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Abstract
In this thesis we study a model for the short-time dynamics of the supercon-
ductivity in a particular class of materials, namely the non-centrosymmetric
superconductors with spin-orbit coupling breaking the inversion symmetry.
This was motivated by recent theoretical studies of the short-time dynamics of
s-wave and d-wave superconductors, advances in experimental techniques and
renewed research interest in several non-centrosymmetric compounds. This
was in turn motivated by improvement in measurements, particularly in the
fields of cold atoms and spectroscopy, which has allowed for much more de-
tailed experimental study of systems that are not in equilibrium. The model
used is derived by extending an existing Green’s function technique to the non-
centrosymmetric case with spin-orbit coupling. We calculate several numerical
results showing the time-dynamics of the superconducting gap, compare them
to the previously known results for centrosymmetric superconductors and at-
tempt to explain the unique features seen. The main result is a possibility for
short-time enhancement of the triplet component of the gap after fast changes
in the spin-orbit interaction.
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Sammendrag
I denne oppgaven undersøker vi dynamikken kort tid etter at et system har
blitt forstyrret i en modell for ikke-sentrosymmetriske superledere. Spesifikt
ser vi på ikke-sentrosymmetriske materialer der spinn-banekobling er det som
bryter inversjonssymmetrien. Dette var motivert av studier i nyere tid som har
tatt for seg tilsvarende dynamikk for s-bølge og d-bølge superledere, samt frem-
skritt i eksperimentelle teknikker og fornyet interesse i ikke-sentrosymmetriske
materialer. Dette var igjen motivert av at forbedringer i måleteknikker og ut-
styr, spesielt innen kalde atomer og spektroskopi, har tillatt mer detaljerte
eksperimentelle studier av systemer ute av likevekt. Modellen som brukes i
oppgaven er utledet ved å utvide en tidligere brukt Green’s funksjon teknikk
til det ikke-sentrosymmetriske tilfellet med spinn-banekobling. Flere numeris-
ke resultater som viser tidsdynamikken til det superledende gapet beregnes.
De sammenlignes med tidligere kjente resultater og vi prøver å forklare hvorfor
vi ser forskjellene som kommer frem. Hovedresultatet i oppgaven er en mulig-
het for forsterking av triplet komponenten i gapet kort tid etter en plutselig
endring i styrken på spinn-bane interaksjonen.
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CHAPTER 1
INTRODUCTION

1.1 History and Motivation

Since the discovery of superconductivity by Kamerlingh Onnes in 1911, un-
derstanding the phenomena has been the subject of intense research. The
fundamental underlying physics and the huge potential for applications has
been and continues to entice researchers to this day.

The first major theoretical breakthrough in explaining what happens on a
microscopic level inside solid matter in a superconducting state came with the
Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity. This provided
the first working microscopic explanation in 1957. While the BCS theory was
and is very successful at explaining many properties of some superconductors
like the critical temperature, the isotope effect and the critical magnetic field
it was not the end of the story. Materials that did not conform to the original
BCS theory was discovered: heavy fermion compounds, the famous high tem-
perature cuprate compounds and many more. Superconductivity turned out
to be a rich and complicated phenomena, to both joy and frustration of many
physicists.

In more recent years the introduction of improved experimental techniques
in the form of angle resolved photoemission spectroscopy (ARPES) and the ex-
tension to time resolved ARPES has given access to a wealth of measurements
that where previously unavailable. In particular these allow for the probing of
time dynamics and nonequilibrium properties in addition to the equilibrium
properties.

1



2 CHAPTER 1. INTRODUCTION

In this thesis we will be dealing with the dynamical properties of a sub-
set of superconductors that are the non-centrosymmetric superconductors. In
particular we are dealing with what happens after quantum quenches, mean-
ing that the system in question evolves in time under a different Hamiltonian
than the one it was prepared in initially. In simple terms the system the sys-
tem is suddenly perturbed by some external influence, for instance a laser or
a strong electric field. This is motivated by the general goal of expanding the
knowledge of how properties of superconductors can potentially be controlled.
More specifically to the non-centrosymmmetric materials it is motivated by
the possibility these have for hosting mixed parity states with both singlet
and triplet components and the potential for controlling this ratio. It also
allows comparison with earlier results for single band s-wave and d-wave su-
perconductors and the centrosymmetric two-band superconductors previously
examined.

1.2 Structure of Thesis
In chapter 2 we present a brief summary of theoretical prerequisites, while
chapter 3 serves to set up and derive equations for the system we will be
considering in the rest of the thesis. The main calculations are presented in
chapter 4 and chapter 5. Main results are then presented in chapter 7.

Chapter 2 serves as a quick reminder of some of the most relevant parts
of quantum many-particle mechanics with special emphasis on the Green’s
function methods. In chapter 3 the model we will use is built up, starting
from a non-interacting system and then introducing the symmetry-breaking
terms and interaction terms that are needed to model the desired properties.
Some emphasis is given to the connection to real physical systems and to
justify the choice of interactions. Chapter 4 is focused on calculations and
derivations, known methods are re-derived for the model and the equations
needed to model the time-dynamics are set up. The chapter finishes up with
a section on the numerical methods used.

The spectral function and in particular the approximate calculation of this
out of equilibrium is the focus of chapter 5. In chapter 6 the known results
for a single band superconductor with full inversions symmetry and a quench
in the interaction strength is presented. This chapter serves as a reference
for comparing the results with those found the next chapter and as a test of
the numerical method used. Results using the full model without inversion
symmetry are finally presented and discussed in 7.



CHAPTER 2
QUANTUM MANY-PARTICLE SYSTEMS

Many-body quantum mechanical problems for interacting systems are notori-
ously hard to solve. They tend to remain hard even after major approximations
are made. While the Schrödinger equation is normally the starting point for
quantum mechanical problems a direct application turns out to be quite cum-
bersome. This is partly because the wave function will depend on N variables
(if we ignore spin) for an N -particle system. Evaluating even a single wave
function for large N tends to be very computationally intensive even for fairly
simple systems.

2.1 Second Quantization

It turns out that this part of the problem can be circumvented by going to the
formalism we will be using in this thesis, the so called "second quantization"
(also called the "occupation number") representation where we no longer need
to reference the total number of particles in the system. It even allows us
to treat systems without a fixed number of particles. The subject is much
too large for any complete and rigorous introduction to be given here, and we
will only review some key elements. For a complete introduction the reader is
instead refereed to any of the excellent textbooks on the matter [1–4].

3



4 CHAPTER 2. QUANTUM MANY-PARTICLE SYSTEMS

2.1.1 Many particle states

Many-particle states are built up by constructing a basis consisting of products
of single particle states. If x is a set of quantum numbers that uniquely
specifies a single-particle state, then we can denote a single particle state in
a Hilbert space by the vector |ψ(x)〉. The quantity x can contain both for
instance spatial coordinates r and any discrete variables such as spin projection
σ. This notation generalizes to many-particle systems where we can write a
many particle state as |ψ〉 = |ψ(x1, x2, ..., xN )〉. We can use the fact that in
quantum mechanics we are dealing with indistinguishable particles to describe
the wave functions without referring to the individual particles. The many
body wave functions of bosons are identical under exchange of particles, while
wave functions for fermions pick up an overall minus sign upon exchange of two
particles. This is not physically significant as long as the exchanged particles
have different coordinates as

|ψ(x1, x2, ...xi, xj , ..., xN )|2 = |ψ(x1, x2, ...xj , xi, ..., xN )|2. (2.1)

For fermions the Pauli exclusion principle shows up if two particles have iden-
tical states xi = xj as picking up a minus sign by particle exchange would
then mean that the whole wave function is identically zero.

This can be used to instead construct states based on how many particles
occupy each single particle state

|ψ〉 = |nλ1 , nλ2 , nλ3 , ...〉 (2.2)

where nλi is the number of particles in the state specified by the quantum
numbers λi. For bosons nλi can be any non-negative integer. For fermions the
Pauli exclusion principle manifests in nλi only taking the values 0 and 1. In this
formalism states are constructed from an empty (vacuum) state by creation
operators, for fermions(bosons) these are commonly denoted as c†λ(b

†
λ), where

the action of this operator on an a state is to increase the occupancy by one.
We also have destruction operators denoted cλ which reduces the occupancy
by one. For fermions we can only have an occupancy of 0 or 1 and so acting
twice with any c†λ or cλ destroys the state. Using these operators it is possible
to construct any state we want and to change states in any way we want. It
can be shown that these operators must obey certain commutation relations
at equal times to have the required properties, we will come back the situation
when the operators are acting at unequal times. For fermions we must have
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anticommutation which we denote by curly brackets

{cλ1 , c
†
λ2
} ≡ cλ1c

†
λ2

+ c†λ2
cλ1 = δλ1λ2 (2.3a)

{cλ1 , cλ2} = {c†λ1
, c†λ2
} = 0 (2.3b)

while for bosons we have commutation relations denoted by square brackets

[bλ1 , b
†
λ2

] ≡ bλ1b
†
λ2
− b†λ2

bλ1 = δλ1λ2 (2.4a)

[bλ1 , bλ2 ] = [b†λ1
, b†λ2

] = 0. (2.4b)

2.1.2 Operators
We commonly describe operators as "one particle operators", "two particle op-
erators" etc. This refers to the operator representing quantities of the following
form

U =
N∑
i=1

Ui(ri,pi) (2.5)

where Ui depends on the position ri and momentum pi of one particle, while
two particle operators depend on two particles and etc. In second quanti-
zation we can represent any such operators by combination of creation and
annihilation operators. A single particle operator takes the form

Ttotal =
∑
λ1λ2

Tλ1λ2c
†
λ1
cλ2 , (2.6)

An example of how such operators are found in second quantized form can be
found in appendix A. In a similar way, two particle operator looks like

Vtotal =
∑

λ1λ2λ3λ4

Vλ1λ2λ3λ4c
†
λ1
c†λ2

cλ4cλ3 (2.7)

where the matrix elements are found in a similar way as for the single particle
case.

Note that in principle we can have operators acting on any number of
particles and include three-, four-, five-,... body interactions, but these are
ignored to a good approximation in many condensed matter systems and we
restrict ourselves to two-body interactions in this thesis.
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2.2 Green’s Functions
Green’s functions are mathematically often defined as impulse response func-
tions, e.g. as the solutions to equations on the form

LG(r, r′; t, t′) = δ(r− r′)δ(t− t′) (2.8)

where L is some linear differential operator [1]. If the Green’s function of a
differential equation is known, then by linearity the solution for any source
term can be obtained by integrating (performing a summation) over the rele-
vant coordinates. In physical systems we are often interested in how systems
described by differential equations respond to perturbations to link theoretical
calculations and experimental data.

For single-particle quantum mechanics we insert the Schrödinger operator
in equation (2.8) and get

[i∂t −H0(r)− V (r)]G(r, r′; t, t′) = δ(r− r′)δ(t− t′). (2.9)

By insertion, one can verify that the single particle Green’s function can
be written as

G(r, r′; t, t′) = −iθ(t− t′) 〈r| e−iH(t−t′) |r′〉 , (2.10)

explaining why it is also often called a propagator (also called a correlation
function)1.

In many-body quantum mechanics the objects we call Green’s function
often do not strictly follow the above definition as solutions to a linear differ-
ential equation. However, it turns out that we can think of them in similar
ways 2. We define the single-particle fermionic Green’s function for a general
many-body system as

G(λ1, t1;λ2, t2) ≡ −i〈T [cλ1(t1)c†λ2
(t2)]〉 (2.11)

where T is the time-ordering operator and λi are any set of quantum numbers
that uniquely specifies a single-particle state. The physical interpretation is
that this describes the probability amplitude of a fermion in state λ2 being
found at time t2 if it was created in state λ1 at time t1.

1This is strictly speaking the retarded propagator.
2They are also related to solutions of differential equations, for more details see [1]
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We also define the "retarded" and "advanced" Green’s functions for later
use

GR(λ1, t1;λ2, t2) ≡ −iθ(t1 − t2)〈{cλ1(t1), c†λ2
(t2)}〉 (2.12)

GA(λ1, t1;λ2, t2) ≡ iθ(t2 − t1)〈{cλ1(t1), c†λ2
(t2)}〉, (2.13)

and the "lesser" and "greater" Green’s functions

G>(λ1, t1;λ2, t2) ≡ −i 〈cλ1(t1)c†λ2
(t2)〉 (2.14)

G<(λ1, t1;λ2, t2) ≡ i 〈c†λ2
(t2)cλ1(t1)〉 , (2.15)

meaning that

GR(λ1, t1;λ2, t2) = θ(t1 − t2)(G>(λ1, t1;λ2, t2)−G<(λ1, t1;λ2, t2)) (2.16)
GA(λ1, t1;λ2, t2) = −θ(t2 − t1)(G>(λ1, t1;λ2, t2)−G<(λ1, t1;λ2, t2)). (2.17)

The Green’s functions provide us with an important link between theory and
experiment through the spectral function [5]

A(k, ω) = − 1
π

ImGR(k, ω), (2.18)

which can further be related to the lesser Green’s function in what is known as
the fluctuation-dissipation theorem [1] for the fermionic single-particle Green’s
functions

A(k, ω) ∝ ImG<(k, ω)n(ω) (2.19)

where n(ω) is the Fermi-Dirac distribution.
The spectral function is in turn related to the signal measured in angle-

resolved photoemission spectroscopy (ARPES) which is the subject of the next
section 3.

3Some authors use a prefactor −2 instead of −1/π.
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2.3 ARPES
The ARPES technique is an experimental method that can directly probe the
momentum dependent electronic band structure in a solid. This makes it an
very powerful tool for studying condensed matter systems. It is based on the
photoelectric effect where an electron in a solid can absorb a photon and get
enough energy to escape the material. This is described by Ekin = hν − φ
where Ekin is the maximum kinetic energy of the escaping electron, ν is the
frequency of the photon, h is Planck’s constant and φ is the work function of
the solid that is a measure of the potential barrier at the surface.

While simple enough in principle, the photoemission process in solids is
complicated and difficult to calculate, in most cases a number of approxima-
tions must be made to interpret the measurements. One common way to do
this is the so-called three step model where the pohotoemission process is di-
vided into three distinct steps: (i) optical excitation of the electron in the bulk,
(ii) the excited electron traveling to the surface, (iii) the electron escaping from
the surface of the solid. The intensity of escaped electrons is then given by
the product of the probability for the optical transition, the probability of
the electrons scattering during the travel to the surface and the transition
probability for penetrating the surface barrier. Finally an approximation is
made where the relaxation of the system during the photoemission process is
neglected, called a "sudden approximation." In other words one assumes that
the electron is removed at a single instant and that the effective potential
of the system changes instantaneously. We note that while this makes for
a convenient approximation, quantum mechanically photoemission should be
described by a single step, not with several independent ones.

This leads to a convenient form of the ARPES intensity at equilibrium for
a 2D single-band system [5]

I(k, ω) ∝ A(k, ω). (2.20)

However, out of equilibrium there are several other factors to take into account.
In general the Green’s functions are no longer dependent on the time difference
alone, but on two independent times. A theory taking this into account has
been developed [6] and the expression for the intensity in time-resolved ARPES
is given by

I(ω, t0) = Im
∫

dtdt′ ρ(t, t′, t0)eiω(t−t′)G<k(t,t′)(t, t
′), (2.21)

where ρ(t, t′, t0) describes a probe pulse of finite width. This reduces to the
equilibrium expression in equation (2.20) if the probe-function can be taken
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as ρ(t, t′, t0) = 1, denoting a continuous beam, and if the Green’s function
depends only on the time difference t− t′.

2.4 Equation of motion theory
In this thesis we are looking at the time-dependence of physical quantities,
we will approach this theoretically by finding sets of differential equations for
the time-dependence of the Green’s functions that we can solve with some
appropriate numerical scheme.

We first look at the time-derivative of a Green’s function, for instance the
momentum-space Green’s function with respect to the first time-argument

i∂t1G
R(k, t1; k′, t2) = i(−i)∂t1θ(t1 − t2)〈{ckσ(t1), c†k′σ(t2)}〉+

+ i(−i)θ(t1 − t2)〈{∂t1ckσ(t1), c†k′σ(t2)}

= δ(t1 − t2)δ(k− k′) + θ(t1 − t2)〈{∂t1ckσ(t1), c†k′σ(t2)}
(2.22)

where we used the anti-commutation relation for fermionic operators at equal
times. To evaluate this expression we need the time-derivative of the annihila-
tion operator. We can get this from Heisenberg’s equation of motion [4] which
given a Hamiltonian and an operator will give us a differential equation for
the time evolution of any such operator

∂t1ckσ(t1) = i[H, ckσ](t1). (2.23)

As a quick example, in the case of non-interacting particles this takes a par-
ticularly simple form

∂tckσ(t) = i[H0, ckσ](t)

= i

∑
k′,σ′

εk′c
†
k′,σ′ck′,σ′ckσ − ckσ

∑
k′,σ′

εk′c
†
k′,σ′ck′,σ′

 (t)

= −iεkckσ

=⇒ ckσ(t) = e−iεktckσ. (2.24)

In general we will be using Heisenberg’s equations of motion on operators and
products of operators to derive the time-dependence of the quantities we want
to look at.
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2.5 Superconductivity
In this section we will review some of the basic theory and some properties of
superconductors. We will focus on the BCS-type theory of superconductivity
as this is the most widely successful theory and it will be the basis for building
the models used thesis. For a complete introduction we refer to textbooks on
many-body condensed matter physics [1–3] and more specialized texts dealing
with superconductivity [7].

2.5.1 Cooper pairing
One of the key ingredients in microscopic theories of superconductivity is the
idea of electrons forming pairs, so called Cooper pairs. With some notable
exceptions this happens through some sort of attractive interaction4. The
problem originally examined by Cooper was the instability of the ground state
of an inert Fermi-sea with to the formation of bound states when two electrons
are added on top which have an arbitrarily small attraction between them
acting within a thin shell of the Fermi-surface. Figure 2.1 illustrates the thin
shell around the Fermi surface. Cooper found that adding these electrons
gave rise to a two-particle state with energy less than twice the Fermi energy,
appearing to violate the Pauli principle. However the bound state should not
be viewed as a two individual electrons, but rather as a single entity which is
not a fermion with a binding energy 2εF − E = ∆, where εF is the Fermi-
energy and E is the two-particle energy of the Cooper pair. This energy can
be approximated as

∆ = 2~ω0e
−V −1N−1(εF ), (2.25)

where ω0 is the thickness of the shell around the Fermi-surface V is the at-
tractive interaction and N(εF ) is the density of states near the Fermi-surface
with the assumption that the product V N(εF ) is very small. This gives rise
to an essential singularity in ∆ as V N(εF ) → 0, this tells us that the result
above could not be found by doing perturbation theory.

In practice this allows the electrons to shed some of the limitations of the
Pauli principle. Note that we did not state that Cooper pairs are bosons,
they do not obey bosonic commutation relations nor boson statistics5. While
the problem had a quite startling solution it also appeared quite artificial in
that electrons repel each other via the Coulomb interaction and no attractive

4See for instance the Kohn-Luttinger mechanism where a weak repulsive interaction gives
rise to unconventional superconductivity [8].

5They are sometimes refereed to as composite bosons.
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k

k′

q

−q

Figure 2.1: Two particles scattering within a thin shell of the Fermi surface.
Note that the initial and final states both stay within the thin shell when
they are initially on opposite sides of the Fermi surface and that one of the
particles would scatter out of this shell there was a large deviation from this
initial condition.

interaction was known. Such an interaction was however discovered, it was
shown that an interaction mediated by phonons (lattice vibrations) could give
rise to a net attraction. This attraction is explained by electrons attracting
the ions in a crystal-lattice and leaving behind a trail of net-positive charge
as illustrated in figure 2.2. As long as the temperature is low enough to not
dissociate the pairs, this temperature will be on the order ∆ ∼ kBT0 where
kB is Boltzmans constant and T0 is a temperature.

We note that the phonon mediated scenario is a special case, the phenom-
ena of Cooper pairing more generally refers to electrons forming pairs due to
some attractive interaction in k-space [7].

2.5.2 BCS-theory

The BCS theory is in essence the many-body version of the Cooper-problem.
Starting out with a many-body Hamiltonian with an effectively attractive
electron-electron interaction
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Figure 2.2: Real-space cartoon illustration of a Cooper pair with phonon-
mediated superconductivity. The electrons (red) distort the lattice by attract-
ing positive ions (blue) away from their equilibrium positions. The (relative
to electrons) heavy ions have a large inertia and are slow to move, this means
that the local distortion of the lattice is present after the electrons have passed.
Electrons moving along the same line feel this distortion the strongest while
the distortion is less significant for electrons moving perpendicular to the dis-
tortion. Moving in opposite directions minimizes the effect of the Coulomb
repulsion between the electrons.

H =
∑
k,σ

(εk − µ)c†kσckσ +
∑

k,k′,q,σ,σ′
Veffc

†
k+qσc

†
k′−qσ′ck′σ′ckσ, (2.26)

where εk is the kinetic energy, µ is the chemical potential and Veff is some
effective interaction that includes both the repulsive Coulomb interaction and
the attractive electron-phonon interaction. A few large simplifications can
now be made, because the effective attractive interaction is only valid for a
thin shell around the Fermi-surface we can ignore states that are scattered
out of this shell. The scattering events that are most likely to lie within the
shell are those with k = −k′. The interaction is considered approximately
instantaneous and so the Pauli-principle limits the spin to σ′ = −σ because
this means that the spatial extent of the interaction is very small. This allows
a rewrite of the Hamiltonian (2.26) to
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H =
∑
kσ

(εk − µ)c†kσckσ +
∑
kk′

Vkk′c
†
k↑c
†
−k↓c−k′↓ck′↑, (2.27)

where Vkk′ is now attractive within a thin shell around the Fermi surface and
zero otherwise. This is very much like the Cooper problem with an attraction
that works between all electrons in a thin shell around the Fermi surface instead
of just between two.

However, this Hamiltonian is still too complicated to be treated exactly
and the Cooper problem result (2.25) is a strong indication that perturbation
theory is not the right choice for an approximate treatment. The way to do
this is via a mean-field approach that we will go through in more detail in
chapter 3. In essence the approach is to assume that the fluctuations around
the statistical average of operators is small and use this to reduce the many-
body problem to a self-consistent one-particle problem. Pairs of operators
are replaced by their statistical averages plus fluctuations around the average
c−k′↓ck′↑ = 〈c−k′↓ck′↑〉 + δk′ and terms of order O(δ2

k′) are neglected. The
quantity ∆k ≡ −

∑
k′ Vkk′〈c−k′↓ck′↑〉 is defined and is often called the super-

conducting gap for reasons that will become clear. This mean-field approxi-
mation gives a Hamiltonian that is quadratic in the creation and annihilation
operators

H =
∑
k,σ

(εk − µ)c†kσckσ −
∑

k

[
∆kc

†
k↑c
†
−k↓ + ∆†kc−k↓ck↑

]
+ E0, (2.28)

where E0 is a constant energy term we can ignore for now. This is a large
simplification in that the Hamiltonian can now be diagonalized in a new set
of fermionic operators. The diagonal form makes it simple to find expressions
for thermodynamic quantities and thereby find ∆k in terms of other variables.
In short this leads to a diagonal form of (2.28) which is then given by

H =
∑
k,σ

Ekγ
†
kσγkσ + E

′

0, (2.29)

where Ek =
√

(εk − µ)2 + ∆2
k and γ, γ† are fermionic operators. In this diag-

onal form of the Hamiltonian we see that ∆k appears as a gap in the excitation
spectrum on the Fermi-surface





CHAPTER 3
PHYSICAL MODEL

3.1 System
We are investigating quantum quenches in superconducting systems without
inversion symmetry. In particular we are going to look at the possibility of
suddenly changing the magnitude of a particular type of spin-orbit interaction.
The general system is built from electrons hopping on a square lattice with
inversion symmetry, then an inversion-symmetry breaking term is added and
finally a pairing interactions between electrons that allows for the formation
of Cooper-pairs. As a starting point, we find suitable equations describing
the system justifying the equations and approximations used. This is followed
by deriving equations of motion for relevant quantities we will need in the
investigation of the quench-responses and a numerical scheme for solving the
equations.

3.1.1 Non-interacting system
We start out by considering a system of non-interacting electrons on a two
dimensional square lattice

H =
∑
i,j,σ

ti,jc
†
iσcjσ −

∑
i,σ

c†iσciσµ, (3.1)

15
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where c and c† are fermionic creation and annihilation operators i and j indi-
cate lattice sites, ti,j is the hopping matrix element which we refer to as the
hopping amplitude and σ =↓↑ is the spin. Using a tight binding approxima-
tion we include only nearest neighbour hopping and define a single hopping
amplitude t〈i,j〉 ≡ −t, writing 〈i, j〉 to indicate that only nearest neighbours
are to be summed over. This gives us

H = −t
∑
〈i,j〉

∑
σ

c†iσcjσ −
∑
i,σ

c†iσciσµ, (3.2)

going to momentum-space will allow us to work in a diagonal basis, we first
introduce Fourier-transformed operators on the lattice

ci = 1√
N

∑
k

eik·rick, (3.3)

where N is the number of lattice-sites, k is the momentum vector and ri is
the position vector of lattice-soite i. This lets us write

H = −t 1
N

∑
〈i,j〉

∑
σ

∑
k,k′

e−ik·rjeik
′·ric†kσck′σ −

1
N

∑
i,σ

∑
k

eik·(ri−ri)c†kσckσµ

= −t 1
N

∑
〈i,j〉

∑
σ

∑
k,k′

e−ik·(ri+δ)eik
′·ric†kσck′σ −

∑
k,σ

c†kσckσµ

= −t 1
N

∑
〈i,j〉

∑
σ

∑
k,k′

e−ik·δijei(k′−k)·ric†kσck′σ −
∑
k,σ

c†kσckσµ

= −t 1
N

∑
k,k′,σ

Nδk,k′

 ∑
<i,j>

e−ik·δij
 c†kσck′σ −

∑
kσ

c†kσckσµ

=
∑
k,σ

(ε(k)− µ)c†kσckσ, (3.4)

where the momentum sum over k is restricted to the first Brillouin zone and
we defined ε(k) ≡ −t

∑
〈i,j〉

e−ik·δij as the kinetic energy. This is evaluated on

the square lattice with lattice constant a = 1

−t
∑
<i,j>

e−ik·δij = −t
(

e−ik·x̂ + e−ik·(−x̂) + e−ik·ŷ + e−ik·(−ŷ)
)

(3.5)

= −2t(cos(kx) + cos(ky)). (3.6)
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The key to make this into a non-centrosymmetric system is the introduction
of an additional term that breaks inversion symmetry in the Hamiltonian. In
a centrosymmetric system we will have εk = ε−k hold [9] for both spin-up
and spin-down electrons, meaning that the band-structure will have a double
degeneracy and be symmetric around k = 0. When the inversion symmetry is
broken this degeneracy is lifted everywhere except for at some points or lines
of high symmetry and only εk↑ = ε−k↓ holds instead. We can understand this
by considering that the lack of inversion symmetry means that the potential
V (k) 6= V (−k), resulting in the electrons feeling a gradient in the potential.
Note however that there is no electric current flowing despite the presence of
an effective electric field. We introduce the term

H0 =
∑

k

∑
α,β

[(εk − µ)δα,β + γ(k) · σαβ ]c†kαckβ (3.7)

where σ is the vector of Pauli-matrices defined as

σ =
[
0 1
1 0

]
x̂+

[
0 −i
i 0

]
ŷ +

[
1 0
0 −1

]
ẑ, (3.8)

and γ(k) = −γ(−k) is an inversion symmetry breaking term [10, 11] whose
form depends on the specifics of the system.

We continue with a tight-binding approach on a square lattice and use a
Rashba-type spin-orbit coupling (SOC) in 2D as the symmetry breaking term,
resulting in an out of plane electric field. Meaning that

H0 =
∑
k,α

(εk − µ)c†kαckα + αREz
∑

k

[(sin(ky) + i sin(kx))c†k↑ck↓,+h.c.] (3.9)

as shown in section A.

3.1.2 Relevance to physical systems
This serves to illustrate that while the symmetry breaking can occur naturally
from the structure of the material, it can also in principle be possible to in-
duce it, tune it and quench it by using an external field. The relevance of this
to real systems is that in effectively 2 dimensional systems this can be done
by applying a gate voltage to induce the required asymmetry and make the
electrons feel a Rashba-interaction. It can also be achieved in the interfaces
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Figure 3.1: Tight binding dispersion for a square lattice without and with a
Rashba SOC along high symmetry directions in the first Brillouin zone.

between heterostructures where a close to 2-dimensional electron gas experi-
ences the Rashba-interaction. It will for be convenient to work in a diagonal
basis where we end up with split pseudo-spin or so-called helicity bands for
many calculations. In this basis

H0 =
∑

k,λ=±

ξkλc̃
†
kλc̃kλ, (3.10)

as derived in section B where we follow the same type of derivation that Børkje
[12] does, with ξkλ = εk − µ+ λ|γk| giving

ξkλ = −2t[cos(kx) + cos(ky)]− µ+ λαREz

√
sin2(kx) + sin2(ky). (3.11)

Note that λ is not a spin index, but a band-index. Now we can see that
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the symmetry breaking term has lifted the degeneracy between the pseudo-
spin bands by locking the spin for each momentum value k rather than letting
it rotate freely, figure 3.1 illustrates the band structure without SOC and with
SOC in the respective diagonal basis. The unitary transformation and the
derivation of the above is given in B.

3.2 Pairing interaction
We will not concern ourselves with the specific microscopic origin of the pairing
mechanism and write a general interaction Hamiltonian for superconductors
in this band-basis

Hint = 1
2
∑
kk′q

∑
λ1,2,3,4

Vλ1λ2λ3λ4(k,k′,q)c̃†k+q,λ1
c̃†−k,λ2

c̃−k′,λ3 c̃k′+q,λ4 . (3.12)

The examination is restricted to spatially homogeneous superconducting
states in a weak-coupling limit. Furthermore we assume that the spin-orbit
splitting is large compared to the size of the gaps. This strongly suppresses
interband pairing as electrons would have to pair far away from their respective
Fermi surfaces, this would incur a large energy cost and be unlikely. We
therefore neglect interband pairing completely as it would be a small correction
when the spin-orbit splitting is large, setting λ1 = λ2 = λ, λ3 = λ4 = λ′.
The q-dependence is also neglected for simplicity. This may not be valid for
small spin-orbit splitting cases [13], but in the case of large spin-orbit splitting
the depairing effect will be difficult to overcome [14]. We are then left with
intraband pairing in both bands as well as the possibility of pair-hopping
between bands shown in figure 3.2.

k
k′

(a) Intraband scattering

k

k′

(b) Pair-hopping

Figure 3.2: Illustration of allowed interactions in the helicity bands from
momentum k to k′.
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This leaves us with

Hint ≈ −
1
2
∑
kk′

∑
λ,λ′

Vλλ′(k,k′)c̃†kλc̃
†
−kλc̃−k′λ′ c̃k′λ′ , (3.13)

where we write

Vλλ′(k,k′) = tλ(k)t∗λ′(k′)Ṽλλ′(k,k′). (3.14)

The motivation for splitting up Vλλ′(k,k′) into factors t and Ṽ in the above
is that this will allow us to write down a relation between the gap functions
in the spin basis and the pseudospin basis in a particularly simple form later
on. If we write tλ(k)c†−kλ = Kc†kλ, where K is the time-reversal operator, then
Ṽλ,λ′(k,k′) becomes the pairing-interaction between time-reversed states.

We can then do a mean-field decoupling of the bands in the same way as
for a normal BCS Hamiltonian. We rewrite the pairs of fermionic operators
as the average plus fluctuations

c̃−k′λ′ c̃k′λ′ = 〈c̃−k′λ′ c̃k′λ′〉+ (c̃−k′λ′ c̃k′λ′ − 〈c̃−k′λ′ c̃k′λ′〉)
≡ b̃k′λ′ + δb̃k′λ′ (3.15)

and proceed to first order in the fluctuations. This gives

c̃†kλc̃
†
−kλc̃−k′λ′ c̃k′λ′ =

(
b̃†kλ + δb̃†kλ

) (
b̃k′λ′ + δb̃k′λ′

)
= b̃†kλb̃k′λ′ + b̃†kλδb̃k′λ′ + b̃k′λ′δb̃

†
kλ +O(δb2)

≈ b̃†kλb̃k′λ′ + b̃†kλ
(
c̃−k′λ′ c̃k′λ′ − b̃k′λ′

)
+ b̃k′λ′

(
c̃†kλc̃

†
−kλ − b̃

†
kλ

)
= −b̃†kλb̃k′λ′ + b̃†kλc̃−k′λ′ c̃k′λ′ + b̃k′λ′ c̃

†
kλc̃
†
−kλ, (3.16)

by defining

∆kλ =
∑
k′λ′

Vλλ′(kk′)bk′λ′ , (3.17)

and ignoring the constant term for now we regain the usual mean-field terms
for a multi-band superconductor.

Leaving us with
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HMF = −1
2
∑
kλ

(∆kλc̃
†
kλc̃
†
−kλ + ∆†kλc̃−kλc̃kλ), (3.18)

if we express the gaps as

∆λ(k) = tλ(k)∆̃λ(k), (3.19)

then the gaps also follow the self-consistency equation

∆λ(k) =
∑

k′λ′=±

Vλλ′(k,k′)〈c̃−k′λ′ c̃k′λ′〉. (3.20)

meaning that

∆̃kλ = t∗λ(k)
∑

k′λ′=±

Vλλ′(k,k′)〈c̃−k′λ′ c̃k′λ′〉. (3.21)

Note that we follow the notation of Samokhin & Mineev [13] here and
that Børkje [12] uses a different notation. Børkje uses ∆̃λk = tλkχλk where
χλk is the order parameter of time-reversed states c̃kλckλ and χkλ = χ−kλ.
Samokhin & Mineev uses ∆kλ = tλk∆̃λk, with ∆̃λk being the order parameter
of time-reversed states that transforms according to one of the irreducible
representations of the space group [15]. This will aid us later in finding the
form of the interaction potential and the equilibrium values of of our gaps.

In the non-centrosymmetric case we have mixing of even-parity singlet and
odd-parity triplet pairing, in general this means that in the spin-basis

∆α,β=↑↓(k) = ψ(k)(iσy)αβ + d(k)(iσσy)αβ , (3.22)

where

ψ(k) = ∆̃+(k) + ∆̃−(k)
2 (3.23)

and

d(k) = ∆̃+(k)− ∆̃−(k)
2 γ̂(k), (3.24)
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where γ̂(k) = γ(k)/|γ(k)| and γ(k) is defined in (3.7). The only part of the
triplet gap that "survives" when the SOC is strong is the one parallel to γ̂(k)
[11].

We can also invert the above relationships and express

∆̃± = ψ(k)± γ̂(k) · d(k) (3.25)

to illustrate that the mixing of singlet and triplet pairing can lead to nodes in
the gaps.

So the quantities of interest in a quantum-quench scenario are clearly ψ(k)
and d(k). We can get these from calculating ∆̃+(k, t) and ∆̃−(k, t), which
will be our goal in the following. Our strategy for obtaining these gaps will
be presented in the next sections. We will need to find the Heisenberg equa-
tions of motion for the quantities we will define as the normal and anomalous
Green’s functions in the pseudo-spin basis and calculate the time evolution fol-
lowing the method used by Peronaci [16]. We also take our Hamiltonian in the
pseudo-spin basis and do a Bogoliubov–Valatin transformation in each band to
diagonalize it to assist in finding our initial values and analytical expressions
for relevant quantities.

3.2.1 Interaction potential
So far we have not specified the form of the pairing-interaction beyond the
restrictions form our approximations. We now turn our attention to this in
equations (3.13) and (3.14). We remind ourselves of these equations

Hint ≈ −
1
2
∑
kk′

∑
λ,λ′

Vλλ′(k,k′)c̃†kλc̃
†
−kλc̃−k′λ′ c̃k′λ′ , (3.26)

and first note that when we write the interaction on the form in equation
(3.14)

Vλλ′(k,k′) = tλ(k)t∗λ′(k′)Ṽλλ′(k,k′), (3.27)

then the pairing between time-reversed states Ṽλλ′(k,k′) must be even in both
k and k′ due to the anticommutation of fermionic operators. The reason
for doing this is that while the full Hamiltonian is invariant under point-
group operations, ∆kλ is not. It picks up a non-trivial phase-factor where the
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dependence on k and the point group operation itself can not be eliminated
as shown by Sergienko and Curnoe [15]. It turns out that when we define the
gap as in equation (3.19) then ∆̃kλ transforms according to the irreducible
representations of the point group. The physical explanation for this is that
∆̃kλ is the gap resulting from pairing time-reversed pairs of particles [11].

It follows that Ṽλλ′(k,k′) must be invariant under the point group opera-
tions of the underlying crystal symmetry group. Then we can further assume
the pairing potential to have a factorized form

Ṽλλ′(k,k′) =
∑
a

V aλλ′

d∑
i=1

ϕaλi(k)ϕ∗aλi(k′), (3.28)

where a labels an irreducible representation, d is the dimension of each irre-
ducible representation and ϕaλi(k) is a basis function of an irreducible repre-
sentation of the point group of a crystal. As we are mostly interested in the
pairing with the highest critical temperature, it is usually sufficient to look at
the irreducible representation of the point group corresponding to the highest
critical temperature. In a simple formulation we can therefore write the mo-
mentum dependence of the interaction matrix in terms of even basis functions
of one irreducible representation,

Ṽλλ′(k,k′) = Vλλ′
d∑
i=1

ϕλi(k)ϕ∗λi(k′). (3.29)

It can be shown by starting with the real-space representation and going to
the band-basis [13] that for a BCS-like s-wave model with the approximations
above, we get

Ṽλλ′(k,k′) = V

2 . (3.30)

This means that the intraband pairing and the pair-scattering has the same
coupling constant. This form of the coupling constant means that ∆̃+ = ∆̃−
from equation (3.20) as it becomes symmetrical. There will therefore be no
triplet contribution to the order-parameter as we would expect in the simple
s-wave case.

We can consider a slightly more general case which is where the matrix-
elements of Ṽλλ′ can give rise to triplet pairing, but is still simple in the sense
that they are independent of k and k′. To this end we can consider for our
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model with a square 2 dimensional lattice the point group C4v combined with
a Rashba SOC and find that the unit representation A1 is compatible with a
pairing interaction that is particularly simple to deal with [17]

Ṽ (k,k′) = Vg
2 (σ0 + σx) + Vu

2 (σ0 − σx), (3.31)

where Vg and Vu are constants that correspond to the even and odd parts of
the interaction in the spin-basis, a full derivation of this can be found in [13].
What matters for the mixing of the singlet and triplet states is the relative
size of these constants, equation (3.30) corresponds to Vu = 0 and Vg 6= 0.

We can rewrite this and let the diagonal parts be equal and described by a
constant Ṽλλ = Ṽ d and the off-diagonal parts be described by a constant Ṽ o
that is in general different to Ṽ d. This still allows equations (3.14) and (3.20)
to give rise to mixtures of singlet and triplet states and our interaction-matrix
takes the form [

Ṽ d Ṽ o

Ṽ o Ṽ d

]
. (3.32)

In particular, we can see in a similar way as above from equation (3.20)
that the singlet part of the gap goes to zero when Ṽ o = −Ṽ d leaving us with
only a triplet part. Letting Ṽ o vary between ±Ṽ d allows us to get mixtures
of singlet and triplet pairing [11, 17]. This choice leads to basis functions that
are k independent, meaning that our gap amplitudes will also be isotropic and
independent of k. This in turn leads to an isotropic singlet gap (3.23) and
a triplet gap (3.24) with k dependence given entirely by γ̂(k) where γ̂(k) is
proportional to kyx̂− kxŷ for the Rashba interaction we have chosen.

Note that in general it is also possible for all four components in the matrix
(3.32) to be different. The equations used in this thesis can accommodate this
as well as different momentum dependencies than what is chosen here, we stick
with the above interaction matrix to investigate the dynamics of singlet and
triplet mixing in the simplest model.

In the following we will mostly refer to the ratio between the diagonal
element (Ṽ d) and off-diagonal element (Ṽ o) when describing the interaction-
matrix.



CHAPTER 4
EQUATIONS OF MOTION

4.1 Time dependence
So far everything we have done is completely time-independent and refers to
systems in equilibrium. The quantities we are interested in examining are
dynamical quantities, like the amplitude(Higgs)-modes and phase(Leggett)-
modes of the order parameters. These are essentially oscillations in the am-
plitude of the order parameter in the case of the Higgs mode and oscillations
in the relative phase of the two order parameters in a two-band system in the
case of the Leggett mode. These quantities will be discussed in more detail
in chapter 6 and 7. What we need to know at this time is that we want to
find the time evolution of the order parameters. In the following section we
will therefore derive a set of differential equations describing this. We will also
need to develop a numerical scheme for solving this set of equations.

Our starting point for the equations of motion will the full mean field
Hamiltonian we have derived so far

H =
∑
kλ

ξkλc̃
†
kλc̃kλ −

1
2
∑
kλ

(∆kλc̃
†
kλc̃
†
−kλ + ∆†kλc̃−kλc̃kλ). (4.1)

The quanties of interest are ∆̃k±(t), from which it follows that we need the
quantities 〈c̃−k±(t)c̃k±(t)〉. It will turn out that this requires us to find the
equations of motion for the following quantities which we with some abuse of
notation call Green’s functions

25
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Gkλ(t) = 〈c̃†kλ(t)c̃kλ(t)〉, (4.2)

and

Fkλ(t) = 〈c̃−kλ(t)c̃kλ(t)〉. (4.3)

To get the initial conditions we then do a Bogoliubov–Valatin transformation
to find the expectation values in the low temperature limit at the time t = 0.

4.1.1 Equations of motion
We start out by finding the equations of motion for the first pair of operators
c̃†kλc̃kλ

i
d

dt
c̃†kλc̃kλ = [c̃†kλc̃kλ, H] (4.4)

and commute our operators across the Hamiltonian from left to right. The
first term in the Hamiltonian in (4.1) does not contribute as number operators
commute, and we focus on the last two terms giving contribution

c̃†kλc̃kλ
∑
pµ

∆pµc̃
†
pµc̃
†
−pµ =

∑
pµ

∆pµc̃
†
kλc̃kλc̃

†
pµc̃
†
−pµ

=
∑
pµ

∆pµc̃
†
kλ(δk,pδλ,µ − c†pµc̃kλ)c̃†−pµ

= ∆kλc̃
†
kλc̃
†
−kλ −

∑
pµ

∆pµc̃
†
kλc̃
†
pµ(δλ,µδk,−p − c̃†−pµc̃kλ)

= ∆kλc̃
†
kλc̃
†
−kλ −∆−kλc̃

†
kλc̃
†
−kλ +

∑
pµ

∆pµc̃
†
pµc̃
†
−pµc̃

†
kλc̃kλ

= 2∆kλc̃
†
kλc̃
†
−kλ +

∑
pµ

∆pµc̃
†
pµc̃
†
−pµc̃

†
kλc̃kλ (4.5)

where the last line follows from the anti-commutation of fermions implying
that ∆−kλ = −∆kλ.

In the same way it follows that

c̃†kλc̃kλ
∑
pµ

∆†pµc̃−pµc̃pµ = −2∆†kλc̃−kλc̃kλ +
∑
pµ

∆†pµc̃−pµc̃pµc̃
†
kλc̃kλ (4.6)



4.1. TIME DEPENDENCE 27

giving us

i
dGkλ(t)
dt

= [∆∗kλ(t)Fkλ(t)− F ∗kλ(t)∆kλ(t)] (4.7)

after taking the zero temperature expectation value. Next up, we look at the
operators c̃−kλc̃kλ

i
d

dt
c̃−kλc̃kλ = [c̃−kλc̃kλ, H] (4.8)

and focus first on contributions from the kinetic term

c̃−kλc̃kλ
∑
pµ

ξpµc̃
†
pµc̃pµ =

∑
pµ

ξpµc̃−kλ(δp,kδλ,µ − c̃†pµc̃kλ)c̃pµ

= ξkλc̃−kλc̃kλ −
∑
pµ

ξpµ(δλ,µδk,−p − c̃†pµc̃−kλ)c̃kλc̃pµ

= ξkλc̃−kλc̃kλ − ξ−kλc̃kλc̃−kλ +
∑
pµ

ξpµc̃
†
pµc̃pµc̃−kλc̃kλ

= 2ξkλc̃−kλc̃kλ +
∑
pµ

ξpµc̃
†
pµc̃pµc̃−kλc̃kλ (4.9)

where the last line follows from the anti-commutation of fermions and the
symmetry ξkλ = ξ−kλ of the kinetic energy in the pseudu-spin basis. The last
contribution comes from
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c̃−kλc̃kλ
∑
pµ

∆pµc̃
†
pµc̃
†
−pµ =

∑
pµ

∆pµc̃−kλ(δp,kδλµ − c̃†pµc̃kλ)c̃†−pµ

= ∆kλ(1− c†−kλc̃−kλ)−
∑
pµ

∆pµc̃−kλc
†
pµ(δk,−pδλ,µ − c̃†−pµc̃kλ)

= ∆kλ(1− c†−kλc̃−kλ)−∆−kλc−kλc
†
−kλ +

∑
pµ

∆pµc̃−kλc
†
pµc̃
†
−pµc̃kλ

= 2∆kλ(1− c†−kλc̃−kλ) +
∑
pµ

∆pµ(δ−k,pδλ,µ − c̃†pµc̃−kλ)c̃†−pµc̃kλ

= 2∆kλ(1− c†−kλc̃−kλ) + ∆−kλc̃
†
kλckλ −

∑
pµ

∆pµc̃
†
pµc̃−kλc̃

†
−pµc̃kλ

= 2∆kλ(1− c†−kλc̃−kλ) + ∆−kλc̃
†
kλckλ −∆kλc̃

†
kλckλ+

+
∑
pµ

∆pµc̃
†
pµc̃
†
−pµc̃−kλc̃kλ

= 2∆kλ(1− c†−kλc̃−kλ)− 2∆kλc̃
†
kλckλ +

∑
pµ

∆pµc̃
†
pµc̃
†
−pµc̃−kλc̃kλ

= 2∆kλ(1− 2c†−kλc̃−kλ) +
∑
pµ

∆pµc̃
†
pµc̃
†
−pµc̃−kλc̃kλ

giving us

i
dFkλ(t)
dt

= 2ξkλFkλ(t) + ∆kλ(2Gkλ(t)− 1) (4.10)

after taking the expectation value. Which is on the same form as the equations
in [18].

This leaves us with a coupled set of differential equations for the equations
of motion

i
dFkλ(t)
dt

= 2ξkλFkλ(t) + ∆kλ(2Gkλ(t)− 1) (4.11a)

i
dGkλ(t)
dt

= [∆∗kλ(t)Fkλ(t)− F ∗kλ(t)∆kλ(t)]. (4.11b)

We note that while the equations of motion appear uncoupled in this form,
they are in fact coupled through the gap-equations

∆kλ =
∑
k′λ′

Vkk′λλ′Fk′λ′ , (4.12)

and we now need to find the initial conditions.
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4.1.2 Bogoliubov-Valantin transform
To proceed further we do a change of basis to diagonalize the mean-field Hamil-
tonian

H =
∑
kλ

ξkλc̃
†
kλc̃kλ −

1
2
∑
kλ

(∆kλc̃
†
kλc̃
†
−kλ + ∆†kλc̃−kλc̃kλ). (4.13)

In order to do this, a Bogoliubov-Valantin transform is introduced to our
system of effectively spinless fermions

γkλ = ukλc̃kλ − vkλc̃
†
−kλ. (4.14)

We start out by making sure that our new quasi-particle operators γ, γ†
are fermions, then we express our Hamiltonian in terms of them to find the
conditions on the coefficients u, v for it to be diagonalized. Dropping the band-
index for now (as all operators in the following are in the same band) we check
that this transform preserves the commutation relations

{γk, γ
†
k} = (ukλc̃kλ − vkλc̃

†
−kλ)(u∗kλc̃

†
kλ − v

∗
kλc̃−kλ)+

+ (u∗kλc̃
†
kλ − v

∗
kλc̃−kλ)(ukλc̃kλ − vkλc̃

†
−kλ)

= |uk|2(1− c̃†kc̃k) + |uk|2c̃†kc̃k + |vk|2c̃†−kc̃−k + |vk|2(1− c̃†−kc̃−k)+

− ukv
∗
kc̃kc̃−k + u∗kvkc̃

†
−kc̃
†
k − ukv

∗
kc̃−kc̃k + u∗kvkc̃

†
kc̃
†
−k

= |uk|2 + |vk|2 (4.15)

which gives us the correct anti-commutator {γk, γ
†
k} = 1 with the standard

choices of uk = cos(θk), vk = sin(θk) and θ−k = −θk. The other anti-
commutators

{γk, γk′} = {γ†k, γ
†
k′} = 0 (4.16)

follow directly from the anti-commutation of the band-operators.
With the check completed we can proceed, the band indices are reintro-

duced and we express our band-operators in terms of our new fermions

c̃kλ = u∗kλγkλ + vkλγ
†
−kλ (4.17)
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c̃†−kλ = ukλγ
†
−kλ − v

∗
kλγkλ. (4.18)

Now we want to express the quadratic terms in the Hamiltonian with our new
operators with the goal of removing off-diagonal terms

c̃†kλc̃kλ = (ukλγ
†
kλ + v∗kλγ−kλ)(u∗kλγkλ + vkλγ

†
−kλ)

= |ukλ|2γ†kλγkλ + ukλvkλγ
†
kλγ
†
−kλ + u∗kλv

∗
kλγ−kλγkγ + |vkλ|2γ−kλγ

†
−kλ,

(4.19)

c̃†kλc̃
†
−kλ = (ukλγ

†
kλ + v∗kλγ−kλ)(ukλγ

†
−kλ − v

∗
kλγkλ)

= u2
kλγ
†
kλγ
†
−kλ − (v∗kλ)2γ−kλγkλ + ukλv

∗
kλ(γ−kλγ

†
−kλ − γ

†
kλγkλ),

(4.20)

c̃−kλc̃kλ = (u∗kλγ−kλ − vkλγ
†
kλ)(u∗kλγkλ + vkλγ

†
−kλ)

= (u∗kλ)2γ−kλγkλ − v2
kλγ
†
kλγ
†
−kλ + u∗kλvkλ(γ−kλγ

†
−kλ − γ

†
kλγkλ).

(4.21)

The coefficients of the undesired off-diagonal terms can now be gathered up

γ†kλγ
†
−kλ : ξkλukλvkλ −

1
2∆kλu

2
kλ + 1

2∆∗kλv2
kλ, (4.22)

γ−kλγkλ : ξkλu
∗
kλv
∗
kλ + 1

2(v∗kλ)2∆kλ −
1
2(u∗kλ)2∆∗kλ. (4.23)

We want these to vanish, as they are simply conjugate equations we pick one,
set the coefficient equations equal to zero and solve for the ratio vkλ/ukλ

2ξkλ
vkλ

ukλ
−∆∗kλ

(
vkλ

ukλ

)2
+ ∆kλ = 0 (4.24)

=⇒ vkλ

ukλ
=
−ξkλ ±

√
ξ2

kλ + |∆kλ|2
∆∗kλ

(4.25)

it follows from our above definitions of ukλ, vkλ that since |ukλ|2 + |vkλ|2 = 1
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|ukλ|2 = 1

1 +
∣∣∣ukλ
vkλ

∣∣∣2 = |∆kλ|2

2|∆kλ|2 + 2ξ2
kλ ∓ 2ξkλ

√
ξ2

kλ + |∆kλ|2
(4.26)

to ensure that the BCS-ground state is a minimum energy state we choose the
positive solution for the above equation and so

|ukλ|2 = 1

1 +
∣∣∣ukλ
vkλ

∣∣∣2 = 1
2

|∆kλ|2

|∆kλ|2 + ξ2
kλ − ξkλ

√
ξ2

kλ + |∆kλ|2

= 1
2

|∆kλ|2(
√
ξ2

kλ + |∆kλ|2 + ξkλ)
|∆kλ|2(

√
ξ2

kλ + |∆kλ|2 + ξkλ)− ξkλ|∆kλ|2

= 1
2

√
ξ2

kλ + |∆kλ|2 + ξkλ√
ξ2

kλ + |∆kλ|2

= 1
2

(
1 + ξkλ√

ξ2
kλ + |∆kλ|2

)
. (4.27)

From the above it follows that

|vkλ|2 = 1
2

(
1− ξkλ√

ξ2
kλ + |∆kλ|2

)
(4.28)

Now we take a look at the coefficients of the diagonal terms, ignoring any
terms that appear without operators as we are not concerned about the zero-
point of the energy at the moment

γ†kλγkλ : ξkλ|ukλ|2 + 1
2∆kλukλv

∗
kλ + 1

2∆∗kλu∗kλvkλ, (4.29)

γ†−kλγ−kλ : −ξkλ|vkλ|2 + 1
2∆kλukλv

∗
kλ + 1

2∆∗kλu∗kλvkλ. (4.30)

And so we get by using the relations above for the coefficients of our diago-
nalized Hamiltonian
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ξkλ(|ukλ|2 − |vkλ|2) + ∆kλukλv
∗
kλ + ∆∗kλu∗kλvkλ

= ξ2
kλ√

ξ2
kλ + |∆kλ|2

+
(

1 + ξkλ√
ξ2

kλ + |∆kλ|2

)
(
√
ξ2

kλ + |∆kλ|2 − ξkλ)

= (
√
ξ2

kλ + |∆kλ|2, (4.31)

where we can now define

Ekλ =
√
ξ2

kλ + |∆kλ|2, (4.32)

which is unsurprisingly on the same form as the result for a regular BCS
superconductor.

This allows us to rewrite our Hamiltonian as

H =
∑
kλ

Ekλγ̃
†
kλγ̃kλ + E0, (4.33)

where E0 = −1/2ξkλ + 1/2Ekλ− 1/2∆kλ〈c̃†kλc̃
†
−kλ〉. Letting us find the initial

values we need for our set of differential equations in the low temperature limit
as

〈c̃†kλc̃kλ〉 = 1
2

(
1− ξkλ

Ekλ

)
(4.34)

〈c̃−kλc̃kλ〉 = 1
2

∆kλ

Ekλ
. (4.35)

This gives us self-consistent equations for ∆kλ and ∆̃kλ by inserting this result
in the relations in (3.19) and (3.20).

In total we end up with

Gkλ(0) = 1
2

(
1− ξkλ

Ekλ(0)

)
(4.36a)

Fkλ(0) = ∆kλ(0)
2Ekλ(0) (4.36b)

∆kλ(0) =
∑
k′λ′

Vkk′λλ′Fk′λ′(0), (4.36c)

after explicitly specifying that we are dealing with the values at time t = 0.
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4.1.3 Numerics
The system of equations (4.12) is in general an equation for 8N numbers which
can be written as arrays on a grid for numerical solving. N is the number
of grid points (lattice points), we get 4N from Gkλ and Fkλ, which are both
complex in general. For the initial gap calculations grid points in a thin energy
band around the Fermi-levels of the bands are selected based on the energy
E < |ξkλ − ω0|. It is important to divide the initial grid into small enough
pieces such that one ends up with enough points lying in the thin bands. The
equations of motion do not couple to any points outside of those selected, so
the points selected in the manner explained above are the only ones needed
for the calculations.

When calculating the initial conditions the self-consistency equation (4.36c)
may have more than one solution, in that case the free energy must be calcu-
lated for each solution and the solution that minimizes the energy is chosen.
A fourth/fifth order adaptive Runge-Kutta method is used to propagate the
differential equations in time and offers some speedup over a regular fourth
order method.

For driving the system out of equilibrium a variation on a common quench-
protocol is used. For quenching in the spin-orbit interaction, we start with the
ground state of the Hamiltonian at t = 0 (4.1) and calculate the time evolution
of the system using the same Hamiltonian with a different electric field strength
Ez which effectively changes the strength of the spin-orbit interaction. This
method of quenching appears to raise an issue compared to the more standard
quench in the interaction strength as we are changing ξkλ in the quench and
we would therefore change the position of the energy bands used in the self
consistent gap calculations. In the numerical calculations we have no good
way of coupling to new points or deciding how such a coupling should take
place. Therefore we choose to propagate the equations by coupling at the same
momentum-values as before the quench as an approximation. The justification
for this being that as long as the quenches in the SOC are small compared to
the other energies in the expression for ξkλ the moving of the bands would be
a very small effect. In the following calculations the quenches are at most of
the order of δα/t ≈ 10−4 and in most cases much smaller.





CHAPTER 5
THE SPECTRAL FUNCTION

The spectral function (2.18) is in general a difficult quantity to calculate for
an interacting many-body system. In almost all cases this can only be done
in certain limiting cases, in this thesis we will follow the method of Peronaci,
Schiró and Capone by using a sudden-approximation where we approximate
the time-dependence by assuming that the parameters in the Hamiltonian
instantly changes from it’s initial values to some other values at the time t = 0
[18]. We remind ourselves from equation (2.19) that the lesser Green’s function
is directly related to the spectral function. In the following we therefore focus
on calculating the lesser Green’s function.

5.1 Definitions and preliminaries
We would like to do these calculations in a simple basis, however when we are
discussing the spectral function and try to relate it to possible experiments it is
important to remember what would actually be measured. In a real experiment
one would measure electrons, and so we need to see how the spectral function
in our band-basis relates to the electron basis. To see this, we first look at
the normal spin-up component of the lesser Green’s function in the spin-basis
defined as

G<↑↑k(t, t′) = i〈c†k↑(t
′)ck↑(t)〉. (5.1)

Projecting (5.1) onto the pseudo-spin basis,
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c†k↑(t
′)ck↑(t) = 1√

2

(
c̃†k+(t′) + c̃k−(t′)

) 1√
2

(
c̃†k+(t) + c̃k−(t)

)
, (5.2)

we end up with a simple form

G<↑↑k(t, t′) = 1
2G

<
+k(t, t′) + 1

2G
<
−k(t, t′). (5.3)

where the Green’s function in the spin-basis is simply a linear combination of
the band-basis Green’s functions.

Similarly, we can look at the other components of the lesser Green’s func-
tion and project them on the same pseudo-spin basis

c†k↑(t
′)ck↓(t) = 1√

2

(
c̃†k+(t′) + c̃k+(t′)

) 1√
2

Λk

(
c̃†k+(t)− c̃k−(t)

)
, (5.4)

giving

G<↑↓k(t, t′) = 1
2ΛkG

<
+k(t, t′)− 1

2ΛkG
<
−k(t, t′) (5.5)

which is in perfect agreement with the results in [17].
Following [16] we approximate the non-equilibrium Greens function and use

this to look at the spectral weight associated with the negative frequency peaks
in the low temperature limit. We use a sudden change in the order-parameter
and SOC to implement a time-dependent Bogolubov-Valantin transform. The
calculation is rather long and tedious and can be found in appendix B.1. In
essence we diagonalize the initial and final state Hamiltonians in two bases
reminiscent of Nambu spinors ψ† = (c̃†kγ , c̃−kγ).

The final result is given by

Z−kneq

Zkeq
≈

(
1− εk

Ek

1− εk
Ekf

)(
1
2 + ε2k + γ2

k∆st∆i

2EkEki

)
, (5.6)

where Z is the spectral weight associated with a frequency peak so that

− i

π
G<k = Z−kneqδ(ω + Ek) + Z+

kneqδ(ω − Ek). (5.7)

Note that we have suppressed the band-indices in equation (5.6) and (5.7) as
all terms are in the same band.



CHAPTER 6
THE SINGLE BAND CASE

In this chapter we present numerical results for a single band model with a
quench in the interaction strength where the results are known from previous
literature. This will serve as a test of the numerical calculations and as a point
of comparison for the model used in this thesis.

6.1 Model

The model used is the well known mean-field Hamiltonian

H =
∑
kσ

εkc
†
kσckσ −

∑
k

(
∆k(t)c†k↑c

†
−k↓ + ∆∗k(t)c−k↓ck↑

)
(6.1)

where

∆k = V γk
∑

p
γ∗p〈c−p↓(t)cp↑(t)〉 (6.2)

and γk is a factor containing the symmetry of the gap which is γk = 1 for
the s-wave case and γ = (k2

x − k2
y)/|k|2 in the d-wave case. This model has

very similar equations of motion to our two band case (4.12) following the
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mean-field Hamiltonian (6.1).

i
dFk(t)
dt

= 2εkFk(t) + ∆k(2Gk(t)− 1) (6.3a)

i
dGk(t)
dt

= [∆∗k(t)Fk(t)− F ∗k (t)∆k(t)] (6.3b)

∆k = V
∑
k′
Fk′ , (6.3c)

and initial conditions

Gk(0) = 1
2

(
1− εk

Ek(0)

)
(6.4a)

Fk(0) = ∆k(0)
2Ek(0) (6.4b)

∆k(0) = V
∑

p
γ∗pFp(0), (6.4c)

where the quench is performed by suddenly changing the potential V from an
initial value Vi to some final value Vf . Furthermore, we remind ourselves of
the non equilibrium spectral weight (B.48)

Z−kneq
Zkeq

≈

(
1− εk

Ek

1− εk
Ekf

)(
1
2 + ε2k + γ2

k∆st∆i

2EkEki

)
(6.5)

which is notably on the form of an equilibrium superconductor at finite tem-
perature with the thermal factor n(±Ek) replaced by a different factor in the
last bracket.

6.2 Results
The results are presented in terms of a quench parameter given by ∆i/∆f

where ∆i and ∆f are the equilibrium values corresponding to the initial and
final values of the pairing potential Vi and Vf .

We start out by considering the Higgs mode (amplitude mode) of the gap,
the Higgs mode is defined as fluctuations in the amplitude of the order pa-
rameter and is illustrated in the top figure in 6.1. A quench changes the free
energy landscape in a non-adiabatic way leading to such oscillations illustrated
in the bottom figure in 6.1. It is also possible to have oscillations in the phase
of the order parameter, these oscillations will not be important here because
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for the single-band case there is no energy associated with phase fluctuations.
For two-bands however there can be energy associated with fluctuations in the
relative phase between the bands, we get back to these fluctuations in the next
chapter instead.

In figure 6.2 we can observe a key difference in the dynamics, where the
s-wave model exhibits persistent oscillations the d-wave model experiences
quick damping. In figure 6.3 this is shown for a range of quench parameters
where the s-wave behavior can be divided into persistent oscillations, damping
to a stationary value and exponential decay. The decay to a vanishing gap
is attributed to dephasing of the Cooper pairs [19]. The d-wave model does
not experience the persistent oscillations, but is always quickly damped. It is
important to note that this damping is not because of scattering processes or
any real dissipation mechanism, such mechanisms are not included in the model
Hamiltonian. The system persists in a non-equilibrium state even though
the oscillations are damped and the stationary value of the gap is reached
as a result of destructive interference between different momenta [18]. This
disappearance of the persistent oscillations is explained physically by Peronaci
[16] as an effect of the nodal lines giving a fast dephasing because of the
presence of zero energy modes along the nodal lines.
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Figure 6.4: Plot of the spectral weight Zeq and the ratio Zneq/Zeq as a
function of εk for different angles in k space and for two different quenches for
a d-wave system.

In figure 6.4 the equilibrium spectral weight and the ratio between the



40 CHAPTER 6. THE SINGLE BAND CASE

Figure 6.1: A schematic illustration of the Higgs mode represented on the
Mexican-hat free energy potential as a function of the order parameter (top).
Illustration of a non-adiabatic excitation for a one band superconductor. This
results in oscillations of |∆| around a new minimum of the free energy F
(bottom).
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Figure 6.2: Gap dynamics after quenches from a weak to a much stronger
interaction in the s-wave (top) and d-wave (bottom) case.
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Figure 6.3: Plot of the steady state gap ∆st/∆f as a function of the quench
parameter ∆i/∆f . The black squares indicate the extrema of the undamped
oscillations in the s-wave case.

non-equilibrium and equilibrium spectral weight is shown for a d-wave system.
Plots for the s-wave system are omitted as they correspond to Θ = 0 and are
very similar to the Θ = 10◦ case as γ = (k2

x−k2
y)/|k|2 approaches 1 as k→ kxx̂.

One observation we can make is that the transition becomes sharper as we
approach a nodal line where the gap becomes smaller. For the equilibrium
spectral weight we approach a step function as we approach the nodal line.
We can expect this from the equations, when we approach a gapless system
∆k → 0 the equilibrium spectral weight equation Zkeq = 1/2 · (1− εk/Ek)→
1/2 · (1− εk/|εk|) approaches a step-function.



CHAPTER 7
RESULTS

In this chapter we will present the numerical results for our model in a similar
way as was done for the single band model in chapter 6. We start out by
considering the gap dynamics, then we look at the spectral features and finish
with a discussion on how the results can be connected to experiments. Each
result section is divided into three different parts based on the relative size of
the singlet and triplet gaps in equilibrium where. The first part will be for
a singlet dominated gap, the second for a gap where the singlet and triplet
parts have similar amplitudes and lastly a gap where the triplet amplitude
dominates.

Before moving on to the results there is one additional feature of the model
that needs to be introduced. As the model used in this thesis is effectively a
two-band model we get in addition to the Higgs mode presented in chapter 6
another collective mode called the Leggett or relative-phase mode [20]. Unlike
the phase mode of a one-band superconductor which is not associated with
an energy cost, the Leggett mode does have an associated cost because of the
coupling between the bands as illustrated in figure 7.1. Furthermore, Krull
et al. [21] found that for a two-band superconductor out of equilibrium the
Higgs and Leggett modes are strongly coupled and propose a pump-probe type
experiment for measuring these modes.
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Figure 7.1: Illustration of the Leggett(relative phase) mode for a two-band
system where the green and pink arrows indicate the legget mode, while the
black wavy line indicates coupling between the bands. The two Mexican hat
potentials are for two different bands in this picture as opposed to the same
potential at different times shown in figure 6.1.
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7.1 Gap dynamics
In this section will be looking at the gap-dynamics out of equilibrium after a
quench. We start out by considering a singlet-dominated gap with a quench in
the pairing interaction and compare the results to a similar quench for a one-
band s-wave model as a test of the numerics of of our two-band model. Then
we move on to quenches in the spin-orbit interaction for the different scenarios.
The interaction matrix will be specified by the ratio of off-diagonal to diagonal
elements Ṽ o/Ṽ d = r. We note that like in the previous chapter we work in a
collisionless approximation where there is no dissipation mechanism and the
gaps do not settle into a thermal equilibrium. Therefore the calculated gap
∆(t) does not in general settle towards the equilibrium value ∆f that we would
expect in a real material at large times, emphasizing that the equations are not
valid at large times. However, the system can still settle into a metastable state
despite the absence of dissipation mechanisms. This is because a stationary
state can be reached through decoherence between k-modes that are excited
differently by the quench. If we include coupling to an external heat bath
and the system in question is continuously cooled however, then we would
expect that the system will relax to it’s equilibrium value at long times [22].
It can also be shown from the equations of motion for a one-band BCS pairing
problem similar to that in chapter 5 that inclusion of a damping term relaxes
the system to the ground state [19].

7.1.1 Singlet dominated gap with interaction quench
The first scenario we are looking at is a quench in the pairing interaction
when the system is strongly dominated by singlet pairing. In figure 7.2 we
see behavior very similar to what we saw in chapter 6 with persistent oscil-
lations of a similar nature in the singlet amplitude. The two bands are very
similar in both amplitude and dynamical behavior and they almost overlap,
the triplet amplitude is very small compared to the singled amplitude. This
should perhaps not be very surprising as this scenario is not very different
from the conventional single band scenario. The Leggett-mode is essentially
non-existent for these quenches and the two bands oscillate in phase. Only
the out of phase mode has an energy cost associated with it, this can be seen
from the Hamiltonian if one writes ∆λ = eiθλ |∆λ| and looks at the terms in
the free energy where we end up with a term proportional to cos(θ+ − θ−).

7.1.2 Singlet dominated gap with spin-orbit quench
The next scenario to look at is similarly to the previous one strongly dominated
by the singlet pairing, the difference being that we do the quench in the SOC



46 CHAPTER 7. RESULTS

0 10 20 30 40 50

t|∆− + ∆+|/2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
|∆

(t
)|(
|∆
−

+
∆

+
|/2

)
|∆+ + ∆−|/2

|∆+ −∆−|/2

|∆−|
|∆+|

0 10 20 30 40 50

t|∆− + ∆+|/2
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

|∆
(t

)|(
|∆
−

+
∆

+
|/2

)

|∆+ + ∆−|/2

|∆+ −∆−|/2

|∆−|
|∆+|

Figure 7.2: Time dynamics of a singlet dominated gap after a quench in the
interaction strength, ∆i/∆f ≈ 10−3 on the left and ∆i/∆f ≈ 1/2 on the right
where ∆ is defined as |∆− + ∆+|/2. The interaction matrix is specified by
r = 8/10. While a triplet component is present its amplitude is negligible in
magnitude compared to the singlet amplitude. The lines for |∆+|, |∆−| and
|∆+ −∆−|/2 essentially overlap here.

instead of the interaction potential. When doing quenches in this regime we
need to be careful not to quench the strength of the SOC too low as that would
bring the spin-orbit splitting of the bands into a regime of small band-splitting.
In those cases our model may not be valid as we may need to consider inter-
band pairing and more as discussed in chapter 3. To avoid such issues we stay
in a range of parameters where αREz/∆λ ∼ 103 − 105 as they are given in
equation (3.9).

We are now ready to look at the first quenches. Figure 7.3 shows the same
system as in the previous section with a quench in the SOC parameter instead
of the interaction. Using ∆i/∆f to classify the quench strength is no longer
the obvious choice as this contains no direct reference to the quench parameter
any more. This is in contrast to the of the interaction strength quench. We
instead choose to refer to the quench strength in terms of δα/∆i where δα is
the change in the SOC interaction, there is still a reference to ∆f in that we
still normalize the plots to it.

The first observation we can make is that things mostly look quite normal,
there are no large surprises compared to interaction quenches except for some
small bumps in the triplet amplitude in the topmost plots. In the bottom
plots the singlet amplitude still dominates, but not to the same extent and we
see a clearer oscillation in the triplet amplitude. One possible explanation for
why this should happen is that changing the strength of the SOC-interaction
has a different effect on the density of states in the two bands compared to
the change we get from a uniform change in the interaction strength. It can
be shown that at least near the critical temperature TC the ratio between
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Figure 7.3: Time dynamics of a singlet dominated gap after a quench in
the spin-orbit interaction strength, δα/∆i ≈ 10−1 on the left and δα/∆i ≈ 2
on the right where ∆ is defined as |∆− + ∆+|/2. The interaction matrix is
specified by r = 8/10 for the top and r = 6/10 for the bottom.
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Figure 7.4: Time dynamics of the Leggett mode of the gaps after a quench in
the spin-orbit interaction strength. The phase angle of each band is denoted
by φ±, the parameters correspond to those in the top of 7.3.

triplet and singlet amplitudes depend in a non-trivial way on both the density
of states in each band and on the relative size of the various parts of the
interaction matrix [17].

A Leggett mode also starts to emerge as we can see in figure 7.4, and a
Fourier transform as seen in figure 7.5 reveal that they are dominated by the
same frequency. This is similar to what is observed in [21] and in [23] where the
frequency content of both the Higgs modes and the Legget mode is similar out
of equilibrium at strong interband couplings after a quench in the interband
coupling strength.

We also plot some phase-diagrams, similar to figure 2 in [18]. In figures
7.6 and 7.7 we can see the results so far. Figure 7.6 shows the singlet gap for
our two-band model with both diagonal and off-diagonal interaction elements,
a) shows a very similar behavior to the one observed by Peronaci, Schiró, and
Capone [16] except for a small bump before decreasing again at large ratios of
∆i/∆f . The results for the triplet part shows a similar behavior again. Figure
7.7 shows the behavior for spin-orbit quenches, for the singlet amplitude we
see a quite consistent decrease as the quench increases in magnitude, however,
the triplet part increases in a similar way to what we observed in the inter-
action quench in figure 7.6. A possible explanation for this increase in the
triplet amplitude is that even though the bands are coupled and respond in
a similar way, they do not in general respond identically to the quenches. A
difference in response will have a tendency to increase the triplet amplitude
as this depends on the difference. This makes another question arise, why do
we see the amplitude start to decrease again after the rise in figure 7.7 b)?
We can understand this by considering that the quenches tend to make both
bands stabilize at a lower value and tend towards zero as the quench becomes
large. This ends up decreasing the difference between the bands and the triplet
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Figure 7.5: Fourier transform of the Higgs and Leggett mode oscillations
after a quench in the SOC at r = 6/10.
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Figure 7.7: A quench in the SOC strength for r = 6/10. a) Singlet. b)
Triplet as a function of the change on spin-orbit interaction relative to the
magnitude at t = 0. The size of the gap is taken relative to the initial value of
the gap as the final value ∆f differs very little from the initial one for quenches
of these sizes.

amplitude in turn starts to reduce. One cause of this can be that the quenches
cause a dephasing effect [24] where the anomalous Green’s functions no longer
are in phase, we will get back to this in the next section.

7.1.3 Significantly mixed states
In this subsection we will look at quenches in states where the mixing of singlet
and tripled amplitudes is more significant, and we will look into how mixed
states arise from the equations. Figure 7.8 and 7.9 shows some of the same
trends as the what was seen in the previous section, but clearer. This mixing
of singlet and tripled amplitudes is strongest when the magnitude of the inter-
band term Ṽ o is small compared to the intra-band term, meaning that |r| is
small. To see why, an expression for the ratio of triplet to singlet mixing close
to the critical temperature (TC) in this model is given by Mineev and Sigrist
[17] can be rewritten in our notation as

rmix =
2Ṽ oN− + Ṽ d(N+ −N−)−

√
(Ṽ d)2(N+ −N−)2 + 4N+N−(Ṽ o)2

2Ṽ oN− − Ṽ d(N+ −N−) +
√

(Ṽ d)2(N+ −N−)2 + 4N+N−(Ṽ o)2
,

(7.1)

where N± is the density of states of the two bands. The limiting cases of this
expression while derived close to TC gives some insight into what to expect.
Firstly for the cases discussed in chapter 3, if the diagonal and off-diagonal
elements are equal Ṽ o = Ṽ d that makes rmix = 0, meaning that there is no
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triplet amplitude. Similarly we can set the off-diagonal coupling to be equal
in magnitude and opposite in sign Ṽ o = −Ṽ d and see that r−1

mix = 0 meaning
that there is no singlet amplitude. The last limiting case is when there is no
off-diagonal coupling where we can see that rmix = 1. This expression can
also give a hint as to why how a change in the SOC strength would be able to
change the triplet/singlet ratio as the expression can be sensitive to density of
states N± in the two bands even if the interaction strengths are held constant.
However, we also need to consider that the equations of motion depend directly
on ξλk (4.11a), (4.11b) and that we in the self consistent equation (4.12) couple
the dependency of both bands. Here we remind ourselves of the form of these
equations
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Figure 7.8: Time dynamics of a mixed gap after a quench in the SOC
strength. The interaction matrix is specified by r = 4/10. The triplet am-
plitude shows up as much more significant than in the previous cases. Higgs-
modes on shown on top with corresponding Leggett modes on the bottom.
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Figure 7.9: Time dynamics of a mixed gap after a quench in the SOC
strength. The interaction matrix is specified by r = 2/10. The triplet ampli-
tude shows up as much more significant than in the previous cases.

i
dFkλ(t)
dt

= 2ξkλFkλ(t) + ∆kλ(2Gkλ(t)− 1) (7.2a)

i
dGkλ(t)
dt

= [∆∗kλ(t)Fkλ(t)− F ∗kλ(t)∆kλ(t)] (7.2b)

∆kλ =
∑
k′λ′

Vkk′λλ′Fk′λ′ , (7.2c)

noting that we also still sum over the same points in k−space as there is no
coupling to new k values in our set of equations. In contrast to the equilibrium
situation where we would calculate a new set of points around the Fermi-
surface in k−space for the two bands.

When the quench is done in ξkλ we must also consider the form for ξkλ
given in (3.11), which we remind ourselves of here

ξkλ = −2t[cos(kx) + cos(ky)]− µ+ λαREz

√
sin2(kx) + sin2(ky). (7.3)

The quench parameter therefore gets weighted differently for different values
of k in ξkλ. As the equations of motion gives us the imaginary change in
the Green’s functions, this difference in quenches for the different values of k
can be a factor that drives the different Fkλ functions out of phase from each
other. In this context we can look at the phase of the gap for different quench
strengths and in figure 7.10 see that the phase changes much more rapidly as
the quench grows larger.

We also see the emergence of different oscillation modes, somewhat similar
to what was found by Krull et al. [25] and Cui et al. [23]. Cui et al. uses an
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Figure 7.10: Time dynamics of the phase angle for the singlet part of the
gap ∆+ + ∆− as a function of time for a small and a large quench in the SOC.

effective interaction matrix with the same inter-band interaction V11 = V22,
and the same intra-band interaction V12 = V21 that still gives an effective
asymmetric effective interaction as differing density of states is imposed on
the two bands. If identical densities of state are imposed around the Fermi
level in both bands in the standard two band model then the standard two-
band model self-consistent gap equation gets solutions on the form ∆1 = ±∆2.
The spin-orbit coupled model used in this thesis differs in the band-splitting.
We also note that the phase-difference and complex-valued nature of the gaps
can lead to more complicated behavior in the singlet and triplet amplitudes
|∆+ ±∆−|/2.

7.1.4 Triplet dominated gap with spin-orbit quench
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Figure 7.11: Time dynamics of a triplet dominated gap after a quench in
the SOC strength. The interaction matrix is specified by r = −6/10.

The final scenario to look at is the triplet dominated case. This case however
does not offer much in terms of new and interesting behavior compared to the
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previous cases of a singlet dominated gap and a significantly mixed gap. This
is because it in broad terms behaves very much like the singlet dominated gap
with the roles of the triplet and singlet gaps exchanged. We can look back at
the gap equation (4.12) and the discussion in chapter 3 where we essentially
see the singlet and triplet gaps exchange roles as the sign of the off-diagonal
part of the interaction matrix changes.

7.2 Spectral features
In this subsection we will look at how the quenches in the previous sections
may show up in the spectral features that could be measured. We will use the
results from appendix B.1 given in chapter 5 to plot approximations of the
change in spectral weight for the two bands.

The SOC and the square lattice leads to a distortion of the Fermi-surface
which is reflected in the equilibrium spectral weight shown in figure 7.12a).
We also get a splitting of the bands in momentum space due to the SOC
(figure 7.12b) ). For ease of comparison we therefore use the single-particle
kinetic energy in each band ξ±rather than the momentum k for comparison
of the spectral weights. The energy units are scaled to t/1000 to allow details
of the sharp transition in figure 7.12 to be seen. We specify the form of the
interaction matrix (3.32) by the ratio between the off-diagonal and diagonal
elements Ṽ o/Ṽ d = r. We note that care should be taken when trying to
interpret spectral features of the two bands individually as they are inherently
coupled in this model. Due to the very sudden changes happening over very
small areas in k-space however, this is not as big of concern as it may seem at
first.

In figure 7.13 we see the spectral weights in the two bands for different
quenches in the whole interaction matrix. These are qualitatively similar to
the results in [18] for a single angle in k-space in a d-wave superconductor,
and importantly identical in each band. This does not have to be the case in a
multi-band approach, by quenching in different parameters and using different
initial conditions for the bands they can exhibit different time dynamics and
final behavior [23].

Figure 7.14 shows the spectral weights in the two bands for quenches in the
SOC interaction strength. Here we see more interesting features. In particular
we observe the change in band-splitting as a direct result of the change in SoC
as we get a new Fermi-level observed from the peaks of the non-equilibrium
spectral weights moving away from ξ± = 0. We also observe that the bands do
not in general respond in an identical way to a change in the SoC, in contrast
to the interaction quench in figure 7.13.
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Figure 7.12: From top left to bottom right, a) example of equilibrium spectral
weight of a single band in the first BZ, b) equilibrium spectral weight of both
bands along a single direction in the first BZ, c) detail of the sharp transition
in a), d) detail of the ratio of non-equilibrium to equilibrium weight. Momenta
are normalized to the grid-spacing a.

When quenching the SOC in a scenario where the singlet and triplet compo-
nents are of comparable size, as in figure 7.15, a striking difference is observed
where the spectral weight of one band is enhanced even when moving far away
from the Fermi-level. Qualitatively some of the features can be expected from
the equations for the equilibrium and non-equilibrium spectral weights

Zeqk ∝ 1− ξk√
ξ2

k + ∆2
k
. (7.4)

We expect the spectral weight to approach a step-function as a function of ξk
as ∆2

k → 0 and for it to flatten out and approach a constant as ∆2
k → ∞.

Qualitatively we can make some sense of the spectral weights in figure 7.14
by considering that the +-band and −-band do not respond identically to
quenches. In 7.15 we can note that when |r| gets very small we are effectively
removing coupling between the bands as we can write the coupling Ṽ o = rṼ d.

The reasoning behind presenting the spectral weights in the band-basis
as opposed to the original spin-basis may be questioned here as in any real
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measurement one would measure for instance electrons. Note however that
equations (5.3) and (5.5) allows us to easily get the spectral weights in the
spin-basis from these spectral weights, and that the band-splitting means that
the interesting features are centered at different momenta. Presenting the
spectral weights in the band-basis therefore allows us to look at the features
in more convenient way without loosing the connection to the spin-basis.
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Figure 7.13: Spectral weight after successively stronger quenches in the inter-
action strength (top left to bottom right). An interaction matrix with r = 6/10
was used.
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Figure 7.14: Spectral weight after successively stronger quenches in the SoC
in a system dominated by singlet pairing (top left to bottom right). An inter-
action matrix with r = 6/10 was used.
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Figure 7.15: Spectral weights after quenching the SOC in a system where
singlet and triplet components are of similar size. An interaction matrix with
r = 1/20 was used.
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7.3 Connections to experiments
In this section we will present connections between the theoretical work and
experimental methods. We attempt to justify the approximations used to
arrive at the analytical and numerical results.

We start out with a discussion of the quench. The easiest way to look at
quenches is to consider a Hamiltonian with explicit dependence on a param-
eter λ(t). The quench then describes the time evolution of of the parameter
as a result of some external perturbation. In cold atom systems this can be
changed more or less directly, inter-particle interactions are tunable via Fes-
hbach resonance where the Bose-Einstein condensate-BCS crossover has been
subject of much study [26]. It is also possible to directly induce and tune the
spin-orbit coupling in such systems, allowing great experimental control over
the system parameters [27]. In these systems one can consider the Hamiltonian
to be directly changed.

However, in a solid state system the situation can be interpreted in a
different way. We can ask if we are given a time-independent Hamiltonian for
the material in question H(λf ), how will a particular excited non-equilibrium
state |ψ(λi)〉 evolve. At first glance this appears to create a new challenge in
that we now need to accurately describe an excited state in a solid. It will turn
out that this is not as big of a problem as it first appears to be as long as some
details of the excitation process can be neglected. We have previously stated
that the ARPES signal can be related to the spectral function by the relation
in equation (2.19) at equilibrium. The specification that this relation holds
at equilibrium is made because the distribution function for occupied states is
known in equilibrium, while out of equilibrium the distribution is not in general
given by the Fermi-Dirac distribution. This leads to a generalization of the
time-resolved ARPES signal shown in [28] where Peronaci further shows that
including the details of the quench-pulse only leads to a smearing the the delta
function peaks appearing [18]. Furthermore, we justify our use of a sudden
approximation in the derivation of the non-equilibrium spectral weight in the
same way by the fast dynamics observed of the gaps. Our ∆̃± at equilibrium
are on the order of allows us to estimate sufficiently short time scales on the
order of before the average value of the gaps relaxes to their steady state
values.

7.3.1 Connections to physical systems
In this section we will give a brief discussion of possible systems where this
model can be relevant for describing the dynamics of the system.

The first and perhaps most obvious system would be an analogue to the
high temperature cuprates. If we have a non-centrosymmetric superconducting
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compound where one can describe the superconductivity happening primarily
in layers and where a major effect of the rest of the crystal structure is to
provide a symmetry-breaking field. In such systems one can imagine inducing
a quench by giving the material a mechanical shock, distorting the crystal-
lattice and changing the strength of the symmetry-breaking field briefly.

Another possible system is a centrosymmetric thin-film superconductor
where the spin-orbit interaction could be tuned by the application of a gate
voltage. Such systems have been realized experimentally in several cases, but
to the authors knowledge no quenching experiments have been attempted.

Interfaces between heterostructures also provide possibilities for an effec-
tively 2d electron gas that gets the symmetry-breaking from the interface be-
tween different crystal lattices. Most relevant are the experimental setups
where this can be tuned using an external electric field [29].

Yet another possibility are in globally centrosymmetric systems where one
can have locally non-centrosymmetric behaviour [30].

7.4 Extensions
A few obvious extensions of the model are possible. The form of the equations
of motion that is derived is general and factors describing different material
symmetries can be calculated and investigated. The inclusion of an exter-
nal magnetic field in the normal-state part of the equations which would lead
to a shift in the k dependence of the gaps. This could also be combined
with allowing for non-zero center of mass momentum giving rise to possible
Fulde-Ferrel-Larkin-Ovchinnikov states. The model can also be extended to
incorporate a full 3 dimensional system to investigate different classes of ma-
terials, like many of those introduced in [11], this would however be more
computationally expensive.
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APPENDIX A
RASHBA-TYPE SOC

We start with a Rashba-type spin-orbit coupling assuming k = (kx, ky, 0) and
E = Ez ẑ:

HR = αREz[kyσx − kxσy], (A.1)
and want to write it in second quantized form, more specifically we want it to
fit into our tight-binding model with discrete lattice sites in a crystal. We will
use Wannier-functions and assume that the Wannier functions are strongly
localized at the ionic sites, meaning that 〈ϕ(r−Ri)|ϕ(r−Rj)〉 = δi,j , where
ϕ(r) is a Wannier orbital.

We therefore start out with

H =
∑

i,j,σ,σ′

∫
d3rϕ†(r−Ri)χσαREz[kyσx − kxσy]χσ′ϕ(r−Rj)c†iσcjσ′

= αREz
∑

i,j,σ,σ′

∫
d3rϕ†(r−Ri)[kyσxσσ′ − kxσ

y
σσ′ ]ϕ(r−Rj)c†iσcjσ′ (A.2)

where χ is the spin eigenfunction of the electron, and σxσσ′ is shorthand for
χσσxχσ′ . Now we rewrite kx = −id/dx, on the lattice we interpret this as a
finite difference. On a square lattice with lattice constant a = 1

d

dx
ϕ(r) = ϕ(r + x̂)− ϕ(r), (A.3)

we start with
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− i
∑

i,j,σ,σ′

∫
d3rϕ†(r−Ri)σxσσ′(ϕ(r−Rj + ŷ)− ϕ(r−Rj))c†iσcjσ′

= −i
∑
i,j

(δσ↑δσ′↓ + δσ↓δσ′↑)(δi,j+δy − δi,j)c†iσcjσ′

= −i
∑
i,j

(c†i↑cj↓ + c†i↓cj↑)(δi,j+δy − δi,j)

= −i
∑
i

(c†i↑ci−δy↓ − c
†
i↑ci↓ + c†i↓ci−δy↑ − c

†
i↓ci↑) (A.4)

and the second part follows in the same manner

i
∑

i,j,σ,σ′

∫
d3rϕ†(r−Ri)σyσσ′(ϕ(r−Rj + x̂)− ϕ(r−Rj))c†iσcjσ′

= i
∑
i,j

(δi,j+δx − δi,j)i(δσ,↓δσ′,↑ − δσ,↑δσ′,↓)c†iσcjσ′

= −
∑
i,j

(δi,j+δx − δi,j)(c†i↓cj↑ − c
†
i↑cj↓)

= −
∑
i

(c†i↓ci−δx↑ − c
†
i↑ci−δx↓ − c

†
i↓ci↑ + c†i↑ci↓) (A.5)

finally giving

H = −αREz
∑
i

(i[c†i↑ci−δy↓ − c
†
i↑ci↓ + c†i↓ci−δy↑ − c

†
i↓ci↑]+

+ c†i↓ci−δx↑ − c
†
i↑ci−δx↓ − c

†
i↓ci↑ + c†i↑ci↓) (A.6)

we do a Fourier transform, where

ciσ = 1√
N

∑
k

eik·rickσ (A.7)

where we get

H = −αREz
∑

k

[i(e−iky − 1)(c†k↑ck↓ + c†k↓ck↑) + (e−ikx − 1)(c†k↓ck↑ − c†k↑ck↓)].

(A.8)
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Central difference

It turns out that by choosing a central difference rather than a forward differ-
ence we can get our expression on a slightly more pleasing form, letting

d

dx
ϕ(r) = ϕ(r + x̂)− ϕ(r)

2 − ϕ(r− x̂)− ϕ(r)
2

= ϕ(r + x̂)− ϕ(r− x̂)
2 , (A.9)

where the same process leads us to terms

− i

2
∑

i,j,σ,σ′

∫
d3rϕ†(r−Ri)σxσσ′(ϕ(r−Rj + ŷ)− ϕ(r−Rj − ŷ))c†iσcjσ′

= − i2
∑
i,j

(δσ↑δσ′↓ + δσ↓δσ′↑)(δi,j−δy − δi,j+δy)c†iσcjσ′

= − i2
∑
i,j

(c†i↑cj↓ + c†i↓cj↑)(δi,j−δy − δi,j+δy)

= − i2
∑
i

(c†i↑ci+δy↓ − c
†
i↑ci−δy↓ + c†i↓ci+δy↑ − c

†
i↓ci−δy↑) (A.10)

which after a Fourier transform gives

− i

2
∑

k

(c†k↑ck↓ + c†k↓ck↑)(eiky − e−iky )

= 1
2i
∑

k

(c†k↑ck↓ + c†k↓ck↑)2i sin(ky)

=
∑

k

(c†k↑ck↓ + c†k↓ck↑) sin(ky), (A.11)

and for the second term
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i

2
∑

i,j,σ,σ′

∫
d3rϕ†(r−Ri)σyσσ′(ϕ(r−Rj + x̂)− ϕ(r−Rj − x̂))c†iσcjσ′

= i

2
∑
i,j

(δi,j−δx − δi,j+δx)i(δσ,↓δσ′,↑ − δσ,↑δσ′,↓)c†iσcjσ′

= −1
2
∑
i,j

(δi,j−δx − δi,j+δx)(c†i↓cj↑ − c
†
i↑cj↓)

= −1
2
∑
i

(c†i↓ci+δx↑ − c
†
i↑ci+δx↓ − c

†
i↓ci−δx↑ + c†i↑ci−δx↓) (A.12)

which we can Fourier transform to give

− 1
2
∑

k

[eikx(c†k↓ck↑ − c†k↑ck↓)− e−ikx(c†k↓ck↑ − c†k↑ck↓)]

= i
∑

k

sin(kx)(c†k↑ck↓ − c†k↓ck↑)). (A.13)

Giving us a total Hamiltonian

H = αREz
∑

k

[(sin(ky) + i sin(kx))c†k↑ck↓ + (sin(ky)− i sin(kx))c†k↓ck↑].

(A.14)



APPENDIX B
PSEUDOSPIN BANDS

We follow Børkje [12] and let our Hamiltonian consist of two parts HN +HSC ,
a normal part, and one describing the superconducting pairing interaction and
let

HN =
∑

k

ϕ†k[εk − µ+ Bk · σ]ϕk, (B.1)

where σ is the vector of Pauli-matrices, εk is the dispersion, µ is the chem-
ical potential and ϕ†k = (c†k↑, c

†
k↓).

We further define ε̃k = εk − µ and let Bk · σ describe a Rashba-type spin-
orbit coupling (SOC) with no ẑ-component for Bk. The eigenvalues of the
Hamiltonian are readily found as ξk = ε̃k ± |Bk| and the matrix we want to
diagonalize takes the form

H =
[

ε̃k Bx − iBy
Bx + iBy ε̃k

]
, (B.2)

where we suppress the k-index on the components of Bk for ease of nota-
tion.

Meaning that we want to find the eigenvectors corresponding to the two
eigenvalues by finding vectors such that

[
∓|Bk| Bx − iBy

Bx + iBy ∓|Bk|

] [
a
b

]
=
[
0
0

]
, (B.3)
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which gives us eigenvectors proportional to

x1 =
[

1
Bx+iBy
|Bk|

]
x2 =

[
1

−Bx+iBy
|Bk|

]
. (B.4)

As all entries have an absolute value of 1, a factor 1/
√

2 keeps the transforma-
tion unitary. Denoting (Bx + iBy)/|Bk| = Λk, we find

P = 1√
2

[
1 1

Λk −Λk

]
, (B.5)

where

P−1HP = D, (B.6)

where D is the diagonal matrix of eigenvalues. This gives us

P−1 = 1√
2

[
1 1

Λk
1 − 1

Λk

]
. (B.7)

Now we return to equation (B.1) and (B.2) and rewrite

ϕ†kHϕk = ϕ†kPDP
−1ϕk

= (ϕ†kP )D(P−1ϕk)

≡ ϕ̃†kDϕ̃k. (B.8)

We define ϕ̃†k = (c̃†k+, c̃
†
k−), using the same notation for the bands as [12] and

further note that 1/Λk = Λ∗k, ending up with

c̃k+ = 1√
2

(ck↑ + Λ∗kck↓) (B.9)

c̃k− = 1√
2

(ck↑ − Λ∗kck↓) , (B.10)

noting in particular that the transformation is independent of the strength
of the SOC and is dependent on k only through a phase-factor.
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This lets us identify the factor tλk by using the action of the time-reversal
operator K in the spin-basis and the pseudo-spin basis. K : c̃†kλ = tλkc̃

†
−kλ and

K : c†kσ = −σc†−k−σ.

K : c̃†k+ = t+kc̃
†
−k+

= tλk√
2

(
c†−k↑ + Λ−kc

†
−k↓

)
= tλk√

2

(
c†−k↑ − Λkc

†
−k↓

)
, (B.11)

K : c̃†k+ = 1√
2

(
Kc†k↑ +K(Λkc

†
k↓)
)

= 1√
2

(
Kc†k↑ + Λ∗kKc

†
k↓

)
= 1√

2

(
−c†−k↓ + Λ∗kc

†
−k↑

)
, (B.12)

giving us

t+k = Λ∗k (B.13)

and

t−k = −Λ∗k = −t+k (B.14)

B.1 Calculation of the spectral weight
The initial Hamiltonian is diagonalized in a basis Ψ̄kγ = (c†kγ , c−kγ), where
γ = ±.

Φkγ = exp(iθkiτy)Ψkγ (B.15)

where Φk diagonalizes the original Hamiltonioan with excitation energies Ekγi =√
ε2

kγi + ∆2
kγi.

In the same way we diagnoalize the Hamiltonain after the quench with another
set of of fermions

Υkγ = exp(iθkγτy)Ψkγ , (B.16)
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where Υkγ diagonalizes the final Hamiltonain with excitation energies Ekγst =√
ε2

kγst + ∆2
kγst. We can then write down a time-dependent transformation

Ψkγ(t) = Mkγ(t)Φkγ(0), (B.17)

where we will be using the final quench Hamiltonian for the time evolution,

H =
∑
kγ

ΥkγEkγτzΥkγ (B.18)

=
∑
kγ

Ψkγ exp(−iθkγτy)Ekγτz exp(iθkγτy)Ψkγ . (B.19)

As this is a constant Hamiltonian, we can use ψ(t) = eiĤtψ(0) for the evolution
of the Nambu spinors. Furthermore, our operator Ĥ is on the form Ĥ =
PDP−1, where D is diagonal, allowing us to use eĤ = PeDP−1.

We start out by using the properties of diagonalizable matrices to explicitly
write out

Ψ(t) = e−iĤtΨ(0), (B.20)

and do a change of basis to the Φ basis. Then we will set up the matrix
Mkγ(t) and compare coefficients to find the elements of the matrix. This will
allow us to find the approximate time-evolution of the matrix-elements of the
lesser Green’s function, which can be related to the ARPES signal. In the
following we drop the band index γ as this is always the same throughout the
calculation.

Ψk(t) = eiĤtΨk(0)
= ei exp(−iθkτy)Ekτz exp(iθkτy)tΨk(0)
= exp(−iθkτy)eiEkτzt exp(iθkτy)Ψk(0)
= exp(−iθkτy)eiEkτzt exp(iθkτy) exp(−iθkiτy)Φk(0)
= exp(−iθkτy)eiEkτzt exp(i(θk − θki)τy)Φk(0)
= (I cos(θk)− iτy sin(θk))eiEkτzt(I cos(θk − θki) + iτy sin(θk − θki))Φk(0)
= (I cos(θk)− iτy sin(θk))(I cos(Ekt)− iτz sin(Ekt))(I cos(θk − θki)+
+ iτy sin(θk − θki))Φk(0)
= (I cos(θk)− iτy sin(θk))(I cos(Ekt) cos(θk − θki) + iτy cos(Ekt) sin(θk − θki)
− iτz sin(Ekt) cos(θk − θki)− iτziτy sin(Ekt) sin(θk − θki))Φk(0), (B.21)
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we now focus on the calculation of the matrix M in

Ψk(t) = Mk(t)Φk(0) (B.22)

Mk(t) = (I cos(θk)− iτy sin(θk))(I cos(Ekt) cos(θk − θki)+
+ iτy cos(Ekt) sin(θk − θki)− iτz sin(Ekt) cos(θk − θki)
− iτx sin(Ekt) sin(θk − θki))Φk(0)
= I cos(θk) cos(Ekt) cos(θk − θki)− iτy sin(θk) cos(Ekt) cos(θk − θki)+
+ iτy cos(θk) cos(Ekt) sin(θk − θki) + τ2

y sin(θk) cos(Ekt) sin(θk − θki)+
− iτz cos(θk) sin(Ekt) cos(θk − θki)− τyτz sin(θk) sin(Ekt) cos(θk − θki)+
− iτx cos(θk) sin(Ekt) sin(θk − θki)− τyτx sin(θk) sin(Ekt) sin(θk − θki)
= I cos(θk) cos(Ekt) cos(θk − θki)− iτy sin(θk) cos(Ekt) cos(θk − θki)+
+ iτy cos(θk) cos(Ekt) sin(θk − θki) + I sin(θk) cos(Ekt) sin(θk − θki)+
− iτz cos(θk) sin(Ekt) cos(θk − θki)− iτx sin(θk) sin(Ekt) cos(θk − θki)+
− iτx cos(θk) sin(Ekt) sin(θk − θki) + iτz sin(θk) sin(Ekt) sin(θk − θki)
= I cos(Ekt)(cos(θk) cos(θk − θki) + sin(θk) sin(θk − θki))+
+ iτy cos(Ekt)(cos(θk) sin(θk − θki)− sin(θk) cos(θk − θki))+
+ iτz sin(Ekt)(sin(θk) sin(θk − θki)− cos(θk) cos(θk − θki))+
− iτx sin(Ekt)(cos(θk) sin(θk − θki) + sin(θk) cos(θk − θki)). (B.23)

Component wise, this gives many expressions on the form of the trigonometric
addition formulas,

Mk11(t) = cos(Ekt)(cos(θk) cos(θk − θki) + sin(θk) sin(θk − θki))
+ i sin(Ekt)(sin(θk) sin(θk − θki)− cos(θk) cos(θk − θki))
= cos(Ekt) cos(θk − (θk − θki))
− i sin(Ekt)(cos(θk) cos(θk − θki)− sin(θk) sin(θk − θki)) (B.24)
= cos(Ekt) cos(θki)− i sin(Ekt) cos(θki + θk − θki)
= cos(Ekt) cos(θki)− i sin(Ekt) cos(2θk − θki), (B.25)

from the symmetry of the Pauli-matrices we see that

Mk22(t) = M∗k11(t). (B.26)

Looking at the other components,
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Mk12(t) = cos(Ekt)(cos(θk) sin(θk − θki)− sin(θk) cos(θk − θki))
− i sin(Ekt)(cos(θk) sin(θk − θki) + sin(θk) cos(θk − θki))
= − cos(Ekt)(sin(θk) cos(θk − θki)− cos(θk) sin(θk − θki))
− i sin(Ekt) sin(θk − θki + θk)
= − cos(Ekt) sin(θk − (θk − θki))− i sin(Ekt) sin(2θk − θki)
= − cos(Ekt) sin(θki)− i sin(Ekt) sin(2θk − θki), (B.27)

again we see from the symmetry that

Mk21(t) = −M∗k12(t). (B.28)

Now we define the Nambu Green’s function (GF) on the Keldysh contour,

Gkαβ(t, t′) = −i〈TKΨkα(t)Ψkβ(t′)〉 (B.29)

and in particular the lesser GF, G<kαβ(t, t′) = −i〈Ψkα(t)Ψkβ(t′)〉, with normal
component (α = β = 1)

G<k (t, t′) = i〈c†k↑(t
′)ck↑(t)〉. (B.30)

This is related to the ARPES signal, typically probing the transition for trans-
mission from occupied to empty states,

G<k (t, t′) = i〈(M∗k11(t′)Φ†k↑ +M∗k12(t′)Φ−k↓)(Mk11(t)Φk↑ +Mk12(t)Φ†−k↓)〉

= i(M∗k11(t′)Mk11(t)〈Φ†k↑Φk↑〉+ iM∗k12(t′)Mk12(t)〈Φ−k↓Φ
†
−k↓〉

= iM∗k11(t′)Mk11(t)n(Eki) + iM∗k12(t′)Mk12(t)(1− n(Eki) (B.31)

where the expectation value is taken in the initial Bogolubov vacuum, n(E) =
1/(eβE + 1)is the Fermi distribution and β = 1/T is the inverse temperature
of the initial state.

In equilibrium, with no quench ∆i = ∆f , we recover
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G<k (t, t′) = i(cos(Ekit
′) cos(θki) + i sin(Ekit

′) cos(2θki − θki))·
· (cos(Ekit) cos(θki)− i sin(Ekit) cos(2θki − θki))n(Eki)n(Eki)
+ i(− cos(Ekit

′) sin(θki) + i sin(Ekit
′) sin(2θki − θki))·

· (− cos(Ekit) sin(θki)− i sin(Ekit) sin(2θki − θki))(1− n(Eki))
= i cos(θki)(cos(Ekit

′) + i sin(Ekit
′))·

· (cos(Ekit)− i sin(Ekit)) cos(θki)n(Eki)
+ i sin(θki)(− cos(Ekit

′) + i sin(Ekit
′))·

· (− cos(Ekit)− i sin(Ekit)) sin(θki)(1− n(Eki))
= i cos2(θki)n(Eki)(cos(Ekit

′) + i sin(Ekit
′))(cos(Ekit)− i sin(Ekit))

+ i sin2(θki)(1− n(Eki))(− cos(Ekit
′) + i sin(Ekit

′))(− cos(Ekit)− i sin(Ekit))

= i cos2(θki)n(Eki)eiEkit
′
e−iEkit

+ i sin2(θki)(1− n(Eki))(−e−iEkit
′
)(−eiEkit)

= i cos2(θki)n(Eki)e−iEki(t−t′) + i sin2(θki)(1− n(Eki))eiEki(t−t′).
(B.32)

Fourier transforming then gives

G<k (ω) = i cos2(θki)n(Eki)δ(ω − Eki) + i sin2(θki)(1− n(Eki))δ(ω + Eki),
(B.33)

in the low temperature limit n(Eki) ≈ 0 and only one peak gives significant
contributions. In the end, this peak will be used to compare spectral weights.
In the non-equilibrium case with the quench turned on the lesser Green’s
function will not depend only on the time difference t − t′, it will depend on
both t−t′ ≡ τ and on t+t′. In the subsequent Fourier transform it is therefore
convenient to transform with respect to τ and leave τ and t as independent.
We first calculate the non-equilibrium case
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G<k (t, t′) = i(cos(Ekt
′) cos(θki) + i sin(Ekt

′) cos(2θk − θki))·
· (cos(Ekt) cos(θki)− i sin(Ekt) cos(2θk − θki))n(Eki)
+ i(− cos(Ekt

′) sin(θki) + i sin(Ekt
′) sin(2θk − θki))·

· (− cos(Ekt) sin(θki)− i sin(Ekt) sin(2θk − θki))(1− n(Eki)
= i cos(Ekt

′) cos(Ekt)(n(Eki) cos2(θki) + sin2(θki)(1− n(Eki)))+
+ i(−i cos(Ekt

′) sin(Ekt) + i sin(Ekt
′) cos(Ekt)) cos(2θk − θki) cos(θki)n(Eki))+

+ i sin(Ekt
′) sin(Ekt)(cos2(2θk − θki)n(Eki)) + sin2(2θk − θki)(1− n(Eki)))+

+ i(i cos(Ekt
′) sin(Ekt)− i cos(Ekt) sin(Ekt

′)) sin(θki) sin(2θk − θki)(1− n(Eki))

= i
1
2(cos(Ek(t′ + t)) + cos(Ek(t′ − t)))(cos2(θki)− sin2(θki))(n(Eki) + sin2(θki))+

+ i
1
2(cos(Ek(t− t′))− cos(Ek(t′ + t)))(cos2(2θk − θki)− sin2(2θk − θki))n(Eki)+

+ sin2(2θk − θki))− i(i sin(Ek(t− t′)) cos(2θk − θki) cos(θki)n(Eki))+
+ i(i sin(Ek(t− t′)) sin(2θk − θki) sin(θki)(1− n(Eki)))

= i
1
4(e2iEkte−iEk(t−t′) + e−2iEkteiEk(t−t′) + e−iEk(t−t′) + eEk(t−t′))·

· (cos2(θki)− sin2(θki))(n(Eki) + sin2(θki))+

+ i
1
4(eiEk(t−t′) + e−Ek(t−t′) − e2iEkte−iEk(t−t′)) − e−2iEkteiEk(t−t′))·

· (cos2(2θk − θki)− sin2(2θk − θki))n(Eki) + sin2(2θk − θki))+

− i12(eiEk(t−t′) − e−iEk(t−t′)) cos(2θk − θki) cos(θki)n(Eki))+

+ i
1
2(eiEk(t−t′) − e−iEk(t−t′)) sin(2θk − θki) sin(θki)(1− n(Eki))) (B.34)

At this point we will try to make the expression somewhat more manage-
able, we look at the coefficients of each term containing time dependence sepa-
rately. Starting with the coefficients of ie2iEkte−iEk(t−t′) and ie−2iEkteiEk(t−t′),
denoting it Ck

Ck = 1
4(cos2(θki)− sin2(θki))(n(Eki) + sin2(θki))+

− 1
4(cos2(2θk − θki)− sin2(2θk − θki))n(Eki) + sin2(2θk − θki))

= 1
4(cos2(θki)− cos2(2θk − θki)) + 1

4(1− n(Eki))(sin2(2θk)− sin2(2θk − θki))),
(B.35)
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next, the coefficients of ieiEk(t−t′), denoting it Ak

Ak = 1
4(cos2(θki)− sin2(θki))(n(Eki) + sin2(θki))+

+ 1
4(cos2(2θk − θki)− sin2(2θk − θki))n(Eki) + sin2(2θk − θki))+

− 1
2 cos(2θk − θki) cos(θki)n(Eki))+

+ 1
2 sin(2θk − θki) sin(θki)(1− n(Eki)))

= 1
4(1− n(Eki))(sin(θki) + sin(2θk − θki))2+

+ 1
4n(Eki)(cos(θki)− cos(2θk − θki))2, (B.36)

and finally, the coefficient of ie−iEk(t−t′), denoting it Bk, can be seen from the
symmetry between Ak and Bk

Bk = 1
4n(Eki)(cos(θki) + cos(2θk − θki))2+

+ 1
4(1− n(Eki))(sin(θki)− sin(2θk − θki))2. (B.37)

Now we can write down the lesser GF in a form suitable for Fourier trans-
formation

G<k (t, t′) = i(Ak + Cke
2iEkt)e−iEk(t−t′) + i(Bk + Cke

−2iEkt)eiEk(t−t′),
(B.38)

giving us

G<k (ω, t) = i(Ak +Cke
2iEkt)δ(ω+Ek) + i(Bk +Cke

−2iEkt)δ(ω−Ek). (B.39)

We do a time-average over the time t as the coefficients in front of the
delta functions are not positive definite. We care about this being positive as
the spectral function can be physically interpreted as a probability measure
[31]. The coefficient functions Cke

±2iEkt are oscillating and disappear in the
averaging

G<k (ω) = lim
t→∞

1
t

∫ t

0
dTG<k (ω, T ), (B.40)
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giving us

Zkneq = − 1
π

Im(G<k ), (B.41)

letting us write

− i

π
G<k = Z−kneqδ(ω + Ek) + Z+

kneqδ(ω − Ek). (B.42)

We can now focus on the negative frequency peak in a single band and
compare the equilibrium and non-equilibrium case for some final gap ∆f ,

Z−kneq
Zkeq

=
1
4 (1− n(Eki))(sin(θki) + sin(2θk − θki))2

sin2(θkf )(1− n(Ekf ))
+

+
1
4n(Eki)(cos(θki)− cos(2θk − θki))2

sin2(θkf )(1− n(Ekf ))
. (B.43)

In the low temperature limit the Fermi-Dirac distributions n(Ek) ≈ 0, defining
Ai ≡ sin(θki), A ≡ sin(θk), Bi ≡ cos(θki) and B ≡ cos(θk) we write

Z−kneq
Zkeq

≈ 1
4

(sin(θki) + sin(2θk − θki))2

sin2(θkf )

= A2
i + 2Ai sin(2θk − θki) + sin2(2θk − θki)

4 sin2(θkf )

= A2
i + 2Ai(sin(2θk)Bi − cos(2θk)Ai) + (sin(2θk)Bi − cos(2θk)Ai)2

4 sin2(θkf )

= A2
i + 2Ai(2ABBi − (B2 −A2)Ai) + (2ABBi − (B2 −A2)Ai)2

4 sin2(θkf )

= A2
i + 4AiBiAB − 2A2

iB
2 + 2A2

iA
2 + 4A2B2B2

i

4 sin2(θkf )
+

+ A2
i (B2 −A2)2 − 4ABBi(B2 −A2)Ai

4 sin2(θkf )

= A2
i (1− 2B2 + 2A2 +B4 +A4 − 2A2B2)

4 sin2(θkf )
+

+ 4ABBi(Ai +ABBi −AiB2 +AiA
2)

4 sin2(θkf )
, (B.44)
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looking first at the coefficient of A2
i

1− 2B2 + 2A2 +B4 +A4 − 2A2B2

= 1− (1 + εk
Ek

) + (1− εk
Ek

) + 1
4(1 + εk

Ek
)2 + 1

4(1− εk
Ek

)2 − 1
2(1 + εk

Ek
)(1− εk

Ek
)

= 1− 2 εk
Ek

+ 1
2 + 1

2
ε2k
E2

k
− 1

2 + 1
2
ε2k
E2

k

=
(

1− εk
Ek

)2
, (B.45)

giving
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Z−kneq
Zkeq

≈
A2
i

(
1− εk

Ek

)2
+ 4ABBi(Ai(A2 −B2 + 1) +ABBi)

4 sin2(θkf )

=
A2
i

(
1− εk

Ek

)2
+ 4ABBi(Ai(A2 −B2 +A2 +B2) +ABBi)

4 sin2(θkf )

=
A2
i

(
1− εk

Ek

)2
+ 4ABBi(Ai

(
1− εk

Ek

)
+ABBi)

4 sin2(θkf )

=
A2
i

(
1− εk

Ek

)2
+ 4ABBiAi

(
1− εk

Ek

)
+ 2

(
1− εk

Ek

)
B2B2

i

4 sin2(θkf )

=
1− εk

Ek

1− εk
Ekf

A2
i

(
1− εk

Ek

)
+ 4ABBiAi + 2B2B2

i

2

=
1− εk

Ek

1− εk
Ekf

A2
i

(
1− εk

Ek

)
+ 4ABBiAi +

(
1 + εk

Ek

)
B2
i

2

=
1− εk

Ek

1− εk
Ekf

1
2

(
1− εk

Eki

)(
1− εk

Ek

)
+ 4ABBiAi + 1

2

(
1 + εk

Ek

)(
1 + εk

Eki

)
2

=
1− εk

Ek

1− εk
Ekf

1 + εk
Ek

εk
Eki

+ 4ABBiAi
2

=
1− εk

Ek

1− εk
Ekf

1
2 +

ε2
k

EkEki
+ 4ABBiAi

2



=
1− εk

Ek

1− εk
Ekf

1
2 +

ε2
k

EkEki
+
√(

1− εk
Ek

)(
1 + εk

Ek

)(
1 + εk

Eki

)(
1− εk

Eki

)
2



=
1− εk

Ek

1− εk
Ekf

1
2 +

ε2
k

EkEki
+
√(

1− ε2
k
E2

k

)(
1− ε2

k
E2

ki

)
2

 . (B.46)

Focusing on the square root, letting F =
√(

1− ε2
k
E2

k

)(
1− ε2

k
E2

ki

)
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F =

√(
1−

ε2k
ε2k + ∆2

st

)(
1−

ε2k
ε2k + ∆2

i

)

=

√(
ε2k + ∆2

st − ε2k
ε2k + ∆2

st

)(
ε2k + ∆2

i − ε2k
ε2k + ∆2

i

)

=

√(
∆2
st

ε2k + ∆2
st

)(
∆2
i

ε2k + ∆2
i

)
= ∆st∆i

EkEki
, (B.47)

where we have suppressed any k-dependence in ∆ = ∆k = γk∆ for ease of
notation. This gives our final result

Z−kneq
Zkeq

≈

(
1− εk

Ek

1− εk
Ekf

)(
1
2 + ε2k + γ2

k∆st∆i

2EkEki

)
. (B.48)

If we have nodes in the gaps it becomes possible to expand this around the
nodal lines where γ∆/ε� 1, approximating Ek =

√
ε2k + ∆2γ2

k as εk
√

1 + ∆2γ2
k/ε

2
k ≈

εk(1 + 1/2∆2γ2
k/ε

2
k)

In the case with a quench in the spin-orbit coupling, the results are the
same until equation (B.44) where we now get a difference between εki, Eki
and εkst, Ekst in addition to the change in the gap size. In the following we
continue the calculation from there with the SoC-quench included
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Z−kneq
Zkeq

≈
A2
i

(
1− εkst

Ekst

)2
+ 4ABBi(Ai(A2 −B2 + 1) +ABBi)

4 sin2(θkf )

=
A2
i

(
1− εkst

Ekst

)2
+ 4ABBi(Ai(A2 −B2 +A2 +B2) +ABBi)

4 sin2(θkf )

=
A2
i

(
1− εkst

Ekst

)2
+ 4ABBiAi

(
1− εkst

Ekst

)
+ 2

(
1− εkst

Ekst

)
B2B2

i

4 sin2(θkf )

=
1− εkst

Ekst

1− εkf
Ekf

A2
i

(
1− εkst

Ekst

)
+ 4ABBiAi + 2B2B2

i

2

=
1− εkst

Ekst

1− εkf
Ekf

1
2

(
1− εki

Eki

)(
1− εkst

Ekst

)
+ 4ABBiAi + 1

2

(
1 + εkst

Ekst

)(
1 + εki

Eki

)
2

=
1− εkst

Ekst

1− εkf
Ekf

(
1 + εki

Eki

εkst
Ekst

)
+ 4ABBiAi

2

=
1− εkst

Ekst

1− εkf
Ekf

(
1 + εki

Eki

εkst
Ekst

)
+
√(

1− ε2
kst
E2

kst

)(
1− ε2

ki
E2

ki

)
2

=
1− εkst

Ekst

1− εkf
Ekf

(
1 + εki

Eki

εkst
Ekst

)
+
√

∆2
kst

E2
kst

∆2
ki

E2
ki

2

=
1− εkst

Ekst

1− εkf
Ekf

(
1 + εki

Eki

εkst
Ekst

)
+ ∆kst

Ekst

∆ki
Eki

2

=
1− εkst

Ekst

1− εkf
Ekf

(
1
2 + εkiεkst + ∆kst∆ki

2EkstEki

)
. (B.49)

This can be expanded in a similar way if we have nodes to expand around
where ∆k/εk << 1, taking care to check that this is correct both before
and after the quench. We use the same approximation as above, and Ek ≈
εk(1 + 1/2∆2γ2

k/ε
2
k), first assuming that εk > 0.
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1− εkst
Ekst

1− εkf
Ekf

(
1
2 + εkiεkf + ∆kst∆ki

2EkstEki

)
≈

1− 1
1+1/2∆2

kst/ε
2
kf

1− 1
1+1/2∆2

kf/ε
2
kf

·

·
(

1
2 + εkiεkf + ∆kst∆ki

2εkst(1 + 1/2∆2
kst/ε

2
kst)εki(1 + 1/2∆2

ki/ε
2
ki)

)

≈
1− 1

1+1/2∆2
kst/ε

2
kf

1− 1
1+1/2∆2

kf/ε
2
kf

≈ ∆2
st

∆2
f

. (B.50)

We end up with an approximation of the spectral weight for each peak
that is identical to the form in [16] in the case of quenches in the interaction
strength. In the case of a quench in the spin-orbit coupling the non-equilibrium
case is modified somewhat as we take into account that ξkλi 6= ξkλf . We also
note that the k-dependence of the gaps in the case where ∆k = ∆γk where
γk = exp(−iφ) is a phase-factor disappears from taking the absolute value
in the calculation above. While the spectral function is in general complex,
the spectral functions dealing with correlation functions of Hermitian adjoint
operators are real, and in our case we are dealing with correlators on the form
〈c†kλckλ〉 which are Hermitian adjoint.

B.2 Linear gap response after a sudden quench
in the SoC

In this section we perform a linear response calculation for a sudden quench
in the spin-orbit interaction.

B.2.1 Definitions and preliminaries
We start with the time dependent effective mean-field Hamiltonian

H(t) =
∑
kλ

ξkλ(t)c̃†kλc̃kλ −
1
2
∑
kλ

(∆kλc̃
†
kλc̃
†
−kλ + ∆†kλc̃−kλc̃kλ), (B.51)

where ξk(t) has a sudden quench in the SOC strength α = α(t).
We want to calculate the linear response of ∆λ(t) after a sudden quench

in the interaction, where we define
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∆̃λ(k, t) =
∑

k′µ=±

Ṽλµ(k,k′)〈c̃−k′µ(t)c̃k′µ(t)〉. (B.52)

where

iF<kλ(t, t) = −i〈c̃−kλ(t)c̃kλ(t)〉. (B.53)

To avoid having to compute this on the contour we want to use Langreth’s
theorem, specifically the identity that if 1

C =
∫
contour

AB, (B.54)

then
C< =

∫
t

[ArB< +A<Ba], (B.55)

where a and r stands for the advanced and retarded functions respectively.

B.2.2 Calculation
We see that what we want to start with in this case is to compute the linear
response of the anomalous Green’s functions in the strength of the quench.
The change in the Hamiltonian is given by

δH = δαEz
∑
kλ

λ
√

sin2(kx) + sin2(ky)c̃†kλc̃kλ

≡
∑
kλ

δαkλc̃
†
kλc̃kλ. (B.56)

To first order in linear response for each band, this gives us

δFkλ(t, t′) =
∑
pσ

δαkσ

∫
K
dt1〈TKc̃−kλ(t)c̃kλ(t′)c̃†pσ(t1)c̃pσ(t1)〉, (B.57)

where K indicates the Keldysh contour. Using Wick’s theorem and noting
that the expectation values of two operators in different bands vanish we can
rewrite it as,

1See additional appendix
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δFkλ(t, t′) =
∑
pσ

δαpσ

∫
K
dt1(−1)〈TKc̃−kλ(t)c̃pσ(t1)〉〈TKc̃†pσ(t1)c̃kλ(t′)〉δk,pδσ,λ+

+
∑
pσ

δαpσ

∫
K
dt1〈TKc̃−kλ(t)c̃†pσ(t1)〉〈TKc̃pσ(t1)c̃kλ(t′)〉δk,−pδσ,λ

= δαkλ

∫
K
dt1Fkλ(t1 − t)Gkλ(t′ − t1)− α−kλ

∫
K
dt1Gkλ(t1 − t)Fkλ(t′ − t1).

(B.58)

By applying Langreth’s theorem to (B.58) and looking at correlactions at equal
times we obtain

δFkλ(t) = δαkλ

∫
dt1F

R
kλ(t1 − t)G<kλ(t− t1) + F<kλ(t1 − t)GAkλ(t− t1)+

− δα−kλ

∫
dt1GRkλ(t1 − t)F<kλ(t− t1) + G<kλ(t1 − t)FAkλ(t− t1),

(B.59)

to obtain the integration limits we use the step-functions obtained from the
advanced and retarded Green’s functions and note that the quench δα is non-
zero only for times after the quench (t = 0)

δFkλ(t) = δαkλ

∫ 0

t

dt1F
R
kλ(t1 − t)G<kλ(t− t1) + F<kλ(t1 − t)GAkλ(t− t1)+

− δαkλ

∫ 0

t

dt1GRkλ(t1 − t)F<kλ(t− t1) + G<kλ(t1 − t)FAkλ(t− t1),

(B.60)

which can all be evaluated
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δFkλ(t)
δαkλ

=
∫ 0

t

dt1(−i)ukλvkλ(eiEkλ(t1−t) − e−iEkλ(t1−t))iv2
kλeiEkλ(t−t1)+

+
∫ 0

t

dt1iukλvkλeiEkλ(t1−t)i(u2
kλe−iEkλ(t−t1) + v2

kλeiEkλ(t−t1))+

−
∫ 0

t

dt1(−i)(u2
kλeiEkλ(t1−t) + v2

kλe−iEkλ(t1−t))iukλvkλeiEkλ(t−t1)+

−
∫ 0

t

dt1iukλvkλ(eiEkλ((t−t1) − e−iEkλ((t−t1))iu2
kλeiEkλ(t1−t)

= ukλv
3
kλ

∫ 0

t

dt1(1− e2iEkλ(t−t1))+

− ukλvkλ

∫ 0

t

dt1(u2
kλe2iEkλ(t1−t) + v2

kλ)+

− ukλvkλ

∫ 0

t

dt1(u2
kλ + v2

kλe−2iEkλ(t1−t))+

+ u3
kλvkλ

∫ 0

t

dt1(1− e−2iEkλ(t−t1))

= ukλv
3
kλe2iEkλt

∫ t

0
dt1e−2iEkλt1 + u3

kλvkλe−2iEkλt

∫ t

0
dt1e2iEkλt1+

+ ukλv
3
kλe2iEkλt

∫ t

0
dt1e−2iEkλt1 + u3

kλvkλe−2iEkλt

∫ t

0
dt1e2iEkλt1

= 2ukλv
3
kλe2iEkλt

(
e−2iEkλt − 1
−2iEkλ

)
+ 2u3

kλvkλe−2iEkλt

(
e2iEkλt − 1

2iEkλ

)
= iukλvkλ

Ekλ

(
v2

kλ − v2
kλe2iEkλt − u2

kλ + u2
kλe−2iEkλt

)
. (B.61)

From here we insert uk,λ and vk,λ

δFkλ(t)
δαkλ

= i|∆kλ|
2E2

kλ

(
−ξkλ

Ekλ
− 1

2

(
1− ξkλ

Ekλ

)
e2iEkλt + 1

2

(
1 + ξkλ

Ekλ

)
e−2iEkλt

)
= i|∆kλ|

2E2
kλ

(
−ξkλ

Ekλ
+ i sin(2Ekλt) + ξkλ

Ekλ
cos(2Ekλt)

)
= i|∆kλ|ξkλ

2E3
kλ

(cos(2Ekλt)− 1)− |∆kλ|
2E2

kλ
sin(2Ekλt), (B.62)

and finally write the correction to the gaps using equation (B.52) and (B.53)
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δ∆λk(t) = −i
∑
λ′k′

Vλλ′(kk′)δFk′λ′(t) (B.63)
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