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Summary

This thesis considers personnel rostering in health care, a subfield of the more
general research areas of Resource Management, Operations Research, and Op-
timization. Personnel rostering entails planning the utilization of employees; the
most important resource in health care organizations.

Personnel rostering is challenging in multiple ways. Firstly, creating rosters
is an inherently complex task from a combinatorial perspective. Secondly, as
rosters reflect operations at a ward and affect the lives of staff, many different
versions of real-life rostering problems exist. This means modelling, analyzing and
implementation of decision-support are also very complicated tasks. This thesis
attempts to answer relevant questions related to all of these challenges.

In the first article a comprehensive framework for robust personnel planning
is developed at the Department of Neonatal Intensive Care at St. Olav’s Hos-
pital. We firstly perform nurse rostering in a detailed way. When a roster is
established, uncertainty is realized through simulation using extensive historical
data obtained at the department. We perform daily simulations of the supply of
staff and the demand for health care, and perform rerostering to take into account
any disruptions from the uncertainty realization. This enables analyses of robust
rostering strategies such as strategic overstaffing, implementing shadow shifts to
cover absent nurses and trading extra weekend work for time off.

The second article deals with physician rostering at the Clinic of Surgery at St.
Olav’s Hospital. Here, surgeons must work emergency shifts in a cyclic structure,
while also ensuring an even and robust staffing level at the sections. The mathe-
matical structure of this problem is novel and difficult to solve, and we develop a
matheuristic to produce robust rosters of high quality.

The third article presents a generic ward with 24 hour staff demand, where
we minimize nurse fatigue. We incorporate a model of human sleep in the Nurse
Rostering Problem, and define biological profiles to analyze how rosters should be
individualized to minimize fatigue. The approach is theoretical, but insights and
a large potential for future research and possible implementation exists.

The fourth article presented is a formalization of the experiences from perform-
ing pilot projects of implementing an optimization-based rostering tool. Creating
the tool entailed development of a detailed model customized to Maternity Ward
West at St. Olav’s Hospital in Trondheim. We discuss visions for how the imple-
mentation of decision support systems for rostering will affect future work life, and
present the mathematical model at the core of our decision support tool.
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Introduction

Health research is one of four strategic research areas for the Norwegian University
of Science and Technology. The aim is to create innovative solutions to complex
health challenges, which includes research in IT-systems and organizing health
care as well as the more traditional health research dealing with diagnostics and
therapy etc. This is one of the reasons why the Department of Industrial Economy
and Technology Management has increased its focus on applications of Operations
Research and Optimization with applications within health care. This thesis is a
part of this initiative.

Health expenditure has largely outpaced economic growth in the past, and de-
spite a slowdown in recent years, is expected to do so in the future. New estimates
point to health spending reaching 10.2% of GDP by 2030 across OECD countries,
up from 8.8% in 2018 (OECD, 2019). Even disregarding costs, skilled personnel is
a scarce resource. Projections developed by WHO and the World Bank point to
the creation of approximately 40 million new health and social care jobs globally
to 2030 and to the need for 18 million additional health workers. (WHO, 2016)
Furthermore, skill-mix imbalances, maldistribution of personnel resources, barri-
ers to inter-professional collaboration, inefficient use of resources, poor working
conditions, a skewed gender distribution, limited availability of health workforce
data, and an aging workforce further complicates the picture. (WHO, 2016).

This emphasizes the need for effective planning in health care. While planning
of single hospital departments is at the core of this thesis, we provide a brief
overview of how health care is organized in Norway to exemplify the link between
the top and practitioner level, and to put into perspective the real-life problems
dealt with in the thesis. We focus on the public health care sector, as the clear
majority of Norwegian health expenditure occurs there (OECD, 2019).

Norwegian health care is organized through primary and specialty care. Each
municipality is responsible for their inhabitants’ access to primary health care
services of good quality at appropriate times, and that each inhabitant is assigned
one regular general practitioner (GP) (Lovdata.no, 2021). In practise, the GP is
the first point of contact between patients with non-urgent sickness or medical
questions and the health care system. Every municipality is also required by law
to facilitate numerous other health care services and facilitate cooperation with
other service providers (Lovdata.no, 2021).
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The organization of specialty care is more complex, and we focus on how hospi-
tals fit the bigger picture. At the state level, health care is managed by the Ministry
of Health and Care Services(HOD). The HOD is responsible for providing good
and equal health and care services for the population of Norway(regjeringen.no,
2021a).

The HOD is divided into 9 departments (regjeringen.no, 2021c). Each de-
partment’s function is among other things to coordinate the HOD’s work within
their area of expertise. A significant department is the Department of Hospital
Ownership. The principal task of the Department of Hospital Ownership is "gover-
nance of the four regional health authorities and the Norwegian Health Network"
(regjeringen.no, 2021b). The regional health authorities are examples of subor-
dinate enterprises owned by the HOD. These enterprises are run as if they were
private companies by a board and a Chief Executive Officer. The subordinate
enterprises are similar to joint-stock companies, although the state as the only
shareholder is responsible for the subordinate enterprises’ economy, and they can-
not be bankrupted (Braut, 2019).

St. Olav’s Hospital in Trondheim, our collaboratory hospital in Papers I, II, and
IV, is owned by the Central Norway Regional Health Authority (stolav.no, 2021).
Large health care organizations like hospitals are very complex when considering
the scope of the services they provide. Hospitals often employ thousands of health
care workers and service several wards around the clock. Logistically it is difficult
to manage all these services and employees while ensuring cost efficiency and high
quality health care.

Hans et al. (2011) point to several reasons for why health care organizations dif-
fer from organizations in other industries. Large health care providers like hospitals
are typically made up of autonomously managed departments, and their managers
tend not to properly consider their department as part of a greater interconnected
planning environment. This makes planning and control more fragmented than
what is typically the case in e.g. manufacturing, where the entire supply chain
must be considered for maximizing profits. Even though health care managers
are generally committed to provide the best possible services, they typically come
from a background within health care, and lack sufficient training and knowledge
to make optimal use of scarce resources in complex planning environments. An
example of this is that ward managers are typically attained by promoting health
care workers with long tenure, as opposed to hiring someone with a background
in management and planning.

This thesis consists of four research papers. Paper I deals with development
of a framework for robust rostering. The framework consists of a rostering model,
a collection of simulation models, and a rerostering model. We use the framework
to evaluate different rostering strategies in Chapter I. Paper II deals with roster-
ing of physicians that must work emergency shifts in a weekly cyclic structure.
This constrains rosters, and it is challenging to schedule physicians without large
fluctuations in staffing levels at the sections. We present a two-step matheuris-
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tic that evens out staffing levels and increases robustness when absence occurs at
emergency night shifts. Paper II is presented in Chapter II. Paper III deals with
rostering nurses at a generic ward with round-the-clock activity. We incorporate a
verified model of human sleep into our Nurse Rostering Problem to minimize the
worst cases of fatigue. Introduction of biological profiles, sets of realistic param-
eter sets in the sleep model representing different humans, enables analyses and
discussions of how rosters affect different nurses and raises questions as to what
fairness in rostering means. This paper is presented in Chapter III. Finally we
present Paper IV describing the implementation of a Nurse Rostering Model at a
real-life maternity ward in two pilot projects. The paper discusses the potential
and challenges from the perspectives of different stakeholders, and attempts to
predict how rostering will be performed in thirty years time, assuming decision
support tools are widely applied. This is presented in Chapter IV. Additionally,
we present the Mixed Integer Program used in the pilot projects in Appendix A.

1.1 Background

In this section we present the research scope and background of the thesis. We
review related literature to provide context to our work, focusing on aspects that
are most relevant for the papers presented in this thesis. As a result, problem types
and real-world issues are reviewed in more detail than e.g. solution methods.

1.1.1 Relevant terminology

The two terms scheduling and rostering are oftentimes used similarly in the re-
search literature. However, while some authors use them interchangeably, others
include slight distinctions. Ernst et al. (2004) define both personnel scheduling
and rostering as "the process of constructing work timetables for its staff so that an
organization can satisfy the demand for its goods or services." However, according
to Burke et al. (2004), scientific literature tends to refer to short-term timetabling
of staff when discussing rostering. Burke et al. (2004) use scheduling as a more
general term than rostering, and while their definition of nurse rostering is also
quite general ("the allocation of nurses to periods of work over several weeks"),
they do not consider staffing as a part of nurse rostering. This means scaling of
the workforce is not part of the rostering problem.

In Wren (1996), a very general definition of scheduling is given: "Scheduling
may be seen as the arrangement of objects into a pattern in time or space in such
a way that some goals are achieved, or nearly achieved, and that constraints on
the way the objects may be arranged are satisfied, or nearly satisfied." However,
a much more concrete definition of rostering is given; "the placing, subject to
constraints, of resources into slots in a pattern. One may seek to minimize some
objective, or simply to obtain a feasible allocation. Often the resources will rotate
through a roster". Note that the Wren (1996) definition of rostering entails placing
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resources into slots, implying the length of shifts is predefined. This is not the case
for the rostering definition in Erhard et al. (2018). While the Erhard et al. (2018)
definition also uses a more general term for scheduling than rostering, they include
shift flexibility in several papera that they consider work on physician rostering,
see e.g. Kazemian et al. (2014).

In our work we typically use similar distinctions between scheduling and ros-
tering as they do in Burke et al. (2004), Wren (1996), and Erhard et al. (2018).
This means we use scheduling as a general term, while rostering excludes staffing.
None of our papers deal with flexible shift definitions, and thus we normally as-
sume shifts have fixed lengths in rostering problems if we do not explicitly state
otherwise. However, when we cite related literature, definitions may very well
diverge from ours.

As part of discussing the distinctions in the scheduling term, Erhard et al.
(2018) classify different types of physician scheduling according to planning hori-
zons. "Staffing problems focus on the strategic decision of determining the re-
quired size and composition of a workforce. These planning problems typically
involve a long-term (e.g., annual) planning horizon. Rostering problems concen-
trate on the tactical or operational offline task of creating concrete or generic shift
rosters. These problems may be classified as mid-term, as the planning horizon
typically spans from weeks to a few months. Re-planning problems discuss short-
term adjustments of the working schedule". The notion of placing rostering in the
tactical or offline operational planning level is interesting. To define the hierarchi-
cal decision levels, including the distinction between offline and online operational
planning, we use definitions provided in Hans et al. (2011).

• The strategic level has a long planning horizon and revolves around the struc-
ture of an organization. It involves defining the organization’s missions, and
making decisions to translate this mission into the design, dimensioning, and
development of the health care delivery process. Examples of such decision
areas are developing and implementing new medical protocols and mergers
of nursing homes.

• The tactical level addresses the organization of the operations/execution of
the health care delivery process. In this way, it is similar to operational plan-
ning. However, decisions are made with a longer planning horizon. Examples
of decision areas are deciding staffing levels at wards.

• The operational level involves the short-term decision making related to the
execution of the health care delivery process. The flexibility on this plan-
ning level is low as the higher levels has already set the scope for operational
decision making. Furthermore, the operational level is divided into two cat-
egories:

– Offline operational planning. All offline operational planning can be
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planned for ahead of incidents occurring. Examples are treatment se-
lection and nurse rostering.

– Online operational planning. Online operational planning is done after
sudden changes in circumstances and encompass e.g. finding substitute
workers in case of sudden understaffing.

The difference between offline and online operational decision levels is inter-
esting in our work, as we do work on robustness-enhancing rosters, especially in
Paper I and II. The robustness term in our work is best understood as protection
against unforeseen events (sometimes referred to as disruptions), and must not
be confused with robust optimization, as known from e.g. Soyster (1973). This
is discussed briefly in each of the relevant papers. We also differentiate between
stability and flexibility when discussing robustness, where stability is the degree to
which rosters can absorb disruptions, while a roster’s flexibility is its capability to
react efficiently to disruptions. The flexibility is thus dependent on the available
options for reoptimizing rosters when disruptions have occurred.

Another relevant term in rostering is cyclicity. Rosters can be cyclic or acyclic
in their structures. In Ernst et al. (2004), the following definition is provided: "In a
cyclic roster all employees of the same class perform exactly the same line of work,
but with different starting times for the first shift or duty. In acyclic rosters,
the lines of work for individual employees are completely independent." Cyclic
rosters can also be referred to as cyclical or fixed rosters in rostering literature.
Cyclicity obviously implies restricting the feasible region of possible rosters, which
can make it harder to comply with individuals’ requests on specific days (Warner,
1976). On the other hand, Burke et al. (2004) point out that cyclic rostering tends
to provide employees with predictable and even rosters without undesirable and
unhealthy transitions between shifts, which can be a significant challenge in some
cases. Burke et al. (2004) categorize nurse rostering problems as either cyclic,
semi-cyclic, or non-cyclic. This distinction is relevant for Paper II.

Furthermore, applications of nurse rostering problems can be organized in three
different administrative modes. The top down approach of centralized schedul-
ing, the mixed approach of unit scheduling and the bottom up approach of self-
scheduling. Self-scheduling is of particular interest, as it is the way nurse rostering
is typically performed at St. Olav’s Hospital, relevant for Papers I and IV. Self-
scheduling entails employees themselves creating rosters manually through a pro-
cess of cooperation and negotiation (Burke et al., 2004). At St. Olav’s Hospital,
this typically entails each nurse creating their preferred individual schedule given
some guidelines. These preferred individual schedules are then aggregated to an
initial roster, which is the starting point for a bartering process. Self-scheduling
can be popular among nurses, as it gives them great influence on the planning pro-
cess. However, self-scheduling is potentially very time-consuming (Burke et al.,
2004), and can have other drawbacks including a tendency to cause over- or un-
derstaffing, that the schedule is made for the convenience of staff rather than
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patients, and that there are no formal procedures for conflict solving (Silvestro
and Silvestro, 2000).

1.1.2 The Nurse Rostering Problem

The Nurse Rostering Problem (NRP) entails assigning nurses to shifts over a given
planning period. Typically, the ward has around-the-clock activity, making several
types of restrictions relevant to ensure that rosters have high quality. Burke et al.
(2004) emphasize constraints related to coverage constraints, skill categories, time
related constraints, and more. These constraints can be hard or soft depending
on the problem at hand. We thus briefly review related literature modelling nurse
rostering problems in light of these constraint types. We also note that several so-
lution methods are used to solve different NRPs, and we mention some interesting
techniques in relation to relevant works last in this section.

Some versions of coverage constraints exist in the majority of nurse rostering
problems. They are normally demand coverage constraints, establishing the key
balance between supply of personnel and the patients’ demand, or an estimation
thereof, for health care services. These constraints ensure some minimum staffing
level in the NRP, and are most often modelled as hard constraints (Burke et al.,
2004) (den Bergh et al., 2013). Examples are provided in Azaiez and Sharif (2005)
and Liu et al. (2018). In reality, the demand for health care can fluctuate, and
predefined hard minimum staffing levels thus reflect some established staffing norm
in most nurse rostering problems. Not all authors consider the minimum staffing
levels as absolute, and thus model this using soft constraints, see e.g. Bard and
Purnomo (2005a) and Rahimian et al. (2017). Versions of coverage constraints are
used in all papers in this thesis, and the most interesting ones are perhaps found
in Paper I, where reestablishing the balance between supply and demand is key in
the novel rostering framework.

Nurses can have different competencies, which can affect their ability to cover
different types of demand. The competencies of the available staff is often referred
to as the skill-mix. This is commonly modelled through hierarchical demand
coverage where nurses can rank down to contribute. This is implemented in Lim
and Mobasher (2011) and Aickelin and Dowsland (2004). In Gomes et al. (2017),
the authors model ranking down as undesirable, penalizing this in the objective
function. Others, e.g. Lim and Mobasher (2011), are indifferent to whether nurses
rank down or not. Skill-mix is modelled in the problems in Papers I, II, and IV.

Time related constraints refer to all the restrictions on personal schedules.
This includes constraints related to work regulations, which exist in most lit-
erature on NRPs. Such regulations typically ensure nurses sufficient rest times
through avoiding double shifts and too many consecutive work days. These con-
straint types are included in e.g. Fügener et al. (2018), Knust and Xie (2019).
Formulating work time constraints was very relevant for the problems in Papers
I, II, and IV where problems are regulated by both governmental regulations, the
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Norwegian Arbeidsmiljøloven §10 (Arbeids- og sosialdepartementet, 2017), by lo-
cal agreements such as the rostering agreements, and by preferred practices and
norms at the workplace.

In the categorization by Burke et al. (2004), nurse preferences and fairness were
considered parts of the time related constraints. However, in work at St. Olav’s
Hospital, nurse preferences and different fairness measures were key characteristics
of the nurse rostering problems, and so we provide additional insights on related
literature. In real-life, the different needs and requests vary greatly from person
to person, and this aspect of nurse rostering problems are likely formulated as
a result of different work cultures in different wards, as well as the role decision
support systems are meant to have in the planning process.

Numerous examples of preference enhancing constraints exist. Some authors
model undesirable shift patterns, i.e. sequences of shifts, see e.g. Ruzzakiah
et al. (2011) and Rönnberg and Larsson (2010). Multiple authors model weekends
differently from weekdays due to nurse preferences. One example is ensuring that
nurses either work a full weekend or have a full weekend off, see e.g. Clarissa
and Suyanto (2019). Individual requests for working or having off-days on unique
days is also modelled in some research, e.g. Smet et al. (2014), Ásgeirsson and
Sigurðardóttir (2016), and Mischek and Musliu (2019).

While fairness is an ambiguous term, authors frequently propose constraints to
enhance it in nurse rostering literature. Typically, it entails an even distribution
of something considered desirable or undesirable. Ásgeirsson and Sigurðardóttir
(2016) even out the number of granted requests by using a piecewise linear func-
tion of increasing penalties as the number of unfulfilled requests increases for a
particular nurse. Furthermore, in Rönnberg and Larsson (2010) a preference score
is calculated for each nurse, based on the number of respected preferences. The
lowest amongst all the scores is maximized in the objective function, to enhance
preferences and fairness in a balanced way. In Akbari et al. (2012) it is stated
that "Our model objective tries to maximize preference of part time workers by
a minimization objective while considering seniority, availability, and priority of
employees." Akbari et al. (2012) thus considers fairness in a slightly different mat-
ter, where rank and seniority is included in the considerations of whose requests
to prioritise.

In Paper IV, the ward manager stated that fairness implies equality in respect
and influence, not necessarily equality in the individual schedules, as people have
different health issues and needs. While this is not typical for constraints in
NRPs, it is very much aligned with results presented in Paper III, where different
individual nurses’ fatigue is modelled as part of a NRP.

Multiple approaches are used to solve NRPs. Bergh et al. (2013) divide
them coarsely into mathematical programming approaches and heuristic methods.
Cross-checking the papers in Bergh et al. (2013) dealing with nurse scheduling and
different solution methods, it is clear that mathematical programming approaches
and heuristic methods are the most favored solution methods.
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Popular mathematical approaches include Integer Programming (IP) and Mixed
Integer Programming (MIP), see e.g. Valouxis et al. (2012), Mischek and Musliu
(2019), and Ásgeirsson and Sigurðardóttir (2016). Some decomposition methods,
most frequently branch-and-price, are also used by several authors (Bergh et al.,
2013). Examples of papers using branch-and-price to solve the NRP are Purnomo
and Bard (2007) and Beliën and Demeulemeester (2008). One possible reason for
decomposition methods being used less frequently than the more straightforward
IP and MIP approaches, is that variations in problem formulations make the time
consuming effort of decomposition less appealing.

A typical distinction within heuristic methods are constructive heuristics, see
e.g. Ásgeirsson (2014), and improvement heuristics. Popular types of improvement
heuristics include the tabu search, e.g. Lü and Hao (2010), genetic algorithms, e.g.
Moz and Pato (2007), simulated annealing, e.g. Liu et al. (2018) and Knust and
Xie (2019), and several others. While the mentioned improvement heuristic types
can in many cases be considered metaheuristics, metaheuristics are not explicitly
listed in the categorization by Bergh et al. (2013). However, they are discussed by
Burke et al. (2004), stating "We believe that metaheuristics are generally better
suited than most other approaches for generating an acceptable solution in cases
where the constraint load is extremely high and indeed in cases where even feasible
solutions are very difficult (if not impossible) to find." Top results in terms of
solution times in the two international nurse rostering competitions also tend to
be well represented by metaheuristic methods (Haspeslagh et al., 2014, Ceschia
et al., 2019).

1.1.3 The Physician Rostering Problem

The Physician Rostering Problem (PRP) has many characteristics differentiating
it from general personnel rostering, as seen in Erhard et al. (2018). However,
several of these characteristics are typical of a health care environment and are
thus also present in nurse rostering, such as uncertain and fluctuating demand and
a high degree of heterogeneity in patient needs. This can often lead to a mismatch
in supply and demand, and is briefly discussed in in relation to rerostering in
Section 1.1.4.

A characteristic that is more predominant in physician rostering literature
than in nurse rostering is the planning of residency, i.e. a specialization period.
In fact, Erhard et al. (2018) list 28 of a total of 68 reviewed papers on Physician
Rostering as dealing with residents. Residency often entails working at several
different departments to acquire relevant experience. Topaloglu (2006) presents
a month-long rostering problem for emergency medicine residents. The problem
includes residents of different seniorities and supervisory roles. As specialization
periods are longer than typical rosters, rostering problems that deal with residency
tend to have some link between rostering at the operational level and the longer
term planning. Smalley and Keskinocak (2016) create two models, one for creating
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feasible assignment of residents to services over a one-year period and another that
plans specific shifts to residents given the services they have been assigned to. Bard
et al. (2016) present a problem of creating so-called rotations that constitute a
month of a specializing physician’s training in a particular department. Rotations
are made from weekly scheduling templates stating each physician’s duties. The
goal of the problem is to distribute personnel evenly over the week and minimizing
the number of changes to a scheduling template.

Another key characteristic of Physician Rostering is a high degree of power
amongst individual physicians due to their expertise and them being a valuable
asset to the health care organization. This typically leads to a high degree of
autonomy. As a result, modeling of preferences and fairness issues is of great
importance in physician scheduling (Erhard et al., 2018).

Preferences and fairness was discussed in light of projects with great nurse
influence at St. Olav’s Hospital previously, but we present two examples of au-
thors modelling this in Physician Rostering as well. In Topaloglu (2006), rosters
are planned to minimize the violation of eight different soft constraints, ensuring
reasonable rest times and a different fairness measures. Fairness is considered by
modelling fair distribution of supervising resident positions, Monday night shifts,
and Tuesday night shifts. Stolletz and Brunner (2012) create fortnightly physi-
cian rosters taking preferences and fairness into account. They perform interviews
with physicians in their collaborating hospital, and find that the most important
fairness aspects that should be considered are a fair distribution of on-call services
and fair assignment of working hours.

Solution methods in physician rostering resemble the overall picture of nurse
rostering. The majority of problems studied in Erhard et al. (2018) are formulated
using mathematical approaches, e.g. IPs and MIPs, but both exact methods and
heuristic approaches are used.

Rostering problems are a subset of the papers reviewed in Erhard et al. (2018),
so we briefly mention some physician rostering papers and their solution methods.
Bruni and Detti (2014) present a MIP model of a realistic PRP that is tested
in a case-study. They call it a flexible MIP, and present several extensions for
modifications of the problem PRP. Puente et al. (2009) identify a PRP at a Spanish
hospital emergency department with multiple soft constraints, including sequential
shift constraints, and solve it using a genetic algorithm. The algorithm firstly
creates an initial roster, focusing on key days such as holidays and weekends. The
initial schedule is then improved iteratively using a genetic algorithm comprised
of a crossover operator that incorporates the sequencial restrictions. A repair
function is also introduced to avoid infeasibility in rosters. Fügener and Brunner
(2019) use a MIP formulation and a heuristic solution approach based on a column
generation decomposition to reduce unplanned overtime of physicians in a rostering
problem with stochastic demand.
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1.1.4 Rerostering

The planning of health care services is subject to uncertainty in various forms.
Uncertainty incorporation in personnel scheduling problems is discussed in den
Bergh et al. (2013), while Bai et al. (2018) review Operations Research in intensive
care unit management, with a comprehensive discussion of stochastic methods.
In Paper I, uncertainty in the supply of nurses and the demand for health care
services was characteristic for the planning problem. When uncertainty is realized,
disruptions can reduce the quality of rosters, making it necessary to make changes
on the online operational decision level. This is the origin of the Nurse Rerostering
Problem (NRRP). The NRRP is a relatively novel scheduling problem. In Burke
et al. (2004), neither rerostering nor rescheduling is discussed specifically, although
one of the first works clearly dealing with nurse rerostering, Moz and Pato (2004), is
cited. In Clark et al. (2015), the authors review literature on NRRP and identify
eight articles considered nurse rescheduling (nurse rerostering), and we briefly
present some of them.

Moz and Pato (2003) present the first version of the NRRP identified in this
thesis. The uncertainty realized prior to their rerostering problem is nurse absence,
and they thus simply add an additional condition to the original rostering problem,
that absent nurses cannot work. The NRRP is solved from the day of the first
absence until the last day of the planning period (the rerostering period). This
entails assuming all absence throughout the rerostering period is known on the first
day. The objective is to minimize the difference between the original roster and
the final roster after rerostering. If the problem proves infeasible, this is considered
an administrative issue, but this does not happen in their test instances.

While the Moz and Pato (2003) rerostering problem may seem simplistic com-
pared to practical cases, it is an interesting starting point for further research on
the NRRP. New solution methods are presented in (Moz and Pato, 2004) and
Moz and Pato (2007), and other authors present novel versions of the NRRP to
increase realism. Bard and Purnomo (2006) deal with preference scheduling (self-
scheduling), and minimize undercoverage and preference violations in rerostering
by modelling the possibility of hiring temporary staff. Pato and Moz (2007) penal-
ize allocation of assignments that individual nurses dislike. Kitada and Morizawa
(2013) present a NRRP where nurse absence can last several consecutive days,
further increasing the realism of the NRRP.

Recent and notable works include Maenhout and Vanhoucke (2011, 2013) in-
creasing the focus on fairness of workloads in rerostering, and Schoenfelder et al.
(2020) who include decisions of transferring and turning away patients with a
rerostering problem to combine ideas of rerostering with research on patient flow.
An interesting approach to rostering and rerostering is presented in Ingels and
Maenhout (2015, 2017, 2018, 2019). They firstly construct a roster, then simulate
the realization of uncertainty and perform rerostering every day throughout the
roster’s planning period. Such iterative rerostering is likely a more realistic rep-
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resentation of real-life practise, and Bard and Purnomo (2005b) present a model
where rerostering occurs three times daily. For physicians, research on reroster-
ing is even scarcer than for nurses. We have identified one such work, that of
Gross et al. (2018), which states "we propose the first approach for rescheduling
physicians in hospitals". Gross et al. (2018) consider nurse rerostering less com-
plicated than physician rerostering, and mention modelling of preferences, fairness
and training aspects as complicating factors in scheudling of physicians.

Due to the limited volume of rerostering literature, solution methods are not
hugely varied. According to Clark et al. (2015), rerostering models are typically
solved using mathematical optimization methods or some form of intelligent com-
puterized search methods. The problem studied by Moz and Pato (2003) is for-
mulated as an integer multicommodity flow model. Bard and Purnomo (2006)
propose a column generation approach with a swapping heuristic that produces
candidate rosters. Clark and Walker (2011) and Maenhout and Vanhoucke (2011)
use mathematical programming and heuristic approaches respectively to solve new
NRRPs. Kitada and Morizawa (2013) present a NRRP where nurse absence can
last several consecutive days, further increasing the realism of the NRRP and
proposes a heuristic method based on a recursive search technique.

1.1.5 Real-life implementation

Literature on personnel rostering, including work focused on nurses and physicians,
has been focused on theoretical problems and the efficiency of solution methods.
This is clear from e.g. den Bergh et al. (2013), where only a minority of works
are considered applied in practice, which typically entails some kind of case study.
This is notable, as many papers cite the potential for effective use of resources as
a motivation for their work.

Burke et al. (2004) state the following: "There is a definite gap between much
of the current state of the art in nurse scheduling research and the demanding
and challenging requirements of today’s hospital environments.” This is further
nuanced by Kellogg and Walczak (2007), who study the research-application gap
specifically, and list ideas for how it can be bridged. This includes less focus on
basic research for solving theoretical problems and more cooperative work with
institutions practicing health care. They also suggest more focus on inclusion
of self-choice and incorporating the advantages of self-scheduling. Furthermore,
Kellogg and Walczak (2007) mention that scheduling systems should be aligned
with third-party vendors, to make integration in larger systems possible. Lastly,
they encourage researchers to share success stories on real-life implementation.
However, in the years to follow, there is no sign of a revolution in practical use of
computerized scheduling and rostering.

Drake (2014) forcefully states that "In practice, rostering nursing staff is often
unrecognized, unrewarded and undervalued; yet, despite four decades of research,
operations management has little to offer in terms of faster, safer, fairer or more
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effective rosters.” Drake (2014) finds that many scheduling rules are created at
each ward in a politicized environment with complex group dynamics. While this
to some extent sounds similar to the situation observed at Maternity Ward West in
Paper IV, wards studied in Drake (2014) seem to have a less structured approach
to rostering. Drake (2014) found that few of the hospitals analyzed had formally
documented policies for roster preparation, and experienced frequent violations
of the informally created rules. This contrasts the structured process of creating
rosters and the formally enforced scheduling rules in Paper IV, but is very similar
to how we experienced the informally decided constraints in the rostering problem
observed at Maternity Ward West.

In a recent study, Petrovic (2019) repeats the message of above mentioned
authors, stating that "The use of computerised systems for personnel scheduling
has been increasing, but they are still underutilised and often require considerable
inputs from schedulers.” Petrovic (2019) goes on to call for the research community
to engage more with managers and schedulers in practice, in order to investigate
complex real-world issues. However, while no evidence of a revolution in use of
Operations Research to roster personnel in health care exist, there has been some
progress.

There are multiple examples of inspiring work with successful case studies.
Burke et al. (2006) present a tabu-search procedure for solving real-life problems
at Belgian hospitals. Notably, the authors mention implementation of their system
in more than 40 hospitals. However, Burke et al. (2006) do not elaborate on the
implementation, but rather focus on the algorithm and its use. It can thus hardly
be used for understanding implementation of real-life rostering tools. Bester et al.
(2007) and Rönnberg and Larsson (2010) present inspiring case studies that are
rich in detail on how the practical applications of their two different decision sup-
port systems for Nurse Rostering work. They both create versions of tabu-search
algorithms, and the Bester et al. (2007) case study is from a psychiatric hospital
in South Africa, while Rönnberg and Larsson (2010) deal with a "typical Swedish
nursing ward” that practised self-scheduling at the time of their pilot study. No-
tably they take into account the existing planning process when developing their
systems, which makes models more accessible to the personnel they plan for.

1.2 Purpose and outline

We discuss the purpose of this thesis in Section 1.2.1. In Sections 1.2.2 - 1.2.5, we
outline each paper in the thesis and reflect briefly on each paper’s purpose and
contribution. Additionally, Appendix A is outlined in Section 1.2.5.

1.2.1 Purpose of thesis

The purpose of this thesis is to explore how Operations Research can be used
to improve personnel planning in health care. In doing so, creating rosters for
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personnel is vital, and we ask the following key questions:

• What is a high-quality roster?

• How do we produce such a roster?

While our contributions to answering these questions are discussed in Section
1.3, the scope of the thesis is shortly discussed here. Most of the work presented
in this thesis deals with variants of typical rostering problems. However, our work
also implicitly questions the scope of some of the literature on personnel rostering
in health care. Much of our work deals with observing real-life problems at St.
Olav’s Hospital and using mathematical modelling to formalize these problems.
This entails grappling with implicit local rules and challenging how different con-
siderations are included in the rostering process, such as preferences, fairness, and
fatigue.

Modelling such rostering aspects using Operations Research techniques entails
formalizing these tacit considerations to the best of our ability. In doing this, we
implicitly assume that a collection of qualitative aspects related to the planning
of people’s lives can be quantified. While this may not be very controversial for
researchers familiar with the techniques, practitioners may very well be skeptical.

After problems are formalized, different solution methods can be used to solve
them. In some cases, MIP using commercial solvers proves sufficient to find rosters
of useful quality. For other problems, development of novel algorithms are neces-
sary to obtain high-quality solutions. While novel solution methods are interesting
contributions to the research community in their own right, the main focus in this
work is to find useful solutions on realistic problems rather than reducing run
times on more general problems.

In Papers I and II we identify interesting real-life rostering problems observed
at St. Olav’s Hospital in Trondheim, Norway. We formalize the problems and
develop solution methods that can solve them. Paper I deals with rostering,
uncertainty modelling and rerostering of nurses at the Department of Neonatal
Intensive Care. Paper II tackles rostering of surgeons at the Clinic of Surgery,
where an interesting semi-cyclic structure greatly complicates planning. In Paper
III we explore how fatigue modelling can be incorporated in Nurse Rostering to
minimize the worst fatigue observed in the roster, aiming to enhance nurse health
and reduce the risk of human errors. In Paper IV we describe a pilot project of
using a nurse rostering model for planning at the Maternity Ward West at St.
Olav’s Hospital.

1.2.2 A modelling framework for evaluating proactive and reac-
tive nurse rostering strategies - A case study from a Neona-
tal Intensive Care Unit

In this paper, we create a framework that combines rostering, uncertainty mod-
elling and rerostering to enable evaluation of the robustness of rosters. Using the
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framework, we are able to evaluate the effects of multiple robustness-enhancing
proactive strategies in the rostering problem. We further evaluate the effects of
varying the rerostering period and analyze the effects of a strict policy against
breaking any scheduling rules in the online operational planning level.

All models in the paper are developed to reflect the real-life problems observed
at the Department of Neonatal Intensive Care (DNIC) at St. Olav’s Hospital. We
create a roster for 117 nurses of four different skill levels and solve it for a planning
period of 105 days. The problem is formulated as a MIP model and solved using
commercial software. The supply and demand is modelled irrespective of each
other. Modeling supply entails modelling both the absence of nurses and the
nurses’ willingness to work extra shifts when disruptions occur. We develop a
discrete time Markov chain for each nurse with three states that nurses transition
between: non-absent, short-term absent or long-term absent. Nurses’ willingness
to work extra in rerostering is simulated using Monte Carlo-simulation. Demand
is estimated by simulating the patient severity states of the different beds at the
DNIC. The rostering model is run once, before daily simulations of uncertainty
occurs as disruptions, and rerostering happens as a response.

The main contributions of this paper is the development of a framework that
enables evaluation of the robustness of rosters. Our work stands out from related
literature in its realism. The rostering model is developed in close cooperation with
the scheduling manager at the DNIC, and all uncertainty modelling is based on
real-life data. The rerostering model is based on a collection of rerostering actions,
which reflect the daily online operations at the DNIC. The paper is co-authored
with former master students Isabel Nordli Løyning and Line Maria Haugen Melby,
Associate professor Anders Nordby Gullhav, and Professor Henrik Andersson.

1.2.3 Paper 2: Semi-cyclic rostering of ranked surgeons - a real-
life case with stability and flexibility measures

In this paper, we study the problem of creating rosters for surgeons in specialization
at the Clinic of Surgery at St. Olav’s Hospital. The surgeons must be planned to
work emergency shifts during day and night in a cyclic structure according to
their rank, while also being assigned non-cyclic day shifts at sections essential for
their training. The specializing surgeons are essential resources for covering both
types of shifts, and in practice the rigid assignment of emergency shifts entail
large fluctuations in available staff at sections from day to day. We formalize
a rostering model that greatly improves rosters compared with those produced
using manual methods, and also demonstrate that the use of shadow shifts reduce
the probability that planners are forced to reroster because of absence during
emergency night shifts.

The problem is solved by developing a two-step matheuristic designed specifi-
cally for the problem observed at the Clinic of Surgery. The matheuristic is based
on Mixed Integer Programming, and while a simple implementation of the model
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in commercial software proves insufficient for this complex rostering problem, our
matheuristic provides high-quality solutions for all test instances.

Our main contributions in this paper include describing and formalizing the
novel Semi-Cyclic Ranked Physician Rostering Problem and developing a two-step
matheuristic that solves the problem for real-life instances. We also demonstrate
that we can produce high-quality rosters with superior quality to those created
through manual planning and introduce shadow shifts that reduce the probability
of rerostering. The paper is co-authored by Associate professor Anders Nordby
Gullhav, Professor Henrik Andersson, and Head of the Surgery Clinic Birger Hen-
ning Endreseth.

1.2.4 Paper 3: Nurse Rostering with Fatigue Modelling - Incor-
porating a Validated Sleep Model with Biological Variations
in Nurse Rostering

In this paper we incorporate a validated model of human sleep in a Nurse Rostering
Problem to formulate the Nurse Rostering Problem with Fatigue (NRPwF). We
minimize the worst level of fatigue experienced by any nurse in the roster to
produce rosters aiming to enhance nurse health and reduce human errors.

To solve the NRPwF we develop an algorithm combining Mixed integer Pro-
gramming and Constraint Programming with a Large Neighbourhood Search. As
the number of possible rosters is huge, all individual schedules of realistic lengths
cannot be evaluated by the sleep model. We thus approximate the sleep model
using a look-up table before performing a post-processing algorithm dealing with
errors over a given threshold.

Our main contributions are approximating the sleep model and incorporating
it in the NRP to create the NRPwF. The introduction of biological profiles in such
a framework provides interesting new insights such as how nurses with different
biological profiles must be treated differently to minimize the maximum observed
fatigue. We also demonstrate how increasing staff levels enables a reduction in
the worst cases of fatigue. Our algorithm for solving the NRPwF and performing
post-processing represents another notable contribution. The paper is co-authored
by PhD Ilankaikone Senthooran and Professor Mark Wallace.

1.2.5 Paper 4: Hospital rostering of the future - experiences with
new technology

In this paper we describe a case study of implementing a decision support tool
for nurse rostering at the Maternity Ward West at St. Olav’s Hospital in two
pilot projects. We survey employees at the ward to identify potentials and discuss
whether they were fulfilled in our pilot projects. We go on to reflect on how future
rostering systems will function in different health care organizations, provided
systems such as ours are used to a large extent. We also draw on the experiences
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from similar initiatives elsewhere in Scandinavia to establish a broader foundation
for these reflections.

The rostering model was developed in close co-operation with the Operations
Coordinator at Maternity Ward West. The Operations Coordinator was respon-
sible for personnel planning and rostering at the ward, and had worked there
as a midwife prior to her current role. Multiple stakeholders were informed and
gave their opinions on the project, including individual employees, the Norwegian
Nurses’ Association (NSF), and the hospital management. The model itself is not
presented in the paper, but is formalized as a Mixed Integer Program in Appendix
A.

The main contributions of this paper is demonstrating the realism of major
potentials of implementing decision support software for Nurse Rostering at Ma-
ternity Ward West. Furthermore, we identify notable barriers for a large-scale
implementation at MWW and likely similar wards. We discuss how rostering
will change in the time up to the year 2050, and explain how the roles of different
shareholders are likely to change. The paper is co-authored by Associate Professor
Anders Nordby Gullhav.

Appendix A: Nurse Rostering Model developed for use at Maternity
Ward West

The appendix presents a mathematical formulation of the Nurse Rostering Prob-
lem observed at Maternity Ward West. The mathematical formulation was not
included in the original paper, as it was outside the scope of the anthology the
paper was published in.

1.3 Contributions

This section presents the contributions made in this thesis to the research com-
munity and to the industry respectively. Lastly we briefly describe the author’s
contribution to each of the papers presented in the thesis.

1.3.1 Contributions to the research community

Each paper’s individual contribution to the research community is already briefly
discussed in Sections 1.2.2 - 1.2.5, and are further presented in the introductions of
the papers. Here we discuss overarching contributions of the thesis to the research
community, that help answer the two key research questions we asked in Section
1.2.1. Firstly, we discuss findings related to identifying what is a high-quality
roster, structured using four important aspects of rosters. These are preferences,
fairness, costs, and robustness.
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Preferences

We contribute to broaden the perspectives on preference modelling in rostering
in several ways. Papers I, II, and IV all deal with real-life problems, and thus
entail modelling preferences that do not necessarily exist in related literature. In
these projects, preference modelling required attempts to unveil and make explicit
many different rules and norms of an implicit character that existed in the minds
of planners and personnel. Furthermore, we found how the existing information
system of registering requests and leaving comments was inadequate to fully cap-
ture staff preferences in Paper IV. We also believe that the practice of planning
long rosters that was common at all wards we worked with at St. Olav’s Hospital
made it difficult for staff to know when they wanted different shifts, making the
self-scheduling less effective.

Our findings demonstrate how it is not realistic to address the aspect of staff
preferences in a sufficient manner simply by formulating the correct constraints
in rostering models. For future automatic or semi-automatic rostering systems
to be useful, the entire rostering process should ideally be evaluated, and out-
side stakeholders such as developers of information systems should be part of the
process.

Fairness

Fairness is another aspect that is hard to assess directly in mathematical models.
As mentioned in Section 1.1.2, most authors deal with this by modelling some
form of equality, e.g. penalizing or disallowing large differences in unpopular shift
types between staff. Versions of such constraints focusing on equality in objective
roster characteristics exist in our papers as well, e.g. Paper II models equality in
work hours among surgeons of similar ranks.

However, in Papers IV, a different perspective on fairness affects the rostering
problem a great deal. While employees at Maternity Ward West should have
a similar number of e.g. weekend shifts, rosters have a significant focus on the
individual needs of employees. The underlying principle was stated clearly by the
Operations Coordinator when working with Paper IV, saying that all employees’
preferences are equally important to them, but that fairness implies equality in
respect and influence, not necessarily equality in the individual rosters, as people
have different health issues and needs. This focus on individual needs is endorsed
through the inclusive working life agreement in Norway, a policy meant to increase
individual customization and enhance employee health.

Notably, this perspective on fairness is aligned with the results in Paper III.
When focusing on minimizing the maximum fatigue score for any nurse on any day
to enhance nurse health and reduce the risk of human errors, results demonstrate
that different individuals must be assigned very different rosters. As we write in
Paper III, our results imply that managers must grapple with the idea of what
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fairness is in rostering. While it is easy and tempting to treat every nurse exactly
the same irrespective of their reaction to working around-the-clock, this does not
suffice if managers wish to create rosters that focus on nurse health and patient
safety.

Costs

Costs are mostly considered sunk in our work. That is, while costs are an integral
component of staffing decisions, our rostering problems tend to assume the avail-
able staff is fixed, making the majority of costs sunk. That does not mean our
models cannot be used for analyses of costs, as well as other aspects, on a tactical
level. By changing parameter values, effects of increased or reduced staff levels are
available. Policy changes at wards are easily evaluated by introducing or removing
constraints from the rostering models. At the end of the day, there are countless
possible changes to staffing and policies at the tactical level that can be included
in our rostering problems if budgets are increased, or that must be considered if
budgets are reduced, but these decisions are generally not modelled in our work.

Furthermore, in the online operational decision level, costly actions such as
asking staff to work overtime is performed. Monetary costs constitute part of the
weights of rerostering actions in Paper I, but they are integrated in inconvenience
costs to create weights useful in the planning problem.

The lack of focus on costs itself in this thesis may very well reflect the close
co-operation with real-life practitioners and planners rather than top-level rep-
resentatives at the hospital. Oftentimes, their focus is not on costs per se, but
rather on performing the best possible planning and management within the re-
strictions provided by budgets. The lack of focus on costs in this thesis can also
be a symptom of Norwegian work-life culture. Regardless, models tend to be for-
malized based on a given number of resources available, which reflects budgetary
constraints in real-life. We believe this is a reasonable approach, but also note
that it can be a weakness if it entails not identifying measures for saving costs.
One example is that if preliminary testing demonstrated that feasible rosters hold-
ing high quality could be created in Paper II if hours were reduced for surgeons,
but investigating the trade-off between roster quality, the number of section shifts
given to specializing surgeons, and costs was not the focus of the study.

Robustness

Robustness is discussed in multiple papers in this thesis, most comprehensively in
Papers I and II. While multiple different strategies are presented and evaluated in
Paper I, only one is implemented in Paper II. It is interesting to note that the two
papers both present different versions of strategies where extra personnel scheduled
for an off-shift is called upon when needed. Furthermore, we conclude that the
version implemented in Paper I was not able to improve robustness, but that the
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strategy implemented in Paper II gave promising results. This is interesting, as
the two strategies seem very similar at first glance. However, there are notable
differences between the two strategies and the two planning problems that affect
the results.

In Paper I, ghost shifts are introduced. These entail assigning an off-shift such
that a nurse can cover for absence during the night shift. The ghost shift strategy
primarily fails to improve the robustness of the rosters for two reasons. Firstly,
it turns out that covering night shifts is not very challenging without the ghost
shifts at the DNIC. Secondly, when ghost shifts are introduced, we ensure that no
time-related constraints are violated if a ghost shift is realized, i.e. the nurse has
to step in and work the night shift. This makes rosters where ghost shifts are used
frequently very rigid.

In Paper II, shadow shifts are introduced to cover for absence during emergency
night shifts. Shadow shifts are similar to ghost shifts in Paper I, but we accept that
surgeons finish their day shift prior to beginning a night shift (in practice, it would
be up to managers to consider if the surgeon could be given time off or prolonged
breaks etc. to ensure a safe schedule). As a result, shadow shifts are much less
restricting to the rostering problem than ghost shifts, and results indicate that
shadow shifts do not deteriorate other roster qualities notably. We are not able
to evaluate the effects of the shadow shifts in the same way as we could with the
framework provided in Paper I, but we know that covering emergency night shifts
is a challenge in real-life at the ward and we calculate that the probability of being
forced to reroster is smaller after introducing shadow shifts.

In Paper IV, one of many roster qualities is to limit overstaffing, thus enhancing
robustness. In practice, there was little opportunity for the rostering model to
prioritize robustness, because numerous other restrictions were prioritized. This
indicates that in order to take advantage of robust measures in practice, advantages
must be clearly communicated to different stakeholders. That is, it must be clear
for employers how robust rosters can reduce overtime costs, while planners and
staff should know how increased robustness can reduce the inconvenience related
to last-minute changes in their schedules, such as in Papers I and II.

Producing high-quality rosters

Solution methods in this work all have in common that they are quite flexible, in
the sense that models are easily adjusted to minor changes in problem descrip-
tions. This has been important, as communication with practitioners often entail
discussions and presentation of model output in an iterative process. This unveils
new details in the problems and contributes to disclose misunderstandings. As a
result, some of the methods presented in related literature for solving rostering
problems would not be very practical for our use, e.g. some decomposition meth-
ods could entail a lot of extra work when changes are made iteratively to problem
descriptions.
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This is not to say structures of the problems observed are not relevant when
developing solution methods for real-life problems. In the model used for Paper IV,
frequent adjustments were proposed in meetings with the Operations Coordinator.
In some cases, proposed changes led to infeasible problems, but the commercial
software could not prove it within reasonable time limits. As a result, we intro-
duced a feasibility check, which firstly checked the feasibility of the roster of each
individual nurse when new constraints were introduced, before attempting to solve
the problem. This was very helpful. Similarly, the structures of the problems were
very relevant for the solution methods developed in Papers II and III. In our expe-
rience from this work, it is important to retain the flexibility in solution methods
to easily make changes to problem descriptions until stakeholders agree on it. At
that point, more efficient solution methods can be developed if it is desirable.

1.3.2 Contributions to the industry

This thesis demonstrates the potential for larger-scale implementation of a deci-
sion support system based on Operations Research for personnel planning at St.
Olav’s Hospital and similar health care organizations. Papers I and II show that
real-life problems can realistically be solved, and that results produced outperform
manual planning. Furthermore, the rostering models we develop all enable evalu-
ation of policy changes on a tactical level, and give important managerial insights
for planners. Paper III expands the scope of rostering in Operations Research,
demonstrating how fatigue minimization can be incorporated into NRPs. Paper
IV describes pilot projects of implementing such systems, identifies multiple poten-
tials and challenges to realize them, and discusses how this will affect work life in
the future. Combined, this thesis provides important insights on how Operations
Research can be used for personnel planning in health care organizations.

An important motivation for this thesis is to create something useful for plan-
ners and practitioners. Thus we briefly discuss experiences with barriers and chal-
lenges in moving from observing a real-life problem to attempting to implement
decision support systems for permanent use for practitioners. It is not clear to
what extent these experiences can be generalized, but they are noteworthy for St.
Olav’s Hospital, and could motivate further research.

When models were developed and tests had been performed at the various
departments we worked with at St. Olav’s Hospital, we were faced with the task
of documenting our work through scientific papers. At this point, it was unclear
how projects should be continued. In the work at Maternity Ward West in Paper
IV, results of surveys were presented for the Center for Health Care Improvement,
an important stakeholder who showed a lot of interest in the project. However,
we did not produce any clear plan for how to continue the incorporation of our
model in planning, and in practice the project was shelved. In the project at
the Department of Neonatal Intensive Care in Paper I, master’s students had
closest contact with planners, which may have reduced the chances of continuing
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co-operation after their graduation. In the project at the Clinic of Surgery in
Paper II, adjustments were made to give output in a useful format for planners.
However, due to possible upcoming restructuring, planners did not wish to commit
to changes in the planning process.

While the above mentioned projects have a quite common lifespan for research
projects, it would be remiss not to mention aspects that could help facilitate taking
the projects from theory to practice. The overall impression is that while managers
and planners are very interested in exploring possible improvements to personnel
planning, there is no clear path from testing to permanent implementation of new
decision support tools. To the author’s knowledge, there were no specialists that
could facilitate such a transition, and as researchers observing a planning problem
from the outside, the mandate and funding for making changes to improve planning
was lacking in our projects.

If future personnel planning projects are launched, they should ideally state
a clear mandate, invite and demand cooperation from all relevant stakeholders
and be prioritized in terms of personnel with specialties within both Operations
Research and innovation. While most stakeholders were included in our projects,
especially that at Maternity Ward West in Paper IV, it is clear that stakeholders’
disagreements were not sufficiently addressed. That is, they were all given the
chance to be heard in our process, but their opinions were never confronted with
other stakeholders’ views and priorities. In real-life, there is a thug-of-war between
stakeholders in rostering, and a process without any conflict could be a sign that
the core of trade-offs has not been properly discussed.

While the approach described above demands a significant and coordinated
effort by a health care organization, we also believe there is more low-hanging fruit
in our work. For details, see the individual papers. However, one useful example
is trading extra weekend work for an additional off-day. For all the round-the-
clock nurse rostering problems we encounter at St. Olav’s Hospital, staffing levels
at weekends are clear bottlenecks. For practitioners at the hospital, this will
not come as a surprise. The weekend-bottlenecks are a result of nurses normally
working every third weekend, as regulated for most nurses in roster agreements.
This was well documented already in the Master’s thesis by Beckmann and Klyve
(2016), but Paper I also took into account uncertainty in evaluating this measure.
The conclusion is clear. "There was a huge improvement in robustness when
nurses were allowed to trade extra weekend work for extra off days in the initial
rosters. The policy change led to a more stable roster during weekends, without
any significant effects on the stability during weekdays although less work shifts
where scheduled." and goes on to say "we believe that accepting this policy change
would be very beneficial."

In practise, this policy change has not been attempted. Unless managers at St.
Olav’s Hospital believe that implementing the trade will make nurses’ perception
of covering for each other too transactional, this seems like a very promising and
uncomplicated measure to implement.
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1.3.3 The author’s contribution to each paper in the thesis

This section describes the contribution of the author to each individual paper in
the thesis. The contribution is divided in three categories; intellectual input, de-
velopment and implementation of models and code, and writing of papers. To
simplify, the author’s contribution is rated on a scale of 1 to 3 in each category
for each paper, as seen from Table 1.1. The rating 1 represents some contribu-
tion, 2 represents a significant contribution and 3 represents a majority of the
contributions.

Paper Intellectual input Development and
implementation Writing

Paper I 3 1 3
Paper II 3 3 3
Paper III 3 3 3
Paper IV 3 3 3

Table 1.1: The author’s contribution to each paper in the thesis.

As is clear from Table 1.1, the author contributed to the majority of all cat-
egories in each paper except Paper I. When the project was designed, master’s
students Isabel Nordli Løyning and Line Maria Haugen Melby were included, per-
forming the majority of work on Development and Implementation of the code.
It should also be noted that significant parts of development of the code in Paper
III, related to coding the Nurse Rostering Problem with Fatigue in MiniZinc, was
performed by Dr. Ilankaikone Senthooran.

Papers are written in American or British English depending on which authors
that have co-operated in each project. Paper IV was originally published in Norwe-
gian and has been translated by externals before proof-reading. In the translation,
we have prioritized to avoid diverging communication in the two languages over
the flow of the text in the English version.

1.4 Concluding remarks and future research

Personnel rostering is a central part of planning in health care organizations, and
Operations Research offers promising potential for improved planning. This work
verifies that Operations Research is a useful tool for rostering. The rosters we cre-
ate contribute to answering what a high-quality roster is, but also highlights the
complexities of modelling key aspects such as preferences, fairness, costs, robust-
ness, and fatigue. We are able to solve the planning problems we are faced with
throughout the thesis. While we develop novel solution methods when necessary,
we do not focus on proving optimality, the way much rostering literature has done
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previously. Rather, our main concern is to gain insights on how to produce rosters
of high quality.

The models we develop in this thesis reflect real-life problems, some with a
very high level of detail. Furthermore, we develop solution methods that solve the
problems for real-life instances. Our models aspire to fulfill two goals:

• Provide insights about real-life personnel planning

• Be the foundation for decision-support tools used in practice

Our models definitely meet the first goal. Insights acquired in each project are
described in detail in the works themselves, but constitute an important part of
our contributions both to the research community and to the industry. Evaluating
whether we have reached the second goal is more unclear. Our projects face barri-
ers for implementation, but identifying them should also be considered important
findings. The future will unveil to what extent our work is a foundation to build
on for practical implementation of decision-support tools, and this line of thought
leads to our main suggestions for future research.

The overarching research idea that naturally stands out after our work is to
make a more coordinated effort to implement a lasting system at a health care
organization. This project should entail researchers across multiple research ar-
eas, and relevant stakeholders with different roles in the organization should be
included in the project. The theoretical literature on personnel rostering, espe-
cially for nurses, has matured over the last decades, demonstrating that formalized
problems can be solved. What is truly lacking at this point is the applied focus
enabling it to culminate in a real breakthrough outside the literature on solution
methods.
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Semi-cyclic rostering of ranked sur-
geons - a real-life case with stabil-
ity and flexibility measures

Abstract

We consider the rostering problem for surgeons in residency at the Clinic
of Surgery at St. Olav’s Hospital, Trondheim University Hospital, in Trond-
heim, Norway. Each surgeon in residency has a rank depending on experience.
An exact number of surgeons of each rank must work emergency shifts in a
cyclic structure. Each surgeon is affiliated to a section, which has a min-
imum staffing level. Section shifts can be planned in an acyclic structure,
thus establishing a semi-cyclic structure in the full roster. The addition of
more typical rostering constraints establishes the novel Semi-Cyclic Ranked
Physician Rostering Problem. In manually created rosters, the staffing at
sections varies greatly, leading to frequent understaffing. With the addition
of absence among staff when rosters are executed, this is problematic for the
Clinic of Surgery. We present a two-step matheuristic based on mixed integer
linear programming to solve the problem for five real-life instances. Compar-
ing our results to a manually created roster demonstrates superior results in
terms of staff availability at sections, greatly improving roster resilience to
absence. We also introduce shadow shifts designed to increase the flexibility
of rosters to cover for absence at emergency night shifts.

3.1 Introduction

Health care organizations have an integral role in modern society, accentuated by an
average of 9% of gross domestic product in the Organization for Economic Cooperation
and Development countries being spent on health, (OECD, 2017). Furthermore, hospitals
account for nearly 40% of health spending, (OECD, 2017), including considerable staffing
costs. The rostering of personnel is a recurring challenge at hospitals, having a significant
effect on the personnel costs. This issue has been a topic of interest among researchers for
many years (see e.g. Wolfe and Young (1965a), Wolfe and Young (1965b), Warner (1976)),
but there still exists a large potential for improved utilization of personnel resources in
hospitals worldwide. In this work, we focus on the scheduling of physicians, specifically
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a real-life problem of rostering surgeons at the Clinic of Surgery at St. Olav’s Hospital,
Trondheim University Hospital, Norway.

At the Clinic of Surgery, the rostering of different groups of employees is a highly
complex task. One group of employees has proven particularly hard to schedule in a
way that ensures reliable and stable staffing levels. This group is made up of specializ-
ing surgeons who are currently performing their medical residency. Residency refers to
physicians training to become specialists in a medical field under the supervision of at-
tending physicians within the same field. In this article, we simply refer to the specializing
surgeons as surgeons.

As well as acquiring experience, the surgeons have two important functions at the
Clinic of Surgery. The surgeons are an integral part of the staffing both at the emergency
department and at a collection of sections at the Clinic of Surgery. Each surgeon has
a rank, corresponding to his or her experience level, and a section affiliation. Different
ranks need to meet the exact demand for emergency shifts at the emergency department
at all times. Furthermore, sections have a defined minimum and preferred level of demand
for staff every weekday, depending on the size of the section.

Another aspect to consider when creating the rosters, which greatly complicates the
structure of this planning problem, is that the emergency shifts must be planned in a
weekly cyclic structure. Other shifts are not constrained to a cyclic structure. Thus,
as long as the emergency shifts are cyclic, the rest of the shifts can be assigned freely,
assuming other requirements are satisfied.

We define a roster to be a plan that allocates employees to work shifts of predefined
start and end times throughout a planning horizon. In the daily execution of the roster,
surgeons may be absent from shifts they are planned to work. We define the robustness
of a roster as a combination of the roster’s ability to withstand disruption, i.e. stability,
and the roster’s potential to retain high quality after disruptions occur given a specific
set of rerostering strategies, i.e. flexibility. These definitions are similar to those used
in related work, see e.g. Ionescu and Kliewer (2011), Ingels and Maenhout (2017), and
Ingels and Maenhout (2018).

In this paper we formalize the problem of finding a roster for surgeons at the Clinic
of Surgery. The schedule for each surgeon must be legal and adhere to the work hour
restrictions stated by the Norwegian Working Environment Act and the local collective
agreement. In total, the roster needs to fulfill the demand at all shifts for the sections
as well as the emergency department. The main objectives are to find the most robust
roster and comply with fairness-related norms.

To the best of the authors’ knowledge, no planning problem of a similar structure
has been presented in literature on physician rostering before, and we thus propose call-
ing this problem the Semi-Cyclic Ranked Physician Rostering Problem (SCRPRP). Our
contributions in this paper are listed below.

– Describing and presenting the novel Semi-Cyclic Ranked Physician Rostering Prob-
lem.

– Presenting a matheuristic that solves the problem for real-life instances.

– Producing a high-quality roster for use at the Clinic of Surgery at St. Olav’s Hos-
pital, Trondheim University hospital.

– Analyzing the improvements of the roster compared with rosters from manual plan-
ning and the effect of shadow shifts on the robustness of the roster.
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The outline of the paper is as follows. Section 3.3 provides background for, and briefly
presents, the planning problem at the Clinic of Surgery. Relevant literature is presented
in Section 3.2 while a concise problem description is given in Section 3.3.2. In Section 3.4,
a two-step matheuristic to solve the problem is described. In the computational study,
Section 3.5, the results for solving the instances are presented and evaluated and the effect
of introducing shadow shifts is analyzed. Finally, Section 3.6 concludes the paper.

3.2 Related Literature

The problem presented here belongs to the class of personnel planning problems, see e.g.
den Bergh et al. (2013) and Bruecker et al. (2015) for extensive reviews of personnel
scheduling and workforce planning respectively. Within health care, much research has
been focused on nurses, see e.g. Burke et al. (2004) for a review and Ceschia et al.
(2019) for a recent report from the Second International Nurse Rostering Competition.
As there is generally no difference in rostering a generic group of surgeons compared to
rostering a generic group of physicians, we use the terms surgeon rostering/scheduling
interchangeably with physician rostering/scheduling. Even though surgeon scheduling
has a lot in common with nurse scheduling there are many aspects that differ, as pointed
out by Erhard et al. (2018). The most prominent differences in our problem are that
many surgeons are undergoing medical training, that they have different ranks based on
experience, and that they are affiliated to different sections based on educational focus.
In the excellent review by Erhard et al. (2018), physician scheduling is outlined and more
than 60 papers are reviewed and classified. According to the classification in Erhard
et al. (2018), the problem studied here is a physician rostering problem with residents
and fairness aspects.

One dimension only briefly mentioned in Erhard et al. (2018) is cyclic plans, a key
aspect in our problem. In the work of Ernst et al. (2004), the cyclic structure of many
personnel scheduling problems are discussed extensively. They provide the following defi-
nition of cyclic rosters: "In a cyclic roster all employees of the same class perform exactly
the same line of work, but with different starting times for the first shift or duty." In
the review by Bergh et al. (2013), some articles dealing with cyclic scheduling problems
are cited, but the cyclic structure of the problems is not discussed explicitly. Burke
et al. (2004) discuss cyclic scheduling, and categorize nurse scheduling problems as either
cyclic, semi-cyclic, or non-cyclic. This distinction is interesting when regarding the plan-
ning problem at the Clinic of Surgery as only some shifts must be scheduled as cyclic.
Burke et al. (2004) do not define semi-cyclic scheduling explicitly, but mention examples
of semi-cyclic scheduling; Burke et al. (2001), Warner (1976), Smith (1976), and Chan and
Weil (2001). Smith (1976) shares the characteristics of having some, but not all, shifts
scheduled in a cyclic structure, which means that the planning problem at the Clinic
of Surgery would fit the semi-cyclic category as proposed by Burke et al. (2004). For
newer literature dealing with cyclic scheduling, see for example the works of Becker et al.
(2019) and Xie and Suhl (2015), where the applications are emergency medical services
and public bus transit, respectively.

Operational variability can be handled by introducing either proactive or reactive
mechanisms. Proactive mechanisms create rosters that can absorb the variability or that
improve the possibility to handle the unexpected event by adjusting the roster, while re-
active mechanisms focus on handling the variability once it has been realized. See Ingels
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and Maenhout (2017) for a longer discussion about different mechanisms. Fügener and
Brunner (2019) study a physician scheduling problem with stochastic demand and allow
variable shift extensions as a proactive measure, while EL-Rifai et al. (2015) focus on the
staffing level. Dück et al. (2012) and Ionescu and Kliewer (2011) deal with stability and
flexibility for airline crew schedules, while Ingels and Maenhout (2017) present employee
substitutability as a mean to improve the robustness in personnel scheduling. Reschedul-
ing, i.e. reactive mechanisms, within health care is found in the review by Clark et al.
(2015) for nurses, and in Gross et al. (2018) for physicians.

This paper extends the existing literature by (i) combining section and emergency
department scheduling where parts of the roster must be cyclic; (ii) including proac-
tive measures to improve both the stability and flexibility of the roster; (iii) introducing
shadow shifts as a strategy to increase the flexibility of the roster.

3.3 Surgeon rostering at the Clinic of Surgery at St.
Olav’s Hospital

This section describes the Clinic of Surgery at St. Olav’s Hospital with a special emphasize
on how the surgeon rostering is done and the considerations that must be taken into
account. Section 3.3.1 presents the Clinic of Surgery and how rostering is done today.
A formal description of the Semi-Cyclic Ranked Physician Rostering Problem is given in
Section 3.3.2.

3.3.1 Background

The Clinic of Surgery at St. Olav’s Hospital, Trondheim University Hospital, consists
of several departments and sections. The sections are staffed at daytime during the
weekdays, and surgeons consider section shifts their core activity, as it is here they get
most of the training for their specialization. At the sections, several tasks are performed,
including surgeries, patient consultations at the outpatient clinics, and visits to inpatient
wards.

At the Clinic of Surgery, the planning horizon is 26 weeks. Planning much longer
than this is unpractical due to potential changes in rank and section affiliation. The
surgeons’ ranks are based on how much experience they have acquired in their residency.
Beginners are called interns, while residents are more experienced and officers are the
most experienced. Every 6 months, surgeons may change rank and section affiliation as
their training progress

The roster is an assignment of exactly one shift each day to each surgeon. The different
shift types are shown in Table 3.1.

Table 3.1: The different shift types used as the Clinic of Surgery

Name Description
emergency shifts shifts at the emergency department, both day and night
section shifts shifts at the section, only day
coursework shifts shift for classes or coursework, only day
off-shifts non-working shifts
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There are two types of emergency shifts, the emergency day shift and the emergency
night shift, and they must be planned in a weekly cyclic structure. This means that
every surgeon of a given rank must work the exact same emergency shifts as another
surgeon of the same rank did the previous week, creating a chain of cyclic emergency
shifts throughout the planning horizon. If the minimum requirement of ranks allow for
it to happen, surgeons can cycle in a chain of more than one rank, i.e. share the burden
of a type of emergency shift between ranks. Other shifts are not constrained to a cyclic
structure. Thus, as long as the emergency shifts are cyclic, the rest of the shifts can be
assigned freely, assuming other constraints are satisfied. The cyclic structure is illustrated
in Table 3.2, where D represents an emergency day shift, N represents an emergency night
shift and an asterisk (*) symbolizes any other shift on or off duty.

Table 3.2: Illustration of the cyclic structure in the schedule. In this example, "Officer7"
follows the pattern of emergency shifts worked the previous week by "Officer1" and "Of-
ficer4" follows "Officer7". An asterisk (*) symbolizes any shift that is not an emergency
shift, including off-shifts.

Surgeon M T W T F S S M T W T F S S M ...
Officer1 D * * * * N N * * * * D * * * ...
Officer7 * * D D * * * D * * * * N N * ...
Officer4 N N * * * * * * * D D * * * D ...

In addition to the cyclic structure of the emergency shifts, there are regulations stated
by the Norwegian Working Environment Act and the local collective agreement regarding
working hours that must be adhered to. The regulations state that all surgeons must
have a protected off-day involving a prolonged rest period every week and minimum rest
times between two shifts. More specifically, surgeons must not work two night shifts with
only one day off in between. Working two consecutive night shifts are only accepted if
the surgeon works short night shifts, if one of the night shifts is a shadow shift, or if the
night shifts occur during the weekend. If a surgeon works emergency shifts during the
weekend, the surgeon should work two similar emergency shifts.

Each surgeon must have a full week off every time its emergency shift cycle has
completed twice. For example, if there are 8 surgeons of a given rank, they would have
one week off every 16th week. If it is advantageous, the week can be delayed by 1 week,
as long as the delay does not prolong into the following cycles.

There are limits to the maximum number of hours a surgeon can work each week.
There are also limits to the maximum and minimum number of hours each surgeon can
work throughout the planning period. Among surgeons holding the same rank, the dif-
ference in number of emergency shifts worked throughout the planning period must be
restricted.

The demand related to each type of working shift is handled differently. The demand
for emergency shifts must be fulfilled exactly, and is defined for a single rank or groups of
ranks, while the demand for section shifts is stated as preferred and absolute minimum
levels. Each surgeon must also be assigned to coursework shifts and off-shifts.

The number of surgeons of different ranks affiliated to each section constitutes the
foundation of the planning problem. This information is found in the Rank and Section
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Affiliation-matrix (RSA-matrix), see Appendix A.5. Currently, manual methods are used
to find useful rosters. Planners normally start by creating week-long patterns of shifts. As
long as these are of high quality (i.e. not breaking any rules, regulations or norms), and
the transition from one week-long pattern to the next is allowed, it is simple to produce
a surgeon’s schedule for the full 26 weeks. Furthermore, if another surgeon works exactly
the same schedule, shifted by 7 days, the cyclicity of the roster is ensured. To ensure that
the exact demand for emergency shifts is met, planners create week-long patterns that in
total include emergency shifts on all weekdays. If the sum of emergency shifts in all the
week-long patterns meets the demand for emergency shifts every day, the cyclic structure
ensures this demand is met for all days in the initial roster. However, this planning
approach neglects the section demand. Although the initial roster can be changed before
it is considered final, the planning process entails that staffing levels at sections vary
greatly from day to day.

During the execution of the roster, long-term absence can occur, e.g. in case of
parental leave. This can hinder some surgeons in gaining work experience during a plan-
ning period. Because of this, the Clinic of Surgery cannot use a standardized track for
which sections each surgeon should be affiliated to after a certain number of months at
the clinic, and they must plan with a new RSA-matrix in every planning period.

There is a difference in quality between rosters that satisfy the restrictions mentioned.
One key quality that rosters should have, is stability. A stable roster is able to absorb
changes that occur as the roster is executed. At the Clinic of Surgery, absence among
staff is the main challenge. To ensure high stability, it is advantageous that staffing levels
at sections are high enough on all days such that absence does not entail understaffing.
A section with five extra surgeons on a Wednesday can handle an absent surgeon on
that Wednesday very well, but may be vulnerable to absence on the other weekdays. If
measures are put in place so that the overstaffing is spread out on all five weekdays, one
absent surgeon never causes understaffing and the roster is therefore more stable.

There is a similar challenge when surgeons scheduled to work emergency shifts are
absent. However, demand must be met exactly for emergency shifts, making overstaffing
impossible. Thus, we cannot improve the stability of the roster with regards to emergency
shifts. We can, however, introduce measures to improve flexibility. Planners at the Clinic
of Surgery experience that if a surgeon is absent from an emergency day shift, someone
among the working staff is able to cover for him/her without the need for replanning.
This is especially true if there is overstaffing at any of the sections. This means that
reasonable overstaffing at sections is also a flexibility measure for emergency shifts during
daytime. Finding someone to work the emergency night shift is harder. To create flexible
rosters we introduce shadow shifts. Shadow shifts are shifts that reserve a surgeon for
the following night in case absence occurs on the emergency night shift. Surgeons can
work shadow section shifts, shadow coursework shifts or have a shadow off-day. However,
if absence occurs at an emergency night shift, the surgeon assigned the shadow shift is
designated to cover it. If so happens, we say that the shadow shift is realized. When a
surgeon is assigned a shadow shift, we plan as if the surgeon is not available the day after.
This means that we ensure the feasibility of the roster if the surgeon is absent during
the daytime the day after, securing rest after a realized night shift. However, we accept
breaking restrictions on weekly maximum work hours and more consecutive night shifts
if it is due to a realized shadow shift.

Our measures to establish stability and flexibility in rosters are exemplified in Table
3.4, where a small week-long roster for the urology section is shown. Off-shifts are denoted
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Off, section shifts are denoted Sec, and emergency day and night shifts are denoted D and
N respectively. Shadow shifts are indicated by a following asterisk (e.g. Off* is a shadow
off-shift). Shifts that are struck through represent shifts where surgeons are absent when
the shift should be worked.

Table 3.4: Illustration of how overstaffing and shadow shifts are measures to improve
stability and flexibility. Only surgeons affiliated to the small urology section during a
single week are included.

Surgeon M T W T F S S ...
Intern7 Off N Off D Sec Off Off ...
Resident6 Sec Sec Sec Sec Sec Off Off ...
Officer3 Off Sec* Sec Sec D Off Off ...
Officer6 Sec Off Sec Off N N Off ...
Sum Section 2 2 3 2 2 0 0

As seen from Table 3.4, Resident6 is absent from his/her section shift on Thursday.
The sufficient staffing levels at the section is one, and the overstaffing therefore gives a
good quality roster despite absence from the section shift. This is an example of using
tactical overstaffing as a measure to create stability. Furthermore, Intern7 is absent from
an emergency night shift starting Tuesday evening and Officer3 is working a shadow
section shift on Tuesday. Since Officer3 has a higher rank than Intern7, Officer3 may
very well cover for Intern7. This illustrates how the inclusion of shadow shifts is one
way of improving flexibility. It is up to planners to decide if the shadow shift should be
realized when the absence is unveiled. We assume that Officer3 finishes the section shift
on Tuesday if the shadow shift is realized, but in practise this is up to planners, and
likely depends on the time they are notified of Intern7’s absence. If they are notified some
time in advance, they could choose to give Officer3 Tuesday off, but this is not explicitly
implemented as part of the shadow shifts. If planners decide to realize Officer3’s shadow
shift on Tuesday, Officer3 will not work the section shift on Wednesday.

3.3.2 Problem Description

The Semi-Cyclic Ranked Physician Rostering Problem (SCRPRP) addresses the creation
of rosters for surgeons at the Clinic of Surgery. The clinic is divided into sections, and
surgeons have a responsibility to cover shifts at these sections and an emergency depart-
ment in another clinic. Surgeons of different ranks and section affiliations are working at
the clinic. There are different types of shifts: section shifts, emergency shifts (day and
night), coursework shifts and off-shifts. Each surgeon must be assigned exactly one shift
each day.

Surgeons need to meet the total demand for all types of emergency shifts exactly at
all times, and also the minimum requirements of surgeons of certain ranks. All emergency
shifts must be planned in a weekly cyclic structure. Every section has a defined minimum
and preferred level of demand for staff every weekday, depending on its size.

There are regulations stated by the Norwegian Working Environment Act and the
local collective agreement regarding working hours and off-periods that must be adhered
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to.
The quality of a roster is evaluated based on over- and understaffing at the sections,

assigned shadow shifts, the allocation of emergency shifts and weekends, and the varia-
tions in working time between the surgeons. The goal of the SCRPRP is to create the
roster with the highest quality, while satisfying all demand and adhering to all rules and
regulations regarding working conditions.

3.4 Solution method

The full SCRPRP is far too complex to find high-quality integer solutions using standard
commercial MIP solvers within reasonable time for our real-life instances, see Appendix D.
Thus, we develop a two-step matheuristic, presented in Sections 3.4.1 and 3.4.2. Readers
may find the symbol directory in Appendix A useful. No model of the full SCRPRP is
given explicitly in this section, as it is practical to present the problem as part of our
matheuristic. However, a formulation of the full SCRPRP is provided in Appendix B.

The general idea of the two-step matheuristic is to first formulate a simplified version
of the SCRPRP, referred to as Step 1, where the main decisions are allocating the cyclic
emergency shifts. This includes determining the order in which surgeons of a rank cycle.
Furthermore, in Step 2, the remaining SCRPRP is solved, while the emergency shifts are
fixed based on the solution found in Step 1.

The allocation of emergency shifts in Step 1 must be done carefully to be able to
obtain good solutions in Step 2. The simplification in Step 1 entails only defining the
emergency shifts and a generic shift representing all other shifts, referred to as an O-shift.
As a result, fewer variables are defined and most restrictions that deal specifically with
shift types that are comprised by the generic O-shift are disregarded in Step 1. However,
not all restrictions in the full SCRPRP can simply be ignored in Step 1, and provide us
with feasible allocation of emergency shifts. Therefore, some restrictions are introduced
in Step 1, but then removed in Step 2.

In Step 2, the emergency shifts are fixed, and the remaining SCRPRP is solved. The
rostering problem in Step 2 is thus more similar to a classic rostering problem, as the semi-
cyclic structure of the roster is accounted for in Step 1. The set of shifts is considerably
larger in Step 2, as O-shifts are substituted with section shifts, coursework shifts, and
different kinds of off-shifts and shadow shifts. A collection of restrictions specific for these
shift types are also introduced in Step 2.

The key ideas and decisions of the two-step matheuristic are illustrated in Figure 3.1,
to help visualize the general idea of the matheuristic.

3.4.1 Step 1 - Solving the simplified SCRPRP

We define the set of emergency shifts SE = {sED, sEN} where sED is the emergency day
shift and sEN is the emergency night shift. Night shifts begin on the day they are assigned
in the model, and end the day after. In Step 1, the set of all shifts S = {sED, sEN , sO}
also includes the generic O-shift, sO.

Also defined is the set of surgeons E . Every surgeon has a rank r in the set of ranks
R = {rI , rR, rO}, representing interns, residents and officers respectively. The set is
ordered, such that rI < rR < rO. We let ERr denote the set of surgeons with rank r. The
set of days T and the set of weeks W both constitute the planning horizon, and subsets
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Figure 3.1: The key ideas and decisions in Step 1 and Step 2 of the matheuristic.

of these are introduced as they become relevant. We structure the presentation of the
matheuristic similarly to the key ideas in Figure 3.1.

Cyclic emergency shifts

The required staffing levels DET
s for surgeons must be met exactly for all emergency

shifts s on every day. However, there are also minimum requirements for the ranks of
the surgeons working the emergency shifts at different times, given by DER

rs . The binary
decision variable xest is 1 if surgeon e is assigned shift s on day t, 0 otherwise.∑

e∈E
xest = DET

s , s ∈ SE , t ∈ T (3.1)

∑
r∈R|r≥r2

∑
e∈ERr

xest ≥ DER
r2s , r2 ∈ R, s ∈ SE , t ∈ T (3.2)

xest ∈ {0, 1}, e ∈ E , s ∈ S, t ∈ T (3.3)

Constraints (3.1) state that the total demand for emergency shifts is met every day.
Constraints (3.2) ensure sufficient staffing of surgeons holding the required ranks and
constraints (3.3) declare the binary variables.

The combination of cyclicity, constraints (3.1), and constraints (3.2) implies that
surgeons of a given rank can cover emergency demand by sharing responsibility for demand
within their rank or within a group of multiple ranks. E.g., assume the total demand for
emergency nights shifts is two, DET

sEN = 2, while the ranked demand for emergency night
shifts is two for interns, but one for residents and officers (DER

rIsEN = 2, DER
rRsEN = 1,

DER
rOsEN = 1). In this example, it is possible for the officers to share the responsibility

of covering one emergency night shift each day, while interns and residents share the
responsibility of the other emergency night shift each day.

Because of the surgeons’ rank and section affiliation, the cycle order of the surgeons
matters and is decided by the model. We call one surgeon of each rank r first surgeon,
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which we denote εr and then we define the lag of another surgeon to be the number
of weeks after which this surgeon repeats the emergency shifts of the first surgeon. It
should be noted that fixing a first surgeon rather than making this a decision in the
model does not affect the optimal objective value. For any given roster not in conflict
with the constraints that ensure the cyclic structure, anyone of the surgeons in a rank
could be defined as the first surgeon. Following the same line of reasoning, for any given
roster of a problem consisting of multiple ranks, there is a minimum of

∏
r∈R |ERr | feasible

combinations of first surgeons and lags. Defining first surgeons for each rank is thus a
way to break symmetry in the problem.

We define the set of lags for rank r as Lr = {0, . . . , |ERr |−1}. The associated variable
λel is 1 if surgeon e lags l weeks and λ(εr)0 = 1 denote that the first surgeon lags 0 weeks.

λel(x(εr)st − xes(t+7l)) = 0,

r ∈ R, e ∈ ERr , s ∈ SE , t ∈ T , l ∈ Lr |e 6= εr, t ≤ 7|ERr | (3.4)

xest − xes(t+7|ERr |) = 0, r ∈ R, e ∈ ERr , s ∈ SE , t ∈ T |t ≤ |T | − 7|ERr | (3.5)∑
e∈ERr

λel = 1, r ∈ R, l ∈ Lr (3.6)

∑
l∈Lr

λel = 1, r ∈ R, e ∈ ERr (3.7)

λel ∈ {0, 1}, r ∈ R, e ∈ ERr , l ∈ Lr (3.8)

Constraints (3.4) connect the emergency shifts worked by the first surgeon of any rank
with its following surgeons. This implies connecting week 1 of the first surgeon with week
2 of the surgeon with lag 1, week 3 of the surgeon with lag 2, etc. However, for the cyclic
structure to hold, we also need the emergency shifts to repeat themselves every time a
cycle has finished. This is ensured by constraints (3.5). Unique combinations of surgeons
and lags are established by constraints (3.6) - (3.7). As constraints (3.4) are non-linear,
we provide a linearization, see constraints (124) and (125) in Appendix C.

Create space for section shifts

In Step 1, the model does not explicitly assign section shifts. Rather, we allocate O-
shifts that can potentially become section shifts in Step 2. We introduce the set T ′

as
all weekdays. Furthermore, we define the sets A and AL representing all sections and
all large sections respectively, and set EAa as the set of surgeons affiliated with section a.
To track the staffing relative to the section demand, a binary variable δew that is 1 if no
emergency shift is planned during week w is introduced together with yO1

at , yO2
at and yUat,

which are 1 if section a is overstaffed by one or two surgeons or understaffed by one day
t. Finally, the variable uNCet is 1 if surgeon e works a night shift day t− 1.∑

e∈EAa

xesOt −
∑
e∈EAa

uNCet −
∑
e∈EAa

δew − yO1
at − yO2

at + yUat ≥ DA
a , a ∈ A, t ∈ T

′
(3.9)

xesOt + xesEN (t−1) − uNCet ≤ 1, e ∈ E , t ∈ T
′

(3.10)

uNCet ∈ {0, 1}, e ∈ E , t ∈ T
′

(3.11)
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yO1
at ∈ {0, 1} a ∈ A, t ∈ T

′
(3.12)

yO2
at ∈ {0, 1}, a ∈ AL, t ∈ T

′
(3.13)

yUat ∈ {0, 1}, a ∈ A, t ∈ T
′

(3.14)

Constraints (3.9) ensure sufficient surgeons affiliated to each section working O-shifts,
DA
a being the required staffing level at section a. Surgeons working night shifts the day

before or having off-weeks are subtracted since these O-shifts most likely cannot be turned
into section shifts. Over- and understaffing is handled, a high penalty for understaffing
and decreasing marginal utility for overstaffing guaranty correct values. In Step 2, most
of the O-shifts will be specified to section shifts, thus ensuring sufficient staffing levels in
the final roster. The variable uNCet is set to 1 when surgeon e works a night shift the day
before an O-shift in constraints (3.10). As Constraints (3.11) - (3.14) declare the variables
as binary, we have laid the groundwork for good staffing levels at the sections in Step 2.

Create space for off-weeks

Every surgeon should have an have a full week off every time the surgeon has worked for
two full emergency shift cycles (e.g. 16 weeks for a person in a rank of 8 surgeons). We
define a binary variable δew that is 1 if no emergency shifts are allocated to surgeon e
week w.

∑
t∈TW

w

xesOt ≥ 7δew, r ∈ R, e ∈ ERr , w ∈ W

(3.15)∑
e∈ERr

(δe(w−1) + δew) = 1, r ∈ R, w ∈ W |mod(w, 2) = 0

(3.16)

δe(w−1) + δew = δe(w−1+2|ERr |) + δe(w+2|ERr |), r ∈ R, e ∈ ERr , w ∈ W |mod(w, 2) = 0

(3.17)

δew ∈ {0, 1}, e ∈ E , w ∈ W
(3.18)

Constraints (3.15) force surgeon e to only have O-shifts when δew = 1 for week w.
Constraints (3.16) make sure that during any pair of weeks (1 and 2, 3 and 4, etc.) there
is exactly one surgeon of each rank that has a week without any emergency shifts. By
letting the model choose one week without emergency shifts from a pair of weeks, we allow
some flexibility in deciding when the surgeons will be unavailable for section work in Step
2. Constraints (3.17) ensure the pair of potential off-weeks is repeated every time the
surgeons of rank r have rotated fully twice, i.e. every 2|ERr | weeks. This means off-weeks
are awarded regularly to all surgeons throughout the planning period.

Regulations and norms

Many norms depend on the different days of the week. We therefore note that any day
t ∈ T where mod(t, 7) = 1 is a Monday, t ∈ T where mod(t, 7) = 2 is a Tuesday, etc. We
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also define the sets T Sat and T Sun to include all Saturdays and Sundays in the planning
period, respectively.∑

s∈S
xest = 1, e ∈ E , t ∈ T (3.19)

xesEN (t−1) + xesEDt ≤ 1, e ∈ E , t ∈ T |t > 1 (3.20)

xesEN (t−2) + xesO(t−1) + xesEN t ≤ 2, e ∈ E , t ∈ T |t > 2 (3.21)

t∑
τ=t−PN

xesENτ − zCNet ≤ P
N
, r ∈ R, e ∈ ERr , t ∈ T |t /∈ T Sat, t > P

N
(3.22)

t∑
τ=t−PN−1

xesENτ ≤ P
N
+ 1, e ∈ E , t ∈ T |t /∈ T Sat, t > P

N
+ 1 (3.23)

xesEDt − xesED(t−1) = 0, e ∈ E , t ∈ T Sun (3.24)

xesEN t − xesEN (t−1) = 0, e ∈ E , t ∈ T Sat (3.25)

∑
s∈SE

P
CW

+1∑
τ=1

xes(t−7(τ−1)) − zCWet ≤ PCW , e ∈ E , t ∈ T Sat |t > 7P
CW

(3.26)

∑
t∈TW

w

xesEDt − zCErt ≤ PEDS , r ∈ R, e ∈ ERr , w ∈ W |r 6= rO (3.27)

zCNet ∈ {0, 1}, r ∈ R, e ∈ ERr , t ∈ T |r 6= rO (3.28)

zCWet ∈ {0, 1}, e ∈ E , t ∈ T Sat (3.29)

zCErt ∈ {0, 1}, r ∈ R, t ∈ T |r 6= rO (3.30)

Constraints (3.19) ensure that each surgeon e should be allocated exactly one shift s
per day t. Constraints (3.20) establish sufficient rest between two shifts, by stating that a
surgeon e cannot work a night shift followed by a day shift, and constraints (3.21) ensure
that no surgeon works the very disfavoured work pattern of a night shift on day t−2, an O-
shift on day t−1 and a night shift again on day t. Constraints (3.22) penalize employees e
of rank r working more than P

N
consecutive night shifts through assigning binary variable

zCNet = 1, while constraints (3.23) prevent the pattern associated with such a relaxation
on two consecutive days for the same surgeon. The constraints are not active when ending
on Saturdays, as surgeons prefer combining working the two nights beginning Friday and
Saturday. As seen from Constraints (3.28), zCNet is not defined for surgeons of rank rO.
The relaxation in constraints (3.22) is thus impossible in cases involving surgeons holding
the rank officer. Constraints (3.24) and (3.25) ensure that every surgeon works the same
shifts during the weekend (night shifts begin on the day they are assigned). Emergency
shifts are the only work shifts that can occur during weekends, which implies that an
O-shift during the weekend will be an off-day or a shadow shift in Step 2. Constraints
(3.26) establish that no surgeon works P

CW
consecutive weekends without penalizing the

objective function through binary variable zCWet = 1 for surgeon e on Saturday t. The set
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T Ww includes all days during week w. To avoid congestion of long emergency day shifts
for a surgeon during a single week, constraints (3.27) impose soft constraints for interns
and residents working more than PEDS emergency day shifts per week. This is penalized
through variables zCErt , which is only defined for interns and residents, as they have long
emergency day shifts. Constraints (3.28) - (3.30) declare several key variables.

∑
s∈SE

∑
t∈TW

w |t6∈T Sat

xest ≤ P
WE

, e ∈ E , w ∈ W (3.31)

∑
s∈SE

∑
t∈T

xest − vEr ≤ 0, r ∈ R, e ∈ ERr (3.32)

∑
s∈SE

∑
t∈T

xest − vEr ≥ 0, r ∈ R, e ∈ ERr (3.33)

vEr − vEr − vEr ≤ P
NES

, r ∈ R (3.34)

vEr , v
E
r , v

E
r ≥ 0, r ∈ R (3.35)

Constraints (3.31) limit the number of emergency shifts each week (excluding Sat-
urdays) to a maximum of P

WE
, thus spreading out unpopular emergency shifts. Con-

straints (3.32), (3.33), and (3.34) ensure that if the difference in number of emergency
shifts worked by any two employees of rank r is larger than P

NES
, it is penalized through

variables vEr . The introduction of vEr in constraints (3.34) and having a positive right
hand side 1 is relevant if the planning period ends without finalizing all emergency shift
cycles. E.g. if we plan for 26 weeks with one group of surgeons of 10 employees of the
same rank, they have only finished 6 of the last 10 weeks in their cycle, meaning they
may not have worked an identical number of emergency shifts.

Symmetry breaking constraints

We introduce constraints to reduce symmetry in the problem.

l1∑
l2=1

λe1l2 −
l1∑
l2=1

λe2l2 ≤ 0,

a ∈ A, r ∈ R, e1, e2 ∈ (EAa ∩ ERr ), t ∈ T , l1 ∈ Lr |e1 6= e2, e1 6= εr, e2 6= εr (3.36)

For homogeneous surgeons, the schedules could be swapped between them for the
entire planning period without affecting the quality of the roster. To avoid this symmetry,
constraints (3.36) reduce the solution space by sorting homogeneous surgeons by lag
indices. Preliminary testing demonstrates that this reduces the computation time for
Step 1.

Objective function

The objective function is extensive due to the many different considerations to handle
when creating high-quality rosters at the Clinic of Surgery. All variables in the objective
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function are given different base letters dependent on their role in the formulation. Vari-
ables related to the quality of staffing levels at the sections are given base letter y, while
those related to consecutive shifts or congestion of long shifts have base letter z. The
base letter v implies that the variable affects how shifts are divided between surgeons. All
parameters in the objective function are given the base letter W , representing the weight
given to each decision variable.

Max Z =
∑
a∈A

∑
t∈T ′

WO1yO1
at +

∑
a∈AL

∑
t∈T ′

WO2yO2
at −

∑
a∈A

∑
t∈T ′

WUyUat

−
∑
e∈E

∑
t∈T

WCNzCNet −
∑
r∈R

∑
t∈T

WCEzCErt −
∑
e∈E

∑
t∈T Sat

WCW zCWet −
∑
r∈R

WEvEr (3.37)

The objective function terms including variables with base letter y reward overstaffing
and penalize understaffing. Objective function terms with base letter z penalize working
too many consecutive nights, working more than a given number of emergency day shifts
in a single week and working too many consecutive weekends. The objective function
term with base letter v penalizes variations in the number of emergency shifts between
surgeons of the same rank. To provide insights to the relative weights of the objective
function terms, see Table 13 in Appendix A.4.

3.4.2 Step 2 - Solving the full SCRPRP

In Step 1 we assigned the cyclic emergency shifts. In Step 2, the matheuristic must assign
specific shifts where O-shifts were assigned in Step 1, to create full rosters.

Cyclic emergency shifts

Assume the parameter XS1
est is the value of the x-variables of the emergency shifts for the

best solution found in Step 1, then we can add the following constraints.

xest = XS1
est, e ∈ E , s ∈ SE , t ∈ T (3.38)

Constraints (3.38) fix all emergency shifts from the solution obtained in Step 1, thus
fixing significant parts of the roster. This means that solving Step 2 is a more classic
nurse rostering problem.

The O-shift is now replaced by off-shifts, section shifts and coursework shifts, as
well as shadow shifts. This means that the set of all shifts, S, now includes all shifts
defined in Step 2, and several Constraints in Step 1 remain unchanged in Step 2 if we
disregard this change. There are two types of off-shifts, sNOff , is the normal off-shift,
while the protected off-shift, sPOff implies a minimum number of rest hours. We define
SOff = {sNOff , sPOff}. Finally, we have the section shift, sSec, and the coursework
shift sCW .

Shadow shifts are defined to have one realized and one unrealized mode. The set
of shadow shifts SSS consists of sSO, sSCW and sSSec representing shadow shifts that
are off-shifts if unrealized, coursework shifts if unrealized, and section shifts if unrealized
respectively, i.e. SSS = {sSO, sSCW , sSSec}.

If realized, a shadow shift becomes an emergency night shift. In practise, this could
happen on short notice. It is therefore important that rosters are created to maintain
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high quality if the surgeon working the shadow shift becomes unavailable for his or her
section shift the following day. Because of the potentially short notice, we assume that
surgeons working shadow section shifts on a given day will work the entire section shift
and then continue to work emergency night shifts starting later that same day. Therefore,
we do not accept assigning any kind of day shift the day after working a shadow shift,
thus ensuring surgeons get rest after their shadow shift is potentially realized. We define
the set SN as all shifts that can entail night work, which includes emergency night shifts
and shadow shifts, i.e. SN = {sEN}

⋃
SSS . It should be noted that the inclusion of

shadow shifts does not affect the feasibility of the full SCRPRP, as it is possible not to
realize any of the shadow shifts.

Constraints (3.1), (3.2), (3.4) - (3.8), and (3.36) are redundant in Step 2, as they must
hold due to the fixation in Constraints (3.38). Constraints (3.3) are still active, and set
definitions are updated as explained in the previous paragraphs.

Assign section shifts

When assigning section shifts we introduce the binary variables uSecAet , which is 1 if surgeon
e works a section shift on day t, the day after a shadow shift. This implies that although
the surgeon may work at the section that day, we have no guarantee that the surgeon is
available for work at the section when the day arrives. To keep track of the shadow shifts,
we also introduce ySSrt being 1 if a shadow shift is assigned to surgeons of rank r on day t.∑

e∈EAa

xesSect − yO1
at − yO2

at + yUat − uSecAet ≥ DA
a , a ∈ A, t ∈ T

′
(3.39)

∑
s∈SSS

xes(t−1) + xesSect − uSecAet ≤ 1, e ∈ E , t ∈ T
′

(3.40)

∑
e∈ERr

∑
s∈SSS

xest − ySSrt ≥ 0, r ∈ R, t ∈ T (3.41)

∑
r∈R

ySSrt ≤ P
SR
, t ∈ T (3.42)

∑
t∈T

(xesCW t + xesSCW t) = |W|/2, e ∈ E (3.43)

uSecAet ∈ {0, 1}, e ∈ E , t ∈ T
′

(3.44)

ySSrt ∈ {0, 1}, r ∈ R, t ∈ T
′

(3.45)

Constraints (3.9) are substituted for Constraints (3.39). Constraints (3.40) connect
uSecAet with the shift variables and constraints (3.41) handle the shadow shifts. Constraints
(3.42) limit the number of shadow shifts each day to P

SR
. Every surgeon should do

coursework on average every second week, as enforced by constraints (3.43). It should
be noted, that if a surgeon is assigned to a shadow coursework shift and this is realized,
constraints (3.43) are not complied with when the roster is executed. This is considered
acceptable, however, and is a practical issue that is typically resolved easily at the Clinic
of Surgery.
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Constraints (3.10) and (3.11), as well as variables uNCet are not part of Step 2. The
declaration of y-variables in Constraints (3.12) - (3.14) remain active in Step 2.

Assign off-weeks

Ensuring a full week off for all employees, as stated in constraints (3.15) - (3.18) does not
need much adjustment.∑

s∈SOff

∑
t∈TW

w

xest ≥ 7δew, r ∈ R, e ∈ ERr , w ∈ W (3.46)

Constraints (3.46) allow for δew to take value 1 if the shifts assigned are off-shifts, rather
than any choice of O-shift, as presented in Constraints (3.15). Constraints (3.16) - (3.18)
remain active in Step 2.

Regulations and norms

The constraints handling regulations and norms are updated to reflect the assignment of
specific shifts and not the generic O-shifts as in Step 1.

xesEN (t−1) −
∑

s2∈{sEN ,sSO}
⋃
SOff

xes2t ≤ 0, e ∈ E , t ∈ T (3.47)

xes1(t−2) +
∑

s2∈SOff

xes2(t−1) + xes1t ≤ 2, e ∈ E , s1 ∈ SN , t ∈ T (3.48)

xes1(t−1) + xesPOff t ≤ 1, e ∈ E , s1 ∈ SN , t ∈ T (3.49)∑
t∈TW

w

xesPOff t = 1, e ∈ E , w ∈ W (3.50)

∑
s∈SN

t∑
τ=t−PNS

xesτ ≤ P
NS
, r ∈ R, e ∈ ERr , t ∈ T |t /∈ T Sat, t > P

NS
(3.51)

xest − xes(t−1) = 0, e ∈ E , s ∈ SSS , t ∈ T Sat (3.52)

∑
s∈SE

⋃
{sSO}

P
CW

+1∑
τ=1

xes(t−7(τ−1)) − zCWet ≤ PCW ,

e ∈ E , t ∈ T Sat (3.53)

∑
s∈SOff

t∑
τ=t−PCD

xest ≥ 1− zCDet , e ∈ E , t ∈ T |t > PCD (3.54)

∑
s1∈SSS

xes1(t−1) + xesEDt ≤ 1, e ∈ E , t ∈ T (3.55)

zCDet ∈ {0, 1}, e ∈ E , t ∈ T (3.56)
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Constraints (3.47) replace constraints (3.20) to ensure an emergency night shift is only
succeeded by another emergency night shift or an off-shift. This includes shadow shifts
that are off-days if unrealized. Constraints (3.48) replace constraints (3.21) to prevent
off-shifts from being placed between night shifts or shadow shifts, as this is deemed an
unreasonable work pattern by surgeons. Constraints (3.49) establish that protected off-
days are not allocated the day after a night shift, as the minimum rest time rule would be
violated. Furthermore, constraints (3.50) enforce weekly protected off-days. A maximum
number of night shifts P

NS
including shadow shifts is given in constraints (3.51), while

constraints (3.52) ensure that surgeons working shadow shifts during the weekend do so
both days. Constraints (3.51) and (3.52) are not conflicting as P

NS
> 1. Constraints

(3.53) is updated from constraints (3.26), and now include shadow shifts when penalizing
too many consecutive work weekends. Constraints (3.54) allocate a penalty for working
PCD consecutive days.

There is an important difference in the flexibility of shift patterns including emergency
night shifts and shadow shifts. Shadow shifts can very well be succeeded by section shifts
or coursework shifts. This presupposes that the surgeon working the shadow shift is
not integral to the staffing at sections the day after in case the shadow shift is realized.
However, shadow shifts cannot be followed by an emergency day shift. This is ensured
by constraints (3.55).

Further, constraints dealing with regulations and norms in Step 1 are handled as
follows. Constraints (3.19) remain active with new set definitions in Step 2. Constraints
(3.22), (3.23), (3.24), (3.25), (3.27), (3.28), (3.29), and (3.30) remain active in Step 2.
The same is true for constraints (3.31) - (3.35).

Work time constraints

When specifying the O-shift, weekly and total work time is relevant.∑
s∈S

∑
t∈TW

w

PHrstxest ≤ H
W
, r ∈ R, e ∈ ERr , w ∈ W (3.57)

∑
s∈S

∑
t∈T

PHrstxest − |W|v ≤ |W|PTH , r ∈ R, e ∈ ERr (3.58)

∑
s∈S

∑
t∈T

PHrstxest + |W|v ≥ |W|PTH , r ∈ R, e ∈ ERr (3.59)

∑
s∈S

∑
t∈T

PHrstxest − vRHr ≤ 0, r ∈ R, e ∈ ERr (3.60)

∑
s∈S

∑
t∈T

PHrstxest − vRHr ≥ 0, r ∈ R, e ∈ ERr (3.61)

vRHr − vRHr − vRHr ≤ 0, r ∈ R (3.62)

vRHr1 − v
RH
r2 − v

R2H
r1 ≤ 0, r1, r2 ∈ R|r1 < r2 (3.63)

v, v ≥ 0 (3.64)

vRHr , vRHr , vRHr , vR2H
r ≥ 0, r ∈ R (3.65)
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Constraints (3.57) limit the weekly maximum work hours to H
W

when disregarding
any realized shadow shifts in compliance with regulations. Variables v and v represent the
maximum positive and negative deviations from the ideal number of weekly hours PTH
worked on average throughout the planning horizon by any surgeon. This is ensured
by constraints (3.58), that represent budgetary restrictions, and constraints (3.59), that
establish that surgeons get necessary experience and match normative salary levels. The
deviation is later penalized in the objective function. As a consequence, work hours should
be somewhat evenly divided between surgeons of the same rank. Constraints (3.60),
(3.61), and (3.62) ensure that the difference in total work hours for any two employees of
rank r is penalized through variable vRHr . Furthermore, it is deemed unfair for surgeons
of a lower rank to be given significantly more work than surgeons of higher ranks. As
constraints (3.62) already establish a quite even distribution of hours between surgeons of
the same rank, it is sufficient to ensure that the most working surgeon of higher ranks are
working at least as much as the most working surgeons of lower ranks. This is enforced
in constraints (3.63), and penalized by variables vR2H

r .

Objective function

The objective function in Step 2 is the total objective function with all aspects included.

Max Z =
∑
a∈A

∑
t∈T ′

WO1yO1
at +

∑
a∈A

∑
t∈T ′

WO2yO2
at −

∑
a∈A

∑
t∈T ′

WUyUat +
∑
r∈R

∑
t∈T

WSS
r ySSrt

−
∑
e∈E

∑
t∈T

WCNzCNet −
∑
r∈R

∑
t∈T

WCEzCErt −
∑
e∈E

∑
t∈T Sat

WCW zCWew −
∑
e∈E

∑
t∈T

WCDzCDet

−
∑
r∈R

WEvEr −W (v + v)−
∑
r∈R

WRHvRHr −
∑

r∈R|r 6=rO
WR2HvR2H

r (3.66)

The objective function terms with base letter y are unchanged, with the addition of
a term rewarding the use of shadow shifts. Objective function terms with base letter z
are identical to those in Step 1, with the addition of penalizing too many consecutive
work shifts using variables zCDet . There are multiple additions to the objective function
in Step 1, in terms of variables with base letter v. The objective function in Step 2 also
penalizes deviation from the total number of appropriate work hours, differences in work
hours between surgeons of the same rank and surgeons of higher ranks working less than
those of lower ranks. To provide insights to the relative weights of the objective function
terms, see Table 13 in Appendix A.4.

3.5 Computational study

The matheuristic is implemented in Mosel and the models are solved using Xpress-
Optimizer Version 8.8.1. The software is run on Lenovo NextScale nx360 M5 computers
with the specifications below.

CPU: 2x 3.4GHz Intel E5-2643v3 – 6 core
RAM: 512Gb
Disk: 120Gb SATA SSD
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During preliminary testing the full SCRPRP was run for up to 10 hours using Xpress-
Optimizer Version 8.8.1 on standard settings. These results can be found in Appendix
D.

When running our two-step matheuristic, each step was run for one hour. The au-
tomatic cut generation of the Xpress-Optimizer was turned off in Step 1, as preliminary
testing showed that the cuts generated did not improve the dual bound significantly.

The computational study is divided into two parts. In the first part, shadow shifts
are not included. Since the current manual planning at the Clinic of Surgery does not
support the introduction of shadow shifts, this gives a fair comparison between the manual
planning and the matheuristic under the same assumptions. The second part compares
solutions from the matheuristic with and without shadow shifts to evaluate the potential
of including them in the planning. We also present an excerpt of a roster produced by
the matheuristic in Appendix F, which can provide some intuition to what a solution to
the SCRPRP looks like.

3.5.1 Instances and parameters

Some parameter values are provided by rules and regulations, while others are decided
in cooperation with a group of planners, the Head of Department of Physicians and the
Head of the Clinic of Surgery. Preliminary test results have been presented to them to
facilitate discussion, leading to an iterative process of testing different parameter values.

The objective function weights are examples of values that have been discussed ex-
tensively. When discussing over- and understaffing, for example, the relative magnitude
of weights provide insights to their relative priority. However, when discussing the weight
of objective function terms that penalize the relaxation of constraints, we have had better
experiences comparing excerpts of rosters produced by the model with suggested param-
eter values. All parameters values used in the computational study are presented in
Appendix A.4.

Real-life data in the form of five RSA-matrices from Spring 2017 to Spring 2019
constitute our five instances, see Appendix A.5. The instances are named ’S’ or ’A’ for
spring and autumn followed by the year, e.g. S18 means Spring 2018. When discussing
these instances, they are referred to as e.g. the S18 instance.

As discussed in Section 3.3, rosters are subject to disruptions during the online op-
erational planning. Thus, the real-life rosters best suited for comparison are the original
ones, produced before the period it is planned for. In practise, planners edit the rosters
as disruptions occur without saving the original rosters, and these were impossible to
retrieve. The last 16 weeks of the real-life roster for Spring 2019 was still unedited, and
is used as basis of comparison.

In the case study, the total demand for emergency night shifts is two. While one
surgeon must hold the rank officer, the other can hold any rank. This means that interns
and residents can share the responsibility for covering one emergency night shift, as ex-
emplified in Section 3.4. When running the matheuristic, this is simplified by defining
lag numbers for the combined group of interns and residents sharing the responsibility for
one nightly emergency shift.
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3.5.2 Creating rosters using the matheuristic

In this section, we run all five instances without shadow shifts. This is interesting as no
shadow shifts are currently used in real-life planning, meaning we get a chance to see how
our matheuristic performs under the same assumptions.

In Table 3.6, we present results for each instance. For both steps, we present the
objective value of the best feasible solution found, Z, the best dual bound, BB, and the
objective value of the linear relaxation, LP-bound. We also present the value of each part
of the objective function, here denoted by the respective variables. For all variables in
the objective function, we present values of both their weighted (W) and non-weighted
(NW) sums (e.g. both

∑
a∈A

∑
t∈T ′ WO1yO1

at and
∑
a∈A

∑
t∈T ′ yO1

at ).

Table 3.6: Results after running Step 1 and Step 2 of the five instances without defining
shadow shifts. For each instance we present weighted (W) and non-weighted (NW) sums
of variables in the objective function. The second column indicates if a positive value of
a variable has a positive (+) or negative (-) contribution to the objective function value.

Instance +/− S17 A17 S18 A18 S19
W NW W NW W NW W NW W NW

Step 1
Z 1390.0 1388.0 1328.0 1382.0 1321.0
BB 1430.0 1430.0 1430.0 1430.0 1430.0
LP-bound 1430.0 1430.0 1430.0 1430.0 1430.0

Step 2
Z 1208.3 1216.4 1109.7 1138.7 1055.8
BB 1247.7 1243.3 1137.0 1172.4 1084.1
LP-bound 1251.6 1250.0 1139.1 1173.4 1091.0

yO1
at + 1016.0 508.000 1014.0 507.000 1024.0 512.000 1018.0 509.000 996.0 498.000
yO2
at + 226.0 226.000 232.0 232.000 172.0 172.000 182.0 182.000 131.0 131.000
yUat − 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0.000

zCN
et − 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0.000
zCE
rt − 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0.000
zCW
ew − 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0.000
zCD
et − −5.0 1.000 −5.0 1.000 0.0 0.000 0.0 0.000 −5.0 1.000

vEr − 0.0 0.000 0.0 0.000 −60.0 3.000 −20.0 1.000 −40.0 2.000
v − −11.5 0.115 −12.5 0.125 −14.4 0.144 −28.8 0.288 −10.6 0.106
v − −8.7 0.087 −6.7 0.067 −2.9 0.029 0.0 0.000 −6.7 0.067
vRH
r − −8.5 0.423 −5.4 0.269 −9.0 0.452 −12.5 0.625 −8.8 0.442
vR2H
r − 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0.000

The LP-bound in Step 1 is identical for all five instances and the BB is equal to them
in all cases. This implies that the problem is highly symmetric. Despite identical LP-
bounds and BBs, there is considerable difference in the Z values for the five instances in
Step 1, and this is transmitted to Step 2. As can be expected, Z in the first step solutions
in Table 3.6 seem to affect the LP-bound values in Step 2, which again relate to the final
objective function values found in Step 2. The instances are not solved to optimality, as
seen from the differences between the Z and BB-values for Step 2 in Table 3.6.

The quality of staffing levels seems to be very good for all instances. Firstly, there are
no cases of understaffing (yUat). Furthermore, the planning period of 26 weeks with four
sections to cover five times per week entails a maximum of 520 cases of single-surgeon
overcoverage (yO1

at ). We are able to reach between 498 and 512 in all instances, thus
ensuring overcoverage on almost all sections on all days. Similarly, there are three large
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sections that can be overstaffed with two surgeons (yO1
at ), entailing a maximum of 390

double overcoverages (note that overcoverage by two surgeons implies overcoverage by
one surgeon as well). We are able to reach between 131 and 232 in all instances, as
presented in Table 3.6.

There are no unwanted consecutive shifts (zCNet , zCErt ) nor congestion of emergency
day shifts (zCWew ). However, in three instances we get an occurrence of seven consecutive
workdays (zCDet ).

The fairness regarding emergency shifts (vEr ) and deviations from the ideal number
of weekly hours (v, v) is high. The largest difference in number of emergency shifts over
the planning period is three and the largest deviations from the ideal number of weekly
hours are around 17 minutes too much and around 5 minutes too little. This amounts to
7.75 and 2.3 hours for the full planning horizon, respectively. As the shortest shifts are
7.75 hours, this is considered acceptable. There are differences in working hours among
surgeons with the same rank (vRHr ), around 37 minutes per week at most, but higher
ranked surgeons are working more than lower ranked (vR2H

r ).
When comparing the results from the matheuristic with the real-life case, a precon-

dition is that the last 16 weeks of the real-life roster for Spring 2019 is representative of a
typical roster produced at the Clinic of Surgery, see Table 3.7. We believe this precondi-
tion is supported since all emergency shift cycles have finished at least once, including the
combined cycle of shared emergency night shifts for interns and residents. We present the
values from the real-life roster from Spring 2019, Real-life, and the corresponding values
from the matheuristic run on the same RSA-matrix, S19. We also include the average
values from Spring 2017 to Autumn 2018, Avg. S17-A18. To compare the quality of our
produced rosters with that of the real-life roster, we divide all objective function values
with the number of weeks it has been planned for to get comparable results in Table 3.7.

In the real-life roster there are 3 cases of section understaffing so severe that they
could not be compensated for by the yUat variable (0 surgeons at a large section), implying
that the real-life roster is infeasible in our formulation of the SCRPRP. Results in Table
3.7 are calculated as if there was one more surgeon working at the relevant section on the
days of infeasibility. Results of the comparison are presented in Table 3.7.

The S19 instance has a somewhat lower objective function value than the Avg. S17-
A18 instance, implying the RSA-matrix entails a somewhat more challenging problem
than in the other instances. The roster produced in real-life is best compared with the
instance S19, that has the same RSA-matrix.

It is clear that the matheuristic outperforms the roster created in real-life for S19.
As we have no real-life roster available for earlier planning periods, we cannot directly
compare the performance of our matheuristic for the Avg. S17-A18 instance. We do,
however, note that staffing levels are evenly high for these instances and that understaffing
does not occur. As understaffing and fluctuations in staffing levels have been major issues
at the Clinic of Surgery previously, this indicates that our matheuristic performs well for
the Avg. S17-A18 instance.

The largest contribution to the difference between the results of the matheuristic
and the real-life results in Table 3.7 is from understaffing. Even when disregarding the
infeasibility in the real-life case, yUat = 1.25 indicates that there is understaffing more
than once per week in one of the sections. In sharp contrast, there is no understaffing for
any roster produced by the matheuristic. Another key difference is the relatively unfair
schedules found in the real-life roster.

To provide a clearer overview of how staff is divided in the roster produced by our
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Table 3.7: Objective function scores divided by the number of weeks in the roster. For
each instance we present weighted (W) and non-weighted (NW) sums of variables in the
objective function. The second column indicates if a positive value of a variable has a
positive (+) or negative (-) contribution to the objective function value.

Instance +/− Avg. S17-A18 S19 Real-life
W NW W NW W NW

Z 44.9 40.6 −132.8
yO1
at + 39.2 19.577 38.3 19.154 30.6 15.313
yO2
at + 7.8 7.808 5.0 5.038 7.9 7.938
yUat − 0.0 0.000 0.0 0.000 −125.0 −1.250
zCN
et − 0.0 0.000 0.0 0.000 0.0 0.000
zCE
rt − 0.0 0.000 0.0 0.000 0.0 0.000
zCW
ew − 0.0 0.000 0.0 0.000 0.0 0.000
zCD
et − −0.1 0.019 −0.2 0.038 −4.7 0.938

vEr − −0.8 0.038 −1.5 0.077 −5.0 0.250
v − −0.6 0.006 −0.4 0.004 −27.7 0.277
v − −0.2 0.002 −0.3 0.003 −2.8 0.028
vRH
r − −0.3 0.017 −0.3 0.017 −6.1 0.306
vR2H
r − 0.0 0.000 0.0 0.000 0.0 0.000

matheuristic and the real-life roster, we present frequencies of overstaffing during week-
days at the large section upper gastric, see Figure 3.2. The 16 weeks we have real-life data
for (blue hashed bars) are compared to the roster produced by the matheuristic for the
same 16 weeks (red bars). Note that there are only six surgeons affiliated to the upper
gastric section in the real-life instance and the S19 instance, while the required staffing
level (overstaffing of 0) is 2.
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Figure 3.2: Frequency of overstaffing for the first 16 weeks of the real-life roster and the
S19 roster.

From Figure 3.2 it is clear that staff is far more evenly divided between weekdays in
the roster produced by the matheuristic. Despite only having 6 surgeons to choose from
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Figure 3.3: The number of surgeons working section shifts at the upper gastric section
from weekdays 1 to 80. The black solid line represents the real-life roster, while the blue
dashed line represent the roster created by the matheuristic, both for the RSA-matrix in
instance S19. The thick red dashed line marks the minimum required number of surgeons.

every day, the matheuristic is able to overstaff the upper gastric section 75 times out of
80. However, the matheuristic does not provide double overstaffing once during the 16
weeks.

There is a considerable variation in staffing levels at the upper gastric section in the
real-life roster. In fact, there is one section shift without surgeon, which is infeasible
in our matheuristic. At the other end of the spectrum, the real-life instance assigns all
six surgeons, i.e. quadruple overstaffing, to work section shift on four occasions. This
demonstrates one of the key differences in solutions produced by the matheuristic and the
real-life solution. The matheuristic is able to divide staff resources evenly for all sections
over time, ensuring many occurrences of single overstaffing and few of understaffing.

While Figure 3.2 demonstrates the accumulated cases of different levels of overstaffing,
it does not provide insights into how the staffing at a section changes from day to day.

In Figure 3.3, we plot the 16 weeks (weekends are still excluded). The black solid line
represents the number of surgeons working a section shift each day at the upper gastric
section in the roster created in real-life. The blue dashed line represents the same data
for the S19-case. The thick red dashed line represents the staffing requirement.

Notice how the staffing levels in the real-life roster fluctuates. For staff at sections,
the over- and understaffing likely seems random and sporadic. This makes it challenging
to plan patient flow and the use of complementary resources. On the other hand, the
staffing level in the S19-case is stable, with exceptions in the form of occasional dips in
the otherwise constant single overstaffing. These results indicate that the matheuristic
is able to produce rosters that have far better stability than they are currently able
to do through manual planning at the Clinic of Surgery. Assuming the stability does
not counteract the flexibility of rosters, the rosters produced by our matheuristic are
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likely considerably more robust than manually produced ones. The flexibility of rosters
is discussed in relation to shadow shifts in Section 3.5.3.

From the results in Table 3.7 it is apparent that the rosters created by the matheuristic
and the real-life rosters are able to reduce unwanted consecutive shifts, congestion of
emergency day shifts for interns and residents, and consecutive weekend work. This is
likely due to the way planning of emergency shifts is performed in practise, as elaborated
upon in Section 3.3. By creating week-long shift patterns of high-quality, consecutive
shifts and congestion within a week is avoided. Lastly, the matheuristic plans very few
occurrences of seven consecutive work days for instances S17-A18 (0.019 per week) and
S19 (0.038 per week). The real-life case includes such a pattern almost once per week on
average (0.938).

3.5.3 Including shadow shifts

We include the possibility of adding shadow shifts and run the two-step matheuristic on
the five instances. Key results are presented in Table 3.8, for comparison with the rosters
that do not include shadow shifts. All information in Table 3.8 is given as non-weighted
(NW), except for the top three rows presenting Z, Gap, and Ẑ. Z is the objective function
value of the best solution found after the standard run of 2 hours using the matheuristic.
Gap is defined as BBe10−Z for each instance with and without shadow shifts, where BBe10
is the best bound found after running the full SCRPRP for 10 hours using a commercial
solver at standard settings, as presented in Appendix D. The shadow-reduced objective
function value (Ẑ) is defined by disregarding the effect of shadow shifts on the objective
function, so that Ẑ = Z −

∑
r∈R

∑
t∈T W

SS
r ySSrt . The shadow-reduced objective function

value Ẑ shows the objective function value without the contribution from the shadow
shifts and is therefore comparable with the objective function value Z in the case without
shadow shifts. A more comprehensive table of information regarding the rosters produced
with shadow shifts can be found in Appendix E.

Table 3.8: Results after running Step 1 and Step 2 of the five real instances with and
without shadow shifts. All information is non-weighted, except for the top three rows
presenting Z, Gap, and Ẑ. The second column indicates if a positive value of a variable
has a positive (+) or negative (-) contribution to the objective function value.

Instance +/- S17 A17 S18 A18 S19
No Shadow Shadow No Shadow Shadow No Shadow Shadow No Shadow Shadow No Shadow Shadow

Z 1208.300 2111.000 1216.400 2103.000 1109.700 2013.900 1138.700 2048.800 1055.800 1949.600
Gap 52.300 59.600 44.200 67.600 150.900 156.700 121.900 121.800 192.100 208.000

Ẑ 1208.300 1202.700 1216.400 1194.700 1109.700 1103.900 1138.700 1138.800 1055.800 1039.600

yO1
at + 508.000 509.000 507.000 508.000 512.000 516.000 509.000 511.000 498.000 499.000
yO2
at + 226.000 216.000 232.000 220.000 172.000 166.000 182.000 178.000 131.000 133.000
yUat − 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ySSrt + 182.000 182.000 182.000 182.000 182.000

zCN
et − 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
zCE
rt − 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
zCW
ew − 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 3.000
zCD
et − 1.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 1.000 1.000

vEr − 0.000 0.000 0.000 0.000 3.000 3.000 1.000 1.000 2.000 2.000
v − 0.115 0.096 0.125 0.125 0.144 0.144 0.288 0.221 0.106 0.231
v − 0.087 0.115 0.067 0.115 0.029 0.067 0.000 0.048 0.067 0.038
vRH
r − 0.423 0.510 0.269 0.615 0.452 0.548 0.625 0.712 0.442 0.673
vR2H
r − 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ShadowSec 0.000 0.000 22.000 30.000 42.000
ShadowCourse 109.000 98.000 88.000 89.000 72.000
ShadowOff 145.000 162.000 155.000 154.000 124.000
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Recall that Step 1 of the matheuristic is identical for the case with and without shadow
shifts. As a result, all technical values for Step 1 are identical to the values presented in
Table 3.6. Furthermore, values of variables zCNet , zCErt and vEr are decided in Step 1, and
are thus equal for the instances with and without shadow shifts.

In Table 3.8, it is clear that the cases without shadow shifts perform better than
the cases with them in all instances except for A18, where the shadow-reduced objective
function value is 0.1 larger than the objective function for the case without shadow shifts.
However, for the other instances there is a deterioration in the quality of between 5.6 (S17)
and 21.7 (A17), which is still significantly better than the values for the real-life instance
in Table 3.7. If the model in Step 2 was solved to optimality, the objective function
value from the cases without shadow shifts would always be greater than or equal to the
shadow-reduced objective function values for the comparable cases with shadow shifts,
but due to suboptimal solutions this relation does not necessarily hold.

The value of Gap is very much dependent on the quality of the objective function
value Z. This is because the best bounds do not improve from the LP-solution for most
instances, and very little when it does (largest improvement is 1.1). We argued that
the limited improvement of the best bounds observed in Table 3.6 was likely due to
symmetry, and we believe symmetry plays a similar role in suppressing improvements of
the best bounds when using commercial solvers. Thus, a low Gap in Table 3.8 is primarily
a testament to the model’s ability to find good solutions, not the ability to improve the
optimistic bounds of the problem.

Introducing shadow shifts has a very small negative effect on the staffing quality in
total. With shadow shifts, we still get very high-quality values for both single and double
overstaffing (yO1

at , yO2
at ), and the understaffing (yUat) remains at the ideal value 0. Looking

at the total number of days where one or more surgeons are assigned to work shadow
shifts (ySSrt ), we see that the matheuristic is able to find one or more surgeons working
a shadow shift every day. It simply seems that the matheuristic is able to increase the
flexibility of the roster without reducing the stability very much.

While the introduction of shadow shifts ensure a viable strategy for covering for
a single surgeon being absent from emergency night shifts, it is hard to quantify the
improvement in flexibility compared to real-life rosters. Our flexibility measure assumes
a given set of strategies for rerostering, while in real-life this can be done in many ways.
In practise it is likely that managers hope to find an available surgeon to cover for the
absentee or alternatively to find a surgeon who is planned to work an overstaffed shift
the day after, so that the surgeon can cover the night shift and be absent the day after.
When no such surgeon exists it could also be possible to use more experienced surgeons
considered outside the scope of ouing problem, bringing in temps (if available) or breaking
shift work rules that are normally considered hard restrictions.

With this in mind, the exact value of introducing shadow shifts is hard to estimate, and
we cannot compare the flexibility of real-life rosters with the flexibility in rosters produced
by the matheuristic directly. However, when a surgeon works a shadow shift, he/she
represents a safety measure against rerostering that causes challenging administrative
work and often poor schedules for the surgeon who fills in. A simple estimate of the
effect of the shadow shifts is to assume a probability α of any form of absence for each
surgeon every day. We can then derive the probabilities of rerostering depending on the
availability of a surgeon working a shadow shift and his/her rank.

In our runs, P
SR

= 1, meaning that only one shadow shift is rewarded by the objective
function. This means that there is only one surgeon readily available as a backup (if the
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algorithm has assigned one). Furthermore, the demand for emergency night shifts is 1
for officers and 1 for interns and residents combined. If there is no shadow shift, the
probability of rerostering, PN , is 1 minus the probability that both surgeons are not
present ((1− α)2), resulting in PN = 1− (1− α)2.

This changes when a backup is readily available to fill in. Depending on the rank of the
surgeon working the shadow shift (officers can rank down), we get different probabilities
of rerostering. Note that the backup can also be absent with a probability of α. If an
intern or resident is backup, the probability of rerostering, P IR is 1 minus the probability
that at least one of the intern/residents are present times the probability that the offiecer
is present, resulting in P IR = 1− (1− α2)(1− α).

Finally, the probability of rerostering when an officer is backup, PO, is 1 minus the
probability that no more than one surgeon is absent, resulting in PO = 1 − ((1 − α)3 +
3α(1− α)2).

Table 3.9: Probabilities of rerostering any given day depending on the rank of the
surgeon working the shadow shift and the probability of absence.

Rank of surgeon Probability of absence α
working shadow shift 1.00% 1.25% 1.50% 1.75% 2.00% 2.25% 2.50% 2.75% 3.00% 3.25% 3.50% 3.75% 4.00% 4.25% 4.50%
None 1.99% 2.48% 2.98% 3.47% 3.96% 4.45% 4.94% 5.42% 5.91% 6.39% 6.88% 7.36% 7.84% 8.32% 8.80%
Intern/Resident 1.01% 1.27% 1.52% 1.78% 2.04% 2.30% 2.56% 2.82% 3.09% 3.35% 3.62% 3.89% 4.15% 4.42% 4.69%
Officer 0.03% 0.05% 0.07% 0.09% 0.12% 0.15% 0.18% 0.22% 0.26% 0.31% 0.36% 0.41% 0.47% 0.53% 0.59%

Table 3.9 shows the probability for rerostering given no shadow shift, an intern/resident
backup and an officer backup for different probabilities of absence. The probabilities of
rerostering on any given day are greatly reduced when a surgeon works shadow shifts,
especially when the backup surgeon holds the rank officer. For the lowest absence rate
in Table 3.9, the probability of rerostering is 1.99% without the introduction of shadow
shifts, but is reduced to approximately half (1.01%) when an intern/resident works a
shadow shift and 0.03% when the backup surgeon is an officer. As can be expected, the
probability of rerostering increases with absence rates. The differences between assign-
ing the shadow shift to different ranks also vary with absence rates, but are consistently
significant.

In our five instances, the matheuristic assigns a shadow shift every day. In instances
S17 and A17, all shadow shifts except one is assigned to an officer, and the last shift is
assigned to a resident. In instances S18, A18 and S19, an officer is assigned a shadow shift
on all days. This can be verified by comparing weighted and non-weighted values of the
row ySSrt in Table 21 in Appendix E, given the parameter values in Table 13 in Appendix
A.4. Results in Table 3.9 imply that the introduction of shadow shifts in all five instances
significantly reduces the probability that rerostering must occur due to surgeon absence.
As there are officers assigned to shadow shifts on close to all days in the five instances, the
probabilities in the officer-row in Table 3.9 give a good indication of the frequency such
rerostering would occur with, depending on the probability of absence. Furthermore, the
None-row gives a good indication of the frequency of rerostering if no shadow shifts are
included in the matheuristic.

In real-life, managers at the Clinic of Surgery estimate that a surgeon is absent from
the emergency night shift once or twice every month. One or two cases of absence among
two surgeons in approximately 30 days gives an estimated range for the probability of
absence of 1.67% to 3.33%. In the relevant range of probabilities, 1.50 ≤ α ≤ 3.50, in
Table 3.9, the probability of rerostering ranges from 2.98% to 6.88% when no shadow
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shift is included and 0.07% to 0.36% when an officer works a shadow shift. This is a
considerable difference. According to managers and planners at the Clinic of Surgery,
rerostering is a challenge in practice, and avoiding rerostering would be very useful to
them. Furthermore, in practice the scheduling process is simplified since it is clearly
defined who will fill in, in case of a sudden absence. For the employees, the predictability
of their schedule is improved, as they are unlikely to be asked to fill in unless they are
scheduled for a shadow shift.

The objective function values related to consecutive and congested work are slightly
worse in the cases with shadow shifts for some instances. In instance S18 and S19, some
occurrences of working consecutive weekends exist, as shadow shifts are included when
counting weekend work. In instance S17, no occurrences of working seven consecutive
days exist, while in the case without shadow shifts, one occurrence exists. Otherwise
there are no differences between the shadow and no-shadow cases for consecutive and
congested work.

For objective function values related to time differences among surgeons, both the
cases that include shadow shifts and those that do not are penalized somewhat for devi-
ations from ideal work hours. However, no cases stand out as particularly good or bad,
implying that the introduction of shadow shifts does not change these roster qualities
dramatically.

The last three rows of Table 3.8 shows the number of shadow shifts worked in total
for each instance. For all instances, it seems that using the coursework shifts as shadow
shifts is favorable as compared with the section shifts. Also in practise, coursework shifts
are considered a good "buffer" in case of absence of emergency shifts, but are not planned
as strategically as in the matheuristic. The shadow off-shift is the most frequently used
shadow shift in all instances. This is expected, as they can both be assigned during
weekends and they can be utilized to reduce total work time for surgeons that would
otherwise work too much, while contributing to flexibility in rosters.

3.6 Conclusions

We have presented and formalized the novel Semi-Cyclic Ranked Physician Rostering
Problem derived from a real-life case study. A two-step matheuristic was developed and
used to solve the problem for five real-life instances.

The matheuristic produced five rosters of high-quality without introducing shadow
shifts. Notably, the variations in staffing levels at section shifts, that have proven very
problematic in real-life, were reduced. There were no cases of understaffing in any roster
produced by our matheuristic, as opposed to the frequent understaffing in real-life. The
superior quality of the produced rosters was further supported by a detailed comparison
with a real-life roster created at the Clinic of Surgery.

Furthermore, we introduced shadow shifts in the matheuristic, meaning to have staff
available in case of absence from emergency night shifts among colleagues. Results showed
that we are able to assign a surgeon to a shadow shift on every day throughout the plan-
ning period with only marginal deterioration of other roster qualities. Our matheuris-
tic vastly outperforms the current way of creating rosters at the Clinic of Surgery and
greatly improves robustness to absence through resilient staffing levels and flexibility due
to shadow shifts.

In real-life, when a surgeon becomes unavailable for an emergency night shift, this has
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a significant effect on the schedule of the surgeon that steps in to cover the emergency
night shift. Because surgeons wish to work many hours, and are scheduled to do so,
rosters are filled with shifts to the point where additional shifts rarely can be added into
a surgeon’s schedule without some rule or regulation being violated. This makes it very
hard for surgeons to cover for each other in cases of absence, and implies that surgeons
either break rules or that they must be absent from a subsequent shift, which often
transfers the problem of surgeon absence to the next day. At the Clinic of Surgery, this
has typically culminated in sporadic cases of reduced staffing at sections. Understaffing at
sections normally lead to reducing the level of priority for patient visits, including patient
discharging. This has adverse effects. As patient beds are a limited resource, late patient
discharging can ramify and affect patient admission and care, while other resources like
operating rooms and surgical nurses are waiting in an idle state. The robustness measures
included in our matheuristic, in the form of even overstaffing (stability) and shadow shifts
(flexibility), reduce the adverse effects of absence among staff considerably.

While our work has focused specifically on increasing the robustness of rosters, our
model could easily be adjusted to focus on costs. If the Clinic of Surgery and the surgeons
agreed that they would relax the restriction of minimum number of work hours, as long
as no understaffing occurred, preliminary testing demonstrates that the total number of
work hours would be significantly lower. There is also an argument to be made, that
with more time off, schedules would have more free space allowing surgeons to cover for
absentees. Rosters would thus likely be more flexible, but also less stable due to lower
overstaffing.
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A Symbol directory

A.1 Indices

In some cases, the same index symbol is used multiple times, and subscripts are used to
differentiate them (e.g. s1 and s2.)

Symbol Description
e Employee
s Shift
t, τ Day
w Week
r Rank
l Lag value
a Section

A.2 Sets

Symbol Description
E Employees
ERr Employees of rank r
EAa Employees affiliated to section a
S Shifts
SE Emergency shifts
SOff Off-shifts
SN Night shifts
SSS Shadow shifts
T Days in planning period
T Sat Saturdays in planning period
T Sun Sundays in planning period
T ′ Days in planning period excluding Saturdays and Sundays
T W
w Days in week w
W Weeks in planning period
R Ranks
Lr Lag numbers of rank r
A Sections
AL Large sections
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A.3 Key values in sets

Symbol Description
sED Emergency day shift
sEN Emergency night shift
sO Other shift (O-shift)
sNOff Normal off-shift
sPOff Protected off-shift
sSec Section shift
sCW Coursework shift
sSO Shadow off-shift
sSSec Shadow section shift
sSCW Shadow coursework shift
rI Intern
rR Resident
rO Officer

A.4 Parameters and case study values

Table 11: Parameters are listed with values and the constraints in which they appear.

Parameter Index values Value Constraints
DET
s s = sED 3 (3.1)

DET
s s = sEN 2 (3.1)

DER
rs r = rI , s = sED 3 (3.2)

DER
rs r = rI , s = sEN 2 (3.2)

DER
rs r = rR, s = sED 2 (3.2)

DER
rs r = rR, s = sEN 1 (3.2)

DER
rs r = rO, s = sED 1 (3.2)

DER
rs r = rO, s = sEN 1 (3.2)

DA
a a ∈ A\AL 1 (3.9)(3.39)

DA
a a ∈ AL 2 (3.9)(3.39)

P
N

1 (3.22)(3.23)
P
CW

2 (3.26)
P
EDS

1 (3.27)
P
WE

2 (3.31)
P
NES

1 (3.34)
XS1
est e ∈ E , s ∈ SE , t ∈ T {0, 1} (3.38)

P
SR

1 (3.41)
P
NS

2 (3.51)
PHrst e ∈ E , s ∈ S, t ∈ T See Table 12 (3.57)(3.58)(3.60)(3.61)
H
W

60 (3.57)
PTH 41 (3.58)(3.59)
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Table 12: PHrst is the time spent working different shifts on different days of the week.
No hours are spent on off-shifts. For shadow shifts, the time of the unrealized shift is
used.

Ranks Shifts Mon Tue Wed Thu Fri Sat Sun

r = rI

s = sED 13.25 13.25 13.25 13.25 13.25 13 12
s = sEN 12 12 12 12 12 13 12
s = sSec 8.25 8.25 8.25 8.25 7.75
s = sCW 8.25 8.25 8.25 8.25 7.75

r = rR

s = sED 13.25 13.25 13.25 13.25 13.25 13 12
s = sEN 12 12 12 12 12 13 12
s = sSec 8.25 8.25 8.25 8.25 7.75
s = sCW 8.25 8.25 8.25 8.25 7.75

r = rO

s = sED 8.25 8.25 8.25 8.25 7.75 13 12
s = sEN 17 17 17 17 17.5 13 12
s = sSec 8.25 8.25 8.25 8.25 7.75
s = sCW 8.25 8.25 8.25 8.25 7.75

Table 13: Parameters are listed with values and the constraints in which they appear.

Parameter Index values Value Constraints
WO1 2 (3.37)(3.66)
WO2 1 (3.37)(3.66)
WU 100 (3.37)(3.66)
WSS

r r = rI 51
3 (3.66)

WSS
r r = rR 52

3 (3.66)
WSS

r r = rO 5 (3.66)
WCN 2 (3.37)(3.66)
WCE 20 (3.37)(3.66)
WCW 2 (3.37)(3.66)
WCD 5 (3.66)
WE 20 (3.37)(3.66)
W 100 (3.66)
WRH 20 (3.66)
WR2H 30 (3.66)
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A.5 RSA-matrices (case study instances)

Table 14: RSA-matrix for S17. Urology is a small section, while the other sections are
large.

Ranks
Interns Residents Officers Sum

Sections

Urology 1 1 2 4
Vascular-endocrine-
and-pediatric 2 2 3 7

Upper gastric 1 3 4 8
Lower gastric 4 2 1 7

Table 15: RSA-matrix for A17. Urology is a small section, while the other sections are
large.

Ranks
Interns Residents Officers Sum

Sections

Urology 1 1 2 4
Vascular-endocrine-
and-pediatric 1 2 4 7

Upper gastric 3 2 2 7
Lower gastric 3 3 2 8

Table 16: RSA-matrix for S18. Urology is a small section, while the other sections are
large.

Ranks
Interns Residents Officers Sum

Sections

Urology 1 3 1 5
Vascular-endocrine-
and-pediatric 1 1 5 7

Upper gastric 4 1 1 6
Lower gastric 2 3 3 8
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Table 17: RSA-matrix for A18. Urology is a small section, while the other sections are
large.

Ranks
Interns Residents Officers Sum

Sections

Urology 1 2 2 5
Vascular-endocrine-
and-pediatric 1 4 3 8

Upper gastric 3 0 3 6
Lower gastric 3 2 2 7

Table 18: RSA-matrix for S19. Urology is a small section, while the other sections are
large.

Ranks
Interns Residents Officers Sum

Sections

Urology 1 2 2 5
Vascular-endocrine-
and-pediatric 1 2 3 6

Upper gastric 1 2 3 6
Lower gastric 5 2 2 9

A.6 Decision variables

Table 19: Decision variables are listed with domains and the constraints in which they
appear.

Parameter Index values Domain
xest e ∈ E , s ∈ S, t ∈ T {0, 1}
λel r ∈ R, e ∈ ERr , l ∈ Lr {0, 1}
yO1
at a ∈ A, t ∈ T ′ {0, 1}
yO2
at a ∈ A, t ∈ T ′ {0, 1}
yUat a ∈ A, t ∈ T ′ {0, 1}
uSecet e ∈ EAa , t ∈ T

′ {0, 1}
uNCet e ∈ E , t ∈ T ′ {0, 1}
ySSrt r ∈ R, t ∈ T {0, 1}
δew e ∈ E , w ∈ W {0, 1}
zCNet r ∈ R, e ∈ ERr , t ∈ T |r /∈ RO {0, 1}
zCWet e ∈ E , t ∈ T Sat {0, 1}
zCErt r ∈ R, t ∈ T |r /∈ RO {0, 1}
zCDet e ∈ E , t ∈ T {0, 1}
vEr , v

E
r , v

E
r r ∈ R ≥ 0

v, v ≥ 0
vRHr , vRHr , vRHr , vR2H

r r ∈ R ≥ 0
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B The Semi-Cyclic Ranked Physician Rostering Prob-
lem

We present the formulation of the full problem in groups of constraint similar to the
groups presented in Steps 1 and 2 in Section 3.4.

Cyclic emergency shifts

∑
e∈E

xest = DET
s , s ∈ SE , t ∈ T (67)

∑
r∈R|r≥r2

∑
e∈ERr

xest ≥ DER
r2s , r2 ∈ R, s ∈ SE , t ∈ T (68)

xest ∈ {0, 1}, e ∈ E , s ∈ S, t ∈ T (69)

λel(x(εr)st − xes(t+7l)) = 0, r ∈ R, e ∈ ERr , s ∈ SE , t ∈ T , l ∈ Lr |e 6= εr, t ≤ 7|ERr | (70)

xest − xes(t+7|ERr |) = 0, r ∈ R, e ∈ ERr , s ∈ SE , t ∈ T |t ≤ |T | − 7|ERr | (71)∑
e∈ERr

λel = 1, r ∈ R, l ∈ Lr (72)

∑
l∈Lr

λel = 1, r ∈ R, e ∈ ERr (73)

λel ∈ {0, 1}, r ∈ R, e ∈ ERr , l ∈ Lr (74)

Section shifts

∑
e∈EAa

xesSect − yO1
at − yO2

at + yUat − uSecAet ≥ DA
a , a ∈ A, t ∈ T

′
(75)

∑
s∈SSS

xes(t−1) + xesSect − uSecAet ≤ 1, e ∈ E , t ∈ T
′
(76)

∑
e∈ERr

∑
s∈SSS

xest − ySSrt ≥ 0, r ∈ R, t ∈ T (77)

∑
r∈R

ySSrt ≤ P
SR
, t ∈ T

′
(78)

∑
t∈T

(xesCW t + xesSCW t) = |W|/2, e ∈ E (79)

yO1
at ∈ {0, 1} a ∈ A, t ∈ T

′
(80)

yO2
at ∈ {0, 1}, a ∈ AL, t ∈ T

′
(81)
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yUat ∈ {0, 1}, a ∈ A, t ∈ T
′
(82)

uSecAet ∈ {0, 1}, e ∈ E , t ∈ T
′
(83)

ySSrt ∈ {0, 1}, r ∈ R, t ∈ T
′
(84)

Create space for off-weeks

∑
s∈SOff

∑
t∈TW

w

xest ≥ 7δew, r ∈ R, e ∈ ERr , w ∈ W (85)

∑
e∈ERr

(δe(w−1) + δew) = 1, r ∈ R, w ∈ W |mod(w, 2) = 0 (86)

δe(w−1) + δew = δe(w−1+2|ERr |) + δe(w+2|ERr |), r ∈ R, e ∈ E
R
r , w ∈ W |mod(w, 2) = 0 (87)

δew ∈ {0, 1}, e ∈ E , w ∈ W (88)

Regulations and norms

∑
s∈S

xest = 1, e ∈ E , t ∈ T (89)

xesEN (t−2) +
∑

s2∈SOff

xes2(t−1) + xesEN t ≤ 2, e ∈ E , t ∈ T (90)

t∑
τ=t−PN

xesENτ − zCNet ≤ P
N
, r ∈ R, e ∈ ERr , t ∈ T |t /∈ T Sat, t > P

N
(91)

t∑
τ=t−PN−1

xesENτ ≤ P
N
+ 1, e ∈ E , t ∈ T |t /∈ T Sat, t > P

N
+ 1 (92)

xesEDt − xesED(t−1) = 0, e ∈ E , t ∈ T Sun (93)

xesEN t − xesEN (t−1) = 0, e ∈ E , t ∈ T Sat (94)∑
t∈TW

w

xesEDt − zCErt ≤ PEDS , r ∈ R, e ∈ ERr , w ∈ W |r 6= rO (95)

∑
s∈SE

∑
t∈TW

w |t6∈T Sat

xest ≤ P
WE

, e ∈ E , w ∈ W (96)

∑
s∈SE

∑
t∈T

xest − vEr ≤ 0, r ∈ R, e ∈ ERr (97)

∑
s∈SE

∑
t∈T

xest − vEr ≥ 0, r ∈ R, e ∈ ERr (98)
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vEr − vEr − vEr ≤ P
NES

, r ∈ R (99)

xesEN (t−1) −
∑

s2∈{sEN}
⋃
{sSO}

⋃
SOff

xes2t ≤ 0, e ∈ E , t ∈ T (100)

xesEN (t−2) +
∑

s2∈SOff

xes2(t−1) + xesEN t ≤ 2, e ∈ E , t ∈ T (101)

xes1(t−1) + xesPOff t ≤ 1, e ∈ E , s1 ∈ SN , t ∈ T (102)∑
t∈TW

w

xesPOff t = 1, e ∈ E , w ∈ W (103)

∑
s∈SN

t∑
τ=t−PNS

xesτ ≤ P
NS
, r ∈ R, e ∈ ERr , t ∈ T |t /∈ T Sat, t > P

NS
(104)

xest − xes(t−1) = 0, e ∈ E , s ∈ SSS , t ∈ T Sat (105)

∑
s∈SN

P
CW

+1∑
τ=1

xes(t−7(τ−1)) − zCWet ≤ PCW , e ∈ E , t ∈ T Sat (106)

∑
s∈SOff

t∑
τ=t−PCD

xest ≥ 1− zCDet , e ∈ E , t ∈ T |t > PCD (107)

∑
s1∈SSS

xes1(t−1) + xesEDt ≤ 1, e ∈ E , t ∈ T (108)

zCNet ∈ {0, 1}, r ∈ R, e ∈ ERr , t ∈ T |r 6= rO (109)

zCWet ∈ {0, 1}, e ∈ E , t ∈ T Sat (110)

zCErt ∈ {0, 1}, r ∈ R, t ∈ T |r 6= rO (111)

vEr , v
E
r , v

E
r ≥ 0, r ∈ R (112)

Work time constraints

∑
s∈S

∑
t∈TW

w

PHrstxest ≤ H
W

e ∈ ERr , w ∈ W (113)

∑
s∈S

∑
t∈T

PHrstxest − |W|v ≤ |W|PTH , r ∈ R, e ∈ ERr (114)

∑
s∈S

∑
t∈T

PHrstxest + |W|v ≥ |W|PTH , r ∈ R, e ∈ ERr (115)

∑
s∈S

∑
t∈T

PHrstxest − vRHr ≤ 0, r ∈ R, e ∈ ERr (116)

126



∑
s∈S

∑
t∈T

PHrstxest − vRHr ≥ 0, r ∈ R, e ∈ ERr (117)

vRHr − vRHr − vRHr ≤ 0, r ∈ R (118)

vRHr1 − v
RH
r2 − v

R2H
r1 ≤ 0, r1, r2 ∈ R|r1 < r2 (119)

v, v ≥ 0 (120)

vRHr , vRHr , vRHr , vR2H
r ≥ 0, r ∈ R (121)

Symmetry breaking constraints

l1∑
l2=1

λe1l2 −
l1∑
l2=1

λe2l2 ≤ 0,

a ∈ A, r ∈ R, e1, e2 ∈ (EAa ∩ ERr ), t ∈ T , l1 ∈ Lr |e1 6= e2, e1 6= εr, e2 6= εr (122)

Objective function

Max Z =
∑
a∈A

∑
t∈T ′

WO1yO1
at +

∑
a∈A

∑
t∈T ′

WO2yO2
at −

∑
a∈A

∑
t∈T ′

WUyUat +
∑
r∈R

∑
t∈T

WSS
r ySSrt

−
∑
e∈E

∑
t∈T

WCNzCNet −
∑
r∈R

∑
t∈T

WCEzCErt −
∑
e∈E

∑
t∈T Sat

WCW zCWet −
∑
e∈E

∑
t∈T Sat

WCDzCDet

−
∑
r∈R

WEvEr −W (v + v)−
∑
r∈R

WRHvRHr −
∑

r∈R|r 6=rO
WR2HvR2H

r (123)

C Linearization

Constraints (124) and (125) replace Constraints (3.4) in the matheuristic in Section 3.4.

x(εr)sτ − xest − λel ≥ −1, e ∈ ERr , s ∈ SE ,
r ∈ R, τ ∈ T , l ∈ Lr |e 6= εr, t = mod(τ + 7 · l, |T |) (124)

x(εr)sτ − xest + λel ≤ 1, e ∈ ERr , s ∈ SE ,
r ∈ R, τ ∈ T , l ∈ Lr |e 6= εr, t = mod(τ + 7 · l, |T |) (125)

D Full SCRPRP run with commercial solver

In Table 20, we present results of running the full SCRPRP for all 5 real-life instances,
for cases with and without shadow shifts, for 2 and 10 hours. Results obtained after 2
and 10 hours are identified by the subscripts 2 and 10 respectively. Z-values and BB-
values represent the best solutions and best bound values found at the time indicated by
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Table 21: Results after running Step 1 and Step 2 of the five real instances with shadow
shifts. For each instance we present a column of weighted (W) a column of non-weighted
(NW) sums of variable types in the objective function. The second column indicates if a
positive value of a variable has a positive (+) or negative (-) contribution to the objective
function value.

+/- S17 A17 S18 A18 S19
W NW W NW W NW W NW W NW

Step 1
Z 1390.0 1388.0 1328.0 1382.0 1321.0
BB 1430.0 1430.0 1430.0 1430.0 1430.0
LP-bound 1430.0 1430.0 1430.0 1430.0 1430.0

Step 2
Z 2111.0 2103.0 2013.9 2048.8 1949.6

Ẑ 1202.7 1194.7 1103.9 1138.8 1039.6
BB 2161.0 2157.8 2048.6 2083.1 1992.1
LP-bound 2161.6 2160.0 2049.1 2083.4 1995.4

yO1
at + 1018.0 509.000 1016.0 508.000 1032.0 516.000 1022.0 511.000 998.0 499.000
yO2
at + 216.0 216.000 220.0 220.000 166.0 166.000 178.0 178.000 133.0 133.000
yUat − 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0.000
ySSrt + 908.3 182.000 908.3 182.000 910.0 182.000 910.0 182.000 910.0 182.000

zCN
et − 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0.000
zCE
rt − 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0.000
zCW
et − 0.0 0.000 0.0 0.000 −2.0 1.000 0.0 0.000 −6.0 3.000
zCD
et − 0.0 0.000 −5.0 1.000 0.0 0.000 0.0 0.000 −5.0 1.000

vEr − 0.0 0.000 0.0 0.000 −60.0 3.000 −20.0 1.000 −40.0 2.000
v − −9.6 0.097 −12.5 0.125 −14.4 0.144 −22.1 0.221 −23.1 0.231
v − −11.5 0.115 −11.5 0.115 −6.7 0.067 −4.8 0.048 −3.8 0.038
vRH
r − −10.1 0.509 −12.3 0.615 −11.0 0.548 −14.2 0.712 −13.5 0.673
vR2H
r − 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0.000

ShadowSec 0.000 0.000 22.000 30.000 42.000
ShadowCourse 109.000 98.000 88.000 89.000 72.000
ShadowOff 145.000 162.000 155.000 154.000 124.000

subscripts, respectively. The values of best bound obtained after running the model for
10 hours, BBe10 , are the basis for calculating the Gap in Section 3.5.

Table 20: Results after running the full SCRPRP with a commercial solver, as a bench-
mark to compare with the matheuristic. For each instance we present a column where
shadow shifts are not included in the problem and one where shadow shifts are included.

Instance S17 A17 S18 A18 S19
No Shadow Shadow No Shadow Shadow No Shadow Shadow No Shadow Shadow No Shadow Shadow

LP-bounde 1260.6 2170.6 1260.6 2170.6 1260.6 2170.6 1260.6 2170.6 1248.8 2158.7
Ze2 −10682.1 NA NA NA NA NA NA NA NA NA
BBe2 1260.6 2170.6 1260.6 2170.6 1260.6 2170.6 1260.6 2170.6 1247.9 2157.8
Ze10 1081.5 −3687.3 1088.7 −616.82 1130.2 −3327.9 −6359.8 −7509.2 977.54 NA
BBe10 1260.6 2170.6 1260.6 2170.6 1260.6 2170.6 1260.6 2170.6 1247.9 2157.6

E Full table of shadow shifts

To improve the understanding of the rosters we create at the Clinic of Surgery, we present
an excerpt of a full roster in Table 22. Emergency shifts are visible in red cells in the
table. Surgeons are presented in the order of the lag variables, so that the semi-cyclic
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structure of the roster is clear. Note how Intern1 works an emergency shift on Wednesday
of week 1, Intern2 works an emergency shift Wednesday of week 2, etc. The shared cyclic
structure of night shifts between interns and residents is also visible, as Intern7 works an
emergency night shift on day 7 and Residents 1 works it on day 14.

Shadow shifts are presented in blue cells in Table 22. Every day, there is at least one
officer working a night shift. In some cases, multiple surgeons work shadow shifts, but
the additional shadow shifts do not improve the objective function value.

The stability of the roster is clear from the number of surgeons affiliated to each
section working section shifts. These are counted in the rightmost columns. Lastly, it is
visible in Table 22 how some surgeons have some weeks off, see e.g. Officer1 during week
1.

F Excerpt of full roster
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Table 22: Excerpt of the first three weeks of the roster produced for the Spring19-
instance. Notice that interns and residents have an aggregated demand for emergency
night shifts (exemplified in red highlighted cells), implying the cyclic structure of these
shifts are shared for the two ranks. The cyclic structure of the emergency night shifts
worked by officers is not aggregated with other ranks, and thus cycle independently from
interns and residents. The cyclic structure of emergency day shifts are exemplified in
the yellow highlighted cells for interns. There is no aggregate demand for emergency
day shifts, and thus all ranks have separate cyclic structures for emergency day shifts.
The bottom four rows contain sums of surgeons affiliated to each section working section
shifts.
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In a reviewing process for publication in an international scientific journal. The version
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Nurse Rostering with Fatigue Mod-
elling - Incorporating a Validated
Sleep Model with Biological Vari-
ations in Nurse Rostering

Abstract

We use a real nurse rostering problem and a validated model of human
sleep to formulate the Nurse Rostering Problem with Fatigue. The fatigue
modelling includes individual biologies, thus enabling personalised schedules
for every nurse. We create an approximation of the sleep model in the form of
a look-up table, enabling its incorporation into nurse rostering. The problem
is solved using an algorithm that combines Mixed Integer Programming and
Constraint Programming with a Large Neighborhood Search. A postprocess-
ing algorithm deals with errors, to produce feasible rosters minimising global
fatigue. The results demonstrate the realism of protecting nurses from highly
fatiguing schedules and ensuring the alertness of staff. We further demon-
strate how minimally increased staffing levels enable lower fatigue, and find
evidence to suggest biological complimentarity among staff can be used to
reduce fatigue. We also demonstrate how tailoring shifts to nurses’ biology
reduces the overall fatigue of the team, which means managers must grapple
with the meaning of fairness in rostering.

4.1 Introduction

Adverse psychological and physiological effects of night rotations on nurses are well doc-
umented Muecke (2005). Impaired vigilance and performance occurs as a result of in-
creased sleepiness and can seriously compromise workers’ health and safety Boivin and
Boudreau (2014), as well as patient safety Hughes and Rogers (2004). This underscores
the importance of avoiding nurse rosters that cause fatigue. Shift work regulations have
been established to hinder employee exhaustion. Such rules and regulations are a key
part of the constraints in the Nurse Rostering Problem (NRP), see for example Burke
et al. (2004). Because such rules over-simplify the conditions underlying fatigue, sleep
deprivation and different kinds of fatigue continue to have adverse effects on nurses.
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In this work we expand from the typical NRPs to incorporate modeling of fatigue
using a validated sleep model. We include individual biology in the fatigue modelling
and minimise fatigue to enhance nurse health and reduce the risk of human errors due to
impaired vigilance. This is formalised in the Nurse Rostering Problem with Fatigue (NR-
PwF). We incorporate an approximation of the Phillips et al. (2010) fatigue model in the
form of a lookup-table. The NRPwF is solved using an algorithm combining Constraint
Programming and Mixed Integer Programming with a Large Neighborhood Search to
solve realistic problem instances based on real-life data. Our research demonstrates that
the worst cases of fatigue can be significantly reduced. It serves as a proof of concept for
incorporating a general sleep model in NRP, and is generalisable to other rostering and
workforce planning problems. The NRPwF implementation produces rosters minimising
the global maximum fatigue, and demonstrates how biology is an important factor when
creating fatigue minimising rosters. We further demonstrate how minimally increasing
the number of staff makes it possible to significantly reduce the fatigue experienced by
nurses.

Our main contributions are listed below:

• Creating an approximation of an advanced sleep model, and demonstrating it can
be integrated into the novel Nurse Rostering Problem with Fatigue (NRPwF)

• Introducing realistic biological profiles enabling personalised schedules

• Creating a new algorithm combining Mixed Integer Programming and Constraint
Programming to facilitate a Large Neighborhood Search solving the NRPwF, with
a postprocessing procedure to handle cases where the approximation is erroneous

• Demonstrating that to minimise the global maximum fatigue of nurses for real-
istic instances, they must be assigned different numbers of tiring shifts and shift
combinations, i.e. be treated differently depending on their biology

• Demonstrating how minimally increased staff levels enable reduction of nurse fa-
tigue in realistic instances

The outline of this paper is as follows. In Sections 4.2.2 and 4.2.1 we present relevant
literature in sleep research and nurse rostering. In Section 4.3, the fatigue model at the
core of our project is presented, and preliminary analyses of its effects are performed. We
go on to create a typical NRPwF in Section 4.4, and demonstrate how a fatigue model
approximation can be utilized despite cases of imprecision. This is done by implementing
an algorithm using a Constraint Programming (CP) solver in a Large Neighbourhood
Search (LNS) to find high-quality solutions based on the approximation in Section 4.5. In
Section 4.6 the use of our algorithm is demonstrated, verified, and in some cases postpro-
cessed. We further perform analyses on the effects of rosters in light of biological profiles
and staffing levels. In Section 4.7, we make concluding remarks and give suggestions for
future research.

4.2 Related literature

This section introduces the literature on typical nurse rostering problems and the most
prominently used solution methods. It briefly reviews how fatigue is included in Opera-
tions Research literature, as well as presenting relevant fatigue models from the realm of
sleep research. Lastly it summarises the identified gaps in related literature.
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4.2.1 Nurse Rostering literature

The Nurse Rostering Problem (NRP) is a scheduling problem which assigns a number of
shifts with predefined start and end times to a set of nurses in a given planning period.
NRPs typically include coverage constraints, i.e. some constraints ensuring a minimum
number of nurses on duty; time related constraints e.g. a number of hours to be worked
during the planning period; and a set of work regulations Burke et al. (2004). A range of
different rules and regulations exist in the Nurse Rostering literature. The many different
variations are too many to mention explicitly, but for additional details, we refer readers
to Burke et al. (2004) and Haspeslagh et al. (2014). As no widely accepted standard
NRP exists, we create an NRP based on guidelines from Safe Work Australia Safe Work
Australia (2013).

NRPs are solved in numerous ways, e.g. Artificial Intelligence (AI) approaches, Con-
straint Programming, metaheuristics and mathematical programming approaches Ernst
et al. (2004). In the realm of CP, Downing (2016) tackle Nurse Rostering, among other
problems, with lazy clause generation. Other examples of CP include Pizarro et al. (2011)
and Métivier et al. (2009). Examples of AI methods include Meyer auf’m Hofe (2001),
which builds on CP and integrates fuzzy constraints with branch and bound. The hybrid
artificial bee colony algorithm presented in Awadallah et al. (2015) is another AI method
used, where the bee operator is replaced with the hill climbing optimizer. According to
Burke et al. (2008), metaheuristic methods seem to be the dominant technique when solv-
ing real-world problems. Examples are the tabu search based metaheuristic of Rönnberg
and Larsson (2010) and the case-based reasoning approach of Beddoe et al. (2009).

There are three main drawbacks to these meta heuristic approaches. Firstly they have
parameters which require tuning for each application. Secondly, once the parameters have
been tuned for a certain set of example inputs, it is unclear for which other inputs the
same tuning works. Thirdly the user has no feedback if the parameter tuning is incorrect.
The results may be good, or poor, but unless there is another approach to compare them
with the user cannot know.

In the realm of mathematical programming approaches, the standard mixed integer
programming (MIP) models are among the most explored ones, see e.g. Ásgeirsson and
Sigurðardóttir (2016) and Mischek and Musliu (2019). Different decomposition methods
have also been explored, with variants of column generation being popular modeling
choices Dohn and Mason (2013), Beliën and Demeulemeester (2007). These approaches
typically provide optimality gaps, which provides some confidence about the solution
quality. Unfortunately for complex rostering problems the measure is typically too large
to be useful.

Notably, literature on Nurse Rostering often focuses on solution techniques Petrovic
and Berghe (2012). We argue there should be an increased focus on creating models that
are useful in practice and that provide insights for real-life decision makers. We aim to do
so by designing a Nurse Rostering Problem that focuses on minimising fatigue to reduce
risks of accidents and improve nurse health, and create managerial insights for decision
makers based on our computational results. This implies less focus on proof of technical
concepts such as the optimality gap, but rather finding high-quality solutions in terms of
reducing fatigue more than the standard scheduling rules do within reasonable run times
for realistic instances, and identifying managerial insights.
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4.2.2 Fatigue modeling literature

When models in Operations Research (OR) deal with subjects such as tiredness, stress and
work strain, they often present some version of a fatigue model. The fatigue term is used
ambiguously; often loosely defined, if defined at all. In Michalos et al. (2010) a job rotation
tool designed to provide less monotonous and repetitive tasks for employees is presented.
Authors define fatigue as “the physical stress that each process induces on the operators”,
and it was shown that job rotation plans could reduce the total accumulated physical
fatigue per operator Michalos et al. (2013). According to Jamshidi (2019), “Fatigue is a
stochastic factor that changes according to other factors such as environmental conditions,
work type, and work duration”, which they handle using chance constraints. In Goel and
Vidal (2014), fatigue is not defined explicitly, but rather linked to road transport crashes
and falling asleep while driving, in an effort to evaluate regulations.

While the different approaches to modelling fatigue in the examples mentioned above
are useful, literature in medical sciences and biology often distinguishes between acute
fatigue and chronic fatigue, further differentiated into muscular fatigue, mental fatigue,
psychomotor fatigue and chronic fatigue associated with post-viral syndromes Dawson
et al. (2011). We argue that literature within sleep research best fits the fatigue experi-
enced by shift workers. This literature deals with fatigue fitting the definition provided
in Dawson et al. (2011): “the drive to sleep”. This is the sense in which we use the term
fatigue in this work (but note that the term sleep drive can be used interchangeably).

There are several models of human sleep that can be utilized either directly or as part
of quantitative tools to evaluate the fatigue of shift workers, e.g. Borbély (1982), Åkerstedt
et al. (2004), Mallis et al. (2004), Hursh et al. (2004), McCauley et al. (2009), Rajdev
et al. (2013), St. Hilaire et al. (2016), Postnova et al. (2016). These models tend to be used
as tools of retrospective evaluation. It is rare for such tools to be deployed prospectively,
i.e. explicitly incorporating them into models that perform planning. However, we have
identified some few examples of this.

The fatigue model in Tvaryanas and Miller (2010) is based on the Hursh et al. (2004)
“Sleep, Activity, Fatigue, and Task Effectiveness (SAFTE)” model, and incorporates it in
a staff scheduling tool, where the SAFTE-model has been used to simulate the fatigue
score of all possible schedules and ranking them in four categories depending on degree
of fatigue. In Wang and Ke (2013), the authors were inspired by the Fatigue Audit Inter
Dyne (FAID) system Roach et al. (2004). Wang and Ke (2013) simplified the FAID model,
resulting in a linearisation of an exponential function suitable for a MIP framework. The
problem considers minimising fatigue in work shift scheduling for air traffic controllers.
The linear fatigue model is improved in Wang and Liu (2014), by the addition of a
dampening parameter in cases of extreme fatigue. This is shown to fit the results of the
FAID model better. A similar model and technique is used for shift scheduling of aircraft
maintenance crews in Liu and Wang (2013). Lin et al. (2013) present a MIP model
for nurse scheduling taking into account fatigue using two different approaches. The
first is survey-based and the second uses a sinusoidal function that includes a parameter
implying individual nurses’ chronotype (propensity to sleep at different times), based on
work presented in Dawson and Fletcher (2001) to approximate fatigue at the end of a
week. Bowden (2016) proposes the TDSPFM, a Truck Driver Scheduling Model where
fatigue is modeled using the non-linear fatigue model proposed in Ingre et al. (2014)
model, which is itself based on the three process model of Åkerstedt et al. (2004). The
non-linear TDSPFM was solved using the evolutionary algorithm of the built-in Excel
2013 solver.
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Our fatigue modelling is based on the Phillips et al. (2010), where a validated model of
human sleep and circadian rhythms is presented. It is discussed in more detail in Section
4.3. We aim to minimise the changes and adjustments to it, both to conserve the realism
provided by the sleep model itself and to ensure the continued relevance of our approach
as sleep models are improved and extended.

4.2.3 Gaps in related literature

We identify four interesting gaps in this literature. First, we have found no published
research on nurse rostering integrating a validated sleep model. This gap includes both
nurse rostering models and also the techniques and algorithms needed to solve them. We
present the novel Nurse Rostering Problem with Fatigue and develop an algorithm to find
high-quality solutions. Second, we utilise an approximation technique unusedin related
literature; namely a lookup table. This technique is conceptually simple, but the general-
ity of the approximation technique makes it relevant when sleep research progresses and
new models are produced, as long as the implicit assumption holds. Third, the referenced
works based on validated sleep models have made significant adjustments to models to
fit the OR-framework We demonstrate that our general approximation technique com-
bined with postprocessing finds solutions that truly match the validated sleep model.
Fourth, all works where sleep models are used in prospective planning, except Lin et al.
(2013), assume homogeneous biology among staff. We include individual nurse biology to
the prospective planning of fatigue minimising rosters, leading to interesting managerial
insights.

4.3 The fatigue model

In this section we present the fatigue model based on the sleep model of Phillips et al.
(2010). This sleep model has been subject to testing and parameter-tuning, and similar
models have been based on it since. It combines the Phillips and Robinson (2007) model
of the ascending arousal system with the Forger et al. (1999) human circadian pacemaker.
In the fatigue model, a sleep/wake switch is included, which models how a human falls
asleep and wakes up as a result of internal processes in the brain and light conditions.
The impact of shift work on the model is that it precludes sleep. The times a person is at
work, the fatigue model is restricted from entering a sleeping state. This functionality of
forced wakefulness has been used in other works, such as Phillips and Robinson (2007) and
Fulcher et al. (2010) to model total sleep deprivation, Postnova et al. (2012) to model shift
work, and Skeldon et al. (2017) and Swaminathan et al. (2017) to model work schedules.
The Phillips et al. (2010) fatigue model is written in Matlab Dorf and Bishop (1998) and
solved using a built-in ordinary differential equation solver.

A notable characteristic of typical rostering problems, as opposed to more general
scheduling problems, is that a set of possible shifts is defined. Our NRPwF model admits
four shifts in accordance with Safe Work Australia (2013) guidelines for managing the
risk of fatigue at work to represent realistic and advisable shift times:

• Day shift “D” 07:00 - 15:00

• Evening shift “E” 14:30 - 22:30

• Night shift “N” 22:00 - 07:30(+1 day)
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• Off-shift “O”

To add to the realism, we have chosen to include 45 minutes of forced wake-time
before and after work, to represent commuting. Depending on the roster a nurse works,
the fatigue model calculates fatigue based on his or her shifts.

The initial values of the fatigue model variables reflect a well-rested individual where
the circadian rhythm has been given time to stabilize in the individual’s preferred phase.
To ensure this, we simply let the sleep model run for long periods without any work, thus
obtaining the default initial fatigue model state. The individual has typical biological
parameter values, meaning default parameter values from the Phillips et al. (2010) model
are used. These have been validated in previous works. For details see Phillips et al.
(2010), Phillips and Robinson (2007), and Forger et al. (1999).
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Figure 4.1: Plots of how fatigue and activity of a nurse with typical biological parameters
change as time passes. The nurse is scheduled to work the 4-day roster {D,N,N,O}.

In Figure 4.1, two plots of a four day example roster {’D’,’N’,’N’,’O’} is presented.
The fatigue is illustrated in the top plot and visibly oscillates according to the time of
the day (hours 0, 24, etc. represent midnight). As a result of the two night shifts, the
fatigue level is notably higher during the third and fourth day, compared to the two
previous days. The sleep drive typically exists in an interval [-2mV,8mV] depending on
biological parameters and other factors that affect sleep. In this work, it is sufficient to
compare fatigue values knowing that a lower fatigue is always beneficiary. However, for a
more intuitive understanding of how different periods of sleep deprivation correspond to
different values of fatigue, see e.g. Fulcher et al. (2010).
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In the bottom plot, the activities at all times in the form of sleep, wakefulness and
work are presented. Note that night shifts are defined to begin during the end of a day,
so the night shifts during days 2 and 3 begin at hours 46 and 70. From the activity plot it
is clear that the nurse only got a short period of sleep between night shifts, falling asleep
around hour 67, before the nurse was forced to awaken 45 minutes prior to the second
night shift beginning at hour 70.

In this work, the fatigue model is taken to be the best representation available of a
nurse’s fatigue at any time, and the fatigue scores provided by the model are thus some-
times referred to as the true fatigue of a nurse. In Section 4.3.2 the fatigue model is
approximated for incorporation in NRPs. It is referred to as the rolling horizon approxi-
mation or simply the approximation.

4.3.1 Biological variations

In this work we wish to take into account that fatigue develops differently for different
individuals, as "knowledge of individual circadian phase in shift workers could identify
times of impaired alertness and thereby inform individualized countermeasures for im-
proving workplace safety, overall health, and wellbeing." Stone et al. (2019) The model
presented in Phillips et al. (2010) has previously been used to gain insights into the phys-
iological basis for interindividual differences in circadian timing (see e.g. Phillips et al.
(2010) Swaminathan et al. (2017) Skeldon et al. (2017)) and the circadian response to
simulated shift work (see e.g. Postnova et al. (2013) Stone et al. (2020)). It is thus a good
fit for introducing individual biological differences. We present our approach to modelling
biological variations as a set of 9 biological profiles in Section 4.6.1.

4.3.2 Approximating the fatigue model

The fatigue model is inherently non-linear, and incorporating it in an NRP is not trivial.
When creating a parameter to represent fatigue in our NRP, time is discretisised into
days. We believe the most relevant value to represent a nurse’s fatigue throughout a day,
both in terms of patient safety and nurse health, is the highest fatigue experienced during
the 24 hours of that day. Evaluating the fatigue created by all possible rosters of realistic
sizes is not realistic. The number of possible rosters is simply too large. For example, for
a roster with 4 shifts and a planning period of 42 days an upper bound for the number of
possible rosters would be approximately 1.93 × 1025. The number of practically feasible
rosters would be lower, but for realistic sets of constraints, the number of rosters is still
huge.

To deal with this issue, we develop a rolling horizon approximation of the fatigue
model, using explicit enumeration of all possible rosters of a given number of days Thor.
The rosters of length Thor are stored in a lookup table. This approach implicitly assumes
there exists a finite number of days (T hor) shorter than the planning horizon of the full
roster, that provides a useful approximation of the fatigue. When evaluating a time period
[t−Thor+1, t], this period is referred to as the evaluation horizon. The sequence of shifts
worked during the evaluation horizon is referred to as the evaluation pattern. For every
evaluation pattern we elicit the nurse’s maximum fatigue on day t. Clearly the longer
the horizon, the better the estimate. The best estimate from the model is, of course,
when the complete work history of the nurse is entered into it: in effect this is an infinite
horizon.
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The action of performing an evaluation of a full individual roster, thus obtaining
the model’s best possible prediction of the fatigue scores (the true fatigue), is referred
to as a Full Roster Evaluation (FRE). The action of performing an evaluation of an
individual roster using the rolling horizon approximation is referred to as a Rolling Horizon
Evaluation (RHE). RHEs can be performed for different evaluation horizons t, indicated
through the notation RHEt.

Day -1 0 1 2 3 4 5 6 7
indrost N N O D D E O
indpat1 O O N
indpat2 O N N
indpat3 N N O
indpat4 N O D
indpat5 O D D
indpat6 D D E
indpat7 D E O

Table 4.1: Demonstration of how the rolling horizon approximation evaluates the differ-
ent 3-day patterns that exist as parts of indrost. The rolling horizon approximation uses
the information from the last day of the evaluation patterns, and save them to comprise
the approximated fatigue scores for all days. Shift codes in bold represent the scores
stored for each evaluation pattern.

In Table 4.1, we present an example of a RHE3, i.e. the rolling horizon eval-
uation given a three-day evaluation horizon. The 7-day individual roster indrost =
{N,N,O,D,D,E,O} begins on day 1 and that it is approximated using a 3-day rolling
horizon approximation. The true fatigue is found by evaluating the full indrost and stor-
ing the fatigue scores each day, while the approximation evaluates the 7 different 3-day
individual rosters indpat1 . . . indpat7 and store the fatigue score obtained on the last day,
as demonstrated in Table 4.1. For days 1 and 2, we assume off-days before the beginning
of indpat3, which do not affect the initial values of the fatigue model. As a consequence,
the 3-day RHE results match the FRE results for days 1 . . . 3, but from thereon differences
may arise.

We noted that the fatigue model’s initial values reflect a well-rested individual with
a stable circadian rhythm before introducing the RHE. However, in the case of RHEs,
some evaluation patterns can follow a night shift (see e.g. indpat5 in Table 4.1). Be-
cause a night shift stretches into the following day and forces a state of wakefulness in
the beginning of that day, we introduce an additional initial fatigue model state for all
evaluation patterns that succeed a night shift - essentially this is the RHE approximation
extended to include the initial night-shift.

4.3.3 Testing the rolling horizon approximation

We run our FRE and our RHEs for different evaluation horizons on a collection of
30 real-life rosters of 42 days worked by anonymous nurses at the Austin hospital in
Melbourne to evaluate the quality of our approximation. We perform our analysis with
Thor ∈ [3, . . . , 7]. This is because preliminary testing implies Thor ≤ 2 is insufficient,
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and Thor ≥ 8 would imply generating a very large lookup-table. The large look-up table
would be time consuming to generate and potentially increase the complexity of our NRP,
depending on implementation. The first Thor days of the RHEs will naturally be identical
to the FRE.1 Thus, we disregard the data for the first 7 days. This gives us 30 rosters
of 35 days for 9 biological profiles. Every day, in each roster, for all biological profiles, we
identify the fatigue scores, and thus get 9450 data points to compare the FRE with each
of the RHEs.

A difference in sleep drive of 0.10 mV is regarded as irrelevant by the developer of
the model in Phillips et al. (2010), thus there is a good match if in most cases the errors
between FRE and RHEs are less than this. To evaluate the full model (FRE) the
algorithm solves a differential equation using the MATLAB ordinary differential equation
solver “ode23”, see Shampine and Reichelt (1997). The 0.10 mV benchmark for magnitudes
of errors necessitated a significant reduction in the tolerances of the differential equation
solver, as compared to the default values. Our tests included several rosters in violation
of the Safe Work Australia guidelines, which should thus be considered relatively tough.

To evaluate the quality of the rolling horizon approximations of different evaluation
horizons, we want to compare each data point in the FRE with each data point in the
RHEs, by quantifying the errors of the approximations. For every RHE of a given
evaluation horizon, for each data point, we subtract the value provided by the RHE from
the value provided by the FRE for the same data point. E.g., for a 3-day rolling horizon
approximation we find the value of FRE −RHE3 for all 9450 data points. We then sort
the errors, and obtain percentiles to get an overview of how large the errors are. Negative
values in a given percentile would imply the RHEs are larger than the FRE and vice
versa.

Evaluation
Horizon

1st
perc.

5th
perc.

10th
perc.

90th
perc.

95th
perc.

99th
perc.

FRE −RHE3 -1.5024 -0.3074 -0.1169 0.0224 0.0895 0.7230
FRE −RHE4 -1.3593 -0.3014 -0.0969 0.0144 0.0631 0.6078
FRE −RHE5 -1.1767 -0.2859 -0.0879 0.0088 0.0454 0.5438
FRE −RHE6 -1.0473 -0.2606 -0.0743 0.0058 0.0411 0.4636
FRE −RHE7 -1.0355 -0.2019 -0.0551 0.0049 0.0389 0.4968

Table 4.2: Results of subtracting values of RHEs of different evaluation horizons from
the FRE of 30 real rosters. Values for all biological profiles are used. (The units in the
fatigue model are millivolts.)

Results of the analysis are presented in Table 4.2. Firstly, we note that errors decrease
for longer evaluation horizons, as expected. For all percentiles, the longer evaluation
horizons have errors closer to 0 in Table 4.2. Secondly, it is notable how the magnitude of
the errors are larger than the irrelevant magnitude 0.1 (less than -0.1 or more than 0.1)
in roughly 7% of cases. Furthermore, it is notable that approximations both over- and
underestimate the fatigue of nurses regularly.

To understand how errors occur, we consider one of the evaluated 42-day rosters,
denoted realroster1. We present up to 21 shifts on each row below:

1except for possible errors due to the use of numerical methods in the differential equation
solver
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realroster1 =
{O,O,E,E,D,O,O,E,E,D,O,O,E,D,
D,E,D,D,O,O,E,E,D,D,O,O,O,O,
O,N,N,N,O,O,O,N,N,N,O,O,O,O}

During the first 30 days, the FRE and RHE are close to identical, with only irrelevant
differences. On day 30, lasting into day 31, the nurse works the first of three consecutive
night shifts, ending with a shift from late hours on day 32 until the morning on day 33.
On days 34 and 35, the nurse is still recovering from this shift sequence, and fatigue is
above rested levels. This leads to a small but visible error appearing few days later as
presented in Figure 4.2.

On day 36, the FRE has evaluated a long roster and has slightly different parameter
values than in the fully rested state. If the nurse had some continuous off-days from day
36, the FRE would eventually fall back to fit the RHE4 again, but as consecutive night
shifts occur days 36, 37, and 38, the errors rather increase. As a result, errors marginally
larger than the 0.1 threshold occur in several of the following days, although the shapes of
the two graphs are very similar and intuitively imply high precision in the approximation.
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Figure 4.2: Excerpt of the fatigue on days 35 to 39 as roster1 is evaluated through
FRE and RHE4. Notice a small error from the beginning of day 36, lasting throughout
the days in the plot.

However, in Table 4.2, some errors are far larger than those illustrated in Figure 4.2.
This is due to an additional effect, and we illustrate a particularly tough roster from the
collection of real rosters to demonstrate it, realroster2:
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realroster2 =
{O,O,O,N,N,N,N,O,O,O,N,N,N,N,
O,D,O,N,N,N,O,O,O,O,N,N,N,N,
O,O,O,N,N,N,N,O,O,O,N,N,N,O}

In realroster2, the consecutive night shifts on days 4 to 7 lead to a similar shift in
the circadian rhythm as we observed in Figure 4.2. However, when the second sequence
of four consecutive night shifts occur, one can observe an interesting difference in the
activity plot in the Figure 4.3. On day 13, the RHE4 calculates that the nurse will have
a short nap before going to work (notice the dip in the red dotted activity plot), while the
FRE does not. From that day and onwards, the two graphs diverge consistently both in
terms of maximum daily fatigue values and in the shapes of the two graphs.
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Figure 4.3: Excerpt of both the fatigue and the corresponding activity on days 12 to 16
as roster2 is evaluated through FRE and RHE4.

The RHE4 calculates a nap on day 13 because it just exceeds a threshold for specific
values of brain activity inherent in the fatigue model (not just the sleep drive/fatigue
value), while the FRE only comes close to that same threshold. In real life it is unclear
whether the nurse would, in fact, sleep at this time or not. However the divergence
between FRE and RHE shows that the two scenarios - staying awake or sleeping at this
time - has significant knock-on effects for the nurse’s alertness.

The notion that minor errors at any point in time can lead to different activities and
thus escalate into large differences, brings up an important consideration. In reality, the
nurse might or might not have a nap prior to the night shift, depending on a variety of
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external factors such as noise, light, telephone interruptions etc. Consequently it could
be FRE that diverges from reality and not RHE. In this work, however, we regard the
FRE is the best model available for predicting real-life sleep patterns and treat it as a
prediction of true fatigue values.

With this discussion in mind, for RHE we choose a 4-day horizon in our computa-
tional experiments. This gives a practical size of the NRPwF, accepting that whatever
the horizon, some differences from FRE are likely to occur.

4.4 The Nurse Rostering Problem with Fatigue

In this Section, we present a brief formal problem description in Section 4.4.1 and a model
formulation in Section 4.4.2. As we use a mix of different techniques for implementation
of our model, we provide a short explanation of key concepts in Constraint Programming
before presenting the model according to Mixed Integer Programming-tradition.

4.4.1 Problem description

The following hard constraints are based on Safe Work Australia’s guide for managing
the risk of fatigue at work Safe Work Australia (2013). Every day in the planning period,
each nurse should be allocated either one work shift or an off-day. At least a minimum
number of nurses must be assigned to work on each day, evening and night shift. The
number of successive night shifts is restricted. After ending a night shift, or a sequence
of consecutive night shifts, every nurse should have two consecutive nights without work.
Nurses should not be assigned backward rotation, meaning that on the day after a shift,
the next shift should be the same shift type, or a shift starting later. Restricting backward
rotation thus ensures minimum rest times between shifts. There is also an upper limit to
the number of consecutive days of work a nurse can have.

Nurses have a maximum number of hours they cannot exceed on average throughout
the planning horizon, and for realism we also constrain the average minimum number of
hours. Furthermore, there exists a maximum number of hours a nurse can work in any
week. In our case, this can be regarded as a maximum number of weekly shifts, as all
work shifts last 8.5 hours (see Section 4.3). Nurses are guaranteed to have a weekend off
with a given frequency. A weekend off is defined as not working the night shift Friday,
any shift Saturday, nor the day or evening shift Sunday. Two consecutive off-days should
be ensured for each nurse with a reasonable frequency.

Until this point, we have abstained from specifying what expression of fatigue we will
minimise. While it is clear that a lower fatigue level is generally preferable to a higher one,
it is not obvious which objective function best represents a combined effort to ensure nurse
health and patient safety. While the relation between fatigue due to sleep deprivation and
performance is subject to ongoing research, models combining homeostatic and circadian
drives (such as our fatigue model) can be used to predict a variety of performance and
sleepiness measures Fulcher et al. (2010) Postnova et al. (2018). The effects of increased
fatigue levels are disproportional to the reduction in performanceRaslear et al. (2011), and
as a result we formulate an objective function reflecting that the highest fatigue scores
are especially disadvantageous to both health and safety. We thus minimise the highest
fatigue experienced by any nurse at any time in the planning period; the global maximum
fatigue (GMF).
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This is a relatively coarse objective function in the sense that it does not take into
account any other fatigue scores than the very worst one. As a result, rosters could have
arbitrarily high fatigue scores for other nurses and on other days as long as they are
below the GMF without deteriorating the objective function value. While it would be
ideal to minimise the fatigue scores at every minute of every day, we must choose how to
balance increased fatigue at one time against lower fatigue at another. This motivates our
decision to minimise the maximum fatigue score. We base our modelling on approximated
RHE fatigue scores, which may differ from scores returned by the full FRE model, as
discussed previously. However, we perform a full FRE evaluation on the rosters our
system computes, and asses the effects of such errors afterwards.

Another issue affected by our objective function is fairness. It is quite typical in
nurse rostering to model fairness as treating all nurses in the same way, e.g. restricting
the difference in working tiring or unpopular shifts. However, we envisage an alternative
perspective on fairness, where avoiding the highest fatigue levels for every nurse is more
fair than treating everyone the same. We also argue it is more fair to patients to minimise
fatigue levels of staff and to avoid huge differences in alertness among nurses. We thus
believe minimising the maximum fatigue level is interesting and arguably can result in
more fair rosters. It should be noted that the traditional scheduling rules are in place,
which treat every nurse the same regardless of their biology. This limits how differently
nurses can be scheduled, as the rules treat every nurse the same.

4.4.2 Modelling the problem

The NRPwF is modelled in the MiniZinc language Nethercote et al. (2007), which can
map the model onto either MIP or CP solvers, or hybrids. While we choose to formulate
the model according to MIP tradition in this work, some key CP concepts utilised in the
algorithm should be explained briefly.

Unlike MIP, where constraints must be in linear form, a CP specification (model) can
use more expressive built-in constraints (e.g. not equal, append, alldifferent, etc.), and
even new constraints defined within the specification. This flexibility helps to simplify
the specification, reflect the original problem definition, and is well suited for the problem
presented in this paper.

In CP, a problem is defined by a set of variables, representing the choices to be made
in reaching a solution; constraints, representing properties/requirements of the problem
which must be satisfied in any solution; and the objective, whose value is to be optimised.
Each variable can take a set of values, known as its domain, and each constraint involves
a subset of these variables. In CP, a process called filtering is performed first where an
appropriate resolution method is applied on each constraint to reduce the domains of
its variables; i.e. the values of variables that violate the constraint are removed. When
a domain of the variable is changed, it is beneficial to run through all constraints that
contain this variable and see whether this change leads to new domain reductions. This
process is called propagation. Iteratively, a variable is chosen and a value from its domain
is assigned to it. The filtering and propagation process is triggered on each assignment.
This sometimes leads to the removal of all the values of a variable resulting in a failed value
assignment. In the event of a failure, the latest value assignment is reconsidered, called
backtracking, and a new value is tried. The iterative value assignment, and backtracking
process is called search. So, as defined in Régin (2011), CP is based on three strategies:
filtering, propagation and search.
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The choice of variables and constraints in a CP model can impact its efficiency. In
particular, the use of sophisticated global constraints, which have specialised filtering
algorithms, can enhance its performance. Therefore, when modelling our problem, we
have used the ’regular’ global constraint to capture requirements that apply to every
sequence of rostered days or shifts; and the ‘cardinality’ constraint to enforce coverage
for each shift in a roster.

Before presenting our model, we note that a symbol directory and a full model for-
mulation are available in Appendix A. In the NRPwF we assign nurses n ∈ N to shifts
s ∈ S. S consists of all the work shifts SW and the off-shift sO. The work shifts consist
of day, evening and night shifts (s ∈ SW = {sD, sE , sN}). They are allocated during all
days in a defined planning period t ∈ T . In this problem we assume all nurses have had a
long period of off days before the beginning of this roster. For constraints stretching back
in time to days prior to the defined set of days, we thus assume all nurses were assigned
off-shifts sO. As some restrictions apply specifically for weekends, a set of Sundays T S is
defined such that T S = {t ∈ T |mod(t, 7) = 0}.

Coverage

Nurses are assigned through binary variables ynst ∈ {0, 1}. ynst = 1 if nurse n works shift
s on day t, 0 else. ∑

n∈N
ynst ≥ PCs , s ∈ SW , t ∈ T (4.1)

Constraints (4.1) ensure coverage, by enforcing that required staffing levels PCs must be
respected for all work shifts s on all days. Constraints (4.1) are implemented as global
constraints in our algorithm.

Short-term rest

To ensure sufficient rest, different shift transitions and limitations on work patterns are
not allowed. Constraints in this section are modelled using global constraints in the CP
implementation.

∑
s∈S

ynst = 1, n ∈ N , t ∈ T (4.2)

t∑
τ=t−PCN

ynsNτ ≤ P
CN

, n ∈ N , t ∈ T (4.3)

ynsN (t−1) + ynsDt + ynsEt ≤ 1, n ∈ N , t ∈ T (4.4)

ynsE(t−1) + ynsDt ≤ 1, n ∈ N , t ∈ T (4.5)

ynsN (t−2) +
∑

s∈{sD,sE ,sO}

yns(t−1)

+ ynsN t ≤ 2, n ∈ N , t ∈ T (4.6)∑
s∈SW

t∑
τ=t−PCD

ynsτ ≤ P
CD

, n ∈ N , t ∈ T (4.7)
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Constraints (4.2) enforce that exactly one shift is assigned per day. Constraints (4.3)
ensure no nurse works more than P

CN
consecutive nights. Constraints (4.4) and (4.5)

make sure that backward rotation is not possible, thus securing a minimum period of rest
between shifts for all nurses. Constraints (4.6) state that it is not possible to work a night
shift followed by an off day and then another night shift. This implies that after ending
a sequence of consecutive night shifts, the nurse will not be working during the night in
any of the two following days. Constraints (4.7) set the maximum number of consecutive
work days to P

CD
.

Long-term rest

To ensure two consecutive days of rest, a new variable is introduced. znt is a binary
auxiliary variable used to indicate if a nurse is allocated any work shifts during a period
of two consecutive days ending on day t. Due to nurse preferences, the two-day period
considered includes the night shift on day t− 2 rather than the night shift on day t. This
especially affects weekends, as znt = 0, t ∈ T S , implies nurse n has the nights off on
Friday and Saturday when they have the weekend off.

H ≤
∑
s∈S

∑
t∈T

PHs ynst ≤ H, n ∈ N (4.8)

∑
s∈SW

t∑
τ=t−6

PHs ynsτ ≤ H
W
, n ∈ N , t ∈ T S (4.9)

2znt − ynsN (t−2) −
∑
s∈SW

yns(t−1)

− ynsDt − ynsEt ≥ 0, n ∈ N , t ∈ T (4.10)

P
CW∑
τ=0

zn(t−7τ) ≤ P
CW

, n ∈ N , t ∈ T S (4.11)

t∑
τ=t−PZ

znτ ≤ P
Z
, n ∈ N , t ∈ T (4.12)

Constraints (4.8) restrict the hours worked by each nurse to be in the interval [H,H].
The length of shift s is denoted PHs . Constraints (4.9) restrict working more than H

W

hours every week. Constraints (4.10) ensure znt indicates work during a two-day period.
Due to the short-term rest constraints in Section 4.4.2, the big M -value 2 is sufficient
in constraints (4.10). Constraints (4.11) ensure that no nurse works P

CW
consecutive

weekends. Furthermore, every nurse should have two consecutive days off at least once
every P

Z
days, as instructed through constraints (4.12).

Objective function

The variable fnt represents the fatigue score of nurse n ∈ N on day t ∈ T . The value
of fnt is retrieved from a lookup table where there are multiple additional inputs. The
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biological profile b ∈ B of nurse n, information on whether the nurse worked a night shift
the day prior to the evaluation pattern, and the evaluation pattern itself are all relevant
inputs for the value of fnt. However, we use the simple fnt syntax here, and present
a more detailed version in Appendix A.6. Here, auxiliary variable fGM is introduced
to represent the global maximum fatigue score, and is assigned the correct value due to
constraints (4.13). The objective function is presented in constraint (4.14).

fGM − fnt ≥ 0 n ∈ N , t ∈ T (4.13)

Minimise fGM (4.14)

4.5 The solution method

The main idea of our solution method is presented here. For a more detailed review of
the algorithm, pseudo-code is provided in Algorithms 1 and 2 in Appendices B and C.

We first use a MIP solver to find a feasible solution; our current best solution. From
this point on, in every iteration we have a current best solution available, with a current
roster parameter denoted y∗nst and a current global maximum fatigue parameter denoted
fGM∗. We also denote the current 4-day rolling horizon approximated fatigue parameter
of nurse n on day t f∗nt, and introduce the current individual maximum fatigue parameter
of nurse n f IM∗n , defined as the highest fatigue experienced by nurse n in the planning
period f IM∗n = maxt∈T (f

∗
nt).

To reduce complexity when performing iterations, we fix the roster ynst to be iden-
tical to the roster in the current best solution y∗nst, except for some specifically chosen
combinations of nurses n and days t denoted by the neighborhood parameter Nst. It takes
the value 1 if ynst is not fixed to the value of y∗nst, and 0 else.

In every iteration of our algorithm, we create a new roster ynst with new approx-
imated fatigue scores fnt resulting in a new GMF fGM . In every iteration, the algo-
rithm either reduces the GMF (fGM < fGM∗), finds a new solution with unchanged
GMF and fewer occurrences of the GMF (fGM = fGM∗

⋂
(sumn∈N ,t∈T (fnt = fGM∗) <

sumn∈N ,t∈T (f
∗
nt = fGM∗))), or is not able to find a better solution and keeps the cur-

rent best (ynst = y∗nst). Attempting to reduce the GMF is the standard approach, while
attempting to reduce occurrences of the GMF is done when symmetry or unsuccessful
previous attempts indicate this is more promising.

When we are no longer able to improve the solution, we perform a Full Roster Eval-
uation of it, and if errors have relevant magnitude, we repeat the process. We provide a
conceptual illustration of the algorithm in Figure 4.4 with a brief description of each step.

As seen from Figure 4.4, the algorithm firstly creates an initial solution, identifying
y∗nst and fGM∗. Assume there are not many occurrences of the fGM∗ and that a new
solution has been found recently, the standard optimisation approach of minimising the
GMF is implemented. This means we implement the objective function presented in
constraint (4.14) in Section 4.4. All combinations of nurses and days described below
constitute the neighborhood when performing the standard optimisation approach:

1. The full individual schedules of a set of nurses NF experiencing the GMF (Nnt =
1, n ∈ NF , t ∈ T , provided that n ∈ NF |f IM∗n = fGM∗, n ∈ N )
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Figure 4.4: Flow chart of algorithm.

2. The full individual schedules of a set of nR random nurses NR (Nnt = 1, n ∈
NR, t ∈ T , provided that NR = rand(N −NF , nR)

3. The off-shifts of all nurses in the roster (Nnt = 1, n ∈ N , t ∈ T |ynsOt = 1)

We fix the roster ynstof any iteration to be equal to the current best roster y∗nst, except
for the defined neighborhood where Nnt = 1, as below:

ynst = y∗nst, n ∈ N , s ∈ S, t ∈ T |Nnt = 0 (4.15)

Assume the response to the question of recent progress in Figure 4.4 is “yes”, and
another iteration is performed. If there are many occurrences of nurses experiencing the
GMF (fnt = fGM∗ for more than some few n ∈ N , t ∈ T ) and/or our algorithm has
not been able to produce a new solution in recent iterations (we consider ourselves stuck
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in a local optima). In this case, the neighborhood is defined in the same way as for the
standard optimisation approach, with the notable exception that if there are more than
nF nurses in NF , the set is redefined as a randomly drawn subset of maximum nF of the
nurses experiencing the GMF. Furthermore, we minimise the occurrences of the GMF.
This also entails restricting the maximum fatigue score of all nurses to the current best
BMF. While the nonlinearities are handled by the CP solver in our algorithm, we still
provide a MIP linearisation in for an intuitive understanding. Let the binary variable
fOccnt ∈ {0, 1} be equal to 1 if nurse n experiences the GMF on day t, 0 else.

fnt ≤ fGM∗, n ∈ N , t ∈ T (4.16)

fOccnt − fnt + fGM∗ > 0, n ∈ N , t ∈ T (4.17)

Minimise
∑
n∈N

∑
t∈T

fOccnt (4.18)

Constraints (4.16) ensure that no nurse is assigned a fatigue score that is higher than
the GMF of the previous iteration, while constraints (4.17) state that fOccnt must take a
value higher than 0 if fnt = fGM∗, but can be 0 otherwise. Minimising fOccnt in constraint
4.18 thus entails minimising the number of occurrences of the GMF.

Assume, after some iterations of the algorithm in Figure 4.4, that there has been
no recent progress (the evaluation of this question is discussed in more detail in Section
4.6.2)A FRE is performed to unveil the true fatigue of the best solution, before the GMF
of the FRE is compared to fGM∗. If the true GMF turns out higher than the fGM∗,
with a margin larger than the 0.10mV threshold of relevance, we perform postprocessing
and repeat the FRE on the new roster produced in postprocessing. We assume extras
(casuals) can step in on some limited number of shifts when necessary, as is common in
real-life. In our solution method, that means we can substitute a tiring shift in our roster
with an off-day. Post-processing is thus done by removing the shift prior to the true GMF
identified in the FRE. This is repeated until the true GMF is below fGM∗+0.10mV or a
maximum number of postprocessing iterations is reached. The postprocessing is discussed
further in Section 4.6.2, and pseudocode is available in Algorithm 2 in Appendix C.

4.6 Computational Study

The algorithm is run using Python3.6.8 to define neighbourhoods and call MiniZinc2.3.2
using built-in MIP-solver gurobi8.1.1 to find the initial solution and the CP-solver Chuffed0.10.4
Chu (2011) to search within the given neighbourhoods. Matlab R2018 is called to create
the lookup-table of approximated fatigue values and to perform the FRE. Computational
experiments are run using an HP EliteBook 820 G3 with the specifications below:

CPU: Intel Core i7-6500U CPU @ 2.50GHz - 2 cores
RAM: 16Gb

4.6.1 Instances

When performing computational studies, we would ideally use real instances. However,
as collecting information about individual biology would be both complicated and con-
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troversial, we create biological profiles b ∈ B by making changes to two parameters in the
fatigue model that represent common differences in biology related to sleep Phillips et al.
(2010). These two parameters represent the average sleep-time and the chronotype of a
human.

The average-sleep-times parameter is by default calibrated for a person with a normal
chronotype, which is ≈ 7 hours sleep when fully rested beforehand. According to the
developer of the Phillips et al. (2010) model, 5 and 9 hours are realistic variations within
the adult population in real-life. To identify the right parameter values for the sleep
times, we thus vary the one parameter typically reflecting this in the adult population
to get the right hours of sleep (see constant offset D0 in Phillips et al. (2010)), while
all other parameters are left at their default values. To get a meaningful number of
these nurses represented, we draw biological profiles for nurses with a 10% chance of
having a short sleep time (≈ 5 hours) or a long sleep time (≈ 9 hours), leaving an 80%
probability of the most common value (≈ 7 hours). The chronotype parameter is by
default set to its standard value representing the most common “day-time chronotype”.
We similarly provide chronotype parameters that are somewhat uncommon, but within
realistic variations in the adult population, to create “morning-type” and “evening-type”
biological profiles (see intrinsic period τc in Phillips et al. (2010)). We assume these two
parameters are not correlated, and thus produce the 9 different biological profiles in Table
4.3.

Table 4.3: Illustration of the probability of drawing different biological profiles for the
nurses in our instances. The index-value of each of the biological profiles is given in
parenthesis.

Average sleep time
Short ≈ 5 Normal ≈ 7 Long ≈ 9

Chronotypes Probabilities 0.1 0.8 0.1
Morning-type 0.1 0.01 (5) 0.08 (4) 0.01 (6)
Day-type 0.8 0.08 (2) 0.64 (1) 0.08 (3)
Evening-type 0.1 0.01 (8) 0.08 (7) 0.01 (9)

In Table 4.3, the probability of drawing each profile is given depending on the average
sleep time and the chronotype of any given nurse. Clearly this very coarse grouping of
biological profiles does not come close to capturing the real-world variations of biology
affecting sleep. However, the profiles facilitate analyses of the effects of some common
differences in biology among nurses. Furthermore, as these parameters represent two
aspects of sleep that would be possible to unveil using e.g. a survey, our profiles represent
a realistic and pragmatic approach to including biology in real-life rostering.

Furthermore, deciding on the number of nurses relative to minimum staffing levels,
as ensured by coverage constraints, is not trivial. We have used real-life 12-week rosters
from the Intensive Care Unit (ICU) at the Alfred in Melbourne, Australia as a basis
for the minimum staffing parameter. This ICU is an ideal starting point for creating
instances that are realistic while ensuring that biological profiles are the only differences
between nurses. Firstly, the ICU is the largest in the state of Victoria in Australia State
Government of Victoria (2019), making it scalable despite the skill-mix variations in real-
life rostering problems. Secondly, the activity at the ICU is inherently interminable, and
as a result shift work is planned around the clock.
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In the real-life data, several nurses work part-time. This counteracts the desired
homogeneousness of our nurses, but by calculating the ratios between full-time equivalents
and day, evening and night shifts, we calculate conservative estimates of the minimum
coverage requirements. These are 7, 5, and 5 nurses for day shifts, evening shifts, and
night shifts respectively, given a total staff of 30 full-time nurses, and correspond to the
parameter PCs , s ∈ SW in the model in Section 4.4. Other data and parameter values are
retrieved from the Safe Work Australia guidelines Safe Work Australia (2013), and can
be found in Appendix A. We generate 20 instances and analyse them in the following
sections.

4.6.2 Minimising the global maximum fatigue scores

In Figure 4.5, the minimisation of the global maximum fatigue score of Instance 1 is il-
lustrated. Black circles with the black lines striking through represent the GMF (fMG∗)
in each iteration. Blue circles represent one or more nurse’s individual maximum fa-
tigue score (f IM∗n ) in each iteration (some circles are hidden behind each other). The
green line represents the number of occurrences of the current GMF in each iteration
(
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Figure 4.5: Figure demonstrating change in the value, and the number of occurrences,
of the global max fatigue for Instance 1. Iteration 0 is the initial feasible solution, while
Iterations 1 to 101 are based on the approximated fatigue scores. Iteration 102 is the true
global maximum fatigue score and Iteration 103 is the result of postprocessing.
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In Figure 4.5, Iteration 0 simply produces any feasible solution to the NRPwF. During
the first iterations, the global maximum fatigue clearly decreases, before stabilising at
5.90. Had we only performed 40 iterations on this instance, and not noted the change in
number of occurrences of the GMF, we would likely conclude that the algorithm seemed
to converge. However, from the green line in Figure 4.5 we can see that while the global
maximum fatigue score remains 5.90 during iterations 5 to 43, the number of occurrences
of the 5.90-score gradually decreases from 60.

From this point, the global maximum fatigue continues to decrease from iteration 43
to 48, converging to 5.44. For this value of the GMF, however, the number of occurrences
also remains unchanged, and we can thus be more confident we have found a high-quality
solution. These results illustrate that rather than determining an exact number of itera-
tions for all instances, we should terminate our algorithm when we have reason to believe
the maximum global fatigue score has converged, i.e. when our algorithm has no progress
in a reasonable number of iterations. We set this limit to 20 iterations without either
finding a new GMF or reducing the number of occurrences of the GMF.

Errors and postprocessing

In Figure 4.5, there is a spike in the fatigue score in iteration 103. Iteration 103 repre-
sents the FRE performed after termination of our algorithm. From the large difference
in fatigue score in iteration 102 and iteration 103, there is clearly at least one case of
significantly higher true GMF than estimated in iteration 102. To counteract this, we use
extras, as mentioned briefly in Section 4.5.

In reality, it is common in most hospitals to have access to some number of extras
that can cover for staff when necessary. We assume that a ward of 30 full-time nurses has
access to extras that can cover one shift per week on average, i.e. up to six shifts can be
covered by extras in our planning period. When the true GMF is 0.10mV, or more, higher
than the approximated GMF, the last work day prior to the true GMF is replaced with an
off-shift for the nurse experiencing the GMF. If the process is performed six times and the
global maximum fatigue is still more than 0.10mV larger than the approximated global
maximum fatigue score, we assume that we have exhausted the ward’s budget for extras
on single shifts, and accept that the fatigue is higher than implied by the approximation.
Pseudocode for the postprocessing procedure is presented in Algorithm 2 in Appendix C.

In Figure 4.5, the last iteration, iteration 104, is the result of using an extra worker
for one single shift. In the example of Instance 1, the approximated global maximum
fatigue value was 5.44, the true evaluation was 5.78, and after postprocessing (adding one
off-shift) the true fatigue value became 5.51.

In the column of Iteration 0 in Table 4.5, the global maximum fatigue scores of the
initial feasible roster is provided. The subsequent columns up to the column denoted
“Last” present the global maximum fatigue based on the approximated fatigue scores.
Later columns all include the true fatigue scores provided through FREs and errors found
by comparing the FREs with the approximated fatigue score in the latest iteration of
our algorithm. If errors are greater or equal to the threshold of relevance, 0.10mV, extras
are used to cover single shifts, and new FRE-values are provided in subsequent columns.

Immediately we notice the stark difference between GMF in rosters in Iteration 0 and
the column denoted “Last”. As all feasible solutions to the NRPwF must respect the Safe
Work Australia guidelines, one might not expect the potential for reducing the GMF was
very large to begin with. However, results in Table 4.4 underscore that the algorithm
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Table 4.4: The table presents global maximum fatigue scores for 20 instances. All values
are given in milliVolts.

Instance Initial Values based on RHE4 Values based on FRE
Iterations 0 10 20 40 60 80 100 Last True Error 1 extra 2 extras 3 extras
1 6.66 5.90 5.90 5.90 5.44 5.44 5.44 5.44 5.78 0.34 5.51
2 6.66 5.90 5.90 5.44 5.35 5.35 5.35 5.35 0.00
3 6.66 5.90 5.90 5.90 5.90 5.90 5.90 5.92 0.02
4 6.66 5.90 5.90 5.44 5.35 5.35 5.35 5.35 0.00
5 6.66 5.90 5.90 5.44 5.44 5.44 5.44 5.47 0.03
6 6.66 5.90 5.90 5.90 5.90 5.90 6.19 0.29 5.91
7 6.66 5.90 5.44 5.44 5.35 5.35 5.35 5.35 6.13 0.78 5.36
8 6.66 5.90 5.90 5.90 5.90 5.66 5.44 5.44 5.50 0.06
9 6.66 5.90 5.90 5.90 5.44 5.44 5.35 5.35 5.36 0.01
10 6.66 5.90 5.90 5.90 5.53 5.44 5.44 5.44 5.54 0.10 5.44
11 6.66 5.90 5.90 5.90 5.90 5.90 5.90 5.94 0.04
12 6.66 5.90 5.90 5.59 5.35 5.35 5.35 5.35 5.36 0.01
13 6.66 5.90 5.90 5.90 5.90 6.06 0.16 6.05 6.01 5.96
14 6.66 5.97 5.90 5.90 5.90 5.90 5.90 5.90 5.97 0.07
15 6.66 5.90 5.81 5.44 5.35 5.35 5.35 5.89 0.54 5.7 5.69 5.36
16 6.66 5.90 5.90 5.90 6.06 0.16 6.01 5.96
17 6.56 5.90 5.90 5.44 5.44 5.44 5.44 5.44 5.51 0.07
18 6.66 5.90 5.90 5.90 5.90 5.35 5.35 5.35 5.36 0.01
19 6.66 5.90 5.90 5.90 5.90 5.90 5.90 6.21 0.31 6.06 5.95
20 6.66 5.90 5.90 5.90 6.08 0.18 5.98

is able to reduce the approximated GMF vastly by explicitly minimising it (1.06mV on
average for all instances).

From results in Table 4.4, it is clear that postprocessing is necessary in 9 of the 20
instances to reduce the error to an irrelevant magnitude. In five cases one extra shift
is sufficient, in two cases we need two extras, and in two cases we need three extras.
The postprocessing technique seems effective, as evidenced by the results in Table 4.4.
Notably, all errors are positive (FRE-scores are larger than RHE4-scores), which can
seem surprising given results in Table 4.2. However, the global maximum fatigue scores
obtained after FRE are not necessarily the same nurses and shifts that are estimated to
have the maximum global fatigue by the RHE4. With 30 nurses and 42 days in a roster,
there could potentially be large true fatigue scores in seemingly arbitrary parts of the
final roster, as became clear when analyzing errors in Section 4.3.3. With this in mind,
it makes sense that errors tend to be positive.

Results in Table 4.5 demonstrate that focusing only on the approximated values from
our lookup-table (in practise this means focusing on shorter shift patterns) does not
guarantee against producing tiring schedules for some nurses (see e.g. Instance 7), but it
proves to be a highly useful proxy. The longer shift patterns are considered, the better
the proxy, as implied by results in Section 4.3.3. Furthermore, managers can ensure a
high-quality roster if they combine this approach with a full evaluation of rosters after
they are created and also use extras for single shifts. Our results suggest this number can
be small, and in many cases 0.

Roster insights

The large plateaus in Figure 4.5 stand out as an interesting characteristic, which provides
some insights to the structure of the NRPwF when minimising the global maximum
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fatigue. Note that 5.90 is the approximated fatigue score for a nurse of biological profile 1
working the shift pattern {O,N,N,N} or the pattern {D,N,N,N}. In other words, to reduce
the objective function value, all such patterns for nurses of biological profile 1 must be
removed without introducing an even higher fatigue score somewhere in the roster. This
is an example of a pattern that can occur frequently, as the probability of a nurse having
biological profile 1 is 64%, and three consecutive nights is the maximum number of nights.

However, as the algorithm has removed high fatigue scores from the roster, this has
affected the number of different shifts worked by nurses of different biological parameters.
In Table 4.5 we present some key information on the average number of different shifts
worked by nurses of each biological profile. 30 nurses working 42 days and a minimum of
7 day shifts, 5 evening shifts, and 5 night shifts per day, implies each nurse should work
a minimum of 9.8 day shifts and 7 evening and night shifts each, as seen in the last row
in Table 4.5.

Table 4.5: Roster statistics for each of the 9 biological profiles in the 20 instances.

Biological Sleep Chrono- Avg. Avg. Avg. Avg. Nr.
profile time type Day Evening Night triple night
1 Normal Day 10.41 8.21 7.10 0.10
2 Short Day 6.94 6.10 12.51 0.55
3 Long Day 13.33 9.82 2.59 0.00
4 Normal Morning 10.11 7.18 8.44 0.49
5 Short Morning 5.00 6.00 14.75 2.50
6 Long Morning 12.83 1.17 11.83 1.33
7 Normal Evening 10.79 6.49 8.51 0.59
8 Short Evening 14.56 2.22 9.22 1.67
9 Long Evening 16.40 8.20 1.40 0.00
Avg. Min. 9.8 7 7

It is clear from Table 4.5 that nurses of different biological profiles are assigned very
different numbers of different shifts. Nurses of the most typical biological profile 1 work
on average 10.41 day shifts, 8.21 evening shifts, and 7.10 night shifts. They thus work
approximately their share of each shift type. Nurses of biological profile 1 work on average
0.10 of the tiring triple night-patterns. The low number of triple night-patterns is notable,
and make sense seeing that most instances in Table 4.4 have no approximated fatigue
scores of 5.90.

Nurses of all the nine biological profiles have little negative impact on their sleep from
working day shifts, and it is thus natural to compare profiles by looking at the number of
night shifts and evening shifts they are able to perform without producing high fatigue
scores. If we analyse the values in Table 4.5, we can see that the sleep times tend to affect
the number of shifts worked during hours the nurse would otherwise sleep. Nurses that
have short sleep times, i.e. nurses of biological profiles 2 (12.51 nights), 5 (14.75 nights),
and 8 (9.22 nights), work more night shifts than the minimum requirement per nurse.

On the other hand, nurses with long sleep times work few night shifts on average
(profile 3 works 2.59 and profile 9 works 1.40) with the exception of the morning chrono-
type profile 6 (11.83 nights). The case of profile 6 is interesting, because it contradicts a
notion of a straight-forward relation between length of sleep times and the frequency of
night shifts. However, we can see that the number of evening shifts worked by nurses of
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biological profile 6 is 1.17. This could mean that for nurses with a morning chronotype,
it is more problematic to work evening shifts and easier to work night shifts than for
nurses of other chronotypes. Intuitively this makes sense, as morning type sleepers go to
bed early and as a result this can make evening shifts more challenging than for other
chronotypes. Also, with most other biological profiles clearly favouring evening shifts
over night shifts, it is practical not to assign evening shifts to nurses of profile 6 from a
combinatorial perspective.

It seems that when minimising the global maximum fatigue, we must take special
notice of the needs of nurses with long sleep times and customize the rosters for them.
This entails treating nurses differently in order for them to be similarily fatigue when they
are the most tired, possibly denouncing the simplified fairness rules typically presented
in rostering literature, where e.g. nurses are assigned the same number of the unpopular
night shifts. The customization could both entail ensuring sufficient off-days and rest
times, but it is also notable that the chronotype of a nurse seems to decide which shifts
are most disadvantageous to the nurses.

4.6.3 The effects of increased staff levels on maximum fatigue
levels

To analyze the effect of staff size on the global maximum fatigue score in a roster, we take
Instances 1-20 solved in Section 4.6.2 and add one or two full-time nurses of biological
profile 1 to evaluate the effects. The instances with extra full-time nurses are simply
referred to with +1 or +2 in subscripts, e.g. Instance 1+1, RHE4+1 or FRE+1. Results
based on approximated fatigue scores are presented in Table 4.6, while values based on
FREs are presented in Table 4.7.

Results in Table 4.6 can provide insights to the magnitude in the decrease of fatigue
scores from increasing staff numbers. Most notably, there are large improvements for
some instances, see e.g. RHE4-RHE4+1 for instances 6 and 19, or RHE4+1-RHE4+2 for
instance 11. However, to be certain of the practical impacts of increasing the staff levels,
we must evaluate the true fatigue scores for each case as well. Results using true fatigue
scores are presented in Table 4.7.

In Table 4.7 we present true fatigue scores for all 20 instances after postprocessing.2
Despite errors occurring when performing FREs, there is only one case of increased

objective function values when calculating the FREPP3 -FREPP (Instance 15), which is
lower than the 0.10 threshold of relevance. Results in Table 4.7 thus seem realistic.

As in Table 4.6, there are some instances where the global maximum fatigue scores
are reduced greatly in Table 4.7, while there are others that have no or very little im-
provement. From the average values in the last row, we can see a slightly larger average
improvement from adding the first nurse in column FREpp+1 compared to FREpp, than
comparing the two later columns with their priors (FREpp+1 to FREpp+2 and FREpp+2 to
FREpp+3), but average differences in GMF from adding a nurse are generally small. It

2To evaluate the effect of adding full-time nurses to instances, we could look at both the FRE-
values without post-processing and the FRE-values with post-processing. However, ignoring
post-processing entails assuming managers would ignore surprisingly high fatigue scores, and
we believe this is unrealistic. We thus compare the cases with post-processing, and use pp in
superscript to mark this (e.g. FREpp

+1), but note that the number of extra shifts introduced
in post-processing varies, from 0 (most common) up to six (the maximum number of added
off-shifts).
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Table 4.6: Approximated values of objective functions after running our algorithm on
Instances 1-20 with zero, one and two full-time extra nurses added to the staff. The
decrease in global maximum fatigue score is provided in the last columns. Average values
are provided in the last row.

Instance RHE4 RHE4+1 RHE4+2 RHE4-RHE4+1 RHE4+1-RHE4+2

1 5.44 5.35 5.27 0.09 0.08
2 5.35 5.35 5.35 0.00 0.00
3 5.90 5.69 5.35 0.21 0.34
4 5.35 5.35 5.27 0.00 0.08
5 5.44 5.35 5.35 0.09 0.00
6 5.90 5.35 5.27 0.55 0.08
7 5.35 5.35 5.35 0.00 0.00
8 5.44 5.44 5.35 0.00 0.09
9 5.35 5.35 5.27 0.00 0.08
10 5.44 5.35 5.27 0.09 0.08
11 5.90 5.90 5.35 0.00 0.55
12 5.35 5.35 5.35 0.00 0.00
13 5.90 5.53 5.35 0.37 0.18
14 5.90 5.69 5.69 0.21 0.00
15 5.35 5.35 5.35 0.00 0.00
16 5.90 5.44 5.44 0.46 0.00
17 5.44 5.44 5.35 0.00 0.09
18 5.35 5.35 5.35 0.00 0.00
19 5.90 5.37 5.35 0.53 0.02
20 5.90 5.90 5.53 0.00 0.37
Average 5.59 5.46 5.36 0.13 0.10

is interesting to compare the second column FREpp containing true fatigue scores af-
ter post-processing for the original instances with the last column, as we do in FREpp

-FREpp+3, where the total improvement in GMF from adding three nurses to the staff is
presented.

It is clear that instances with the highest GMF in the original instances FREpp have
the largest improvements. That is, Instances 3, 6, 11, 13, 14, 16, 19, and 20 all have
improvements of 0.50 or more, and they all had RHE4-values of 5.90 in Table 4.6 and
FREpp-values in the region of 5.90-6.00 in Table 4.7. These improvements have quite
clearly come as a direct result of being able to remove triple night-patterns for the nurses
of a normal biological profile and in some cases adding extra off-shifts to compensate for
errors in our 4-day rolling horizon approximation. On the other hand, of the 7 instances
that had FREpp-values in the range 5.30-5.40 (Instance 2, 4, 7, 9, 12, 15, and 18) in the
original instance, only three had an improvement of relevant magnitude.

The above mentioned results highlight two interesting insights. Firstly, and perhaps
unsurprising to practicing nurses, increased staff levels enable less tiring rosters. Man-
agers should note that avoiding the most undesirable shorter patterns tend to reduce
nurse fatigue. Secondly, when biological profiles are as coarsely divided as in our exper-
iments, the effects of removing every occurrence of a short and tiring pattern becomes
important. When adding an additional nurse means the last nurse of biological profile
1 no longer has to work any triple night shifts, the GMF is typically reduced by a lot.
If adding the additional nurse only reduces the occurrences of triple night shifts among
nurses with biological profile 1, the GMF is unchanged or changed within the threshold
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Table 4.7: True fatigue scores of running our algorithm on Instances 1-20 with none,
one and two full-time extra nurses added to the staff. Average values in the last row.

Instance FREpp FREpp
+1 FREpp

+2 FREpp
+3 FREpp-FREpp

+3

1 5.51 5.36 5.30 5.19 0.32
2 5.35 5.35 5.35 4.94 0.41
3 5.92 5.80 5.36 5.35 0.57
4 5.35 5.35 5.31 5.22 0.13
5 5.47 5.36 5.35 5.35 0.12
6 5.91 5.38 5.19 5.15 0.76
7 5.36 5.36 5.36 5.36 0.00
8 5.50 5.46 5.47 5.34 0.16
9 5.36 5.37 5.24 4.9 0.46
10 5.44 5.44 5.30 4.92 0.52
11 5.94 5.90 5.36 5.34 0.60
12 5.36 5.35 5.36 5.35 0.01
13 5.96 5.36 5.36 5.35 0.61
14 5.97 5.82 5.80 5.35 0.62
15 5.36 5.40 5.36 5.39 -0.03
16 5.96 5.49 5.47 5.44 0.52
17 5.51 5.43 5.47 5.35 0.16
18 5.36 5.35 5.36 5.36 0.00
19 5.95 5.37 5.35 5.35 0.60
20 5.98 5.97 5.59 5.43 0.55
Average 5.63 5.48 5.39 5.27 0.35

of relevance. However, in reality, every individual’s biology will differ to some extent, and
if this information was truly available and incorporated in the fatigue model, there would
likely be small reductions in the GMF in cases where our model only shows a reduction
in occurrences of the GMF. It is therefore reasonable to look at the average values of
reduction of the GMF in Table 4.7 to estimate the effect of adding one additional nurse
to the staff. Thus, the average values of 0.14, 0.11 and 0.10 mV decrease in GMF per
added staff are likely reasonably close to the actual decrease one can expect from adding
a full-time nurse to a ward of 30 full-time nurses. Simply put, the reduction in fatigue by
adding an additional nurse is small, but not irrelevant.

4.6.4 The value of knowing each individual’s biotype

While utilizing sleep models in rostering is in itself uncommon at most real-life hospital
wards, the introduction of different biological profiles is especially novel. To evaluate the
impact of it, we run our algorithm minimising the global fatigue score for a set of 30
nurses that all have the normal biological profile 1. When the final roster is produced, we
perform new FREs on the final roster, this time applying other biological profiles to all
nurses. That is, all nurses are evaluated assuming biological profile 2, before all nurses are
evaluated assuming biological profile 3, etc. Essentially we test how well we can minimise
global fatigue scores without taking into account individual biology.

In Table 4.8 the global maximum fatigue scores are provided. Comparing the values
in this column across all biological profiles, we see that the standard profile 1 has a global
maximum fatigue score of 6.00, which is near the average maximum global fatigue score
across all biological profiles of 5.96.
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Table 4.8: Key fatigue score statistics for the same roster where all nurses are assumed
to have the biological profile in the leftmost column. The roster was produced by our
algorithm minimising the global maximum fatigue score for 30 nurses, all with biological
profile 1.

Biological Sleep Chrono- Global maximum
profiles time type fatigue score
1 Normal Day 6.00
2 Short Day 5.64
3 Long Day 6.65
4 Normal Morning 5.62
5 Short Morning 5.05
6 Long Morning 6.38
7 Normal Evening 6.09
8 Short Evening 5.26
9 Long Evening 7.00
Average 5.96

Table 4.8 provides some pointers to which profiles contribute to increasing and re-
ducing the fatigue. The highest profiles with global maximum fatigue scores higher than
biological profile 1 are profiles 3 (6.65), 6 (6.38) and most notably 9 (7.00). Nurses with
these three biological profiles have in common their long sleep time. This indicates that
the long sleep time is a key characteristic of the nurses that are easily fatigued, which
corresponds to results in Section 4.6.2. In those experiments, long time sleepers were
spared the most tiring shifts. In this case, such individual customization was not made,
and the global maximum fatigue scores of long time sleepers is far higher than in any of
the rosters produced in Section 4.6.2 as a result. Similarly, short time sleepers tend to
have lower fatigue scores than biological profile 1 had in Table 4.8, with scores 5.64 for
profile 2, 5.05 for profile 5, and 5.26 for profile 8.

We note that the morning chronotype nurses all have a lower global maximum fatigue
score than the day and evening chronotype nurses with the same sleep times (profile 4
has lower global maximum fatigue score than profiles 1 and 7, etc.) This is interesting,
especially knowing that rosters were created to minimise the global maximum fatigue of
nurses with a day chronotype. This indicates that it is advantageous for a nurse to have a
morning chronotype over a day chronotype, although results would be dependant on shift
definitions and commuting. The difference between day and evening chronotypes is more
unclear, as global maximum fatigue scores are 6.00, 5.64, and 5.82 for day chronotypes
and 6.09, 5.26, and 7.00 for evening chronotypes in Table 4.8.

By revisiting results in Section 4.6.2 of running our 20 instances in Table 4.4, an
interesting realisation occurs, that the fatigue score of the normal biological profile 1 in
Table 4.8 is in fact quite poor. The approximated GMF for the case of 30 nurses with
biological profile 1 is 5.90 (triple night pattern) and the true GMF is 6.00.3 The poor
results for 30 nurses of the normal biological profile 1 imply that variations in biological
profiles are beneficial when minimising the GMF. With the insights acquired in Section

3The error is just below 0.10 in this roster, and thus no postprocessing occurred. Some
rosters were postprocessed in Table 4.4, making a direct comparison of the GMF between rosters
imperfect.
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4.6.2 in mind, it seems nurses with different chronotypes act as complimentary resources
at the ward, an interesting notion for those looking to recruit new shift workers.4

4.7 Conclusions and future work

We have presented and formalised the Nurse Rostering Problem with Fatigue by approxi-
mating and incorporating an advanced sleep model in a general Nurse Rostering Problem.
An algorithm combining Mixed Integer Programming and Constraint Programming to
form a Large Neighborhood Search was introduced. The algorithm created high-quality
rosters minimising the global maximum fatigue for all nurses. Instances were created as
6-week rosters using real-life data. We further demonstrated the use of a post-processing
technique in cases where approximation errors are larger than a threshold of relevance.

4.7.1 Technical Outcomes

Nurse rostering is a time-consuming task, and poor rostering choices can easily result in
fatigue and medical errors. This paper described how a fatigue model can be successfully
integrated with a nurse rostering model and solved to a practical scale (30 nurses over 6
weeks) using a hybrid algorithm. Current systems implement rules, such as the Safe Work
Australia (2013) guidelines, to avoid fatiguing rosters. The results show that, compared
with a roster which merely implements such a generic set of rules, levels of fatigue can be
reduced by more than 1.00mV with an integrated fatigue model in the rostering system.

4.7.2 Managerial insights

This work demonstrates that prospective use of advanced sleep models in Nurse Rostering
is realistic. In practice, managers should be aware of the potential benefits for nurse health
and patient safety, and innovative health care institutions should consider pilot projects
with real-life implementation.

Among other results, our research demonstrates two closely linked insights:

1. Minimising the global maximum fatigue for nurses of different biological profiles
entails assigning them different numbers of shifts during evening and night time

2. Without customisation to individual nurses’ biology, we cannot expect to create
rosters that limit the highest fatigue levels considerably

In a practical setting this means that managers must treat nurses differently in order
to minimise the global maximum fatigue. This entails grappling with an idea of what
fairness is in rostering. While it is easy and tempting to treat every nurse exactly the
same irrespective of their reaction to working round the clock, this does not suffice if
managers wish to create rosters that focus on nurse health and patient safety.

Furthermore, our results support the intuitive notion that biological parameters linked
to sleep time affect the fatigue experienced from shift work. That is, nurses who are

4An interesting parallel to the notion of using complementary chronotypes in scheduling
exists in Walker (2017), where the reason for differences in chronotypes are theorised from an
evolutionary perspective. Walker (2017) argue that humans likely evolved to co-sleep as families
or even tribes, and that different chronotypes would reduce the time they were collectively
vulnerable, thus enhancing safety.
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rested and uninterrupted and sleep approximately 5 hours are more resilient to shift work
than those who sleep 7 or 9 hours. Furthermore, the fatigue experienced from working
at different hours seem to be affected by the chronotype of a nurse, and results from
minimising the global maximum fatigue of nurses demonstrate that while day and evening
chronotype nurses should not be assigned a lot of night shifts, the evening chronotype
nurses should not be assigned too many evening shifts. Furthermore, our results indicate
that nurses’ different chronotypes can prove complimentary when creating rosters.

Our research demonstrates how minimally increasing the staff levels makes it possible
to decrease the global maximum fatigue levels. Our results indicate that the average
of global maximum fatigue scores decrease by a small but relevant magnitude for each
additional nurse, assuming the additional nurse has a normal biology in terms of sleep.

4.7.3 Future work

The general approach for incorporating the sleep model, where the approximation is
created through a look-up table, is likely useful in Operations Research within other areas
of application. Furthermore, as sleep models are improved, research on rostering using
sleep models should be updated and improved. Noting the vast impact of variations in
two of the most common biological profiles, it would be very interesting to see the impact
of more refined biology in nurses. From a rostering perspective, it would be particularly
interesting if future sleep models were able to take into account how other factors such as
individuals’ social life etc. affects sleep patterns. There are examples of attempts of this,
see e.g. Postnova et al. (2012). For many nurses, work-life balance includes a preference
towards following the circadian rhythm of the rest of society, to enable daily chores and
meeting others with a more standard work schedule.

Real-life implementation and evaluation of the impact on nurse health and patient
safety would be very useful. Furthermore, the NRPwF can be expanded to include other
aspects of rostering, e.g. individual preferences, different fairness measures or personnel
costs. Alternative objective functions to the minimisation of the global maximum fatigue
would also be interesting to introduce and analyse in detail. The current algorithm
works well for problems of the size presented in this work, but run times are typically
somewhat below 1 hour for solving one instance. Thus, it would be interesting to see
work on alternative algorithms reducing the computation time. There could be potential
in exploring more comprehensive use of regular constraints to cut away all shift patterns
that imply fatigue scores above the current global maximum fatigue score.

Introducing other objective functions to the NRPwF would likely imply the need for
a new solution method, so these topics of future research are closely intertwined. The
current post-processing method is realistic, but simple. It would be interesting to see
work where alternative strategies to simply removing shifts and assigning an off-day are
considered.
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A Symbol directory and model

A.1 Indices

Symbol Description
n Nurse
s Shift
sD Day shift
sE Evening shift
sN Night shift
sO Off-shift
t, τ Day
b Biological profile
w Indication of night shift one day prior

A.2 Sets

Symbol Description Range
N Nurses 1 . . . 30
T Days 1 . . . 42
T S Sundays 7, 14 . . . 42
S Shifts {sD, sE , sN , sO}
SW Work shifts {sD, sE , sN}

A.3 Parameters

Symbol Description Value
PC

sD Minimum staff coverage of work shift day 7

PC
sE Minimum staff coverage of work shift day 5

PC
sN Minimum staff coverage of work shift day 5

H Minimum total work hours 210

H Maximum total work hours 228
PH
sD

Length of day shift [hours] 8.5
PH
sE

Length of evening shift [hours] 8.5
PH
sN

Length of night shift [hours] 8.5

P
CN Maximum number of consecutive night shifts 3

P
CD Maximum number of consecutive work days 6

H Maximum number of weekly work hours 50

P
CW Maximum number of consecutive work weekends 2

P
CW Maximum number of days between two off-days 10
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A.4 Decision variables

ynst ∈ {0, 1} is a binary variable determining if shift s ∈ SW is worked by nurse n ∈ N
on day t ∈ T . ynst constitutes the roster in the NRPwF.
znt ∈ {0, 1} is a binary auxiliary variable indicating if nurse n ∈ N works during a two-
day period ending on a day t ∈ T . fMax

n is a continuous variable equal to the maximum
fatigue score value of nurse n ∈ N for the entire planning period.

A.5 Model

Coverage

∑
n∈N

ynst ≥ PCs , t ∈ T , s ∈ SW (19)

Short-term rest

∑
s∈S

ynst = 1, n ∈ N , t ∈ T (20)

t∑
τ=t−PCN

ynsNτ ≤ P
CN

, n ∈ N , t ∈ T (21)

ynsN (t−1) + ynsDt + ynsEt ≤ 1, n ∈ N , t ∈ T (22)

ynsE(t−1) + ynsDt ≤ 1, n ∈ N , t ∈ T (23)

ynsN (t−2) + ynsO(t−1) + ynsN t ≤ 2, n ∈ N , t ∈ T (24)∑
s∈SW

t∑
τ=t−PCD

ynsτ ≤ P
CD

, n ∈ N , t ∈ T (25)

(26)

Long-term rest

H ≤
∑
s∈S

∑
t∈T

PHs ynst ≤ H, n ∈ N (27)

∑
s∈SW

t∑
τ=t−6

PHs ynsτ ≤ H
W
, n ∈ N , t ∈ T S (28)

2znt − ynsN (t−2) −
∑
s∈SW

yns(t−1)

− ynsDt − ynsEt ≥ 0, n ∈ N , t ∈ T (29)

P
CW∑
τ=0

zn(t−7τ) ≤ P
CW

, n ∈ N , t ∈ T S (30)

172



t∑
τ=t−PZ

znτ ≤ P
Z
, n ∈ N , t ∈ T (31)

Objective function

fGM − fnt ≥ 0 n ∈ N , t ∈ T (32)

Minimise fGM (33)

A.6 The relation between the fatigue score variable and the lookup-
table

Assume the lookup-table is described by parameter PScorebs1s2s3s4w
, where index b is the

biological profile, indices s1, s2, s3, and s4 are the shifts assigned on days t − 3, t − 2,
t − 1, and t of the evaluation pattern, and the index w is 1 if nurse n worked a night
shift prior to the evaluation pattern, 0 else. The constraints below ensure a linear relation
between variables fnt and the lookup-table of fatigue scores. We also introduce the binary
auxiliary variable pns1s2s3s4wt, indicating if nurse n works the pattern indicated by the
s-indices prior to a night shift or not on day t. Furthermore, we introduce the sets B
consisting of all biological profiles and the sets NB

b consisting of all nurses of biological
profile b.

pns1s2s3s41t − ynsN t−4 − yns1t−3 − yns2t−2 − yns3t−1 − yns4t ≤ −4,
n ∈ N , s1, s2, s3, s4 ∈ S, t ∈ T (34)

pns1s2s3s40t −
∑

s∈S\sN
ynst−4 − yns1t−3 − yns2t−2 − yns3t−1 − yns4t ≤ −4,

n ∈ N , s1, s2, s3, s4 ∈ S, t ∈ T (35)∑
s1∈S

∑
s2∈S

∑
s3∈S

∑
s4∈S

1∑
w=0

pns1s2s3s40t = 1, n ∈ N , t ∈ T (36)

fnt − PScorebs1s2s3s4wpns1s2s3s4wt ≥ 0, b ∈ B, n ∈ NB
b , s1, s2, s3, s4 ∈ S, w ∈ {0, 1}, t ∈ T (37)

Constraints (34) ensure that the variable pns1s2s3s41t can only have the value 1 if
nurse n works the evaluation pattern defined by the s-indices if it occurs subsequent to
a night shift, while constraints (35) ensure the same relation if the evaluation pattern
occurs subsequent to a different shift than the night shift. Constraints (36) ensure that
the variable pns1s2s3s4wt can only be equal to 1 once for every combination of nurses
and days, ensuring that the variable pns1s2s3s4wt becomes an indicator of the evaluation
pattern and prior night shift for nurse n on day t. Constraints (37) ensure the variable
fnt cannot be lower than the approximated fatigue score of nurse n in the lookup-table if
the nurse works the evaluation pattern and prior night shift defined by s-indices and w
on any day t.
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B Pseudocode for algorithm

Algorithm 1 Solving the Nurse Rostering Problem with Fatigue
1: Draw set N with realistic biological profiles according to Table 4.3.
2: Initialise sets of fatigued nurses N F , random nurses NR

3: Initialise set of days T in planning period
4: Initialise empty roster y of size |N | × |T |, empty list of rosters Y
5: Initialise empty array of fatigue scores f of size |N | × |T |
6: Initialise variable indicating minimisation of occurrences of GMF pOcc

7: y, f ← solve_feasibility_problem_using_gurobi(y)
8: while !(|Y | ≥ 20 ∧ y = Y (end− 19)) do
9: N F , NR ← {}

10: fGM ← max (f)
11: for each n ∈ N do
12: if max (f(n)) = fGM then
13: N F ← N F

⋃
n

14: end if
15: end for
16: if |N F | > 5 then
17: N F ← rand(N F ,5)
18: pOcc ← 1
19: else if |Y | > 2 ∧ y = Y (end− 2) then
20: pOcc ← 1
21: else
22: pOcc ← 0
23: end if
24: NR ← rand(N -N F ,5)
25: N ← array of zeros of size |N | × |T |
26: for each n ∈ N , t ∈ T do
27: if r(n, t) = sO ∨ n ∈ NCF

⋃
NR then

28: N(n, t)← 1
29: end if
30: end for
31: if pOcc = 0 then
32: (r, f)← minimise_global_fatigue_using_chuffed(f,N )
33: else if pOcc = 1 then
34: (r, f)← minimise_occurences_of_global_fatigue_using_chuffed(f,N)
35: end if
36: R← R+ r
37: end while
38: True fatigue scores fFRE ← perform_FRE(r)
39: y,fFRE ← postprocess(y,f ,fFRE)
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C Pseudocode for postprocessing function

Algorithm 2 Postprocessing function

1: procedure postprocess(y,f ,fFRE)
2: Initialise set N of nurses in y
3: Initialise set T of days in y
4: i← 1
5: while max (fFRE)≥ max (f) +0.10 ∧ i ≤ 6 do
6: for each n ∈ N , t ∈ T do
7: if fFRE(n, t)=max (fFRE) then
8: if t > 1 ∧ y(n, t− 1)! = sO then
9: y(n, t− 1)← sO

10: else if t > 2 ∧ y(n, t− 2)! = sO then
11: y(n, t− 2)← sO

12: else if t > 3 ∧ y(n, t− 3)! = sO then
13: y(n, t− 3)← sO

14: elset > 4 ∧ y(n, t− 4)! = sO

15: y(n, t− 4)← sO

16: end if
17: i← i+ 1
18: end if
19: end for
20: True fatigue scores fFRE ← perform_FRE(y)
21: end while
22: return y, fFRE

23: end procedure
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Future hospital rostering – experi-
ences with new technology

Abstract

We describe the introduction of a new decision support tool that exem-
plifies how technology development and digitalisation will affect the future
working life of shift workers in health care, at Norwegian hospitals in par-
ticular. The tool was used in two pilot projects at Maternity Ward West
at St. Olav’s Hospital, and provides valuable insight into the potential that
can be realised as well as the challenges to improving roster planning. We
interviewed two other actors who work with similar initiatives elsewhere in
Scandinavia and drew on their experiences. The results indicate that if such a
decision support tool establishes itself as the norm for roster planning, it will
mean increased standardisation of both the planning process and of the con-
siderations that are taken into account for different stakeholders. Decisions
will be made at a higher level in the health organisations than they are today,
which will strengthen the trade union’s role in clarification of the premisses
for roster planning. Trade unions will have to develop an understanding of
how the decision support tools work and communicate this effectively to the
individual employees. The tug-of-war between employer, trade union and
the individual employee will largely be as before, but the employer and trade
union will make more detailed clarifications when adopting rostering agree-
ments. This will increase fairness, but while the individual customisation
will be better for the employees, the types of customisation will be more
standardised. The opportunities for individual customisation will therefore
be limited to the needs that the trade union understands and demands on
the employees’ behalf.

5.1 Introduction

According to the OECD report Health at a Glance from 2019, Norway differs from other
OECD countries in terms of the number of employees in the health service. Norway has
the most nurses employed per capita (1.77%) and is ranked between number two and four
in the number of doctors per capita (0.47%) (OECD, 2019). Norway is also ranked second
and third for public expenditure in the health sector per person and expenditure in the
health sector per person among OECD countries respectively (OECD, 2019). The large
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use of resources carries expectations of the health service’s results. In Table 5.1, we list
four key indicators for the quality of health services from the OECD (2019), as well as
the percentage of employees in health and social services and the total costs per person
for health in the columns on the far right. We present the numbers for Norway and some
selected countries we believe are comparable; Sweden, Denmark and Iceland.

Table 5.1: Key indicators for the health services, and the percentage of employees and
costs, in Norway, Sweden, Denmark and Iceland. For details and definitions, see OECD
(2019).

Life
expectancy
(years)

Avoidable
mortality
(per 100 000
people)

Chronic disease
morbidity
(% of adults)

Self-rated
health as poor
(% of population
aged 15+)

Share of employees
in health and social
services
(% of workforce)

Health
expenditure per
person
(USD PPP)

Norway 82.7 145 5.3 7.2 20.9 6187
Sweden 82.5 144 4.8 5.7 17.3 5447
Denmark 81.2 184 6.4 7.5 17.5 5299
Iceland 82.7 140 5.3 6.4 10.9 4349

Table 5.1 shows that Denmark generally has the weakest results for all the key in-
dicators, while it is more unclear how Norway, Sweden and Iceland should be ranked
in comparison with each other. This very limited analysis is not sufficient to determine
the effectiveness of the resource utilisation in the different countries. Nevertheless, it is
interesting to note that Norway stands out with its extensive staff resources and high
costs in the health sector, without this necessarily being reflected in the results. It is
therefore appropriate to increase the focus on the use of staff resources, both because of a
political desire to reduce costs and because the supply of staff with certain skills is limited
regardless of budgets.

In this work we discuss new technology for planning staff resources at hospitals. We
refer to this as optimisation-based rostering (OBR). OBR is a type of decision support
software for roster planning. In practice, this involves giving a computer with OBR in-
stalled the relevant information to create a roster, and the OBR software then solving the
major planning problem and presenting a proposed roster. Computers are particularly
suited to this task because rostering entails solving complicated combinatorial problems.
In the OBR system, so-called constraints are defined, which are requirements that can
never be breached. Typical constraints include provisions in the Working Environment
Act, collective agreements and rostering agreements. The rostering agreement is a mutu-
ally binding agreement between union representatives and managers that stipulates local
provisions and clarifications for rota work in relation to, for example, rest breaks and
weekend work. Provided that there are not too many constraints, or that they are not
too extensive, there will typically be an abundance of valid rosters. These rosters are
likely to have vastly different qualities, which will also depend on who is reading them.
For example, extra staffing on a particular shift is one quality, and granting a request for
a day off is another quality. In OBR, this is done by assigning different qualities with
weights that are measured against each other in cases where they are mutually exclusive.
We refer to these as weighted qualities. In order for the OBR system to have a real oppor-
tunity to utilise the weighted qualities and make priorities, the constraints must not be
too extensive. Otherwise, the system’s flexibility to choose between the weighted qualities
will be lost.

In 2017 and 2018, we conducted a case study of Maternity Ward West at St. Olav’s
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Hospital, where we developed a customised OBR solution. The rosters at Maternity Ward
West were drawn up for periods of six months (26 weeks). We carried out two pilot projects
where OBR replaced the traditional, manual planning of both rosters in 2018. We have
also conducted tests to evaluate how OBR can be used as a tool for understanding the
effect of various more long-term measures. Finally, we interviewed two other actors who
work with similar initiatives in Norway and Denmark. This provides a good basis for
discussing how staff planning at hospitals, and to some extent other parts of the health
service, will develop in the period up to 2050.

OBR is an example of the use of optimisation or operations research to solve rostering
problems. Since Warner (1976) presented the opportunity to frame nurse roster planning
as an optimisation problem, considerable work has been done in the optimisation of ros-
ters for this occupational group (Burke et al., 2004, den Bergh et al., 2013). Some of the
efforts have also been aimed at doctors (Erhard et al., 2018).

Literature on the optimisation of rosters can roughly be divided into two categories;
one that focuses on mathematics and solution methods, and one that focuses on solving
real-life planning problems. The latter is much less common. In the 64 studies of nurse
roster planning in the literature review by den Bergh et al. (2013), 11 were categorised
as ‘Applied’, but only a few described any kind of case study. In contrast, a lot of at-
tention has been given to seeking effective solution methods. Some popular methods are
integer programming (Bard and Purnomo, 2005a, Burke et al., 2010), mixed integer pro-
gramming (Fügener et al., 2015, Yilmaz, 2012), column generation (Bard and Purnomo,
2005b), heuristic methods (Bellanti et al., 2004, Guessoum et al., 2020, Puente et al.,
2009) and the use of artificial intelligence (Kumar et al., 2019). In this literature, how-
ever, the focus is on stylistic and general rostering problems (Burke et al., 2004). This
means that much of the literature does not appear to be connected to real-life roster
planning (Kellogg and Walczak, 2007). However, there are some examples of inspiring
case studies (Bester et al., 2007, Rönnberg and Larsson, 2010) and systems that have
been implemented in several hospitals (Burke et al., 2006). The lack of research into the
practical use of tools such as OBR emphasises the need to test the decision support tools
in practice, learn from the challenges and clarify future use.

In the next section, we present background information on the case study and explain
the method used. We then present and discuss the results from the pilot projects under
Results and evaluation. Finally, we present Development up to 2050, where we discuss
how the use of OBR will change working life at hospitals and to some extent other health
organisations over the next 30 years.

5.2 Pilot testing OBR

This work is based on a case study, and the method for developing and pilot testing OBR
is strongly influenced by the case at Maternity Ward West. We will therefore begin by
describing some important background information about the case before presenting the
methodological approach.

5.2.1 Background

When we started working on the development of OBR at Maternity Ward West, we were
largely driven by two motivating factors. One was the aforementioned knowledge gap
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in the research literature related to the implementation of OBR. The second was that
we saw significant potential to make more use of the existing staff resources at hospital
departments that practise manual roster planning. We will discuss this potential later in
the text. Manual roster planning entails one or more people making the decisions about
who will work which shifts in a roster without the aid of a decision support tool. At
St. Olav’s Hospital, a software called the resource management system (RMS) is used to
register desired rotas and comments, as well as to check that the Working Environment
Act, collective agreements and rostering agreements are being complied with. The RMS
does not, however, provide support for generating rosters, and the rostering process is
therefore regarded as manual.

Different variants of two approaches to manual nurse rostering at Norwegian hospitals
are mainly used: planning with basic rotas and desired rotas. When drawing up a basic
rota, a manager or planner sets up a roster, and then the employees have the opportunity
to swap shifts internally. This represents a top down approach to roster planning, unlike
desired rotas. A desired rota is when all employees draw up their ideal rota, i.e. they only
plan their own shifts for the entire period. Each person is typically required to include
an agreed number of different types of shift, such as night and weekend shifts. Once
everyone has submitted their personal desired rota, there will be some shifts that many
employees want to work and some shifts that are not popular. A potentially long period
of negotiation follows, where the employees have to compromise and change their original
rota in order to accommodate operational factors.

Maternity Ward West was using the desired rota method when we introduced OBR.
We were therefore aware of the importance of OBR reflecting the employees’ wishes to
the greatest extent possible. We set ourselves the ambitious goal of our OBR being able
to take all the same considerations into account as the manual planning, provided that
they could be formulated explicitly.

Figure 5.1 illustrates the flow of information in the planning process as it was be-
fore our pilot projects were implemented. The collective agreement stipulates that the
maternity ward must issue rosters for six-month periods at a time. The combination of
the desired rota method and a long planning horizon means that the planning process
itself becomes extensive. At Maternity Ward West, rosters were drawn up in stages as
described below. For each stage, we specify how many weeks it is until the first working
day of the roster. We note that before each planning period, a rostering agreement is
made, which serves as the basic premiss for the roster planning.

1. Registering pre-determined shifts in the RMS. 15 weeks.

2. Registering desired rotas in the RMS. 15 weeks.

3. The information from the RMS is retrieved by the operations coordinator and
checked. 12 weeks.

4. The operations coordinator assembles the desired rotas into a roster and sends it to
the roster group; a small group of employees with responsibility for roster planning.
12 weeks.

5. The roster group draws up a first draft and sends it to the employees for negotiation.
11.5 weeks.

6. The employees negotiate on who needs to compromise and work an unpopular shift.
11 weeks.
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Figure 5.1: The planning process at Maternity Ward West

7. The plan is sent back to the roster group for final changes, and in some cases to
force through unpopular shifts. 8 weeks.

8. The final roster is submitted to the trade union, which then provides feedback. 6
weeks.

9. The roster is issued to the employees. 4 weeks. When using OBR, stages 5, 6 and
7 are no longer necessary as the OBR system drafts a roster, which is then sent
to the operations coordinator. The operations coordinator can then give feedback,
which can be incorporated into the OBR system, before a new roster is produced.
If necessary, the feedback and changes process can be repeated several times in the
OBR system.

5.2.2 Potential of optimisation-based rostering

The pilot projects were intended to provide insight into whether the potential identified
could be realised in practice, and the challenges that arose during implementation. We
believed that some of the potential could be realised directly through the use of OBR in
the time period of a single roster, while other potential would only be realised by using
OBR in a more long-term timeframe. We therefore divided the potential into what we call
an operational planning level (the time period covered in a roster) and a tactical-strategic
planning level (longer than one roster) and describe them briefly, before discussing the
realisation of potential in detail in the section on Results and evaluation.
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Table 5.2: Potential identified for key stakeholders upon implementation of OBR, by
planning level.

Stakeholders Tactical-strategic level Operational level

Employer •Costs
•Operational factors •Robustness

Trade union •Health (IA agreement)
•Fairness

•Health
•Fairness

Individual employee •Less time spent on planning •Individual customisation
and requests granted

The positioning of some of the potential in the table may be debated, but we believe
that Table 5.2 provides a good overview. For the individual employee, OBR’s greatest
potential lies in its capability to take individual employees into account, whilst also en-
suring that other requirements are met, which makes it highly effective in managing the
complexity of the rostering problem. The union will see potential in the individual em-
ployee’s health being prioritised in rosters, and may believe that some employees should
be protected against overambitious rotas. As the employees’ collective voice, the trade
union will be interested in increased fairness, such as how the OBR system can distribute
unpopular shifts evenly or in line with explicit norms. At the operational level, most of
the staffing costs will be irreversible as employment contracts have already been entered
into, but the employer will want robust rosters that reduce the use of temporary staff.
This can both help to ensure responsible management and reduce costs associated with
temporary staffing.

At the tactical-strategic planning level, the introduction of OBR can simplify the
planning process and reduce the individual employee’s time spent on planning. Further-
more, OBR provides a unique overview and opportunity to analyse and evaluate rosters,
which entails significant potential for the union in terms of health-promoting and fair
rosters. For example, if some employees do not work nights for health reasons as part
of an inclusive working life agreement (IA agreement), their colleagues will have to work
more night shifts, putting them at risk of an overburdensome workload. Such factors can
be incorporated into OBR, and the rosters produced can be assessed before any changes
are adopted. For the hospital, there is considerable potential in gaining a better overview
and control of staffing costs in each department. For example, they can test how rosters
will change as a result of reductions and increases in staffing levels, or by changing the
competence level of selected employees.

5.2.3 Development of OBR

Our development work was centred around establishing OBR with the stakeholders we
considered most relevant; the individual employees, the Norwegian Nurses’ Association
(NSF) and the hospital management. These stakeholders were also important partici-
pants in the process of framing the rostering problem that OBR was to solve. We held
regular meetings with the operations coordinator, where we presented the OBR system’s
latest draft of the roster. The operations coordinator had a good insight into the needs
of the individual employees, and was of great assistance in helping us to understand the
roster planning problem. Despite the fact that much of the knowledge about the employ-
ees’ preferences and needs was implicit, we generally managed to unravel the underlying
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causes and formulate them mathematically. Furthermore, we held meetings with NSF
Sør-Trøndelag in order to get their perspectives on the roster planning, and we presented
the project for discussion in the working environment committee at St. Olav’s Hospital.
The employees were also directly involved through three general meetings that were held
about the project. The project was rooted in the hospital management through close
collaboration with the Medical Director and the head of the Division of Obstetrics and
Gynaecology. The project was also presented to the hospital management.

5.2.4 Implementation and pilot projects

The OBR system we developed for Maternity Ward West was trialled in two pilot projects
in 2017 and 2018. In the first pilot project, we used OBR to plan for the period 18
December 2017 to 3 June 2018 (hereafter referred to as spring 2018), while the second
pilot project covered 4 June to 9 December 2018 (hereafter referred to as autumn 2018).
In order to evaluate our success in realising the aforementioned potential of OBR, we
conducted a survey among the employees after each pilot project.

5.2.5 Collecting data from similar projects in Scandinavia

In order to support our discussions with further data, we conducted interviews with two
other actors working on similar initiatives: Troels Range who works with applied opti-
misation at Hospital South West Jutland in Denmark, and Jacob Nyman, who works at
Visma’s department for optimisation in Oslo. They are both developing different vari-
ants of OBR. At Hospital South West Jutland, variants of OBR have been implemented
as a permanent decision support tool for roster planning for nurses and doctors in var-
ious departments, and the solution is gradually being rolled out in more departments.
Visma owns and operates computer systems that are used in many Norwegian hospitals,
which are reminiscent of the RMS at Maternity Ward West, and they are also developing
customised OBR software. Visma plans to conduct pilot projects soon.

5.3 Results and evaluation

In this section, we will present some of our experiences from the pilot projects and a
selection of the results from the surveys. Based on these experiences and results, we
will discuss whether the potential outlined in Table 2 was realised. The pilot projects
provided significant insight into whether we could realise the operational potential, and we
summarise the evaluation in Table 3. The tactical-strategic potential is more challenging
to evaluate because we only introduced OBR for two planning periods.

5.3.1 Realisation of potential at the operational planning level

The individual employee’s potential

Because we developed the OBR system with a clear bottom-up perspective, comprehensive
individual customisation was essential for the rosters to be considered in any way relevant
to the planning at Maternity Ward West. We believe we achieved this, as feedback and
subsequent discussions only related to minor and specific errors or shortcomings, not
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whether the OBR system is able to produce rosters that epitomise the rostering problem.
Furthermore, granting employees’ specific requests to work a shift or have time off at
stipulated times is probably the most important weighted quality in the rostering problem
at Maternity Ward West. In order to communicate their wishes, the employees registered
their desired rotas. They could also add comments. Some employees used the comment
function extensively, and some even stipulated that they believed they should have time
off without taking holiday leave during certain periods, while other employees did not
use the function at all. There were no clear guidelines on whether comments should be
prioritised over other considerations, but the operations coordinator encouraged us to
introduce constraints in OBR that ensured we complied with the wishes expressed in the
comments where this was possible.

As we introduced the constraints, we noticed that the OBR system’s flexibility to
schedule shifts in the roster was gradually reduced. This flexibility could otherwise have
been used to secure more of the weighted qualities in the rostering problem. The comment
requests were also counterproductive to the objective planning that we had argued would
increase fairness compared to manual processes. The procedure for employees putting
forward their personal requests for the roster went from avoiding responsibility in the
negotiation process to actively asserting their rights in the comments function.

When all the comments were implemented as constraints, it proved impossible to
produce a roster that adhered to all the constraints. This changed our understanding
of the rostering problem. It was no longer a question of introducing all existing guide-
lines as constraints and maximising the weighted qualities. Now the rostering was also
about navigating which constraints should be removed. The difference may seem small,
but because constraints must be actively deselected by the user of OBR, while weighted
qualities are optimally prioritised by OBR, the distinction is important. In the end, we
deselected some constraints relating to comment requests in consultation with the oper-
ations coordinator, and ended up with a valid roster, but the reduction in flexibility to
choose weighted qualities was nevertheless significant.

In contrast to the comment functionality, the desired rota was well suited for use in
OBR because the information was well structured. Trying to produce rosters that corre-
sponded as closely as possible to the desired rota was an important weighted quality, and
was maximised within the solution space defined by the constraints. OBR achieved 85.8%
and 85.4% agreement with the desired rotas for spring 2018 and autumn 2018 respectively.
Analyses of an earlier planning period showed comparable results with manual planning
of 85.3% (Beckmann and Klyve, 2016). The similarity in the number of requests granted
between OBR and manual planning is striking, and emphasises how the lack of flexibility
reduced the potential to grant requests.

A high degree of correspondence between the roster and the desired rotas is undoubt-
edly beneficial, but in practice there are significant weaknesses associated with using each
individual day in the desired rota as a measure of employees’ preferences.

1. Employees registered one shift request per day, and without the comment func-
tionality, we had no information about which days the employees regarded most
important when we were considering their shift requests. The majority of registered
shift requests are probably more or less randomly placed in order to fit the number
of different shift codes.

2. The planning process was so time-consuming that employees had to submit their
requests several months before the rosters were to be realised. They are unlikely
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to have had a clear overview of their own preferences at that stage. The frequent
changing of shifts after rosters had been drawn up supports this assumption.

3. Requests for shifts and days off may depend on whether shift requests for other
days are granted.

If we had ignored the requests in the comments, the aforementioned weaknesses would
have prevented us from accommodating the employees’ true preferences to any great
extent.

Results from the surveys help to shed light on whether the potential for individual
customisation was realised. The responses shown in Figure 5.2 paint a varied picture. We
believe it is particularly desirable to reduce the number of employees who strongly disagree
with the statement, in order for the employees to feel positive about the use of OBR. We
note that the proportion who strongly disagree is 18% in the first pilot and 12% in the
second pilot. It is important to note that the employees were asked to evaluate the original
rosters produced by OBR, not the final rosters that had been further processed by the
operations coordinator and the roster group. This means that minor start-up difficulties,
such as human error in the input of fixed shifts and misunderstandings related to what
information employees had to register, had not been corrected in the rosters evaluated by
the employees. We therefore believe that the responses are acceptable, despite it being
difficult to know how the employees would have evaluated the manual rosters that were
drawn up before the pilot projects.

Figure 5.2: Responses to the rosters produced in the two pilot projects
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Our overall impression is that we were largely able to accommodate the individual
employees’ wishes and preferences, but that realising the full potential for individual
customisation requires a combination of greater clarity in what can be expected in the
way of guidelines (constraints) and further development of the shift request system.

Potential for the trade union

Research shows that working an evening shift immediately followed by a day shift in-
creases the risk of sleep disturbance (Lie et al., 2014), even though this shift combination
is not unlawful under the Working Environment Act. This shift combination was effec-
tively ruled out by the OBR system through constraints for most employees. We made
exceptions for overnight commuters who requested this. This was because public trans-
port did not cover their needs and they were able to sleep over at the hospital, whereby
the overall burden was considered acceptable. Following feedback, evening out the indi-
vidual employees’ workload was given a high priority, but this lead to reduced flexibility
for the OBR system to prioritise weighted qualities. The combination of even workloads
and the individual employees’ requirements, as well as requests for longer periods of con-
tinuous leave, significantly reduced the flexibility. Our assessment of the rosters that were
produced is that they largely protected employees from unfavourable shift combinations.
This was also the case in manual planning, but the constraints in OBR represent extra
protection against rosters that are considered detrimental to health.

Evaluating the potential of fairness is a challenge, and we therefore rely on the feed-
back we received in the surveys after the two pilot projects. It may seem from Figure
5.3 that the potential for fairness has largely been realised. We see that very few of the
respondents (4% and 9%) felt that their requests were given a lower priority than those
of the other employees. In addition, a large proportion (31% in both periods) disagree
that they were down-prioritised. These results are promising, and suggest that the many
constraints stemming from comments were not detrimental to the perceived fairness of
the rosters.

Potential for the employer

It was already clear to us that robustness in the form of consistency in staffing levels
was a sensible weighted quality. However, the focus on this potential diminished as the
OBR system was being developed. A weighted quality was actually defined that punished
overstaffing, but only on weekends, which were clear bottlenecks. On weekdays, it was
not uncommon to have overstaffing on day and evening shifts, despite the desired staffing
level being defined as significantly higher than on weekends.

When we presented the results of the pilot projects to the head of the Division of
Obstetrics and Gynaecology, a disagreement clearly emerged. We reported that it had
been easy to formulate operational factors in the OBR system because they were specific.
The head of the division disagreed with the claim, and questioned part of the premiss for
the constraints. Simply put, there was no consensus about the minimum staffing levels
that were used at Maternity Ward West. This illustrates one of the challenges in not only
OBR, but in general rostering.

It is not surprising that there is a tug-of-war between different stakeholders in the
balancing act between operational factors, budgets and employee needs. However, what
was surprising was that the head of the division apparently disagreed with the premisses
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Figure 5.3: Fair distribution of shifts.

on which the roster planning was based at the time OBR was introduced. This may be an
indication that we did not include the employer to a sufficient extent in the adaptation of
OBR. In hindsight, we believe that this was due to a somewhat naive belief that if OBR
was sufficiently adapted to the employees, the flexibility and ability to weight different
qualities would enable the rosters to maintain a very high quality. As previously men-
tioned, there was no flexibility for other considerations if all requirements from individual
employees were to be met, as it was impossible to produce such a roster.

Clear guidelines on which considerations should be accommodated would be useful
regardless of planning method, and are essential for the success of OBR. Thus, the actual
process of developing OBR can be beneficial because disagreements that are not discussed
between different stakeholders can surface. This is how we discovered new potential with
OBR at the tactical-strategic level, namely that the development and evaluation process
itself contributes to resolving existing disagreements about the content of a roster. The
disagreements about the basic premisses for constraints inspired us to create the OBR
pyramid, presented in Figure 5.4.

Some of the considerations in roster planning are explicitly formulated and there
is broad agreement that they should be accommodated among all three of the main
stakeholders. These are undoubtedly constraints, and are located at the bottom of the
OBR pyramid. The Working Environment Act and the collective agreement, as well as
IA agreements and the rostering agreement are good examples of this. At the other
end of the scale are the employees’ requests. These are placed at the top of the OBR
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Figure 5.4: The optimisation-based roster planning pyramid (the OBR pyramid).

pyramid, and there is agreement between stakeholders that it is not possible to grant all
of these requests. The requests are therefore regarded as weighted qualities. However,
there is no consensus on the middle section of the pyramid. Different stakeholders can
have different opinions about how to handle these considerations. Consequently, it is
also typical that there are no explicit guidelines on how to accommodate the different
considerations, making the entire premiss for roster planning unclear. This is a challenge
both in manual roster planning and OBR.

5.3.2 Realisation of potential at the tactical-strategic planning
level

Our two pilot projects, combined with our limited influence on the basic premisses of
roster planning, mean that we cannot claim to have realised the long-term potential for
OBR. However, we would like to note some findings that indicate that long-term potential
may be realistic in the future.

• OBR reduces the time that employees spend on planning considerably, because it
simplifies the actual planning process.

OBR simplifies the planning process, thus saving the employees’ time.

• Even for individual rotas, it appeared that employees considered OBR to be fair.
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Provided that OBR takes into account information about who has worked the least pop-
ular shifts years in previous years (such as Christmas Eve), we see no reason why this
cannot continue and remain a major strength of OBR. It is also clear that it is possible to
test out different guidelines for IA agreements and see what effect this has on the rosters
overall.

• OBR provided a better insight into how measures affect operational factors.

One example that was cited in Beckmann and Klyve (2016), was that an extra day
off could be offered to employees who were willing to work an extra weekend. If some
employees were willing to do this, the overstaffing on weekdays could be reduced somewhat
in exchange for better staffing at the weekend.

Table 3 summarises the results from the pilot projects, where both fully and par-
tially realised potential and indications of realism are marked with a tick, while clearly
unrealised potential is indicated with a cross.

Table 5.3: Realisation of potential at the operational level for key stakeholders upon
implementation of OBR.

Stakeholders
Indications of realism in
the potential at the
tactical-strategic level

Realised potential at
the operational level

Employer •Costs 3

•Operational factors 3
•Robustness 7

Trade union •Health (IA agreement) 3

•Fairness 3

•Health 3

•Fairness 3

Individual employee •Less time spent on planning 3 •Individual customisation
and requests granted 3

5.4 Development up to 2050

Based on the experiences from our pilot projects and those of Troels Range at Hospital
South West Jutland in Denmark and Jacob Nyman at Visma in Oslo, we will discuss some
development features that seem likely in roster planning in 24-hour wards, at hospitals
in particular, in 30 years’ time. These features may also have knock-on effects on other
planning in the public health service and activity outside the health services, but this
is not our main focus. We point out that we are exploring scenarios we consider to be
probable with a clear basic premiss that OBR or a similar decision support tool is used
to a large extent in 24-hour wards in hospitals.

5.4.1 Rostering becomes more standardised

A clear development feature of roster planning will be standardisation. The information
that is used in OBR must be standardised for the system to be able to interpret the
data. This information must then be incorporated into the employer’s computer systems
in a way that enables the seamless retrieval of data from the OBR system. Desired rotas
disappear in favour of systems with more precise information about preferences. However,
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the choice of data for use in OBR is closely linked to the standardisation of the roster
planning process. In order to be able to select what information is relevant, it must be
clear to all stakeholders what they can expect from a rota plan. This needs to be clarified
between the employer and the employee. We believe the trade union will play a key role
here, and discuss this later.

This is supported by experiences from Hospital South West Jutland, which has a
structured approach to rolling out OBR in new departments. The guidelines are clari-
fied individually for each department in cooperation with managers, planners and trade
unions. The system for shift requests is similar in all departments. Employees can apply
to managers for days off under a ‘veto’ system. Otherwise, they have a limited number
of requests they can register in their roster. In exceptional cases, employees still submit
comments, which requires the involvement of people with expertise in the development of
OBR. Our contact is very confident that a well-functioning standardisation of the roster
planning process and system at Hospital South West Jutland will be in place within three
years.

Visma in Oslo is currently developing a standardised OBR system that will be used
at many different hospitals and departments. It is interesting to note that many hospitals
and other organisations have already implemented extensive payroll and staff planning
systems from Visma. Their OBR variant will be an add-on module to these systems, and
they therefore already have access to significant amounts of structured data.

5.4.2 The introduction of OBR will call into question existing
practices

Negotiations on the rostering agreement are an established arena for preparing guidelines
for roster planning, and from the perspective of an OBR developer, the rostering agree-
ment is very easy to work with. First, it is explicitly and unambiguously formulated,
which makes it easy to formulate it mathematically. Second, it describes constraints, i.e.
rules that always need to be complied with. The problem at Maternity Ward West, how-
ever, was the issues that the rostering agreement did not address. In the future, there will
be a clearer distinction between what employees can expect and what they can only hope
for. The unclear considerations placed in the middle of the OBR pyramid must therefore
either be constraints that are established in the rostering agreement or weighted qualities.
The employees can request the weighted qualities, but cannot demand them from their
manager.

Although it is uncertain how representative Maternity Ward West was of other de-
partments in terms of rota work, there will probably be grey areas in terms of what both
employers and employees believe they are entitled to in the roster planning. These will
surface upon implementation of the OBR system. The grey areas will largely be elimi-
nated when a clearer distinction emerges between what employees are entitled to in the
rosters and what they can request. It will be important to ensure that new employees
understand this in order to prevent the existing culture from remaining dominant in the
workplace.
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5.4.3 The employer will demand better utilisation of staff re-
sources

All overstaffing will come to light when the OBR system is implemented, and measures
to reduce this can be tested out. The employer will either demand better utilisation of
the excess staff resources or a reduction in the overstaffing.

We have previously mentioned that it is conceivable that some employees will be
willing to work an extra weekend to get an extra day off. Use of surplus labour as
temporary cover in other hospital departments can also be envisaged because OBR will
provide an overview of several departments and ensure optimal distribution of the staff
resources. However, this capability requires the employee’s experience and competence
to be suitable for the department they are assigned to. Alternatively, OBR can easily
be used to create rosters that require fewer employees. The employer can introduce a
temporary recruitment freeze and save on wage expenditure, as shown in Beckmann and
Klyve (2016).

The work culture and employment rights at Hospital South West Jutland differ sub-
stantially from those in Norway. Nevertheless, it is interesting to see how they have
used the system. They have realised large savings after introducing variants of OBR and
analysing staffing needs. They found that in 24-hours wards, about half of employees’
shifts were day shifts. This was quickly changed, and they were then able to manage with
fewer employees. Employment protection for employees appears to be significantly poorer
at Hospital South West Jutland than what is typical in Norway, and they frequently cut
staff numbers when the OBR system manages to create viable rosters with fewer employ-
ees. Hospital South West Jutland represents a scenario where OBR is developed primarily
for the benefit of the employer. This scenario is unrealistic for Norway without major
changes in the organisation of working life. However, the example highlights how OBR
can be used to promote different interests, and emphasises how important it is for all
stakeholders to understand how it works.

5.4.4 Employees will demand individual customisation

The standardisation of both processes and data may lead to employees being treated
more uniformly, for better or worse. It could be argued that treating all employees or
all subgroups of employees uniformly increases fairness and clarity in the roster planning,
but it could also entail an unreasonable simplification of the variation in the needs of the
individual employees. However, we believe that future variants of OBR will take employ-
ees’ wishes and needs into account in a positive way. Despite the fact that employees
are unique and have different needs, many of their needs and wishes are similar, such as
getting time off work at times that cater for their health and leisure time. Furthermore,
OBR has the capacity to process large volumes of data and balance many different con-
siderations. Therefore, in the future it will not be a question of whether OBR is able
to create rosters that meet the employees’ needs, but to what extent these needs are
prioritised over weighted qualities that other stakeholders prefer.

In order to have weighted qualities accommodated, they need to be subject to rea-
sonable prioritisation in OBR. Our experiences from Maternity Ward West suggest that
the employees will be prioritised. If they meet the employer’s wishes for flexibility, they
should be able to expect further customisation in return. Our contact at Hospital South
West Jutland believes that there will also be a strong emphasis on individual customi-

191



sation in their variants of OBR in the future, because it will give employers who use
OBR wisely a competitive advantage in staff recruitment. In addition, employees can
put collective pressure on the employer through the trade union, and thereby demand a
reasonable prioritisation of individual considerations in OBR.

5.5 The union must understand the technology so as
not to lose its role

When employees want to make the above demands on their employer, this is traditionally
done through a trade union. However, concretisation of the guidelines on roster planning
presents unions with a challenge. It is easy for the employer to explicitly state its require-
ments for budget limits, and thereby the number of full-time equivalents they can allow.
In contrast, it is difficult for all the employees to convey their preferences this clearly. It
is also unrealistic for all employees to have their individual wishes met at the same time.
It is therefore the union’s task to gather information about the employees’ preferences
and needs before drawing up guidelines in the form of a very explicit compromise for use
in OBR.

Trade unions are used to playing such a role, but their representatives will now also
need to have a good understanding of OBR. This insight does not necessarily have to be
technical, in the same way as a developer understands OBR, but a thorough understanding
of how constraints and weighted qualities work will be important. As mentioned, OBR
has something to offer both the employer and the employees. If employees did not feel
that their union was able to facilitate compromises that they could benefit from, they
would be incentivised to make individual agreements directly with the employer. The
union is therefore dependent on keeping up with developments.

As the union gradually manages to draw up good collective guidelines, constraints
will probably be used to guarantee that some key preferences will be met. A veto system,
where time off on special occasions is guaranteed, is a likely requirement. In addition to
these, the individual customisation will largely be formulated using weighted qualities,
where everyone is given equal priority. The strongest voices in manual planning will
lose their influence, but the collective considerations will instead be well protected. The
union’s position will be strengthened as it learns to understand the technology, as it will
then be in a position to make sensible demands on behalf of the employees and help make
the technology more understandable to the employees.

5.5.1 Decisions are taken at a higher level

When more detailed decisions are made in negotiations between the trade union and the
employer, and standardised processes serve as a guide, more decisions will be made at a
higher level in the health organisations. As a result, we will see a development towards
somewhat more vertical management. However, this only applies to the guidelines, i.e.
the decisions that serve as a guide for the constraints in OBR. The most detailed decisions,
the actual choice of who will work which shifts, are decided by the OBR system. The
users of OBR will not necessarily be higher up in the organisation in comparison with
manual planning. If you implement OBR in a department with a desired rota, the user of
the OBR system will have to be a selected planner, as in our pilot projects at Maternity
Ward West. Consequently, there will be no more direct involvement in the negotiation
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process. In departments that draw up manual basic rotas, the planner can become the
user of the OBR system.

At Hospital South West Jutland, the introduction of OBR has led to decisions for
roster planning being moved from middle management to the hospital’s central finance
and planning unit, where the developers of their OBR variants are the users of the system.
However, our contact hopes that those who currently work as administrative staff can be
trained in OBR, and in the long term he believes that health workers in the departments
can be trained as superusers. At Visma, they develop the systems with the aim of the
current planners being the users.

Even if the users of OBR are not at the top of the organisations, the perceived dis-
tance to the decisions can be greater after the implementation of OBR if there is no
understanding of how it works. This may challenge the principle of co-determination,
which is a strong component in labour relations in Norway, and emphasises the impor-
tance of OBR having the capability to intercept individual employees’ considerations and
preferences.

5.6 Concluding reflections

Our results bring issues to light where classic lines of conflict appear. OBR can potentially
be used both to streamline the operation of health organisations and to accommodate
employees’ needs, preferences and collective benefits. In addition, a tendency towards
standardisation and the perception of a greater distance from decisions can exacerbate
conflict and lead to frustration. It is natural, and perhaps a healthy sign, that such clashes
come to light when new technology threatens the status quo in planning that affects both
operations and employees’ leisure time. Nevertheless, OBR represents a development that
can lead to Pareto improvements, where both parties benefit from the new technology.

We would like to express our gratitude to the operations coordinator, Vigdis Myhren,
who has kindly shared her insight into the operation of Maternity Ward West at St.
Olav’s Hospital with us, and Francesco Beckmann, who was an essential contributor to
the early development of OBR. We would also like to thank the management team at the
Center for Health Care Improvement and Professor Henrik Andersson for his guidance
and support.
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A Mathematical model

This model formalizes the planning problem studied at the Maternity Ward West during
the pilot projects performed there. There are some minor differences between the two
periods, as the understanding of the planning problem evolved over time. We do not
include the large number of constraints, both hard and soft, related to specific periods
such as Christmas, Easter, vacations, etc. Some of the logic implemented in balancing
these periods, especially the Christmas period, is very detailed and likely to change from
year to year. Furthermore, the implementation of these periods in rosters were not very
popular, and are likely to remain outside of the scope of future rostering projects at the
ward. We thus exclude these constraints from the model, as they provide little insight to
the overall planning problem.

Several other problem-specific details are captured by adjusting specific parameters,
and thus the mathematical model formulated in this section largely reflects the planning
problem observed at the ward. Examples include the number of employees covering shifts
across wards, allocating reasonable union representation at the ward, different course
days of a kind that should be fixed beforehand, fixed weekly activities at other wards or
workplaces, fixing specific requests, making changes according to individuals with specific
rights or agreements, etc. The many individual customizations are the reasons why mul-
tiple parameters have an employee-specific index, implying there can be individual and
group-specific differences in all constraints formulated. However, these do not affect the
overall structure of the planning problem, and the comprehensive treatment of parameters
are thus simply mentioned briefly here rather than discussing them in detail.

As the development of the model used in the pilot projects was a continuation of
the work done in Beckmann and Klyve (2016), the model reuses some constraints and
examples from that work.

A.1 Introduction

The rostering problem observed at Maternity Ward West (MWW) is formulated using
N to denote the set of employees, a majority of which are midwives or certified nursing
assistants. We denote the set of shifts S. The shift types defined in the problem reflects
the real-life shifts in their internal system, and there are thus 22 shift types defined. Im-
portant shift types include day, evening, night, normal off-shifts, and protected off-shifts
{D,E,N, F, F̂}. There is a large variation in what the other shift types represent. Some
represent different tasks, such as performing supportive services at the ward, attending
coursework, coordinating work, etc. Other shift types have similar functions as the most
important shift types mentioned, but span a different time period of the day.

We also introduce the set of demand types U . The demand types are key to formu-
lating several different demand coverage constraints at MWW. The distinction between
shift types and demand types is important, as the demand for employees working during
the night is defined for demand types u ∈ U , not explicitly for shift types. As a result,
midwives and assistants can largely work the same shifts, e.g. the same night shift N ,
but cover different demand types when working the same shift (except if a midwife ranks
down to cover for an assistant). Furthermore, the demand type set U helps describe
several specific demand types that occur sporadically throughout the planning horizon at
MWW, e.g. the demand for a certain number of employees to attend a type of course.

The days in the planning period is denoted by T = {1, . . . , T} and we use t < 1 to
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represent days in the previous planning period. We use the set K to describe weeks in
the planning period, and the sets Tk are the sets of days that exist in each week k.

A large collection of different shift patterns are handled through different sets of shift
patterns, the desirable patterns PD, the undesirable PU , and the illegal patterns PI . The
binary variable xnst is 1 if nurse n is assigned shift s on day t and 0 otherwise. It is also
defined for t < 1 to represent the roster that was created in the previous planning period.
Remaining sets, parameters and variables used in specific constraints are introduced when
relevant.

A.2 Basic constraints

Regulations state that each nurse must have a protected off shift, denoted F̂ , every
week. If the nurse has a weekend off, the weekly protected off shift must be on Sunday.
Furthermore, the protected off shift entails a certain number of hours without work, and
we introduce SF̂s1 as shifts such that shift combination {s1, F̂ , s2}, s2 ∈ SF̂s1 is illegal with
respect to this. The set of days T SUN contains all Sundays in the planning period.

∑
s∈S

xnst = 1, n ∈ N , t ∈ T (1)

xns1(t−2) + xnF̂ (t−1) +
∑

s2∈SF̂
s1

xns2t ≤ 2 n ∈ N , s1 ∈ S, t ∈ T (2)

∑
t∈Tk

xnF̂ t = 1 n ∈ N , k ∈ K (3)

∑
n∈N

∑
t∈T Sun

xnFt = 0 (4)

Constraints (1) state that every employees must be assigned one shift, including off-
shifts, every day of the planning period. Constraints (2) and (3) ensure weekly assignment
of protected off shifts with sufficient rest between the shifts before and after. As there are
only two types of off-shifts, F and F̂ , constraint (4) make sure that if a day off is assigned
to a Sunday, it must be of type F̂ . The constraints presented in this subsection are the
only ones in the planning problem that are not subject to changes or adjustments based
on individual employees, times, etc.

A.3 Covering demand

Parameters Dtu and Dtu denote the minimum and maximum demand for coverage of
demand type u on day t. The parameters have aggregated values, so that contributions
of higher-ranked employees is included in the count, e.g. the demand for midwives and
assistants is aggregated in the parameter values for assistants. Similarly, for every com-
bination of day and demand type, there can exist a soft constraint reflecting a desired
minimum and maximum level of employees DD

tu and D
D

tu. Breaching these levels are pe-
nalized by variables dtu and dtu. Parameters PTOn1n2

indicate if employees n1 and n2 can
cover certain demand types together. PTOn1n2

= 1 if they can, 0 otherwise. The sets NU
u

and SUu contain the nurses and shift types that cover demand type u. The set of demand
types UTO are the demand types where some employees cannot work together.
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Dtu ≤
∑
n∈NU

u

∑
s∈SU

u

xnst ≤ Dtu, t ∈ T , u ∈ U (5)

DD
tu + dtu ≤

∑
n∈NU

u

∑
s∈SU

u

xnst ≤ D
D

tu − dtu, t ∈ T , u ∈ U (6)

DI
nu ≤

∑
s∈SU

u

∑
t∈T

xnst ≤ D
I

nu, u ∈ U , n ∈ NU
u (7)

xn1st + xn2st ≤ 1,

n1, n2 ∈ N , u ∈ UTO, s ∈ SUu ,t ∈ T , |PTOn1n2
= 0 (8)

Constraints (5) ensure that all types of demand u are covered every day t with the pos-
sibility of ranking down. Similarly, for every combination of day and demand type, there
can exist a soft constraint reflecting a desired minimum and maximum level of employees,
formalized in constraints (6). Demand constraints (5) and (6) cover the demand for the
typical needs for staff, but also ensure new hires are assigned courses, etc. Constraints
(7) ensure each employee is given the right amount of shifts covering each demand type u.
For most demand types, the limits DI

nu and D
I

nu will be 0 and |T | respectively, thus not
affecting the problem. However, for other demand types, e.g. coursework that is sporad-
ically planned during the planning horizon, it is important to spread the attendance in
a reasonable way between employees. The constraints also ensure that employees live up
to contractual agreements that spring from opting in on an around-the-clock-agreement
that gives them reduced total work time. Constraints (8) ensure that certain employees
n1 and n2 never work together.

A.4 Required rest

The parametersM
CW

n describe the maximum number of consecutive work shifts employee
n can work. Similarly, parameters M

CS

ns describe the maximum number of consecutive
shifts of type s employee n can work. These parameters represent limits to the consecutive
work employees can perform. However, for many employees it is also valuable to even out
their workload over time. Thus, for any number of days TEWnt ending on day t, employee
n must not work more than a maximum of M

EW

nt days. Similarly, some employees should
have specific shifts spread out evenly. For a period of TNPnt days ending on day t, employee
n must not work more than a maximum of M

NP

nt work shifts. Parameters Hnst reflect
the number of hours employee n works during shift s on day t, and H

7D

n is the maximum
limit for work hours during any 7-day work stretch. The set SW contains all work shifts
and the set SCS contains all shifts that should be explicitly spread out for any employee.

∑
s∈SW

t∑
τ=t−MCW

n

xnsτ ≤M
CW

n , n ∈ N , t ∈ T (9)

t∑
τ=t−MCS

ns

xnsτ ≤M
CS

ns , n ∈ N , s ∈ SCS , t ∈ T (10)
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∑
s∈SW

t∑
τ=t−TEW

n

xnsτ ≤M
EW

n , n ∈ N , t ∈ T (11)

∑
s∈SN

t∑
τ=t−TNP

n

xnsτ ≤M
NP

nt , n ∈ N , t ∈ T (12)

∑
s∈SW

t∑
τ=t−6

Hnstxnsτ ≤ H
7D

n , n ∈ N , t ∈ T (13)

Constraints (9) and (10) limit maximum consecutive work. Constraints (11) and (12)
even out the work. There are multiple constraints implemented for different combinations
of values for TEWnt and M

EW

nt , as well as combinations of values of TNPnt and M
NP

nt with
the structure described in constraints (11) and (12). Constraints (13) ensure that no
employee works more than H

7D

n hours in any given 7-day period.

A.5 Work hours

To calculate the correct number of hours to assign to each employee in the planning
horizon, we introduce parameters HC

nst. Due to regulations such as the around-the-clock-
agreement that gives reduced total work time and hour bonuses provided by working
during holidays and Sundays, the calculated work hours during the year differs from the
real hours worked. Parameters HCW

n and H
CW

n denote the minimum and maximum
number of calculated hours employee n should work throughout the planning horizon.
These parameters are also processed significantly depending on contracts and agreements
regarding vacations.

HCW
n ≤

∑
s∈SW

∑
t∈T

HC
nstxnst ≤ H

CW

n , n ∈ N (14)

Constraints (14) ensure that each employee n works a correct number of hours through-
out the planning horizon. For nurses whom contracts change during the planning horizon,
similar restrictions as constraints (14) are implemented for the planning periods before
and after the contract change.

A.6 Related to fairness

Some constraints are included to even out the number of certain shifts each employee
works. For some shifts, this entails allocating more than a minimum number MS

ns and
less than a maximum number M

S

ns of shift s to employee n. Similar bounds for working
specific shifts in the set of specific days, e.g. night shifts during weekends, are provided
by MSS

ns and M
SS

ns . For other shifts, the difference in number of shifts between employees
should be less than MSD

ns . The set SE contains only shifts that should be evened out, and
the set T SSs contains days where the number of shifts s worked should be within some
threshold.

MS
ns ≤

∑
t∈T

xnst ≤M
S

ns, n ∈ N , s ∈ S (15)
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MSS
ns ≤

∑
t∈T SS

s

xnst ≤M
SS

ns , n ∈ N , s ∈ S (16)

∑
t∈T

(xn1st − xn2st) ≤MSD
ns , n1 ∈ N , n2 ∈ N , s ∈ S (17)

Constraints (15) ensure that employee n works no less than MTS
ns number of shifts s

and no more than M
TS

ns during the planning horizon. Similarly, constraints (16) restrict
the number of specific shifts s that employee n works during specific days t. Constraints
(17) even out the number of popular and unpopular shifts s allocated to employees.

A.7 Weekends

KW
n is the minimum number of weeks between two working weekends for nurse n.

∑
s∈SW

KW
nt−1∑
τ=0

xns(t−7τ) ≤ 1, n ∈ N , t ∈ T SUN (18)

Constraints (18) ensure that employees cannot work during weekends more than once
every KW

nt week. The value of KW
nt can vary between employees and during the year.

A.8 Shift patterns

We deal with a wide definition of shift patterns in this model, as there are different con-
straints related to combinations of short and long sequences of shifts in the implemented
model. We use similar notation as presented in Paper 2 to describe how shift patterns
work, but include some additional notation.

A shift pattern p is defined by Pstp which is 1 if shift s is included in shift pattern p
on day t and 0 otherwise and Lp is the number of active shifts, i.e. shifts with Pstp = 1,
in the pattern. The pattern notation is used to formulate a wide collection of different
shift pattern constraints. These can be categorized as:

• Desirable patterns, rewarded by soft constraints

• Undesirable patterns, penalized by soft constraints

• Illegal patterns, restricted by hard constraints

These categories of patterns are described using sets of shift patterns. The sets PDn ,
PUn , and PIn of shift patterns contain desirable, undesirable and illegal shift patterns for
employee n respectively.

∑
s∈S

∑
t∈T

Pstpxnst − LpwDnp ≥ 0 n ∈ N , p ∈ PDn (19)∑
s∈S

∑
t∈T

Pstpxnst − wUnp ≤ Lp − 1 n ∈ N , p ∈ PUn (20)∑
s∈S

∑
t∈T

Pstpxnst ≤ Lp − 1 n ∈ N , p ∈ PIn (21)
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Constraints (19) ensure wDntp = 0 as long as nurse n does not work all shifts in the
desirable shift pattern p. Similarly, constraints (20) make sure wDntp = 1 when nurse n
works all shifts in an undesirable shift pattern p. For both desirable and undesirable
shift patterns, there can be a number of desirable and undesirable shorter sequences.
However, for each pattern lasting the full planning period, the objective function weight
of the pattern reflects its aggregated desirability or undesirability. Lastly, constraints (21)
hinders allocation of illegal patterns.

Pattern examples

We provide exemplary patterns belonging to each set in Table 4.

Table 4: Examples of patterns belonging to different pattern sets that appear in the
problem at MWW.

Pattern t− 4 t− 3 t− 2 t− 1 t Lp

PD E D F 3
PU E F 2
PI F F N F 4
PI N N N F D 5
PI N N N F E 5
PI N N N F N 5

The pattern in the first row is a desirable pattern for employees who are commuters
living in an area with reduced access to public transport. Many of them wish to work a
{E,D} pattern, where they sleep at the hospital in between shifts. The second pattern
applies to the same group of commuters. Their reduced access to public transport makes
it unpractical to have an off-day after an evening shift, as they cannot get home during
the evening using public transport. The third row is a typical illegal pattern, where a
series of off-days are interrupted by a night shift. This is undesirable to an extent where
it is considered illegal in the model, but several patterns like it could just as well be
modelled as a heavily weighted undesirable pattern.

One category of illegal shift patterns might be counterintuitive and needs some expla-
nation. These are the illegal shift patterns that are defined to enforce that one sequence
of shifts is mandated to follow another sequence of shifts in the individual roster of an
employee n. One such example is that for most employees, a sequence of three night shift,
{N,N,N} must be followed by a sequence of two off-shifts. In the mathematical model,
this is formulated by stating that after the three initial night shifts, all sequences that
do not entail allocating two off-shifts immediately after are illegal. This entails that any
pattern including the shift sequences in rows four to six in Table 4, among many others,
are part of the shift patterns PI .

A.9 Variable declarations

xnst ∈ {0, 1}, n ∈ N , s ∈ S, t ∈ T P (22)

dtu ≥ 0, t ∈ T , u ∈ U (23)
dtu ≥ 0, t ∈ T , u ∈ U (24)
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wDnp ∈ {0, 1}, n ∈ N , p ∈ PDn (25)

wUnp ∈ {0, 1}, n ∈ N , p ∈ PUn (26)

A.10 Objective function

The objective function is presented below. The parameter PRnst is the parameter reflecting
the daily requests that the employees register prior to the rostering process. PRnst is 1
if employee n requests shift s on day t, 0 otherwise. Furthermore, we introduce weight
parameters with base letterW for each term i the objective function. WR

nst is the objective
function reward of assigning shift s to employee n on day t. Weights WC

tu and W
C

tu are
the weights penalizing lower and higher staff levels, respectively, than desired on day t
for demand type u. Weights WD

np reward the allocation of desired pattern p for employee
n, and WU

np penalize the allocation of undesired pattern p for employee n.

max Z =
∑
n∈N

∑
s∈S

∑
t∈T

WR
nstxnst −

∑
t∈T

∑
u∈U

(WC
tudtu +W

C

tudtu)

+
∑
n∈N

∑
p∈PD

n

WD
npw

D
np −

∑
n∈N

∑
p∈PU

n

WU
npw

U
np (27)
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