2

 ,

and we can in a similar way show that dimk(V−2m−2,2) =


1
2
1
1
2

 + m


1
1
1
1
2

 ,

dimk(V−2m−2,3) =


1
1
2
1
2

+m


1
1
1
1
2

 and dimk(V−2m−2,4) =


1
1
1
2
2

+m


1
1
1
1
2

 . This

implies

dimk(V−2m−3,5) =


2
1
1
1
2

+


1
2
1
1
2

+


1
1
2
1
2

+


1
1
1
2
2

−


1
1
1
1
1

+ 4m


1
1
1
1
2

− (2m+ 1)


1
1
1
1
2



=


4
4
4
4
7

+ (2m− 1)


1
1
1
1
2

 =


1
1
1
1
1

+ (2m+ 2)


1
1
1
1
2


⇒

dimk(V−2m−3,1) =


1
1
1
1
1

+ (2m+ 2)


1
1
1
1
2

−


2
1
1
1
2

+m


1
1
1
1
2



=


0
1
1
1
1

+ (m+ 2)


1
1
1
1
2

 ,
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and we can in a similar way show that

dimk(V−2m−3,2) =


1
0
1
1
1

+ (m+ 2)


1
1
1
1
2

 ,

dimk(V−2m−3,3) =


1
1
0
1
1

+ (m+ 2)


1
1
1
1
2

 ,
and

dimk(V−2m−3,4) =


1
1
1
0
1

+ (m+ 2)


1
1
1
1
2

 .
By induction on m, the suspected forms are then true.

Remark 3.8. Now we can remark a connection between M = L−1 and the
dimension vectors of our new sequence. The connection is shown below.

dimk(V−n−1,5) = Mn
[
dimk(V−1,5)

]
,∀ ∈ N0,

dimk(V−2m−1,j) = M2m
[
dimk(V−1,j)

]
,

dimk(V−2m−2,j) = M2m
[
dimk(V−2,j)

]
,

∀j ∈ {1, 2, 3, 4} ∀m ∈ N0.

4

We can now comfortably add the representations of the new sequence
to V. Then the indexing will almost fit perfectly. We are only missing
four representations, namely V0,1, V0,2, V0,3 and V0,4. Earlier on we did
some calculations which could give us an idea of what these representations
should be. We found that

M
[
dimk(V1,1)

]
=


−1
0
0
0
0

 ,M[dimk(V1,2)
]

=


0
−1
0
0
0

 ,
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M
[
dimk(V1,3)

]
=


0
0
−1
0
0

 ,M[dimk(V1,4)
]

=


0
0
0
−1
0

 .
Then the missing representations should be

V0,1 = ({k, 0, 0, 0, 0}, {0, 0, 0, 0}),

V0,2 = ({0, k, 0, 0, 0}, {0, 0, 0, 0}),

V0,3 = ({0, 0, k, 0, 0}, {0, 0, 0, 0}),

V0,4 = ({0, 0, 0, k, 0}, {0, 0, 0, 0}).

However, none of these are subspace representations, so they cannot be part
of the solution for the 4 subspace problem.

4 Exceptions

There is a subspace representation with which we have interacted quite a lot
with, but know relatively little about. This representation is the one with
dimension vector 

1
1
1
1
2

 .
We call this representation W = ({k, k, k, k, k2}, fW). Now we look at the
subspace representations

W1 = ({k, k, 0, 0, k}, {a1, a2, 0, 0}), a1, a2 ∈ k,

W2 = ({0, 0, k, k, k}, {0, 0, a3, a4}), a3, a4 ∈ k,

W3 = ({0, k, k, 0, k}, {0, a2, a3, 0}), a2, a3 ∈ k,

W4 = ({k, 0, 0, k, k}, {a1, 0, 0, a4}), a1, a4 ∈ k,

W5 = ({k, 0, k, 0, k}, {a1, 0, a3, 0}), a1, a3 ∈ k,

W6 = ({0, k, 0, k, k}, {0, a2, 0, a4}), a2, a4 ∈ k.

We find the endomorphism rings of these.
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1. Let h ∈ End(W1). h = {h1, h2, 0, 0, h5},h1, h2, h5 ∈ k. Then

h5 ◦ a1 = a1 ◦ h1 ⇒ h5 = h1,

h5 ◦ a2 = a2 ◦ h2 ⇒ h5 = h2,

h5 ◦ 0 = 0 ◦ 0⇒ 0 = 0,

h5 ◦ 0 = 0 ◦ 0⇒ 0 = 0,

which gives h = h5 ⇒ End(W1) ∼= k.

2. Let h ∈ End(W2). h = {0, 0, h3, h4, h5},h3, h4, h5 ∈ k. Then

h5 ◦ 0 = 0 ◦ 0⇒ 0 = 0,

h5 ◦ 0 = 0 ◦ 0⇒ 0 = 0,

h5 ◦ a3 = a3 ◦ h3 ⇒ h5 = h3,

h5 ◦ a4 = a4 ◦ h4 ⇒ h5 = h4,

which gives h = h5 ⇒ End(W2) ∼= k.

3. Let h ∈ End(W3). h = {0, h2, h3, 0, h5},h2, h3, h5 ∈ k. Then

h5 ◦ 0 = 0 ◦ 0⇒ 0 = 0,

h5 ◦ a2 = a2 ◦ h2 ⇒ h5 = h2,

h5 ◦ a3 = a3 ◦ h3 ⇒ h5 = h3,

h5 ◦ 0 = 0 ◦ 0⇒ 0 = 0,

which gives h = h5 ⇒ End(W3) ∼= k.

4. Let h ∈ End(W4). h = {h1, 0, 0, h4, h5},h1, h4, h5 ∈ k. Then

h5 ◦ a1 = a1 ◦ h1 ⇒ h5 = h1,

h5 ◦ 0 = 0 ◦ 0⇒ 0 = 0,

h5 ◦ 0 = 0 ◦ 0⇒ 0 = 0,

h5 ◦ a4 = a4 ◦ h4 ⇒ h5 = h4,

which gives h = h5 ⇒ End(W4) ∼= k.
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5. Let h ∈ End(W5). h = {h1, 0, h3, 0, h5},h1, h3, h5 ∈ k. Then

h5 ◦ a1 = a1 ◦ h1 ⇒ h5 = h1,

h5 ◦ 0 = 0 ◦ 0⇒ 0 = 0,

h5 ◦ a3 = a3 ◦ h3 ⇒ h5 = h3,

h5 ◦ 0 = 0 ◦ 0⇒ 0 = 0,

which gives h = h5 ⇒ End(W5) ∼= k.

6. Let h ∈ End(W6). h = {0, h2, 0, h4, h5},h2, h4, h5 ∈ k. Then

h5 ◦ 0 = 0 ◦ 0⇒ 0 = 0,

h5 ◦ a2 = a2 ◦ h2 ⇒ h5 = h2,

h5 ◦ 0 = 0 ◦ 0⇒ 0 = 0,

h5 ◦ a4 = a4 ◦ h4 ⇒ h5 = h4,

which gives h = h5 ⇒ End(W6) ∼= k.

Thus all the representations above are indecomposable. If we take direct
sums of pairs, we get

W1 ⊕W2 =W3 ⊕W4 =W5 ⊕W6 =W.

Thus W can be expressed in several different ways as a direct sum of rep-
resentations that are not in V. These are also the only ones, since all other
valid decompositions consisting of subspace representations would have to
include elements of V.

This concludes our exploration of the 4 subspace problem.
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