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Abstract: Topology optimization (TO) is a mathematical method that optimizes the material layout 
in a pre-defined design domain. Its theoretical background is widely known for macro-, meso-, and 
microscale levels of a structure. The macroscale TO is now available in the majority of commercial 
TO software, while only a few software packages offer a mesoscale TO with the design and optimi-
zation of lattice structures. However, they still lack a practical simultaneous macro–mesoscale TO. 
It is not clear to the designers how they can combine and apply TO at different levels. In this paper, 
a two-scale TO is conducted using the homogenization theory at both the macro- and mesoscale 
structural levels. In this way, the benefits of the existence and optimization of mesoscale structures 
were researched. For this reason, as a case study, a commercial example of the known jet engine 
bracket from General Electric (GE bracket) was used. Different optimization workflows were imple-
mented in order to develop alternative design concepts of the same mass. The design concepts were 
compared with respect to their weight, strength, and simulation time for the given load cases. In 
addition, the lightest design concept among them was identified. 
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1. Introduction 
In the literature, the structure of a component can be categorized with respect to its 

physical size, from bigger to smaller, and to macro-, meso-, and microscale structures [1]. 
However, there are no specific size limits that separate one from the other. The macroscale 
is considered the external layout of a structure, while its infill is the mesoscale structure. 
The elements that constitute the infill are usually unit cells creating a periodically ordered 
pattern [2]. The structure of the unit cells is a good example of a microscale structure. 
According to the theory of composite materials, a unit cell is the smallest volume that can 
be measured to give a representative value of the entire structure [3,4]. Hence, it is as-
sumed that the continuum mechanics can be applied to the macro-, meso-, and microscale 
levels of a structure [1]. Figure 1 shows the three structure levels of a hollow plate where 
its mesoscale structure consists of uniform cubic cells. 

 
Figure 1. The macro-, meso-, and microscale structure of a hollow plate, based on [5,6]. 
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It is very common to use cellular structures inside the components to reduce their 
weight or affect their physical and mechanical properties [7]. The cellular structures can 
be classified into foams, honeycombs, and lattice structures [8]. The foams can be either 
open or closed and are randomly generated [9]. Mesoscale structures of bones and shells 
are two characteristic examples of foams. Honeycombs are cellular designs consisting of 
unit cells such as hexagons with regular shape and size. They usually are two-dimensional 
designs that can be extruded in the third direction. Finally, lattice structures are three-
dimensional unit cells, such as cubic and octahedral unit cells, arranged periodically, com-
posing a porous material structure of interconnected struts and nodes [2]. An advantage 
of the lattice structures compared to foams and honeycombs is that they are flexible de-
signs that can be easily optimized to satisfy specific requirements. The desired material 
property of a lattice structure can be achieved by changing the size, the orientation, the 
struts, and the nodes of its cells [10]. Many researchers agree that the lattice structures 
outperform foam and honeycomb cells due to their high stiffness, strength, energy ab-
sorption, heat dissipation, and damping [2,11]. Due to their good mechanical properties, 
they can be widely applied in various industries such as the aerospace, automotive, and 
biomedical industries [12]. 

According to Bendsøe [13], structural optimization (SO) can be classified into shape, 
size, and topology optimization. The topology of a design can be optimized in any of its 
levels, i.e., at the macro-, meso-, and microscale levels, using different optimization meth-
ods [14]. The solid isotropic material with penalization (SIMP) [13,15], the level set [16], 
the bi-directional evolutionary structural optimization (BESO) [17], the smooth-edged ma-
terial distribution for optimizing topology (SEMDOT) [18], and the floating projection to-
pology optimization (FPTO) [19] are some notable methods for the optimization of the 
macroscale. On the other hand, the homogenization-based topology optimization 
(HMTO) and the size gradient method (SGM) are two popular methods for the optimiza-
tion of the mesoscale. Finally, the aforementioned methods can be easily adapted on a 
microscale level [1]. 

There are plenty of research papers about TO, either on the macroscale or mesoscale 
level. In addition, many works deal with the concurrent multiscale optimization [20]. 
Watts et al. [21] modified Sigmund’s 99-line Matlab code [22] to solve a three-dimensional, 
multiscale compliance problem via polynomial interpolation of stiffness tensors. The coat-
ing approach combined with the compliance TO by Clausen et al. [23] resulted in designs 
with improved buckling load. Kato et al. [24] proposed a micro–macro concurrent TO for 
nonlinear solids with a multiscale decoupling analysis. Hoang et al. [25] presented a direct 
multiscale TO approach without material homogenization at the microscale but using 
adaptive geometric components instead. Liu, Chan, and Huang [5] developed a concur-
rent two-scale TO algorithm based on the BESO method for maximizing the natural fre-
quency of structures. White et al. [26] developed a multiscale TO using neural network 
surrogate models for spatially varying lattices. Despite the fact that there are some ap-
proaches of multiscale TO, its practical application is in its beginning since there is not a 
commercial program that implements it automatically.  

In this research paper, a two-scale TO was conducted in ANSYS software utilizing 
manually the homogenization theory at both the macro- and mesoscale levels. The applied 
algorithms for the macro- and mesoscale optimization were the traditional compliance 
SIMP and the HMTO, respectively. Through the current study, the authors answer the 
following research questions: What is gained by the existence and optimization of the 
mesoscale structure? How should a combined macro- and mesoscale TO be practically 
performed? For this reason, a case study of the notable jet engine bracket from General 
Electric (GE bracket) was used [27]. Five different optimization workflows (mentioned as 
optimization methods) of the GE bracket were implemented, trying to determine the most 
efficient method in terms of structural strength. In addition, the impact of the type and 
the orientation of the cells in the mesoscale structure were explored. Finally, the lightest 
design solution was identified and presented among these workflows.  



Designs 2021, 5, 77 3 of 15 
 

 

The structure of the rest of the paper is as follows: in Section 2, the theoretical back-
ground of the used approaches for the topology optimization of both macroscale and 
mesoscale is introduced. In Section 3, the implemented methodology is presented in de-
tail. The findings in this research work are displayed in Section 4 and discussed thor-
oughly in Section 5. Finally, Sections 6 and 7 encompass the conclusion and the possible 
future research, respectively. 

2. The Structural Optimization Problem for Macro- and Mesoscale Structures 
The optimization of the macroscale structure can be described by the general SO 

problem as it was presented by Bendsøe [13]. The SO problem is broadly known in its 
translation to a standard minimum compliance problem with a volume constraint. The 
following discretized problem is based on the homogenization theory and the interpola-
tion method of SIMP [28]: 

min
𝑢𝑢∈𝑈𝑈,𝜌𝜌

𝑐𝑐(𝜌𝜌,𝑈𝑈(𝜌𝜌)) (1) 

subject to: ∑ 𝑣𝑣𝑒𝑒𝜌𝜌𝑒𝑒 = 𝑣𝑣𝑇𝑇𝜌𝜌 ≤ 𝑉𝑉∗𝑁𝑁
𝑒𝑒=1  (2) 

𝑔𝑔𝑖𝑖(𝜌𝜌,𝑈𝑈(𝜌𝜌)) ≤ 𝑔𝑔𝑖𝑖∗, 𝑖𝑖 = 1, … ,𝑀𝑀 (3) 

0 < 𝜌𝜌𝑚𝑚𝑖𝑖𝑚𝑚 ≤ 𝜌𝜌 ≤ 1, 𝑒𝑒 = 1, … ,𝑁𝑁 (4) 

𝐾𝐾(𝜌𝜌)𝑈𝑈 = 𝐹𝐹 (5) 

𝐸𝐸(𝜌𝜌𝑒𝑒) = 𝜌𝜌𝑒𝑒
𝑝𝑝𝐸𝐸0, 𝑝𝑝 ≥ 1 (6) 

where 
c: compliance; 
ρ: material density; 
U: global displacement; 
g: volume constraint; 
𝜌𝜌𝑒𝑒: element density; 
𝑣𝑣𝑒𝑒: element volume' 
𝑉𝑉∗: maximum allowed volume (volume of the design space); 
K: global stiffness matrix; 
F: external loading vector; 
E: overall structure elasticity; 
p: penalization factor; 
𝐸𝐸0: Young’s modulus. 

For the current optimization problem, Equation (1) is the defined objective function, 
which in this case corresponds to the compliance of the structure. Furthermore, there are 
four constraints in this minimum compliance problem. The first constraint, Equation (2), 
is the total design volume whose value should be equal to or less than the volume of the 
design space. The constraints denoted by 𝑔𝑔𝑖𝑖 (Equation (3)) represent other possible be-
havioral and design constraints. At the third constraint, Equation (4), the values of the 
element density are bounded between zero and one, where the former represents void 
and the latter represents material. The fourth constraint, Equation (5), is the equilibrium 
equation, which is further described by the elastic scaling law (Equation (6)). 

According to Pan, Han, and Lu [2], the cellular shape and size of the mesoscale struc-
ture, and thus the lattice structure, can be either uniform or nonuniform. On the one hand, 
the design and optimization of uniform lattice structures can be conducted by three dif-
ferent design approaches: (1) computer-aided design (CAD), (2) design based on mathe-
matical algorithms, and (3) design based on TO. On the other hand, the design and opti-
mization of the nonuniform lattice structures can be conducted either by functional 
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gradient design or by SO [2]. The SGM [29] and the HMTO [30] are two notable ap-
proaches in each of these cases. The HMTO is applied in this paper. 

For the HMTO, variable-density cellular structures are used in the creation of the 
mesoscale structure. This method uses the homogenization theory to obtain the real me-
chanical properties of the infill as a function of the relative density of its lattice cells [4,31]. 
In general, the cellular structure has anisotropic behavior. In the HMTO method, the fol-
lowing scaling law describes this behavior [30]: 

𝜎𝜎 = 𝐶𝐶𝐶𝐶 (7) 

where the stress, 𝜎𝜎; the strain, 𝐶𝐶; and the elasticity, 𝐶𝐶, can be written in matrix form: 

�⃗�𝜎 = [𝜎𝜎11𝜎𝜎22𝜎𝜎33𝜎𝜎12𝜎𝜎13𝜎𝜎23]𝑇𝑇 (8) 

𝐶𝐶 = [𝐶𝐶11𝐶𝐶22𝐶𝐶33𝐶𝐶12𝐶𝐶13𝐶𝐶23]𝑇𝑇 (9) 

𝐶𝐶 =

⎣
⎢
⎢
⎢
⎢
⎡
𝐶𝐶11 𝐶𝐶12 𝐶𝐶13 𝐶𝐶14 𝐶𝐶15 𝐶𝐶16
𝐶𝐶12 𝐶𝐶22 𝐶𝐶23 𝐶𝐶24 𝐶𝐶25 𝐶𝐶26
𝐶𝐶13 𝐶𝐶23 𝐶𝐶33 𝐶𝐶34 𝐶𝐶35 𝐶𝐶36
𝐶𝐶14 𝐶𝐶24 𝐶𝐶34 𝐶𝐶44 𝐶𝐶45 𝐶𝐶46
𝐶𝐶15 𝐶𝐶25 𝐶𝐶35 𝐶𝐶45 𝐶𝐶55 𝐶𝐶56
𝐶𝐶16 𝐶𝐶26 𝐶𝐶36 𝐶𝐶46 𝐶𝐶56 𝐶𝐶66⎦

⎥
⎥
⎥
⎥
⎤

 (10) 

The 𝜎𝜎𝑖𝑖𝑖𝑖 and 𝐶𝐶𝑖𝑖𝑖𝑖 are the scalar components of the stress and strain, respectively. The 
homogenization method utilizes the micromechanics theory, where the FEA results of one 
unit cell with different relative densities are used to predict the behavior of the entire 
mesoscale structure. The scaling law of structure’s elasticity can be described by the pol-
ynomial function with the best fit of the computational data between the elastic constants 
and the arbitrary relative densities of the cell [30]. A general form of this polynomial is the 
following: 

𝐶𝐶(𝜌𝜌𝑟𝑟) = 𝑎𝑎1𝜌𝜌𝑟𝑟 + 𝑎𝑎2𝜌𝜌𝑟𝑟2 + ⋯+ 𝑎𝑎𝑛𝑛𝜌𝜌𝑟𝑟n (11) 

This polynomial represents the real mechanical properties of the mesoscale as a func-
tion of the relative density 𝜌𝜌𝑟𝑟 [4]. For the optimization of the mesoscale structure, a sim-
ilar formulation to the SO problem is applied: 

min
𝑢𝑢∈𝑈𝑈,𝜌𝜌𝑟𝑟

𝑐𝑐(𝜌𝜌𝑟𝑟) =  𝑢𝑢𝑇𝑇𝐾𝐾𝑢𝑢 = �𝑢𝑢𝑒𝑒𝑇𝑇𝑘𝑘𝑒𝑒𝑢𝑢𝑒𝑒

𝑁𝑁

𝑒𝑒=1

 (12) 

subject to: 𝐾𝐾𝑢𝑢 = 𝑓𝑓  (13) 

𝐶𝐶 = 𝐶𝐶(𝜌𝜌𝑟𝑟) (14) 

 ∑ 𝜌𝜌𝑟𝑟𝑁𝑁
𝑒𝑒=1 𝑢𝑢𝑒𝑒 = 𝑉𝑉 (15) 

0 < 𝜌𝜌𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝜌𝜌𝑟𝑟 ≤ 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 1 (16) 

Here the derived intermediate elements from the SIMP method are replaced by cells 
with corresponding densities creating a graded lattice structure [30]. In addition, the pol-
ynomial scaling law, Equation (14), replaces the fictitious elastic scaling law (Equation (6)) 
of the SIMP method. Analytical calculations for the TO of both the macroscale and 
mesoscale are omitted for brevity. Interested readers should be referred to the research 
works of Bendsøe and Sigmund [28,32] and Cheng, Zhang, Biyikli, Bai, Robbins, and To 
[30]. 

Figure 2 presents an example of the HMTO method of a hollow cantilever plate. The 
hollow plate is fixed on its right face, and a 5000 N vertical force is applied on its top face. 
In the first case, uniform cubic cells were used for its mesoscale structure, while the HMTO 
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method was implemented in the second case resulting in an infill with a graded cubic 
structure. 

 
Figure 2. The difference between uniform lattice structure and graded lattice structure. 

The authors use the term lattice optimization (LO) when they refer to the HMTO 
method. Both the described SIMP and LO methods are applied for the optimization of the 
macro and mesoscale structure, respectively, in this research work.  

3. Methodology 
The presented case study in this paper is the known jet engine bracket by General 

Electric, also called the GE bracket. This model was used by General Electric as a design 
challenge in 2013 [27]. The participants in this challenge were asked to reduce the weight 
of an existing aircraft engine bracket without compromising its strength. There were 629 
entries, and the winner could reduce the initial weight of the bracket from 2.033 Kg to 327 
g, which corresponds to nearly 84% weight reduction. The authors decided to use this GE 
bracket as a case study in this paper due to its popularity and its known load cases and 
boundary conditions. The given load cases were the following:  
• Load case 1 (LC1): a vertical static linear load of 35,586 N; 
• Load case 2 (LC2): a horizontal static linear load of 37,810 N; 
• Load case 3 (LC3): a static linear load 42,258 N, 42 degrees from vertical; 
• Load case 4 (LC4): a static torsional load of 564,924 Nmm horizontal at the intersec-

tion of the centerline of the pin and the midpoint between the clevis arms. 
The bracket was fixed with four bolts, and a 19.05 mm diameter pin was placed be-

tween the clevis. Both the load cases and the boundary conditions are illustrated in Figure 
3. 
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Figure 3. The 3D model of the GE bracket, the used load cases, and the boundary conditions: (a) LC1, (b) LC2, (c) LC3, (d) 
LC4, and (e) the boundary conditions. 

The applied material was Ti-6Al-4V with 903 MPa yield strength. Its density, Young’s 
modulus and, Poisson’s ratio versus temperature are depicted in Figure 4. 

 
Figure 4. Properties of the Ti-6Al-4V: (a) density, (b) Young’s modulus, and (c) Poisson’s ratio. 

The CAD model of the GE bracket was given by General Electric in an IGES file for-
mat and was downloaded from the company’s homepage. This model was used as a ref-
erence model and was imported to ANSYS software for FEA, TO, and numerical valida-
tion. The FEA of the GE bracket was conducted in ANSYS Mechanical. The same software 
was also used for both TO and LO. According to the challenge, the intended production 
method was additive manufacturing (AM). Thus, the optimized designs were not rede-
signed but instead were prepared for 3D printing in ANSYS SpaceClaim. In addition, AN-
SYS SpaceClaim was used for the creation of the uniform mesoscale structure. Finally, the 
numerical validation studies were implemented in ANSYS Mechanical, where only the 
designs with an FOS > 1 (Factor of Safety) against yield were accepted. The used finite 
elements in all simulations were 3 mm tetrahedrons. The chosen size of the elements was 
decided after a convergence study conducted in ANSYS Mechanical. 
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3.1. Optimization of the Macroscale  
The macroscale structure of the GE bracket was optimized using TO. The applied 

method was SIMP with compliance and minimization of mass as objective function and 
response constraint, respectively. Firstly, the GE bracket was topologically optimized for 
each of the four load cases separately and then for all of them together. The authors’ in-
tention was two-fold. On the one hand, we wanted to show the sensitivity of the TO-re-
sults to the load changes. On the other hand, we wanted to manually identify the worst 
load case, which in this case study was LC4. An implementation of a p-norm or related 
soft-max function could automatically identify the worst-case scenario via the calculation 
of maximum displacement due to random combinations of the given load cases. The best 
design solutions in terms of weight were identified and further tested for their strength in 
validation studies. 

3.2. Combining the Macro- and Mesoscale Optimization 
At this point, a lattice infill was added inside the structure. The applied cell structure 

was a 12 mm cubic cell oriented in the z direction. Designs with either uniform or variable-
density lattice infill were used. The LO method presented in Section 2 was used for the 
optimization of the mesoscale structure. Five different optimization workflows were con-
ducted for a 50% weight reduction. The load cases were gradually added to the TO of the 
bracket. The authors intended to compare the derived design solutions by different opti-
mization combinations at the same weight, as well as observe the change in the designs 
by adding load cases. The used optimization methods in this research paper were the fol-
lowing: 
1. Lattice: Initial layout with uniform lattice infill; 
2. LO: Topology optimization of the mesoscale with variable-density lattice infill;  
3. TO: Topology optimization of the macroscale; 
4. TO_Lattice: Topology optimization of the macroscale and uniform lattice infill; 
5. TO_LO: Topology optimization of the macroscale and topology optimization of the 

mesoscale with variable-density lattice structure. 
On the one hand, a multibody part was created based on the original IGES file of the 

GE bracket for the Lattice and the TO_Lattice methods. This part consisted of the main 
body, the bolt areas, and the clevis arms. Bonded contacts were applied between the bod-
ies. Both the lattice infill and the TO density were limited to the main body, while the bolt 
areas and the clevis arms were used for the application of the boundary conditions and 
the load cases, respectively. Hence, in the Lattice method, the clevis arms and bolt areas 
were 100% solid, while in the TO_Lattice, they were used as ‘frozen area’ for the TO. On 
the other hand, for the remaining three methods, LO, TO, and TO_LO, a similar multibody 
part was used, but in this case, pin areas were created instead of the whole clevis arms. 
The two different multibody parts are shown in Figure 5. 
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Figure 5. The multibody parts used both for the FEA, the optimizations, and the validation studies: 
(a) multibody part for the Lattice and TO_Lattice, and (b) multibody part for the LO, TO, and 
TO_LO. 

3.3. In the Pursuit of the Best Design Solution in Terms of Weight 
The same optimization methodologies were implemented in the identification of the 

lightest design solutions with FOS>1. However, a preliminary research of the cell type and 
orientation was conducted. Three different lattice cells were checked with the same crite-
ria in the x, y, and z orientation. These were the cubic, the octahedral, and the octet. A 6 
mm internal thickness was used for the bracket. In addition, the applied strut thickness in 
each cell was 4 mm, while the cell size was chosen in a way that all three infills could 
result in a 50% weight reduction. Hence, 12, 16, and 24 mm cell sizes were used in the 
cubic, octahedral, and octet cells, respectively. The lattice cell, as well as its orientation 
with the best FOS, was used in the Lattice, LO, and TO_Lattice, and TO_LO methods. The 
lightest design was identified among the five implemented methods for the load cases 
applied simultaneously. The results for FEA, optimizations, and validation studies are 
presented in the next section. 

4. Results 
As described in the methodology, a TO of the bracket’s macroscale structure was 

conducted in the first step for independent and combined load cases. The design solutions 
were compared for maximum weight reduction. In the second step, multiscale optimiza-
tions, combining macro and/or mesoscale optimization, were carried out using the Lattice, 
LO, TO, TO_Lattice, and TO_LO methods for 50% weight reduction and gradually added 
load cases. A research study of the cubic cell type (cubic, octahedral, and octet) and cell 
orientation was conducted in the third step. Finally, the identified cell type, including its 
orientation with the best solution, was adapted to the optimization methods for the crea-
tion of the lightest design solutions. 

4.1. FEA of the GE Bracket 
The FEA of the GE bracket was conducted before the optimization of the design. The 

maximum von Mises stress as well as the FOS against yield were determined in each load 
case and in the case of the combined load cases (LC1234). The results are shown in Figure 
6. The horizontal static linear load (LC2) and the static torsional load (LC4) resulted in the 
lowest (1.46) and the highest (2.77) FOS, respectively. The FOS of the combined load cases 
was 2.71, which is close to the result of the LC4. It seems that the load path created by the 
static torsional load dominates the load paths by created the other three load cases. In 
addition, all the results of the FOS were higher than one, showing that there was place for 
optimization. 
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Figure 6. The FEA of the original design in each load case and at all load cases: (a) LC1, (b) LC2, (c) LC3, (d) LC4, and (e) 
LC1234. 

The maximum von Mises stress, the minimum FOS against yield, and the simulation 
time of the FEA of the GE bracket are summarized in Table 1. 

Table 1. The FEA results of the GE bracket. 

Load Case Max Von Mises Stress (MPa) Min FOS Time (sec) 
LC1 590 1.53 14 
LC2 618 1.46 14 
LC2 568 1.59 14 
LC4 326 2.77 13 

LC1234 333 2.71 83 

4.2. Exploring the Different Load Cases 
The design solutions from the TO of the GE bracket’s macroscale structure in each of 

the LC and in all of them combined are shown in Figure 7. In addition, Table 2 presents 
the results of the weight, maximum von Mises stress, FOS against yield, and simulation 
time in each case. 

 
Figure 7. The best T -solutions in each load case and at all load cases: (a) LC1, (b) LC2, (c) LC3, (d) 
LC4, and (e) LC1234. 

  



Designs 2021, 5, 77 10 of 15 
 

 

Table 2. The results of the validation studies of the TO of the macroscale structure. 

Load Case Weight (g) Weight Reduction (%) Max Von Mises Stress (MPa) Min FOS Time (sec) 
LC1 638 68.7 822 1.1 348 
LC2 674 67.0 760 1.19 378 
LC2 543 73.4 869 1.04 566 
LC4 475 76.7 472 1.92 1332 

LC1234 492 75.9 624 1.45 1935 

As it is observed in Figure 7, each load case led to a completely different design so-
lution. The initial weight of the GE bracket was 2.033 Kg. The best solution in terms of 
weight was achieved in the LC4 with a 76.7% weight reduction (475 g). The optimized 
design for all load cases (LC1234) gave a solution with a slightly higher weight (492 g). 
Furthermore, the design solutions presented in Figure 7 show the sensitivity of the TO. 
An eventual change either in the load cases or the boundary conditions could lead to a 
completely different design. 

4.3. Identification of the Best Optimization Method 
The next step was the optimization of the GE bracket with the implementation of the 

five optimization methods presented thoroughly in Section 3: (1) Lattice, (2) LO, (3) TO, 
(4) TO_Lattice, and (5) TO_LO. The optimization goal in all methods was the reduction of 
the bracket’s weight by 50%. The GE bracket was optimized, while the four LCs were 
gradually added in each optimization method. Thus, 20 simulations were conducted at 
this point. Figure 8 depicts the derived design solutions in the case where all the LCs were 
applied. Table 3 presents the results of the minimum FOS against yield from the validation 
studies in each case. 

 
Figure 8. The design solutions in the five different methods for a 50% weight reduction in all LCs: 
(a) Lattice, (b) LO, (c) TO, (d) TO_Lattice, and (e) TO_LO. 

Table 3. The FOS results of the validation studies of macroscale and mesoscale TO. 

Load Case 
Method 

Lattice LO TO TO_Lattice TO_LO 
LC1 1.01 1.15 1.29 1.42 1.57 

LC12 1.27 1.29 1.3 1.4 1.58 
LC123 1.17 1.47 1.48 1.75 1.84 

LC1234 2.06 2.13 2.15 2.33 2.84 

The Lattice method with the use of uniform lattice infill resulted in the lowest FOS 
among all the optimization methods. Both LO and TO with the optimization of the 
mesoscale with variable-density lattice infill and the optimization of the macroscale, re-
spectively, had similar results. The fourth method (TO_Lattice) with the optimization of 
the macroscale and the uniform lattice infill outperformed the previous methods. Finally, 
the TO_LO with both the optimization of the macro- and mesoscale resulted in stiffer so-
lutions in each case. It seems that the use and the optimization of the infill in the topolog-
ically optimized layout of the bracket strengthen its structure.  
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4.4. A Preliminary Research of the Cell Type and Orientation 
The results of the preliminary research for the cell type and orientation of the 

bracket’s infill are presented in this section. 

4.4.1. Cell Type 
The first step in this preliminary research was the optimization of the GE bracket 

using three different cell types: 12 mm cubic, 16 mm octahedral, and 24 mm octet for its 
uniform lattice infill. The Lattice method was also conducted here with a 50% weight re-
duction. A section view of each design is depicted in Figure 9. 

 
Figure 9. Three different cells in the z orientation: (a) cubic, (b) octahedral, and (c) octet. 

4.4.2. Cell Orientation 
In addition, the orientation of the bracket was changed from z to both x and y, result-

ing in the different orientations of the lattices. Hence, nine optimizations were carried out 
in total. The octet infill in the z orientation gave the highest FOS (2.54). Figure 10 shows 
the uniform octet infill of the bracket in the three orientations. In addition, Table 4 presents 
the results of the validation studies. 

 
Figure 10. Three different orientations of the octet cell: (a) x orientation, (b) y orientation, and (c) z orientation. 

Table 4. The results of the validation studies of the different cell types and their orientation. 

 FOS 
Orientation/Cell Type Cubic (12 mm) Octahedral (16 mm) Octet (24 mm) 

x 2.06 2.40 2.45 
y 2.06 2.36 2.39 
z 2.06 2.43 2.54 

4.5. The Best Design Solutions in Terms of Weight 
The identified cell type and its orientation from the previous section (24 mm octet 

with z orientation) was used for the infill in the Lattice, LO, TO_Lattice, and TO_LO opti-
mization methods. Figures 11 and 12 show the best design solutions and their FOS plots, 
respectively, in each method. 
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Figure 11. The best design solutions in the different optimization methods: (a) Lattice, (b) LO, (c) 
TO, (d) TO_Lattice, and (e) TO_LO. 

 
Figure 12. The FOS in the five different optimization methods: (a) Lattice, (b) LO, (c) TO, (d) TO_Lattice, and (e) TO_LO. 

The analytical results of the simulations are presented in Table 5. Both TO_Lattice 
and TO_LO gave design solutions that were lighter than the winner of the challenge in 
2013 (327 g). The TO_LO gave the best solution with only 290 g, which corresponds to an 
85.8% reduction of the initial weight of the GE bracket. It seems that both the use of uni-
form lattice structure and the optimization of it with LO could give better design solu-
tions. However, the TO gave the quickest optimized design with a 1.04 g/sec weight re-
duction ratio. Hence, when the optimization goal is the biggest weight reduction, both 
TO_Lattice and TO_LO are suggested, with the former resulting in a quicker design solu-
tion. On the other hand, the TO is the best option when a designer wants to find a quick 
solution with sufficient weight reduction and high strength (FOS = 1.45 in our case). 

Table 5. The results of the validation studies of the five optimization methods. 

Method Weight (g) Weight Reduction 
(%) 

Max Von Mises Stress 
(MPa) 

Min FOS Time (sec) Weight Reduction Ratio 
(g/sec) 

Lattice 589 71.1 822 1.07 2015 0.68 
LO 535 73.8 760 1.06 2998 0.49 
TO 492 75.9 869 1.45 1935 1.04 

TO_Lattice 314 84.6 472 1.01 2037 0.81 
TO_LO 290 85.8 624 1.02 4646 0.37 

5. A Comparison of the Optimization Methods 
Five optimization methods were implemented for the optimization of the GE bracket: 

(1) Lattice, (2) LO, (3) TO, (4) TO_Lattice, and (5) TO_LO. From these methods, the Lattice 
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and the TO_Lattice with the uniform lattice structure were applied to a multibody bracket 
where the clevis arms were excluded from the optimization. On the other hand, a pin area 
was excluded, instead of the clevis arms, from the optimization of the other three meth-
ods. In addition, bolt areas were used in both cases for the boundary conditions. The dif-
ference in these two multibody parts also shows the difference between these two groups 
of methods. Using either the TO, the LO, or the combination of them, TO_LO, a designer 
can identify the load paths and the critical areas in the structure, wherein the GE bracket 
is the clevis arms. From the derived designs of these methods, as depicted in Figure 11, 
we can see that the main part of the clevis arms’ material was not removed in the TO. 
Furthermore, the infill in this area was almost solid at the LO and TO_LO. The optimiza-
tion algorithm could identify the crucial areas automatically, while in the Lattice and 
TO_Lattice method, the designer had to preserve the vulnerable areas of the structure 
based on the load paths identified by the TO. 

The Lattice method gave designs with the lowest FOS against yield both in the inde-
pendent and in the combined load cases. In addition, its best-identified solution had the 
worst weight reduction among the other methods. However, the size of the used octet cell 
for the lattice infill was big (24 mm) for computation time reasons. It is expected that a 
smaller cell size could give better solutions. However, it is not clear if homogenization can 
be used to investigate the effect of varying cell size since it assumes an infinitely small cell 
size. Thus, higher-order methods are required to confront this ‘scale effect’ [33]. Addi-
tional research is recommended regarding the choice of the ideal cell type, as well as its 
properties such as size and strut diameter. The design of the uniform lattice structure can 
be conducted either in CAD software where the validation of the design is also possible 
or using the infill properties of slicer software during the 3D printing preparation of the 
design. The removal of the remaining powder of the 3D material has to be taken into ac-
count in the case of selective laser sintering (SLS) as a 3D printing method. For this reason, 
the front and the bottom of the solid wall of the bracket were removed. 

The LO could give better design solutions than the Lattice both in terms of FOS and 
weight reduction. The optimization of the mesoscale with variable-density lattice infill 
placed the cells with the higher density in the critical areas and the cells with the smaller 
densities in the less crucial areas. This arrangement of the cells resulted in a stronger infill 
structure compared to the uniform infill. An advantage of both the Lattice and LO meth-
ods was that the outer geometry of the bracket was preserved with their optimized solu-
tions. 

From the exploration of the different load cases using TO, it was shown that the top-
ologically optimized results are vulnerable to the designer’s choices. A small change to 
load cases, boundary conditions, and preserved areas could give different designs. How-
ever, a rough TO is suggested at the beginning of the optimization process both for the 
identification of the load paths and design inspiration. In addition, the TO was the quick-
est among the other optimization methods, making it the ideal option when a rapid solu-
tion is demanded. 

The combination of the TO with the uniform lattice infill, TO_Lattice, could further 
reduce the weight of the bracket without compromising its strength. The creation of the 
infill structure can be also conducted here either in CAD software for validation or directly 
in the slicer software. This method utilizes the ideal identified layout of the structure as a 
base for the application of the lattice infill. On the other hand, when variable-density lat-
tice infill is used instead of uniform, the optimization could lead to even lighter designs. 
Both of these methods led to lighter design solutions compared to the winner of the chal-
lenge. The TO_LO method resulted in a design that was 7.6% lighter than the design of 
the TO_Lattice. However, the optimization time of the latter was only a little bit higher 
compared to the TO, but half that of the TO_LO. Thus, the TO_Lattice method gave the 
best results in terms of optimization time and weight. The TO_LO is recommended when 
the main goal of the optimization is weight reduction and in the cases where every gram 
counts. Finally, the removal of any solid side of the bracket was not possible in these two 
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methods, making SLS 3D printing inappropriate for these designs. Thus, fused deposition 
modeling (FDM) could be used as an alternative 3D printing method (Figure 11d,e)). 
However, the diameter of the cells’ struts should be designed to be not smaller than the 
recommended minimum thickness of the 3D printer. 

6. Conclusions 
In this paper, the benefits of the existence and optimization of the mesoscale structure 

were researched. For this reason, a jet engine bracket from General Electric (GE bracket) 
was optimized for its weight using five optimization methods: (1) Lattice, (2) LO, (3) TO, 
(4) TO_Lattice, and (5) TO_LO. The bracket was optimized either for its macroscale (TO) 
or its mesoscale (LO) structure, or for both of them (TO_LO). The results showed that 
when the optimization of the macroscale structure is combined with the use of uniform or 
variable-density lattice infill, it could lead to interesting lightweight solutions. The lightest 
identified design weighed 290 g, 85.8% less than the initial design. In addition, this design 
was 11.3% lighter than the winner of the design challenge in 2013. The proposed design 
was topologically optimized, and then its layout was used as a design space for a variable-
density lattice infill consisting of 24 mm octet cells. Furthermore, the TO is suggested for 
rapid optimization of structures, while the TO_Lattice and TO_LO are recommended for 
the highest weight reduction based on the practical insights of this research work. 

7. Future Research 
The integration of microscale optimization in the presented optimization methodol-

ogies, the adaption of multiple lattice cells in the lattice infill [34], or further exploration 
of other lattice cells and triply periodic minimal surfaces (TPMS) are interesting topics for 
further research that could possibly improve the identified designs in this paper. In addi-
tion, the smoothness of the topological boundaries could be further improved using new 
element-based algorithms, such as the SEMDOT and FPTO. Finally, a commercial optimi-
zation platform that can conduct simultaneous multiscale optimization of structures could 
be a useful tool for CAD designers looking for new lightweight structures. 
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