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Abstract

Increased electrification of society, as well as increased incidence of
distributed power generation, causes more dynamic operation of modern
electrical power grids. Methods for monitoring of power grids have
traditionally focused on static operation, but must in the future be
expected to have to account for system dynamics. On the other hand,
privacy concerns for individuals, commercial secrecy concerns for
companies, and cost concerns for power system operators, may cause
power systems to be only partly known and without sufficient sensors for
traditional dynamic state estimation in power systems. This thesis
contributes to the understanding of Simultaneous Input and State
Estimation (SISE), in particular its stability properties, and develops
methods for dynamic monitoring of partially known power systems based
on SISE.

The other main focus of the thesis is decentralized state estimation. Both
the sheer scale of power networks, as well as the fact that different sections
of the system may be operated by different companies, make a single
centralized estimation center impractical and/or impossible. The thesis
therefore develops decentralized estimation approaches for power systems,
in which the observability requirements of existing decentralized
estimation methods are relaxed.

In addition, the thesis also addresses cybersecurity and fault detection as
well as sensor placement for power systems, and shows how SISE can be
exploited in power system stabilizer (PSS) design.
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Chapter 1

Introduction

This chapter first provides background and motivation for using dynamic
state estimation for electrical power grids in order to describe the main
objectives of this thesis. Then the main contributions are explained, and
finally, the thesis outline is presented.

1.1 Background and Motivation

The traditional distribution grid is monitored using infrequent the supervis-
ory control and data acquisition (SCADA) data and a global steady-state
power system model. This situation is already starting to change due to the
low-carbon requirements and introduction of distributed energy resources,
including photovoltaic (PV) generators, small-scale hydropower and wind
farms, which feed power into the electrical power grids. This change, which
often is referred to as the modernization shift, is depicted in Figure 1.1.

The increased penetration of distributed energy resource (DER) has lead to
important changes in distribution systems Eto et al. (2015):

• The first change occurs on direction of power flows which is no longer uni-
directional. This change may have crucial consequences on planning
and operations of distribution grids including protection and voltage
management applications.

• Since DERs provide great quantities of generation in a grid, if a sudden
load disturbance occurs, this sudden change can lead to activation of
the protection systems. This can result in losing the power of many
distributed generators. In this situation, control of surrounding dis-

1
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Figure 1.1: Power grids evolution

tribution systems’ voltage and frequency would be more complicated
than for conventional electrical grids.

• Distributed energy storage has unpredictable charge and discharge pro-
files. Hence, these profiles can cause unpredictable disturbances in the
distribution system 1.

These effects, in addition to changes in the electrical load behavior and the
requirement for reliable electricity, definitely increase the need for reliable
dynamic monitoring of smart electric grids.

The distribution parts of the electrical grid typically have a low degree
of instrumentation, so we need sophisticated tools to analyze and control
them. To monitor and control such networks in an efficient way, the dis-
tributed SCADA (DSCADA) system and the information technology (IT)
infrastructure in distribution grids have been improved by introducing new
developments in sensor and communication technologies. The most ad-
vanced measurement units in distribution grids are smart meters and Phasor
Measurement Units (PMUs).

1Although distributed energy consumers, such as Electric vehicles (EVs) technically
can be exploited as grid storage when the electrical grid needs high demand and are
therefore under high pressure, the mobility of EVs leads to variation in their availability
unlike that of traditional, stationary storage.



1.2. Background 3

GPS signals provide a globally synchronized time signal. This is being
used in PMUs, developed in the 1980s, to offer dynamic measurements of
voltage, current and phase angles. When a sufficient number of PMUs are
placed in the electrical grids, then the system would be observable and as a
result dynamic state estimation procedures such as Kalman filtering-based
approaches can be utilized to estimate the system states Gomez-Exposito
et al. (2011). However, replacing all the meters in an electric grid with PMUs
is not feasible due to practical reasons, including their cost. Thus, proper
monitoring and control of the electric grid requires the effective combination
of information from PMUs and other sensors in the grid. Such information
combination is commonly termed sensor fusion.

Furthermore, in order to handle the computational challenge of efficiently
handling the significant volume of data generated by smart meters, PMUs,
and SCADA measurements, distributed processing should be applied. This
is done by dividing the monitoring and control tasks of the network into the
different sub-systems. Each sub-system can estimate the state of the system
locally. Globally accurate monitoring will then require communication and
effective coordination of local estimates between sub-systems.

1.2 Background

Several methods have been proposed for state estimation of power grids,
including hierarchical, as well as partially and fully distributed methods.
In Van Cutsem and Ribbens-Pavella (1983) a hierarchical state estimation
method for electrical power systems is presented. Early examples of research
into distributed state estimation in electric power grids include Baran and
Kelley (1994; 1995). A parallel and distributed state estimation was pro-
posed in Falcao et al. (1995) for the case when the states of the entire
system are observable locally, whereas a distributed approach for real-time
state estimation of power grids is given in Khan et al. (2008) without the
local observability assumption. An agent-based state estimation, as well as
topology identification, observability analysis, and bad data detection, are
considered in Nordman and Lehtonen (2005). Then, in Korres (2011), two-
level state estimation for multi-area power system (MASE) has been studied
in which distributed state estimates calculated at the primary level have co-
ordination and communication with the top-level through PMUs. A detailed
survey of MASE methods in power systems can be found in Gomez-Exposito
et al. (2011). The robust distributed state estimation for discrete-time and
time-varying nonlinear systems with stochastic parameters is investigated in
Ding et al. (2012). The concept of distributed state estimation using sensor
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networks and its convergence condition is studied in Wang and Ren (2017).
In Sun et al. (2016), a real-time distributed state estimation approach for a
network of linear systems using a distributed maximum a posteriori (MAP)
estimation technique is investigated. Their approach coordinates local state
estimates through communication with neighbors.

In accordance with the philosophy of design, these methods consider the
power system operates in its steady-state or quasi-steady-state operating
condition. However, as explained above, this contrasts with the new reality
in modern power systems, which rarely operate near steady state for long
periods, because variations in loads and distributed generators (DGs) are
usually fast and unpredictable. Consequently, the assumption of a steady-
state is dubious, and methods of static state estimation (SSE) can not cap-
ture dynamic effects of fast-changing operating conditions. Therefore, it
seems vital to re-evaluate the SSE methods Schweppe and Wildes (1970),
Abur and Exposito (2004) utilized in current power systems’ energy manage-
ment systems (EMS) and also to provide improved monitoring techniques
based on dynamic state estimation (DSE) in modern EMS. DSE’s ability
to capture the dynamics of a fast-changing system is precisely what makes
it suitable for power system control and protection Modir and Schlueter
(1981), Meliopoulos et al. (2017), Liu et al. (2017), Fan et al. (2015), Cui
et al. (2017).

In the existing literature on DSE for power systems, a number of techniques
have been proposed: the extended Kalman filter (EKF) Ariff and Pal (2016),
Albinali and Meliopoulos (2016), Farantatos et al. (2016), the iterated EKF
(IEKF) Vittal et al. (2011), the unscented Kalman filter (UKF) NERC
(2016), Huang et al. (2013), Zhao and Mili (2019b) and the particle filter
(PF) Zhao and Mili (2018b;a), Chow (2013). Most of these techniques,
however, suffer from some major drawbacks, preventing them from being
implemented for real-time applications by power utilities.

1. They assume that a complete model of the system is available.

2. Unknown inputs are assumed to have immediate effects only locally.

3. They can not manage uncertainty and parameter errors in dynamic
models.

4. They are not able to cope with cybersecurity problems.

There are a number of reasons for these shortcomings. First, in addition
to the uncertainties caused by the implicit simplifications of the statistical
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equations on which these methods are based, there may be many other
noises due to unknown system inputs, including parametric uncertainties
and actuator failures Chen and Patton (2012); unavailable inputs, such as
unrecognized mechanical power, exciter field voltage, unknown fault loca-
tion; and inaccuracies of the model variables of the synchronous generators,
loads, lines, and transformers. Furthermore, due to privacy and protec-
tion concerns, fault occurrence, lack of sensors, and degradation of power
equipment, certain parts of the network could be totally unknown to the
local operator. A number of studies in this field have focused on cases
where the unknown inputs are unknown local variables Ghahremani and
Kamwa (2011a;c; 2016), Anagnostou and Pal (2018), Zhao et al. (2019c). In
Abooshahab et al. (2019), it is stated that this unknown input/disturbance
comes from a change in system-wide variables, and therefore cannot be con-
sidered a local variable; then, a new modeling strategy for a power system is
derived to tackle the problem of facing system-wide unknown disturbance.
A number of state estimation methods have focused on a condition that sys-
tem model contain unknown inputs , including the extended state observers
(ESOs) Chen et al. (2015), Chen et al. (2015), the augmented Kalman fil-
ter (AKF) Anderson and Moore (2012), Simon (2006), simultaneous input
and state estimation (SISE) Gillijns and De Moor (2007a) and its Kalman
filtering formulation (KF-SISE) which recently presented in Bitmead et al.
(2019). Due to the common practice that the disturbance dynamics are
selected as an integrator, the application of AKF is mostly limited to estim-
ation of slow and constant signals e.g., parameters in power networks Plett
(2004), Ritter et al. (2019), Bian et al. (2011).

Second, the current DSE methods assume that both the process and the ob-
servation noise of the nonlinear dynamic system models are Gaussian. Nev-
ertheless, several studies conducted by Pacific Northwest National Laborat-
ory (PNNL) Sauer et al. (2017), Crow (2015) have shown that PMU meas-
urement errors of voltage and current magnitude obey non-Gaussian prob-
ability distributions Zhao (2018). The existence of non-Gaussian noise leads
to a need for more development in the field of robust dynamic state estim-
ation of power systems.

Third, as we stated before, there exist different sensors with different sampling
rates in power networks, and it is essential to extract all the information
in the power network from all the available sensors. Thus, a multi-rate
framework for state estimation of power networks seems vital.

Additionally, cyber-attacks have become a significant concern due to the
high dependence of smart grid functions on communications networks. They
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are typically classified as bias injection attack, denial of service attack and
replay attack Shivakumar and Jain (2008). Bias injection attack occurs
when an adversary attempts to corrupt the content of either the measure-
ment or the control signals; for example, the man-in-the-middle intercepts
the PMU measurement signals and corrupts them with significant biases.
Denial of service attack occurs when the actuator or sensor data can not
reach their respective destinations, resulting lack of data for the DSE; replay
attack happens when a hacker first conducts a disclosure attack over a cer-
tain period of time, collecting data sequences, and then starting to replace
the data over a certain period of time. This type of attack may lead to
misinterpreting the true state of the system, leading to inappropriate (and
possibly dangerous) control and operational actions. Mitigating the impacts
of cyber-attacks is obviously an important task that results in the need for
developing fault detection methods Zhao (2018).

Lastly, PMUs are expensive devices, so it is crucial to know where to install
them. Hence, developing methods for optimal PMU placement for state
estimation purposes is also an essential issue for electrical grids.

1.3 Research Objectives and contributions

Improving the efficiency, stability, and resilience of electrical power systems
depends on the availability of secure, reliable, and robust estimators of dy-
namic states. These estimators should handle unknown inputs and model
uncertainties. Figure 1.2 shows the scope of covered topics in this thesis for
power networks as further described below. In order to achieve the aims
of this thesis, we have proposed a general theoretical framework for robust
dynamic state estimation of a partially known system with unknown inputs
and robust statistical theory and robust control theory. In particular, the
principal contribution of this thesis is described in the following:

• A unified framework is developed for robust and stable simultaneous
input and state estimation. These new estimators can handle both
local and system-wide unknown inputs and can be used both for cent-
ralized and decentralized state estimation. To cope with system-wide
unknown inputs, we develop and apply the stable SISE (S-SISE) al-
gorithm Abooshahab et al. (2019; 2021), which is specifically targeted
towards joint input and state estimation. Then we introduce a new
modeling scheme for power systems containing unknown parts, called
partially known power systems (PKPSs). Then, we apply SISE/S-
SISE to estimate the states of the PKPS and its unknown inputs.
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State estimation

Sensor placement

Optimal sensor
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Necessary sensor
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Dynamic State estimation

Difussion Kalman
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Distributed dynamic
state estimation

Static state estimation

Weighted least square

Figure 1.2: Scope diagram of covered topics

Our procedure for state estimation consists of the following steps:

1. Identify the known and the unknown parts of the system.

2. Model the unknown parts by disturbance inputs interacting with
the known part.

3. Derive the PKPS model.

4. Examine the observability and recoverability conditions.

5. Apply SISE/S-SISE to estimate the states and the unknown in-
puts.

• We obtain the information matrix version of S-SISE and then propose
’best in’ and ’worst out’ greedy algorithms to optimize the placement
of PMUs in a power network.

• Diffusion Kalman filtering is used to obtain a nonlinear distributed
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state estimation algorithm for power networks and its stability is in-
vestigated.

• Observability assumptions are investigated and relaxed.

• Multirate state estimation is proposed using the covariance intersec-
tion that shows good consistency in widely different noise situations.

• As we will see, a precise local bus frequency is important for stabilizing
the power grids. In this thesis, we also try to find the estimate of
dynamical characteristics of bus frequency without having information
about the models of the loads but having enough knowledge of swing
equation parameters, admittance matrix and measurements.

• In order to obtain more robust distributed filtering method, we develop
a nonlinear distributed/diffusion H-infinity filter using the unscented
transformation (UT).

1.4 Thesis outline

This thesis is organized as follows. A general dynamic model for different
components of a power network is given in in Chapter 2. A general introduc-
tion to various dynamic state estimation methods, including simultaneous
input and state estimation, H∞ filtering and diffusion Kalman filtering is
provided in Chapter 3.

Chapters 4-11 presents the main contributions of the thesis. Each of these
chapters is based on papers that are either published or submitted.

Chapter 12 describes additional topics on state estimation and its use as a
basis for control design. Chapter 13 contains conclusions and proposals for
further work.

1.5 List of Publications

Peer Reviewed Journal Papers

1. Robert R. Bitmead, Morten Hovd, and Mohammad Ali Abooshahab.
”A Kalman-filtering derivation of simultaneous input and state estim-
ation.” Automatica 108 (2019): 108478.

2. Mohammad Ali Abooshahab, Mohammed M.J. Alyaseen, Robert R.
Bitmead, Morten Hovd. ”Simultaneous input & state estimation, sin-
gular filtering and stability.” submitted to and provisionally accepted
in Automatica (2020).
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Peer Reviewed Conference Papers

1. Mohammad Ali Abooshahab, Morten Hovd, Edmund Brekke, Xian-
feng Song. ”A Covariance Consistent Data Fusion method for Power
Networks with Multirate Sensors.” 2020 IEEE Conference on Control
Technology and Applications (CCTA).

2. Mohammad Ali Abooshahab, Morten Hovd, and Robert R. Bitmead.
”Disturbance and State Estimation in Partially Known Power Net-
works.” 2019 IEEE Conference on Control Technology and Applica-
tions (CCTA).

3. Mohammad Ali Abooshahab, Morten Hovd. ”Distributed H∞ Filter-
ing for Linear and Nonlinear Systems.” submitted to and accepted in
the 2021 IEEE Conference on Control Technology and Applications
(CCTA).

4. Mohammad Ali Abooshahab, Morten Hovd, Giorgio Valmorbida. ”Op-
timal PMU placement for partially known power system dynamic state
estimation”submitted to and accepted in the IEEE PES ISGT Europe
2021.

Journal Papers in Preparation

1. Mohammad Ali Abooshahab, Morten Hovd, and Robert R. Bitmead.
”Monitoring Disturbances and States in Partially Known Power Sys-
tems.” In preparation for submission to IEEE Transactions on Power
Systems (2021).

2. Mohammad Ali Abooshahab, Morten Hovd. ”Multi-Rate Distributed
Unscented Kalman Filtering with Application to Power System Mon-
itoring.”In preparation for submission to IEEE Transactions on Smart
Grids (2021).
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Chapter 2

Model derivation

Various types of generators, loads, transmission networks, measuring devices,
distributed generations (renewable energy sources), as well as monitoring
and control centers are primary components of a modern power system
Sadamoto et al. (2019). Different parts in a power system shares the
power via transmission/distribution lines. Thus, electric power transmis-
sion/distribution systems are interconnected systems Sadamoto et al. (2019).
Power systems are subject to continuous perturbation. Examples of typical
disruptions in power systems are sudden changes in loads, losses of one or
more transmission lines, system configuration modification, equipment out-
ages, generator failures, and connection/disconnection of renewable energy
sources.

Reliable and stable operation of electrical grids is of paramount importance
for modern society. This requires effective monitoring of the state of the elec-
trical grid. Any approach to monitoring a complex system requires a good
understanding of system behaviour. Systematic monitoring approaches are
generally based on a mathematical model of the system in question. This
chapter will describe how the models used throughout this thesis for state
estimation and monitoring are derived.

As we will discuss later, the modeling for different parts of a power system
is not unique and is depending on the application of monitoring and control
and the validation of simplifying assumptions. Throughout this Chapter,
we provide general modelling details for different parts of a power system in
order to derive a unified interconnected system model for a power system.
However, as noted above, Chapters 4-11 are based on published or submitted

11
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papers. Several of these papers describe the derivation of the models used
therein. This causes some repetition, and readers may choose to skip the
modelling sections of these chapters except for the simplifying assumptions
and purpose of monitoring.

2.1 Dynamic distributed component-based mod-
eling

In this section, we describe the dynamic models of the main components
of a modern electrical grid including production, distribution, consumption,
batteries and also their interactions. The energy production can be categor-
ized into traditional generators such as synchronous or induction generators,
and DERs, such as wind parks and PVs. Throughout the thesis, the terms
generators, wind park, and PV apply for a combination of whole units form-
ing the overall component. That is, we are concerned with how an entire
wind park interacts with and affects the electrical grid, this thesis is not
concerned with the behaviour of individual windmills. In the same man-
ner, the term load refers to the combination of all energy consuming units
connected to a bus in the system.

Note that an electrical power grid often has buses with no generators, DERs,
loads, or energy storage devices. These buses are called non-unit buses
Sadamoto et al. (2019) which means no energy unit is connected to these
buses.

For clarity, we need to define the term ‘component’ which in this thesis
means as either a non-unit bus, or a generator, DER, load or storage device
connected to its bus (see Figure 2.1).

An overall dynamic model for the kth component of a power system (either
for DERs, loads, energy consumption, non-unit bus and ...) is given as
follows Sadamoto et al. (2019).

Ck :
ẋk = fk(xk, (|V |∠θ)k, uk, pk)),

Pk + jQk = hk(xk, (|V |∠θ)k, uk, pk)),
(2.1)

where ẋk, (|V |∠θ)k, uk and pk represent the time derivative of the state,
the voltage phasor, the input and the parameters of the of the kth compon-
ent, respectively. Additionally, active and reactive power injected from the
kth component is shown by Pk and Qk Sadamoto et al. (2019).

For an interconnected power system, one may use the Krone reduction
method Dorfler and Bullo (2013) to obtain a reduced model for the power
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Figure 2.1: Different components of a modern electrical grid and its on-line
digaram

network containing dynamic components only, resulting in the reduced ad-
mittance of the network Y red . Whence, the concepts of ‘buses’, ‘nodes’,
and ‘components’ will be used interchangeably. The N components form an
interconnected network, we can obtain the following equation using circuit
theory Sadamoto et al. (2019):

0N = (Y red(|V |∠θ)1:N ).∗ ◦ (|V |∠θ)1:N − (P1:N + jQ1:N ), (2.2)

where ◦ and .∗ are the element-wise multiplication and conjugation operat-
ors, respectively. For i ∈ {1, . . . , N}, the (|V |∠θ)i, Pi, and Qi are accu-
mulated denoting by (|V |∠θ)1:N , P1:N , and Q1:N Sadamoto et al. (2019).
For a measured or calculated P1:N and Q1:N , (|V |∠θ)1:N can be obtained
by using (2.2). The model for the power system is the aggregation of (2.1)
and (2.2).

When the system is operating without sudden changes, it reaches its equi-
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librium point, which can be obtained as follows.

0 = fk

(
xSk , (|V |∠θ)Sk , u

S
k , pk

)
,

PSk + jQSk =
(
xSk , (|V |∠θ)Sk , u

S
k , pk

) (2.3)

where superscript s denotes the steady state value.

For finding the equilibrium points for an interconnected power network, we
need to consider the power flow equations. Power flow calculation is briefly
the process of finding (|V |∠θ)S1:N , P

S
1:N , and QS1:N satisfying (2.2), and then

substitute them in (2.3) to find xSk and pk. When sudden changes happen in
the system, the power flow solutions can be used as initial conditions for the
electrical grid (2.1)-(2.2). From now, we omit the subscript k for simplicity.

2.1.1 Generators

The generator can be assumed as an interconnected system containing dif-
ferent parts, including the synchronous machine, the power supply system
(or the prime mover) and the excitation system Kundur et al. (1994). The
excitation system produces currents in its winding to magnetize the rotor.
In the generated magnetic field, the rotor starts to rotate as a result of
mechanical power provided by the primary mover. The synchronous ma-
chine converts mechanical energy and transfers it to the grid. Because of its
long time constant, the dynamics of the primary mover are typically ignored
Dib et al. (2009), Tsolas et al. (1985), Machowski et al. (2020).

Synchronous Machine

For the synchronous machine, there exist several models to capture its dy-
namics Kundur et al. (1994). Here, we choose the flux-decay model which is
widely used for synchronous machines. Then we will explain how and based
on what assumptions it is possible to simplify this model for practical pur-
poses. For obtaining this model, we need to consider the electromechanical
swing and electromagnetic voltage dynamics Sadamoto et al. (2019).

Excitation System

Usually, the excitation system consists of various parts including an auto-
matic voltage regulator (AVR) which controls the level of the generator
voltage to the desired level, the exciter which provides excitation for the
generator, and a power system stabilizer (PSS) whose function it is to main-
tain the stability of the power system through damping oscillations resulting
from the generator swings.
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The variables and parameters in the following sections are given in Table
2.1.

Table 2.1: Variables and parameters for the generator units.

State variable External variables Parameters

angular frequency ω mechanical power PSm governor gain κa
AVR reference input u PSS gain κPS

E EMF (q-axis) field voltage setpoint V S
f

shaft angle δ voltage setpoint |V|S rotor damping R
Vf Field voltage rotor inertia M
ψ PSS state d-axis time constant Td,

exciter time constant Te,
PSS time constant TPS ,
TJ1,T

′
J1,TJ2,T

′
J2

(PSS lead-lag controller for first (J1) and second (J2) stage).
d- and q-axis reactance χd, χq

Swing model :

For obtaining the state-space representation of the overall generator model,
we start with the swing equations.

δ̇ = ω,

ω̇ = 1
M

(
PSm −Rω −

|V|E
χ′d

sin (δV) + |V|2
2

(
χq−χ′d
χ′dχq

)
sin (2(δV))

) (2.4)

where δV := δ − ∠V.

The electromagnetic dynamics are as follows Sadamoto et al. (2019):

Ė = 1
Td

(
Vf + χd

χ′d
(|V | cos (δV)− E)− |V | cos (δV)

)
,

P + jQ =
E|V|
χ′d

sin(δV)− |V|
2

2

(
χq−χ′d
χ′dχq

)
sin (2(δV)) + jE|V|

χ′d
cos (δV) .

(2.5)

The model for an exciter (with AVR) is given as follows:

V̇f =
1

Te

(
V S

f − Vf + κa

(
|V| − |V|S − v + u

))
, (2.6)

In (2.6), the input signal is u, and it provides the reference voltage for the
AVR. In control theory, the traditional PSS can be considered as a feedback
controller with the input as the rotor angular frequency and the output as
the reference voltage for the AVR, v defined in (2.7) Sadamoto et al. (2019),
Chow et al. (2004).
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Note that there are different models for the PSS, especially in modern net-
works with the development in designing them. We consider the linear
model for the PSS given in (2.7).

ψ̇ = APSψ +BPSω, v = CPSψ +DPSω, (2.7)

where

APS =


− 1

TPS
0 0

− κPS
TPSTJ1

(
1− T′J1

TJ1

)
− 1

TJ1
0

−κPS
T′J1

TPSTJ1TJ2

(
1− T′J2

TJ2

)
1

TJ2

(
1− T′J2

TJ2

)
− 1

TJ2

 , (2.8)

BPS =


1

TPS

κPS
TPSTJ1

(
1− T′J1

TJ1

)
κPST

′
J1

TPSTJ1TJ2

(
1− T′J2

TJ2

)
 , (2.9)

CPS =

[
1− κPST

′
J1T
′
J2

TPSTJ1TJ2

T′J2

TJ2

]
, (2.10)

DPS =
κPST

′
J1T
′
J2

TPSTJ1TJ2
. (2.11)

Based on above dervations, the state space of a generator can be obtained
by comparing (2.4) with (2.1).

Simplifications in Synchronous Machine Modeling

There exist several versions of models for synchronous generators, and se-
lecting a proper model is based on the required accuracy Kundur et al.
(1994). These models can be categorized as Park, sub-transient, one-axis,
and classical versions. The relationship between these models is outlined
next. The Park model is the famous synchronous machine model, which is
an aggregation of electromagnetic and motion states showing the flux differ-
ence of circuits based on the d-axis and q-axis , the excitation and damper
windings Kundur et al. (1994).

The approximation of the Park model can be obtained , when the flux states
of the d-axis and q-axis circuit vary quickly. This model is called the sub-
transient model that includes four coils on the rotor Pal and Chaudhuri
(2006)The states of this model contain the motion and the excitation wind-
ing flux, d, and q-axis damper windings states.

When the damping effects can be ignored, and the connection line between
the generator and its corresponding bus has insignificant resistance, then
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the one-axis model can be obtained as in (2.4) and (2.5) Dib et al. (2009).
This model only captures the flux changes of the excitation winding.

A further simplification assumption is that χq = χ′d in (2.4) and (2.5).
Assuming that χ′d = χq (this is a reasonable assumption due to the sym-
metrical air gap in round rotor machines Machowski et al. (2020)), then
TdoĖ = −E+Vf. When the initial value of E is equal to ES and Vf(t) ≡ ES ,
then E(t) ≡ ES . Thus, this model which is called the classical model can
be derived as follows Kundur et al. (1994), Machowski et al. (2020):

δ̇ = ω,

ω̇ = 1
M

(
Pm −Rω − |V|E

S

χ sin(δ − ∠V)
)
.

(2.12)

For the non-unit buses, we have

P + jQ = 0.

Algebraic power balance equations are commonly used as models for loads,
although extensive literature also exists for dynamic loads Hiskens and Mil-
anovic (1995), Hill (1993). The static loads can be modeled as Sadamoto
et al. (2019):

impedance model P + jQ =
(
z̄−1V

)
∗V,

current model P + jQ = ī ∗V,

power model P + jQ = P̄ + jQ̄,

where z̄ is the given or obtained impedance parameter. Note that .̄ is used
for constant parameters.

The synchronous motor is modeled in the same manner as a synchronous
generator. The only difference is that, instead of a prime mover providing
mechanical torque input to the generator, the motor drives a mechanical
load Kundur et al. (1994).

2.1.2 Wind Turbine

Using wind as a source of energy source dates back to the 9th century, where
the first windmill and wind pump were developed in Iran Glick et al. (2014).
Contemporary wind turbines can be seen as a natural development of those
early windmills, obviously with the difference that instead of pumping wa-
ter they are equipped with electrical generators and are thus able to supply
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green energy to the grid. Wind turbines convert wind power to mechan-
ical power and then transfer the power to a doubly-fed induction generator
(DFIG). The turbines are commonly designed with a two-inertia compos-
ition with a low-speed shaft, gearbox, and a high-speed shaft Sadamoto
et al. (2019). Generally, changes in wind speed are not so fast compared
with the grid frequency, so the aerodynamic power Pae can be considered
constant. The electrical components of a wind turbine contain different
parts contributing to its dynamic including doubly-fed induction generator
(DFIG), DC link, Back-to-Back (B2B) converter (the rotor-side converter
(RSC) and the grid-side converter (GSC)) with its controllers, buck and
boost converter and battery.

We will next describe the model for the wind turbine. The symbols used
are explained in Table 2.2.

The wind turbine dynamics are given as follows:

Jlsω̇ls = −(dc +Bls)ωls + dc
Nge

ωhs − κcθT + Pae
ωls
,

Jhsω̇hs = dc
Nge

ωls −
(
dc
N2

ge
+Bhs

)
ωhs + κc

Nge
θT − χt’ (idsiqr − iqsidr) ,

θ̇T = ω̄m

(
ωls − 1

Nge
ωhs

)
.

(2.13)
.

The equations related to DFIG is given as follows:

i̇ = ADF
i (ωhs)i+GDF

i [Re(V), Im(V)]> +BDF
i [vdr, vqr]

>,
Ps + jQs = γΩ (Re(V)ids + Im(V)iqs) + jγΩ (Im(V)ids − Re(V)iqs) ,

i := [idr, iqr, ids, iqs]
>, (2.14)

where the definition of ωhs is given in (2.13), and vdr and vqr are determined
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in (2.23), and

ADF
i (ωhs) =

1

η


−Rhsχt η − ωhsχtχhs Rtχt’ −ωhsχtχt’

−η + ωhsχtχhs −Rhsχt ωhsχtχt’ Rtχt’

Rhsχt’ ωhsχhsχt’ −Rtχhs η + ωhsχ
2
t’

−ωhsχhsχt’ Rhsχt’ −η − ωhsχ
2
t’ −Rtχhs

 ,
(2.15)

BDF
i =

1

η


−χt 0

0 −χt

χt’ 0
0 χt’

 , (2.16)

GDF
i =

1

η

[
χt’ 0 −χhs 0
0 χt’ 0 −χhs

]>
, (2.17)

χt : = χt’ + χls, χhs := χt’ + χlr, η := χtχhs − χ2
t’. (2.18)

For the GSC, we have

LG
ω̄ i̇Gd = −RGiGd + LGiGq + Re (V)− tGd

2 vbias,
LG
ω̄ i̇Gq = −RGiGq − LGiGd + Im (V)− tGq

2 vbias,
Phs + jQhs = γΩ (Re (V) iGd + Im (V) iGq) + jγΩ (Im (V) iGd − Re (V) iGq) ,

(2.19)
where definition of tGd and tGq are given in (2.23), and vbias is defined in
(2.27).

{
ψ̇Gd = κI,dG(vbias−vSbias),
iref
Gd = κP,dG(vbias−vSbias) + ψGd,

{
ψ̇Gq = κI,qG(Qhs−QShs),
iref
Gq = κP,qG(Qhs−QShs) + ψGq,

(2.20)

where the definition of Qhs and vbias are given in (2.19) and (2.27).

TGχ̇Gd = iref
Gd − iGd,

tGd = sat
(

2
vbias

(
uGd + Re(V) + LGiGq −RGχGd − LG

ω̄TG
(iref

Gd − iGd)
))

,

(2.21)

TGχ̇Gq = iref
Gq − iGq,

tGq = sat
(

2
vbias

(
uGq + Im(V)− LGiGd −RGχGq − LG

ω̄TG
(iref

Gq − iGq)
))

,

(2.22)

where iGd and iGq are defined in (2.19), iref
Gd and iref

Gq in (2.20), and vbias in
(2.27).
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vdr and vqr related to RSC are given bellow:

vdr =
tRd

2
vbias, vqr =

tRq

2
vbias, (2.23)

where the definition of tRd and tRq are given in (2.25), and vbias is determined
in (2.27).

iref
dr = κP,Rd

(
|V| − |V|S

)
, iref

qr = κP,Rq

(
ωhs − ωShs

)
, (2.24)

where the definition of ωhs is given in (2.13).

χ̇Rd = κI,Rd

(
idr − iref

dr

)
,

tRd = sat
(

2
vbias

(
κP,Rd

(
idr − iref

dr

)
+ χRd + uRd

))
,

(2.25)

χ̇Rq = κI,Rq(iqr − iref
qr ),

tRq = sat
(

2
vbias

(
κP,Rq(iqr − iref

qr ) + χRq + uRq

))
,

(2.26)

where idr and iqr are defined in (2.14), iref
dr and iref

qr in (2.24), and vbias in
(2.27).

The voltage of the DC link can be obtained using (2.27).

Cbias

ω̄
v̇bias =

1

2vbias
(Re (V) iGd + Im (V) iGq + vdridr + vqriqr

−RG(i2Gd + i2Gq)
)
−Gswvbias +

1

2
ibias, (2.27)

where iGd and iGq are defined in (2.19), vdr and vqr in (2.23), idr and iqr in
(2.14), and ibias in (2.28). When the battery and dc/dc are not connected,
ibias = 0.

The model for the buck-and-boost dc/dc converter is given as follows:

v′bias = e(Z + uZ)vbias, (2.28)

ibias = e(Z + uZ)i′bias, (2.29)

e (x) =

{
x if x ≥ 0,
0 ow

(2.30)

where the definition of vbias and i′bias are given in (2.27) and (2.31).
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The battery’s voltage vb and the current injected from the battery i′bias form
the state space of a battery for the wind turbine.

Cb
ω̄ v̇b = −i′bias −Gbvb,

Lb
ω̄ i̇
′
bias = vb −Rbi

′
bias − v′bias,

(2.31)

where the definition of v′bias is given in (2.28).

The interconnection of a wind turbine to the grid can be obtained by using
(2.32).

P + jQ = (Ps − Phs) + j (Qs −Qhs) , (2.32)

where the definition of Ps and Qs are given in (2.14) and Phs and Qhs in
(2.19).

The model for a wind farm containing all of the above units can be concisely
given as

xk : =
[
ωls, ωhs, θT, i

>, i>G, χ
>
G, ψ

>
G, χ

>
R, vbias, vb, i

′
bias

]>
, (2.33)

ψG : = [ψGd, ψGq]>, iG := [iGd, iGq]>, (2.34)

u : = [uGd, uGq, uRd, uRq, uS]> , (2.35)

p : =
[
vSbias, Q

S
hs, |V|

S , ωShs

]>
, (2.36)

and f (·, ·, ·; ·) and h (·, ·; ·) follow from (2.13)-(2.32). Note that interconnec-
tion between different components are formed based on connecting lines in-
cluding transmission/distribution lines. These lines transfer power between
different units. Hence the intercation between different units can be ob-
tained from the power flow equations given in (2.2).

2.1.3 Measurements in a power system

The measurement vector y for a power system is based on available sensors
in that system. The main sensor for power systems that is fast enough to
capture dynamics of a power network is the PMU. PMUs provide the phase
and the magnitude of voltage and current at the installation bus, power
and reactive power in all connected lines and also angular frequency at the
installation bus. There also exist other measuring devices in a power sys-
tem such as SCADA sensors which mainly measure the active and reactive
power at the installation bus. Other units in a power network including
windparks also have their own sensors and transducers providing informa-
tion and measurement for the power system operators.
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2.1.4 Overview of models used in different chapters

The detailed procedure to derive dynamic characteristics of different com-
ponents in a power network is discussed above, which means each compon-
ent is modeled based on its mechanical and electrical characteristics. Then
each component’s interconnection with other parts of the network is ob-
tained through power flows in the power system, as it can be seen from
equation (2.1). However, we should bear in mind that power system models
are not unique, and the purpose of the monitoring/estimation can dictate
what level of detail and what range of dynamics is included in the model.

In Chapters 4-7, a linear 4th order model for the synchronous generators
are considered in order explain the proposed state estimation technique
and to investigate its stability and observability properties. After that, we
extend our framework with considering the PSS model for the synchronous
generators (Chapter 12.5).

In Chapter 10, we use the classic nonlinear model for the synchronous gen-
erators (2.12). The measurement model in that section is based on PMUs,
but with different sampling rates. The goal in Chapter 10 is to fuse the state
estimates obtained from different sensors with different sampling rates. We
also compare our method which is based on covariance intersection with the
existing methods such as those proposed in Ghosal et al. (2017), Ghosal and
Rao (2019).

In Chapter 9 (the diffusion and H∞ filtering papers), we start with the
classic nonlinear model for the synchronous generators (2.12) to develop
and explain our method. Furthermore, we extend our framework for a
distribution grid containing a wind park.
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Table 2.2: Variables and parameters for the units of a wind farm.

State variable External variables Parameters

low speed frequency ωl inertia coefficients:
Jls, Jhs,

high speed frequency, ωr wind power Pa friction coefficients:
Bls, Bhs ,
damping coefficient dc

angle of torsion θT Steady state value of QSr Gear ratio Ng

rotor and stator currents:
idr, iqr, ids, iqs DC link voltage vSbias torsional stiffness Kc

GSC currents iGd, iGq, reference signals iref
Gd, iref

Gq number of turbines γw

GSC inner controller states:
χGd, χGq,
RSC inner controller states:
χRd, χRq input signals uGd, uGq Rotor leakage reactance Xls ,

stator leakage reactance, Xlr

outer controller states ψGd, ψGq reference signals iref
dr , iref

qr stator resistance Rs

rotor resistance Rhs

DC side voltage vbias input signals uRd, uRq PI gains of outer:
KP,Gd, KP,Gq, KI,Gd, KI,Gq,

battery voltage vb
battery current i′bias GSC time constant TG

PI gains of inner:
KP,Rd, KP,Rq, KI,Rd, KI,Rq,
DC link capacitance Cbias

switching conductance Gsw

battery capacity Cb

battery conductance, Gb

battery resistance Rb

battery inductance Lb

magnetizing reactance χt’

DFIG stator reactance χt

DFIG rotor reactance χhs
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Chapter 3

State estimation

3.1 Introduction

Whenever the dynamical states of a system cannot be directly measured,
they have to be estimated based on measurements and a system model.
This process is known as state estimation. Depending on the system model
and the frequency of the measurements, state estimation can be performed
dynamically or statically. A well-known static state estimation method is
the weighted least square (WLS) method Gomez-Exposito and Abur (2004),
Ule (1955), while the Kalman filter (KF) Kalman (1960) is widely used for
dynamic state estimation.

The KF is constructed as a mean squared error (MSE) minimizer and is
optimal (in the MSE sense) if the underlying assumptions are fulfilled Simon
(2006):

• the system is linear, and the system model is accurate,

• the noises entering the system are Gaussian,

• the noise covariances are known.

A KF fulfilling these assumptions will have a Gaussian output prediction
error. A non-Gaussian prediction error is an indication that the state es-
timate is not optimal. Although few systems fulfill the above assumptions
perfectly, the KF has been found to perform well in a wide variety of ap-
plications Simon (2006).

25
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Effective operation of many systems including power systems Zhao et al.
(2019a;c), Sadamoto et al. (2019), chemical processes Yin et al. (2018), Guo
and Huang (2015), complicated robots Kulic and Croft (2007), Lin et al.
(2006) will typically require accurate information about the dynamic states
of the system. Such accurate information is often not directly available,
either because the required information is not directly measured, or because
available measurements are too noisy. In these cases, the filtered information
for operation and management of a system should be obtained by state
estimation.

Control system design

Decentralized 
methods 

Information is processed throughout the 
network

Advantage:

Common communication protocol is not 
required

Easy to maintain and update

Plug and play

Trade-off possibility between different 
objectives

Disadvantage:

Increased mean squared error

Optimality challenges

Centralized methods

All information is processed in one location

Advantage:

Retains the overall performance of the 
system 

Optimal

Less mean squared error

Disadvantage:

Common communication protocol is 
required

Hard to maintain and update and have 
scalability problems.

Vulnerable to failure

Complicated fault detection

Figure 3.1: A comparison of centralized and decentralized estimation methods.

As illustrated in Fig. 3.1, dynamic state estimation algorithms can be di-
vided into two subcategories: centralized and decentralized algorithms. In
centralized algorithms, the measurements are gathered in a single measure-
ment vector, and this vector is sent to a centralized estimator for computing
an estimate of the global state vector. A high computational cost, vulner-
ability to failures and complicated communication protocols are the main
challenges of these algorithms.

To address these problems, the decentralized filter variants can be used.
Each local subsystem can calculate local estimates, so that the computa-
tional load decreases by splitting the centralized problem into smaller sub-
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problems that can be solved in parallel. The obtained estimates based on
local measurements in a local estimator can be sent to a centralized fusion
center to obtain the global fused estimates. This strategy is known as cent-
ralized fusion method. Alternatively, local estimates can be sent between
two or more local sub-systems using various strategies to estimate the local
and global state estimates. In these methods, the local subsystems and their
local estimators are known as agents, and their coordination will play a cru-
cial role in estimating the states. Such methods are referred as distributed
state estimation.

Different estimation algorithms such as moving horizon estimation Gao et al.
(2018) and robust estimation algorithms Cao et al. (2010)-Lin et al. (2019)
are presented in literature for decentralized state estimation. The strong
properties of the centralized KF has lead to a significant volume of research
into decentralized versions of different variants of the KF. This has led
to decentralized versions of the extended Kalman filter (EKF) Salahshoor
et al. (2008), unscented Kalman filter (UKF) Qing et al. (2015), cubature
Kalman filter (CKF) Ge et al. (2014) and sigma-point Kalman filter (SPKF)
Vercauteren and Wang (2005).

However, in modern industrial systems, some variables and parameters
within a part of a system might be partially or totally unknown due to
privacy and security considerations, fault occurrence, lack of sensors, and
degradation of industrial devices.At the same time, the reliability, stability
and functionality of industrial interconnected systems are highly dependent
on monitoring of their dynamics Zhao et al. (2019a). Therefore, it is crucial
to develop a method that performs state estimation of the known part while
considering these knowledge limitations. There exist several state estima-
tion methods with unknown inputs in the literature. The Extended State
Observers (ESOs) is discussed in Chen et al. (2015), Chen et al. (2015) and
the Augmented Kalman filter (AKF) in Simon (2006), Friedland (1969),
Park et al. (2000). However, the major drawback of these methods is that
they require a model for the unknown input. With the common practice of
choosing the disturbance dynamics as integrators, the AKF is mainly used
to estimate slow or even constant signals such as parameters in networked
systems Plett (2004), Ritter et al. (2019), Bian et al. (2011). A two-stage
state estimation method with unknown inputs is developed in Hou and
Muller (1992), Hou and Patton (1998). In the first stage, an alternative
formulation for a system decoupled from the unknown inputs is derived,
and in the second stage, a minimum-variance unbiased (MVU) estimator
for this decoupled system is designed.
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Another approach is the simultaneous input and state estimation (SISE)
Kitanidis (1987), Gillijns and De Moor (2007a). This method is an optimal
and MVU filter which was developed firstly in Kitanidis (1987). In Gillijns
and De Moor (2007a), this method was extended to simultaneous input and
state estimation (SISE) for systems without direct feedthrough.

3.2 Simultaneous input and state estimation

Simultaneous Input and State Estimation (SISE) is an algorithm which
takes a system with an unknown input, {dt},available output, {yt}, and
conceivably a known input signal, {ut}, and tries to generate estimates of
both the sequence of unknown input signal dt and the state of the system
xt, using fixed-lag smoothing as it is shown in Bitmead et al. (2019).

3.2.1 The mathematical description of SISE

Although SISE formulation can be obtained for both linear Gillijns and
De Moor (2007a), Yong et al. (2016) and nonlinear time-varying systems
Fang et al. (2013), Kim et al. (2020), we consider the linear time-invariant
system with zero known control input for clarity

xt+1 = Axt +Gdt + wt, (3.1)

yt = Cxt +Hdt + vt, (3.2)

where xt ∈ Rn, dt ∈ Rm, yt ∈ Rp. The zero-mean Gaussian noises {wt}
and {vt} are uncorrelated. These are also independent from {dt} and x0.
The covariances of wt and vt are Q ≥ 0 and the R > 0, respectively.
The aggregated measurements up to and including time t are denoted by
Yt , {yt, yt−1, . . . , y0}. The goal is to generate a state estimate, x̂t|t, and

an unknown input filtered estimate, d̂t|t+1, by using Yt, and considering the

properties of G and
[
C H

]
. The following assumption is required.

Assumption 3.1. System (3.1-3.2) has [A,C] observable, rankG = m,
[A,Q] reachable, and R > 0.

SISE algorithm for full-rank direct feedthrough, namely rank(H) = m, is
investigated in Gillijns and De Moor (2007a); SISE algorithm for zero direct
feedthrough, i.e. H = 0, is treated in Gillijns and De Moor (2007a) with
rank(CG) = m; furthermore, Yong et al. (2016) gives an extension, ULISE,
with aggregated rank assumptions for H and CG.
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3.2.2 SISE algorithm for zero direct feedthrough

When H = 0 in (3.2), SISE algorithm for zero direct feedthrough from
Gillijns and De Moor (2007a) is the following recursion

Xt = APt−1A
T +Q, (3.3)

Kt = XtC
T (CXtC

T +R)−1, (3.4)

Mt = [GTCT (CXtC
T +R)−1CG]−1

×GTCT (CXtC
T +R)−1, (3.5)

Pt = (I −KtC) [(I −GMtC)Xt

×(I −GMtC)T +GMtRM
T
t G

T
]

+KtRM
T
t G

T , (3.6)

d̂t−1|t = Mt(yt − CAx̂t−1|t−1), (3.7)

x̂t|t = Ax̂t−1|t−1 +Gd̂t−1|t +Kt

× (yt − CAx̂t−1|t−1 − CGd̂t−1|t). (3.8)

cov(xt|Yt) = Pt, (3.9)

considering the following condition.

Assumption 3.2.
rankCG = m. (3.10)

An apparent finding would be that SISE does not utilize any description of
the unmeasured disturbance model dt. Therefore, it is often claimed that
there is no model for the signal {dt : t = 0, 1, . . . }. Obviously, Assump-
tion 3.2 needs p ≥ m and rankC ≥ rankG = m.

3.2.3 SISE algorithm for non-zero direct feedthrough

For H 6= 0 in (3.2), SISE algorithm for non-zero direct feedthrough can be
obtained subject to the following, for the time-invariant case Gillijns and
De Moor (2007a).

Assumption 3.3. RankH = m.

Considering this assumption, the SISE algorithm for non-zero direct feed-
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through, for the time-invariant system (3.1-3.2) is

x̂t|t−1 = Ax̂t−1|t−1 +Gd̂t−1|t−1, (3.11)

P xt|t−1 =
[
A G

] [P xt−1|t−1 P xdt−1|t−1

P dxt−1|t−1 P dt−1|t−1

] [
AT

GT

]
+Q,

R̃t = CP xt|t−1C
T +R,

Mt = (HT R̃tH)−1HT R̃−1
t ,

d̂t|t = Mt(yt − Cx̂t|t−1), (3.12)

P dt|t = (HT R̃tH)−1,

Kt = P xk|k−1C
T R̃−1

t ,

x̂t|t = x̂t|t−1 +Kt(yt − Cx̂t|t−1 −Hd̂t|t), (3.13)

P xt|t = P xt|t−1 −Kt(R̃t −HP dHT )KT
t ,

P xdt|t =
(
P dxt|t

)T
= −KtHP

d
t|t.

For rankH < m, in Yong et al. (2016), a version of SISE is developed
based on the singular value decomposition (SVD). The resulting algorithm is
called the Unified Linear Input & State Estimator (ULISE). In the following
section, application of SISE for state estimation of interconnected industrial
systems will be explained.

3.2.4 State estimation of interconnected systems using SISE

In geophysical exploration and environmental monitoring, SISE algorithms
have generally been inspired by and applied to input estimation issues as
a method for deconvolving input and state signals through a linear system.
The primary methods given in Friedland (1969) focused on bias estimation.
However, obtaining the state estimate is a direct consequence of this decon-
volution. The emphasis of this algorithm can be both on linear system state
estimation, interconnected with an unknown system, and on linear system
input estimation, as shown in Figure 3.2 Kitanidis (1987). Note that there
is no prerequisite statistical correlation between the unknown input and the
other signals. The study of interconnected systems, however, reveals the
potentially important application of SISE to estimate the state in isolation
from the signals connecting the system to neighboring unknown parts, which
are completely grasped from the model of unknown input. Irrespective of
the size of the neighboring unknown parts, the complexity of this problem is
given by the size of the state vector of the known system and the number of
interconnecting signals. Further, the known system is required to be linear,
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External input for
unknown part

Unknown system

Partially known system

Interaction signals from known 
to unknown part 

External input for 
known part

Interaction signals from 
unknown to known part 

Process noise
Measurement noise

Output

Figure 3.2: Depiction of interconnected known linear system with states need to
be estimated, unknown system and unmeasured interconnection signals.

but this is not required for the unknown system. However, Assumption 3.2
has to hold in order to be able to estimate the disturbances, which depends
on the topology and structure of the interconnection between the known
and unknown parts. Note that we do not need knowledge of the unknown
part of the system. Certainly the quality of state estimation is degraded
compared to what would be achievable with access to a full model of the
unknown system and sufficient measurements to make the unknown system
observable1. A traditional approach might be to assume a model, typically
lowpass or even static, for the unknown part. However, that introduces
errors into the estimation of the states in the system.

As discussed above, the estimation accuracy is higher when more informa-
tion is available. In many industrial systems, with improvement in inform-
ation and communications technology (ICT), it is possible to share data
between different regions or subsystems. In those cases, the adjoining parts
of the system are no longer fully unknown. In this respect, it is important
to take this communication between nodes into account and benefit from
distributed algorithms. Our focus is on diffusion Kalman filtering proposed
in Cattivelli and Sayed (2010).

1In which case the ’unknown system’ would no longer be unkown.
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3.3 Diffusion Kalman filtering

The class of distributed Kalman filtering algorithms proposed in Cattivelli
and Sayed (2010) are based on diffusion adaptive algorithms Sayed (2014a),
which enable both the measurement update and information fusion through-
out the network to be applied in a single time-scale, and have become known
as diffusion Kalman filters. An essential feature in the diffusion strategy is
that only the state estimates, together with measurements, are shared in
the network.

The diffusion Kalman filtering is chosen because each subsystem commu-
nicates only with its adjacent subsystems, without need for centralized fu-
sion. Consequently, the diffusion Kalman filtering imposes no hierarchical
structure on the estimation. In contrast, each subsystem applies the same
procedure of processing data and communication (further in Chapter 9 we
discuss how to synchronize local estimators if their sensors are not syn-
chronized). This fully distributed architecture is robust to possible failures
in subsystems, is scalable and can accommodate topology changes, and does
not need complicated communication protocols. Importantly, it does not re-
quire performing consensus steps until convergence between measurements,
which makes it appropriate for online and dynamic estimation. Last but
not least, there is no limitation on the network’s topology except for being
fully connected Cattivelli and Sayed (2010).

3.3.1 Network Model

In keeping with the classical distributed processing approach, we consider
a set of interconnected sensors, deployed for monitoring a dynamic system.
Each node has access to one or more sensors, and each sensor is assigned
to a single node. The nodes and their connections are modeled as the
graph G = {N , E}, where the node set N representing the nodes and their
communication links represented by the edge set E . The neighbourhood of
node l is defined as the set of nodes that node l can communicate with,
including self communication, and is denoted as Nl = {`1, . . . , `|Nl|}, (see
Fig. 3.3) where `1 corresponds to the node itself. Finally, the cardinality of
the set Nl is denoted by |Nl| with |N | denoting the total number of nodes
in the network. In addition, all communication links are assumed to be
bi-directional.

Based on these concepts, a diffusion estimation can be concisely described
in two steps:
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Node 𝑙

𝒩𝑙

Figure 3.3: A simple network for clarifying the concept of the neighborhood, the
green dotted line shows the neighbourhood of node l.

1. The nodes (as we will discuss in Chapter 9 it can be also a subsystem)
share their measurements, and they use the received data with their
own measurement to update their local estimates utilizing the Kal-
man filter’s (or other state estimation methods such as recursive least
square method Cattivelli et al. (2008)) measurement update equations
resulting in local estimates, referred to preestimates.

2. Each node/subsystem sends its preestimates to its neighborhood and
then calculates a weighted average on all received preestimates to ob-
tain the diffused estimate as it is shown in Fig. 3.4.

Generally, in the diffusion approach, every agent should have access to the
entire system state-space model and sufficient measurements to ensure ob-
servability. This clearly limits the scalability of the method. We address
this problem, such that the diffusion filtering algorithm is modified to relax
observability requirement to that of the centralized approach in Chapters 8
and 9.

The other drawback with diffusion Kalman filtering is that model and meas-
urement uncertainties at some nodes can degrade the estimator’s perform-
ance. In such cases, the use of robust estimators such as the H∞ filter can
enhance the performance of the estimation method by imposing a threshold
for the uncertainties in the system and measurement models.
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Figure 3.4: Diffusion algorithm at node l in network shown in Fig. 3.3.

3.4 Robust filtering

Consider the linear discrete-time dynamic model given in (3.14),

xt+1 = Axt + wi (3.14)

yt = Cxt + vt (3.15)

where at time instant t, the system state and measurement are denoted by
xt ∈ Rn and yt ∈ Rm. The system dynamics and the observation matrix are
denoted by A and C, with the process noise, wt, and the measurement noise,
vt, being energy bounded l2[0,+∞) signals which have unknown statistical
properties, so that

∞∑
i=0

wT
t wt <∞ and

∞∑
i=0

vTt vt <∞. (3.16)

The performance of the state estimation methods based on the the Kalman
filtering techniques is strongly based on certain conditions Simon (2006):

1. At each moment, the mean and correlation of the process noise wt and
the measurement noise vt and their covariances Qt and Rt need to be
available. Actually, Qt and Rt are very important design variables for
Kalman filtering approaches, and without having enough information
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about them, it can be difficult to design a Kalman filter that works
properly a practical application.

2. The Kalman filter is a MVU estimator which means the Kalman filter
generates the estimates with the smallest deviation and variance of
the estimation error (based on the Gaussian assumption for noises).
For different objective functions, including minimizing the worst-case
estimation error, we may with advantage use other strategies other
than the Kalman filter to fulfill our goals.

3. The system modelA and the measurement model C should be provided
and be accurate to some extent.

In order to address above limitations, the H∞ filter, also called the minimax
filter, can be implemented. The aim is to estimate xt on the basis of meas-
urements prior to and including time t. Applying a game theoretic approach
to the problem, nature takes the role of an adversarial player, which can in
theory select any value for {wt, vt, x0} given the objectives. In contrast, in
the Kalman filtering arena, the probability density functions (pdf)s of noises
in the system are assumed to be known Simon (2006). Subsequently, this
pdf knowledge is used to obtain a minimum variance state estimate. In this
case, nature’s possible actions to degrade the state estimate are constrained
by the prescribed pdf’s of the process and measurement noises Banavar
(1992), Simon (2006).

In the H∞ filtering problem, the following cost function is considered:

J1 =

∑t
j=0 ‖xj − x̂j‖22

‖x0 − x̂0‖2P−1
0

+
∑t

j=0(‖wj‖2Q−1
j

+ ‖vj‖2R−1
j

)
(3.17)

where the estimate of xt is denoted by x̂t, with Qt and Rt being weighting
matrices that are analogous to the covariance estimates of wt and vt in clas-
sical state-space filtering approaches, while P−1

0 > 0 is a weighting matrix
that can be used to integrate a priori information about the accuracy of
the initial state estimate x̂0. The solution is to find x̂t that minimizes the
objective function in (3.16), while the opponent’s goal is to find {wt, vt, xo}
that maximize the error term (xt − x̂t) Simon (2006).

The solution of J1 is not attainable in a straightforward fashion; therefore,
an approximation method that meets a performance threshold is sought Si-
mon (2006). In this setting, we have

J1 < λ2 (3.18)
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where λ is a user-specified performance bound. Substituting (3.17) into
(3.18) results in

J =− λ2‖x0 − x̂0‖2P−1
0

+
t∑

j=0

[‖xj − x̂j‖22 − λ2(‖wj‖2Q−1
j

+ ‖vt‖2R−1
j

)] < 0.
(3.19)

A sub-optimal solution to the H∞ filtering problem given in (3.19) can be
reached through the following iterations Li and Jia (2010), Simon (2006)

At each time instant t:

x̂t|t−1 =Ax̂t−1|t−1 (3.20)

x̂t|t =x̂t|t−1 +Kt(yt − C(x̂t|t−1)) (3.21)

Pt|t−1 =APt−1|t−1A
T +Qt (3.22)

Kt =Pt|t−1C
T(Rt + CPt|t−1C

T)−1 (3.23)

Pt|t =Pt|t−1 − Pt|t−1

[
CT I

]
R−1
e,t

[
C
I

]
Pt|t−1 (3.24)

where x̂t|t−1 and x̂t|t denote the a posteriori and a priori estimaties of xt,
respectively, while Re,t is given by

Re,t =

[
Rt 0
0 −λ2I

]
+

[
C
I

]
Pt|t−1

[
CT I

]
.

In addition, applying the matrix inversion lemma to (3.24), it can be shown
that

P−1
t|t = P−1

t|t−1 + CTR−1
t C − λ−2

t I. (3.25)

The overall structure of the linear H∞ filter which is very close to that of the
Kalman filter are given in Fig. 3.5. We merge the idea of H∞ filtering with
the diffusion Kalman filtering to derive a robust diffusion filter for nonlinear
systems. The details of our proposed algorithms are given in Chapters 8
and 9 .
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Figure 3.5: The overall structure of a H∞ filter.
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Paper I: A Kalman-filtering
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simultaneous input and state
estimation

This chapter is an extended version of Bitmead et al. (2019)

Robert R. Bitmead
Morten Hovd
Mohammad Ali Abooshahab
Automatica, Vol. 108 (2019)

Abstract

Simultaneous input and state estimation algorithms are studied as partic-
ular limits of Kalman filtering problems. This admits interpretation of the
algorithm properties and critical analysis of their claims to being partly
model-free and to providing unbiased estimates. A disturbance model, white
noise of unbounded variance, is provided and the bias feature is shown to
be a geometric projection property rather than probabilistic in nature. As
a consequence of this analysis, the algorithm is connected, in the stationary
case, to Algebraic Riccati equation computations for the gains, estimate
covariances and filter frequency response. Lastly, by focusing on the state
estimation aspects, as opposed to the usual deconvolution input signal es-
timation features, we are able to present a powerful and intriguing property

39
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of the algorithms in networked system state estimation.

4.1 Introduction

The on-line Cambridge English Dictionary defines

deconstruction: the act of breaking something down into its sep-
arate parts in order to understand its meaning, especially when
this is different from how it was previously understood.

Our objective in this chapter is to deconstruct the Simultaneous Input and
State Estimation (SISE) algorithm to permit its interpretation as Kalman
filtering. By doing this, we improve understanding of the algorithm and
provide a path forward to its ready application, design and extension.

The SISE algorithm has been the subject of considerable research interest
since its inception Glover (1969), Sanyal and Shen (1974), Kitanidis (1987),
Mendel (1977) as an input reconstruction method suited to signal recovery
in environmental and geophysical linear array analysis. Kitanidis Kitanidis
(1987) is generally credited with the formulation which seeks also to generate
reliable state estimates. More recent works Gillijns and De Moor (2007a;b),
Fang et al. (2013), Yong et al. (2016) have developed the algorithm per
se for systems with direct feedthrough and for nonlinear problems, again
with the emphasis on environmental estimation when an application is de-
veloped. The genesis of the algorithm is clearly based on least-squares linear
estimation but invokes a number of properties to motivate and guide its de-
rivation. These focus on the absence of two features: any statistical signal
model for the input signal and any ‘bias’ in the state or input estimates.
Part of our aim in this chapter is re-derive and then extend the SISE al-
gorithm by providing a specific input signal model (curiously suggested and
then dismissed by both Glover (1969) and Kitanidis (1987)) and applying
standard Kalman filtering ideas. Elucidating the algorithm in this way adds
to clarity in application and design and opens the door to Riccati equation
calculations and informed design. Our techniques, residing in the proof of
Theorem 4.1 in the Appendix, are technically more demanding and distinct
from the approaches proposed in these early references.

We take the SISE algorithm class and tie it to a basis in Kalman filtering
as the limit of standard problems with unbounded noise. The pursuant
contributions of the chapter are as follows.

• Since the Kalman filtering background is widely understood, the algorithms
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and their derivation are more easily adopted and acquired. The al-
gorithms are not fully replaced but they are extended and provided
with context and genealogy and computational tools. This admits
standard design approaches and gentler variants.

• The logically problematic concept of the absence of a model for the dis-
turbance process is addressed by deriving the algorithms with a very
explicit disturbance model.

• The misappropriated estimate property unbiased is clarified and the al-
gorithm interpreted via projections and constrained optimization.

• For the stationary case, we provide a Riccati equation approach to the
direct computation of filter gains and estimation performance and to
assist in design. This was previously absent.

• The disjunction between consideration of systems with and without direct
feedthrough is avoided and the methods extended to higher degrees of
smoothing and more complicated observability structure.

• There is no need to impose additional stable invariant zero or minimum-
phase conditions found in Yong et al. (2016).

• The algorithm’s treatment of the inputs signals is exploited to derive
state estimation for networked systems in which the models for the
connected systems are not required since they may be unknown.

We note that the algebraic demonstration that SISE and Kalman filter
algorithms coincide proves to be more intricate, difficult and revealing than
had been suggested by Glover (1969), Kitanidis (1987) in their comments.
Downstream consequences follow too.

The roadmap here is to present in Section 4.2 the SISE algorithm using
the clear formulation of Gillijns and De Moor (2007a) and then to follow in
Section 4.3 with the parallel Kalman filtering formulation with a white-noise
input, making the link to Mendel’s early work Mendel (1977) in geophysical
signal recovery. A sequence of algebraic identities is presented in Section 4.4
for input variance, D, finite. This establishes the strong heritage of the SISE
algorithm. There follows in Section 4.5 the limiting operation, suggested in
Glover (1969), Kitanidis (1987), as D−1 → 0 to arrive at the SISE algorithm
of Section 4.2. The use of algebraic Riccati equation (ARE) methods for
stationary performance analysis and design are presented in Section 4.6
followed by a numerical example with large but finiteD. Section 4.7 presents
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a new treatment of direct feedthrough and smoothing engendered by the new
connections established in this chapter. Section 4.8 provides commentary
and interpretations. All of the proofs are confined to the Appendix.

4.2 The SISE algorithm

Consider the linear time-invariant system without direct feedthrough and
with zero known control input,

xt+1 = Axt +Gdt + wt, (4.1)

yt = Cxt + vt, (4.2)

[We take the time-invariant and zero-control system (4.1-4.2) solely for clar-
ity in exposition. The time-varying and control-inclusive versions are direct
and available in the cited references.] Make the following assumptions.

Assumption 4.1. 1. xt, wt ∈ Rn, ut ∈ Rq, dt ∈ Rm, vt, yt ∈ Rp.

2. these signals are mutually independent Gaussian white noises, wt ∼
N (0, Q), vt ∼ N (0, R) and initial condition x0 ∼ N (x̂0|0, P0),

3. Rt > 0,

4. rankCG = rankG = m.

Then the simultaneous input and state estimation (SISE) algorithm, de-
veloped by Kitanidis (1987) and summarized, refined and analyzed by Gil-
lijns and De Moor (2007a), is as follows. At time t with current state
estimate x̂SISE

t|t with covariance Pt and measurement yt+1,

Xt+1 = APtA
T +Q, (4.3)

Kt+1 = Xt+1C
T (CXt+1C

T +R)−1, (4.4)

Mt+1 = [GTCT (CXt+1C
T +R)−1CG]−1GTCT (CXt+1C

T +R)−1,
(4.5)

Pt+1 = (I −Kt+1C)[
(I −GMt+1C)Xt+1(I −GMt+1C)T +GMt+1RM

T
t+1G

T
]

+Kt+1RM
T
t+1G

T , (4.6)

d̂SISE

t|t+1 = Mt+1(yt+1 − CAx̂SISE

t|t ), (4.7)

x̂SISE

t+1|t+1 = Ax̂SISE

t|t +Gd̂SISE

t|t+1 +Kt+1(yt+1 − CAx̂SISE

t|t − CGd̂
SISE

t|t+1). (4.8)

cov(xt+1|Yt+1) = Pt+1, (4.9)
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The purpose of this algorithm is to take the measurement sequence, Yt+1 ,
{yt+1, yt, . . . , y1}, and the current state estimate, x̂SISE

t|t , and covariance, Pt,

and to produce estimates, d̂SISE

t|t+1 and x̂SISE

t+1|t+1 respectively, of the input and
the state signals. The properties claimed of these estimates are as follows.

1. No model whatsoever is provided for the evolution of the disturbance
sequence {dt}, including presumably that it might depend on xt+τ .

2. The estimates d̂SISE

t−1|t and x̂SISE

t|t are ‘unbiased,’ viz. E(d̂SISE

t−1|t|Y
t) = dt−1

and E(x̂SISE

t|t |Y
t) = xt, regardless of the values taken by {dt}.

3. Subject to possession of the above properties, the estimates are least
mean squares Kerwin and Prince (2000), minimizing the criterion

J = trace cov
(
xt|Yt

)
. (4.10)

Our aim is to demonstrate that the SISE algorithm can be derived from a
standard Kalman filtering problem and the non-properties of no model and
unbiasedness can be linked to assumed signal properties. To achieve this, we
provide a model for the {dt} sequence and for its relationship with the {xt}
sequence; we assume that dt is a Gaussian white noise sequence independent
from other signals, with finite mean, d, but variance, D, tending to infinity.
By doing so, we are able to provide a genealogy for the SISE algorithm
and to show: that the algorithm’s properties of convergence and stability in
the time-invariant case, established by Fang et al. (2013), follow naturally;
that there are aspects of the algorithm preserved for finite D; and that
the algorithm might be derived in a standard way by selecting a specific
augmenting disturbance model.

4.3 Kalman filtering formulation

Make the following assumptions regarding the signals

Assumption 4.2. The disturbance signal dt ∼ N (d, D) and is independent
from x0, wτ , vτ for all t and τ .

Theorem 4.1. Given system (4.1-4.2) subject to Assumptions 4.1 and 4.2,
the Kalman filtering solution to input and state estimation is given as fol-
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lows, from x̂t|t and Pt.

Xt+1 = APtA
T +GDGT +Q, (4.11)

Kt+1 = Xt+1C
T (CXt+1C

T +R)−1, (4.12)

Mt+1 = DGTCT (CXt+1C
T +R)−1. (4.13)

Pt+1 = Xt+1 −Xt+1C
T (CXt+1C

T +R)−1CXt+1 = (I −Kt+1C)Xt+1,
(4.14)

x̂t+1|t+1 = E
[
xt+1|Yt+1

]
= Ax̂t|t +Gd +Kt+1(yt+1 − CAx̂t|t − CGd), (4.15)

d̂t|t+1 = E
[
dt|Yt+1

]
= d +Mt+1(yt+1 − CAx̂t|t − CGd). (4.16)

The criterion minimized is altered from (4.10), which deals with dt − d̂t|t+1

via the ‘unbiasedness’ condition, to

J = trace cov
(
dt−1|Yt

)
+ trace cov

(
xt|Yt

)
, (4.17)

and these covariances are given by

cov
(
xt+1|Yt+1

)
= Pt+1,

cov
(
dt|Yt+1

)
= D −DGTCT (CXt+1C

T +R)−1CGD, (4.18)

= (I −Mt+1CG)D , Dt. (4.19)

The proof, included in the Appendix, differs from those sketched by Glover
(1969) and alluded to by Kitanidis (1987). Part of our aim is to establish,
in Theorem 4.2 below, that as D−1 → 0 the two algorithms coincide. This
is more algebraic in nature than probabilistic.

4.4 Identities for finite D

From the earlier definitions of matrices: Xt+1,Mt+1, Xt+1, Kt+1, Kt+1, for
finite values of D, we have the following set of sequential identities linking
quantities in the Kalman filtering formulation to SISE.

Identity 4.1 (divisors).
CXt+1C

T +R = (Ip − CGMt+1)(CXt+1C
T +R).

Identity 4.2 (innovations).
yt+1 − CAx̂t|t − CGd̂t|t+1 = (Ip − CGMt+1)(yt+1 − CAx̂t|t − CGd).
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Identity 4.3 (state update gains).
Kt+1 = GMt+1 +Kt+1(Ip − CGMt+1),

I −Kt+1C = (I −Kt+1C)(I −GMt+1C).

Identity 4.4 (state updates).
x̂t+1|t+1 = Ax̂t|t +Gd +Kt+1(yt+1 − CAx̂t|t − CGd),

= Ax̂t|t +Gd̂t|t+1 +Kt+1(yt+1 − CAx̂t|t −Gd̂t|t+1).

Identity 4.4 establishes that the filtered state estimate updates for the finite-
D Kalman filter and for SISE starting from the same values of x̂t|t and Pt

coincide when d̂t|t+1 is the same. Since the matricesMt+1 and Mt+1 are not

identical for finite D, the algorithms will differ in the d̂t−1|t update, which
is addressed by the next finite-D identity.

Identity 4.5 (disturbance update gain).

Mt+1 =
[
D−1 +GTCT (CXt+1C

T +R)−1CG
]−1

GTCT (CXt+1C
T +R)−1.

Identity 4.6 (disturbance update).
d̂t|t+1 = (Im −Mt+1CG)d +Mt+1(yt+1 − CAx̂t|t).

Identity 4.7 (disturbance estimation error covariance). The covariance of
d̂t|t+1, Dt, satisfies

Dt =
[
D−1 +GTCT (CXt+1C

T +R)−1CG
]−1

.

Identity 4.8 (covariances).
Pt+1 = (I −Kt+1C)

{
(I −GMt+1C)Xt+1 +GDtGT

}
.

4.5 Properties when D−1 → 0: KF→SISE

Identity 4.9 (disturbance and filter update gains).

As D−1 → 0,

Mt →Mt, Kt → GMt +Kt(Ip − CGMt).
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Lemma 4.1. For Mt+1 given by (4.5),

Mt+1CG = Im. (4.20)

Whence, the matrices

Mt+1CG ∈ Rm×m, CGMt+1 ∈ Rp×p, GMt+1C ∈ Rn×n,

are rank m projections on Rm, Rp, Rn respectively. The range spaces are
given by

Ra (Mt+1CG) = Rm,
Ra (CGMt+1) = Ra (CG) ⊆ Rp,
Ra (GMt+1C) = Ra(G) ⊆ Rn.

Theorem 4.2. In the limit that D−1 → 0, the Kalman filtering algorithm
(4.11-4.16) coincides with the SISE algorithm (4.4-4.8).

d̂t|t+1 = d̂SISE

t|t+1, x̂t+1|t+1 = x̂SISE

t+1|t+1,

with cov
(
xt+1|Yt+1

)
= Pt+1 = Pt+1 and

cov
(
dt|Yt+1

)
=
[
GTCT (CAPt+1A

TCT + CQCT +R)−1CG
]−1

.

We may next combine: Theorem 4.2, Lemma 4.1, (4.14) and Identity 4.8,
to yield an interpretation of the SISE algorithm.

Corollary 4.1. For the SISE algorithm, define the signals

x̂SISE

t+1|t , (I −GMt+1C)
(
Ax̂SISE

t|t +Gd
)
,

x̂SISE

t+1|t+ 1
2

, x̂SISE

t+1|t +GMt+1yt+1.

Then

x̂SISE

t+1|t+1 = (I −Kt+1C) x̂SISE

t+1|t+ 1
2

+Kt+1yt+1.

Corollary 4.1 deconstructs SISE into three steps.

1. A time update projected onto the null space of G.

2. An update in the range space of G.

3. A Kalman-filter-like measurement update.

This sequence decodes the SISE covariance formula (4.6). Further, but
consistent, reinterpretation of SISE unbiasedness as prioritizing the input
signal estimate over state estimation is examined in Section 4.8 following.
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4.6 Riccati-based steady-state SISE gains, perform-
ance and design

An evident and troubling absence from SISE is the Riccati difference equa-
tion associated with recursive linear least-squares optimal estimation. While,
for the stationary case, the existence of and convergence to stationary val-
ues for the SISE gains and covariances has been established by Fang et al.
(2013) and others, the computation of these values is problematic without
an algebraic Riccati equation connection — our numerical example of SISE
iterates the gain calculations (4.3-4.6) for 500 steps, i.e. effectively to conver-
gence, before initiating stationary-gain SISE. The algorithm performance,
and hence design in terms of Q, R and perhaps D, is evaluated from these
error covariances. By the same token, appreciation of the noise amplific-
ation properties of the algorithm is wanting in earlier works. We remedy
that here.

For the steady-state Kalman filter version of SISE, KF-SISE, we solve the
following ARE in Matlab.

Sig = dare(A’,C’,Q+G*D*G’,R);

KF = Sig*C’/(C*Sig*C’+R);

MKF = D*G’*C’/(C*Sig*C’+R);

P = (eye(n)-KF*C)*Sig;

Dd = (eye(m)-MKF*C*G)*D;

The ARE solution, Sig here, is the steady-state prediction error covariance
X∞ from (4.11). Variables KF, MKF, P, Dd are the Kalman filter gain K∞
from (4.12), the disturbance gain M∞ from (4.13), the filtered state error
covariance P∞ from (4.14) and the smoothed disturbance error covariance
D∞ from the proof of Identity 4.7, which follows, in turn, from the proof of
Theorem 4.1.

The systems from dt → yt and from yt → d̂t−1|t may be computed as follows.
We show this shortly for the example.

fwdsysd = ss(A,G,C,0,1)

deconsys = ss((eye(n)-KF*C)*A,KF,-MKF*C*A,MKF,1)

Thus, their frequency responses can be plotted.

As is apparent from (4.1), allowing D → ∞ immediately implies that pre-
diction error covariance X∞ →∞, which could be a numerical problem even
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though SISE gains and covariances remain finite. In the example to follow,
we used Ds as large as 1017 without issue but settled on 106.

An alternative strategy would be to use the Information Filter variant of
the ARE Anderson and Moore (2012) yielding directly P−1

∞ , the inverse of
the filter covariance. This, however, is an ARE for large D which exhibits
singular optimal control issues, likely coupled to the non-minimum phase
condition appearing in Yong et al. (2016).

4.6.1 Computational example from power systems

We apply three state estimators to a power system problem, taken from
Blood (2011), for a 3-bus network with controlled generators connected to
buses 1 and 2 and, at bus 3, a motor with a variable consumer power load.
The phase differences δ2,t between buses 1 and 2 and δ3,t between buses 1 and
3, determine the power flows. Only the rotational speed, ω1,t, of generator
1 is measured. The bus 3 relative phase, δ3,t is regarded as an external
input with the rest of the network being modeled as a known linear system
with seven states. The complete system is simulated with a realistic non-
stationary load signal applied to the motor at bus 3. This yields the true
state values. We apply three state estimators:

• a Kalman filter with 7-state model for the known 3-bus network driven
by ω1,t and external input δ3,t, which is made available to this estim-
ator alone to provide a reference estimate quality,

• the SISE state and input estimator driven by ω1.t to estimate the seven
states and the external input δ3,t,

• the Kalman filter as above, denoted as KF-SISE, for various values of
D driven by ω1,t to yield state and δ3,t estimates.

Even though the external load signal, and therefore δ3,t, is highly non-
stationary, the model of the network is time-invariant and we compare the
performance of steady-state estimators. For the Kalman filter and KF-SISE
algorithms, this is done by solving the respective AREs. For the SISE al-
gorithm, we iterate the algorithm for 500 steps before constructing the filter
with constant coefficients.

Figure 4.1 displays state and state estimates for δ2,t, the phase angle between
buses 2 and 1. The true signal is closely tracked by the full-information Kal-
man filter. The state estimates from SISE and KF-SISE with D = 106 are
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indistinguishable and track around the changing state. However, both es-
timates exhibit a strong periodicity at 1.62 radians per sample corresponding
to a pole of (I −KC)A at this angle with magnitude 0.92.
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Figure 4.1: State δ2,t, phase difference between buses 2 and 1, in blue and its
estimates with full-information Kalman filter, in red, and estimates from SISE and
KF-SISE with D = 106 in gray.

Disturbance signal δ3,t and effectively coincident estimates from SISE and
KF-SISE for D = 106 are shown in Figure 4.2.

Figure 4.3 shows the logarithms of the sample signal norms of the error
between SISE and KF-SISE estimates for states 1 to 7 and for the disturb-
ance δ3,t versus the logarithm of disturbance variance, D, for values between
1 and 1016. Since SISE is not dependent on D, the glitch evident around
1014 is due to a numerical problem with the solution of the ARE for these
choices of Q (3×10−2 I7), R (10−5). The subsequent recovery from this issue
is a mystery. With different values of Q and R the problem disappears.

The availability of the ARE approach to the problem allows the examination
of the frequency responses of the systems involved. Figure 4.4 shows the
transfer functions and clearly exhibits the all-pass, pure-delay nature of the
dt → d̂t−1|t cascade system, which underpins the deconvolution operation.
Also evident from the KF-SISE frequency response in this figure is the high-
frequency noise amplification and resonant frequency around 1.6 rad/sec.
These aspects appear in the time responses of Figures 4.1 and 4.2. Figure 4.5
shows the disturbance estimate in the absence of measurement noise. The
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Figure 4.2: External input/disturbance δ3,t in blue and its estimates with
SISE/KF-SISE with D = 106 in red.

noise-excited ringing is absent.

The point of this numerical example if to highlight the accessibility of stand-
ard linear systems design tools for the KF-SISE algorithm via the applica-
tion of the ARE to derive the steady-state gain and covariance values.

4.7 Direct feedthrough, delays and smoothing

Direct feedthrough modifies measurement equation (4.2) to

yt = Cxt +Hdt + vt. (4.21)

The role of direct feedthrough in SISE algorithms has been a complication.
Reflection on the problem also indicates that system delays will throw up
related issues, since they affect the timing of appearance of dt in yt+` for
various values of `. The reconstruction condition, rankCG = m, from
Gillijns and De Moor (2007a) and appearing as Assumption 4.1.4, for strictly
proper (H = 0) systems, ensures that a full estimate of dt is constructible
from yt+1 without further delay. This follows since the rank condition admits
a gain M satisfying MCG = Im. The rank condition prohibits part of dt
being delayed in the system equation. The disturbance estimate satisfies

d̂t|t+1 = dt + CA(xt − x̂t|t) + Cwt + vt+1.

The condition rankH = m from Gillijns and De Moor (2007b) for systems
with direct feedthrough similarly ensures that yt suffices for construction of
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Figure 4.3: Log-log plot of normed errors between SISE and KF-SISE for each
signal estimate as a function of D ∈ [1, 1016].

a full estimate of dt via MH = Im in a modified algorithm.

Yang et al. Yong et al. (2016) relax this condition to rank
[
HT GTCT

]T
=

m and their ULISE algorithm permits a more complicated structure for[
HT GTCT

]
which effectively constrains the Kronecker observability in-

dices of the transfer function from {dt} to {yt} to be 0 or 1. This known
observability structure is then used to present ULISE, which is unusually
intricate and requires a non-minimum-phase assumption on the {dt} to {yt}
transfer function. The signal dt is estimated in two parts, one directly from
yt and the other via yt+1 and yt. The twenty-three-step algorithm has many
points of tangency with other SISE algorithms and with the Kalman filter.

The standard Gaussian pdf methods applied in the proof of Theorem 4.1
carry over to this set up, but with less machinery. Suppose that we are given
at time t: Yt, conditional mean estimates x̂t|t and d̂t|t, and corresponding
joint conditional covariance matrix

St =

[
SxtxTt SxtdTt
SdtxTt SdtdTt

]
,

Consider the conditional probability density function, subject to (4.1) and
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Figure 4.4: Linear-frequency Bode diagrams of discrete transfer functions: dt →
yt (blue), yt → d̂t−1|t (red) and cascade dt → d̂t−1|t (gray) for SISE/KF-SISE with
D = 106 in red.

(4.21),

pdf



xt+1

dt
dt+1

yt+1


∣∣∣∣∣∣∣∣Y

t



= N




Ax̂t|t +Gd̂t|t
d̂t|t
d

CAx̂t|t + CGd̂t|t +Hd

 ,AStAT +HDHT + CQCT + BRBT

 ,

where

A =


A G
0 Im
0 0
CA CG

 ,H =


0
0
Im
H

 , C =


In
0
0
C

 ,B =


0
0
0
Ip

 .
Then the regular construction of conditional densities given Yt+1 allows
us to recreate the SISE algorithm for this problem by taking Dt+1 → ∞
appropriately. The gains Kt+1,M1,t+1 and M2,t+1, for x̂t+1|t+1, d̂t|t+1 and

d̂t+1|t+1 respectively, follow naturally and converge to finite limits. Without
the assumed constraints on observability indices as in Yong et al. (2016)
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Figure 4.5: Version of Figure 4.2 with noise removed from measurements: external
input/disturbance δ3,t in blue and its estimate with SISE/KF-SISE with D = 106

in red.

there is no guarantee that the computed covariances also remain bounded.
However, the extension of the SISE algorithms to accommodate direct feed-
through, delays and more complicated Kronecker observability indices is
clear.

4.8 Non-models, unbiasedness and input estima-
tion

It is usually attributed to John von Neumann or to Stanislaw Ulam that the
study of non-equilibrium thermodynamics in Physics is akin to the study of
non-elephants in Zoology. By the same token, the study of model-free es-
timation is an unhelpful even meaningless description in this domain. The-
orem 4.2 establishes that the SISE algorithm does indeed correspond to a
particular model for the disturbance input process {dt} and thereby admits
access to standard tools of linear least-squares estimation. The SISE concept
that estimates are independent is replaced by the sounder hypothesis that
in the signal model the disturbance input is independent from early values
of the state.

Unbiasedness of the estimates, used in a probabilistically non-standard (but
at least consistent) fashion in SISE since Kitanidis (1987), refers to the
property that, no matter the specific value taken by the disturbance, dt,
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the conditional expected value, x̂t|t = E
(
xt|Yt

)
= xt. This is not so much a

statistical property as a geometric one captured by the projection operations
of Corollary 4.1. The juxtaposition of probabilistic signal properties with
non-models and absence of assumptions concerning the disturbance leads to
fundamental questions regarding the nature of filtrations over which one is
meant to take the expected values. By assuming a model, albeit a singular
one, we are able to clarify these statements and to prove that they disguise
a deterministic projection property. This might better be interpreted as a
prioritization of the estimation of the input signal over that of the state,
with the constraint E(d̂t|t+1) = dt, trumping the subsequent optimization
of (4.10). The formulation developed in this chapter can then be seen as a
penalty function approach this same constrained optimization.

Likewise, the strong detectability properties in Yong et al. (2016) appear to
be related to the projective features of the relevant algorithm rather than
to statistical signal properties. These definitions of unbiasedness are defin-
itions of convenience masking the projections forced by taking unbounded
variances. The mathematical question lies in the nature fo the expectations
when one assumes no model for dt.

The computational example of Subsection 4.6.1 provides a good illustra-
tion of the state estimation features. The 3-bus network is captured by a
known 7-state linear time-invariant model with a single measurement ω1,t.
The connection to the customer network is via bus 3 and whatever draws
power from or provides power to that bus. In our case, this is a motor
with a highly time-varying consumer load. Yet, the (KF-)SISE methods
admit the estimation of both the 7-state vector and the input signal δ3,t

using a seventh-order state estimator. Knowledge of the customer side of
the network is not required. Certainly the quality of state estimation is
degraded compared to having either access to the customer signals or an
accurate model of the load signal. This is evident in the performance of the
fully informed Kalman filter in, say, Figure 4.1 versus SISE. A traditional
approach might be to assume a model, typically lowpass or even static, for
the consumer load. But that introduces errors into the estimation of the
states in the 3-bus system.

For a network state estimation problem, one can divide the network into
known and unknown parts with constraints on the nature of the intercon-
nection to admit SISE estimation of the known part in isolation. Certainly,
as seen in Figure 4.1, the performance of a SISE estimator is degraded
versus a more completely modeled coupled system or a more complete set
of measurements. But the SISE estimator compartmentalizes the problem.
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Further, armed with long term estimates of the disturbance input signals,
one could explore fitting statistical models to describe their behavior and
thereby to be incorporated into an augmented system model, provide one
were certain of the time-invariance. These aspects of (KF-)SISE modeling in
power system will be filled out elsewhere by the authors. Our aim here is to
establish the appropriate genealogy, tools and assessment of the algorithms.

4.9 Conclusion

We have derived from an algebraic perspective the SISE algorithms as Kal-
man filters of a specific type, suggested by Mendel (1977) in his seismic
deconvolution work. The input signal model is white noise, which if its
variance tends to infinity, yields a Kalman filter coinciding with SISE. As
we mention, this was hinted at earlier but not carried through. Equipped
with a fuller understanding of the connections, we were able to present new
interpretations and to connect the approach to algebraic Riccati equation
computational methods. Further, we were able to clarify – the uncharitable
might say debunk – the ideas of model-free state estimation and estimate
unbiasedness, showing that the methods necessarily involve projections in-
duced by the large variances.

The numerical example demonstrates the computational tools applied to a
problem from power systems and illustrates the newfound accessibility of
the algorithms via Kalman filtering. For systems with direct feedthrough,
these methods also admit much simpler derivation and interpretation of the
algorithms. Frequency responses were examined and connections to system
inversion Moylan (1977) shown.

Finally, by moving the focus of SISE from deconvolution and input estima-
tion to state estimation, we have been able to present, and illustrate via the
numerical example, an approach to state estimation in networked systems,
including those with poorly known network neighbors. We shall report on
more details power system applications elsewhere.



56 Paper I: A Kalman-filtering deconstruction of simultaneous input and
state estimation

Appendix – proofs

Proof of Theorem 4.1

From Assumption 4.1 and x̂t|t, Pt, write the joint conditional density

pdf

xt+1

dt
yt+1

∣∣∣∣∣∣Yt


= N

 Ax̂t|t +Gd

d
CAx̂t|t + CGd

 ,
 Xt+1 GD Xt+1C

T

DGT D DGTCT

CXt+1 CGD CXt+1C
T +R

 .

Then appeal to the standard Gaussian conditional density calculation to
yield

E

([
xt+1

dt

]∣∣∣∣Yt+1

)
=

[
Ax̂t|t +Gd

d

]
+

[
Xt+1C

T

DGTCT

]
× (CXt+1C

T +R)−1(yt+1 − CAx̂t|t − CGd),

or,

x̂t+1|t+1 = E
(
xt+1|Yt+1

)
,

= Ax̂t|t +Gd + Xt+1C
T (CXt+1C

T +R)−1(yt+1 − CAx̂t|t − CGd),

and

d̂t|t+1 = E
(
dt|Yt+1

)
,

= d +DGTCT (CXt+1C
T +R)−1(yt+1 − CAx̂t|t − CGd).

These are (4.15) and (4.16), respectively in Theorem 4.1.

The covariance calculation follows similarly.

cov

([
xt+1

dt

]∣∣∣∣Yt+1

)
=

[
Xt+1 GD
DGT D

]
−
[
Xt+1C

T

DGTCT

]
(CXt+1C

T +R)−1
[
CXt+1 CGD

]
.

The (1,1)-block-element gives (4.14) for Pt+1 and the (2,2)-block-element
gives (4.18) for Dt.. �
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Proof of Identity 4.5

Using Identity 4.1 and denoting Yt+1 = CXt+1C
T +R,

Mt+1 = DGTCT (CXt+1C
T +R)−1,

= DGTCT (CXt+1C
T +R)−1(I − CGMt+1),

= DGTCTY −1
t+1 −DG

TCTY −1
t+1CGMt+1,[

I +DGTCTY −1
t+1CG

]
Mt+1 = DGTCTY −1

t+1,[
D−1 +GTCTY −1

t+1CG
]
Mt+1 = GTCTY −1

t+1,

Mt+1 =
[
D−1 +GTCTY −1

t+1CG
]−1

GTCTY −1
t+1. �

Proof of Identity 4.7

From (4.18),

Dt = D −DGTCT (CXt+1C
T +R)−1CGD,

= (I −Mt+1CG)D,

Now, using Identity 4.5 and continuing the notation Yt+1 = CXt+1C
T +R,

Mt+1CG =
[
D−1 +GTCTY −1

t+1CG
]−1

GTCTY −1
t+1CG,

=
[
D−1 +GTCTY −1

t+1CG
]−1 [−D−1 +D−1 +GTCTY −1

t+1CG
]
,

= I −
[
D−1 +GTCTY −1

t+1CG
]−1

D−1.

So,

Dt =
[
D−1 +GTCTY −1

t+1CG
]−1

,

=
[
D−1 +GTCT (CXt+1C

T +R)−1CG
]−1

.

�

Proof of Identity 4.8

Substitute for Kt+1 from Identity 4.3 into (4.14), drop the time indices, and
pay attention to the dimensions and typefaces,

Pt+1 = (Ip −Kt+1C)Xt+1,

= (I −KC)(I −GMC)X ,
= (I −KC)(I −GMC)(X +GDGT ),

= (I −KC)
[
(I −GMC)X + (I −GMC)GDGT

]
,

= (I −KC)
[
(I −GMC)X +G(I −MCG)DGT

]
.



58 Paper I: A Kalman-filtering deconstruction of simultaneous input and
state estimation

Now, denoting (as above) Yt+1 = CXt+1C
T +R, and using Identity 4.5,

I −MCG = (D−1 +GTCTY −1CG)−1
{
D−1 +GTCTY −1CG−GTCTY −1CG

}
,

= (D−1 +GTCTY −1CG)−1D−1,

= DtD−1.

Whence, substituting this above,

Pt+1 = (I −Kt+1C)
{

(I −GMC)Xt+1 +GDtGT
}
. �

Proof of Lemma 4.1

Property (4.20) is proven by Kitanidis (1987) and Gillijns and De Moor
(2007a) but also is immediate from (4.5). The projection property follows
directly from (4.20).

(Mt+1CG)2 = Mt+1CG×Mt+1CG

= Im ×Mt+1CG = Mt+1CG,

(CGMt+1)2 = CGMt+1 × CGMt+1

= CG×Mt+1CG×Mt+1 = CGMt+1,

(GMt+1C)2 = GMt+1C ×GMt+1C

= G×Mt+1CG×Mt+1C = GMt+1C.

From Assumption 4.1 the ranks of Mt+1CG, CGMt+1 and GCMt+1 are
all less than or equal to m. Since MCG = Im, rank Mt+1CG = m and
Ra (MCG) = Rm. Also, CGMt+1 × CG = CG. So rank CGMt+1 = m
and Ra (CMt+1G) = Ra (CG). Similarly, since GMt+1CG = G, rank
GMt+1C = m and Ra (GMt+1C) = Ra (G) . �

Proof of Theorem 4.2

Identity 4.9 establishes the convergence of Mt+1 and Kt+1. With the con-
vergence ofMt+1 and Mt+1CG = I, from Lemma 4.1, we see that (4.7) and
(4.16) are identical updates regardless of the value of d. Substituting the
limiting value for Kt+1 in (4.15) shows that this update and (4.8) also are
identical. Thus, SISE and KF-SISE yield identical estimates at this t from
the same starting data and, hence, the estimates remain identical. Since
Pt+1 is the conditional error covariance of xt+1 for KF-SISE and Pt+1 is
shown in Gillijns and De Moor (2007a) to be the conditional covariance of
the SISE estimate, these covariances must also be identical. �
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Proof of Corollary 4.1

Applying Identity 4.4 to (4.8) and then Identities 4.3 and 4.9,

x̂SISE

t+1|t+1 = Ax̂SISE

t|t +Gd +Kt+1(yt+1 − CAx̂SISE

t|t − CGd),

= (I −Kt+1C)Ax̂SISE

t|t + (I −Kt+1C)Gd +Kt+1yt+1,

= (I −Kt+1C) (I −GMt+1C)
(
Ax̂SISE

t|t +Gd
)

+Kt+1yt+1,

= (I −Kt+1C) x̂SISE

t+1|t +Kt+1yt+1,

= (I −Kt+1C) x̂SISE

t+1|t +GMt+1yt+1 +Kt+1(I − CGMt+1)yt+1,

= (I −Kt+1C) x̂SISE

t+1|t + (I −Kt+1C)GMt+1yt+1 +Kt+1yt+1,

= (I −Kt+1C)
(
x̂SISE

t+1|t +GMt+1yt+1

)
+Kt+1yt+1,

= (I −Kt+1C) x̂SISE

t+1|t+ 1
2

+Kt+1yt+1. �

cov(dt − d̂t|t+1|Yt+1) = (GTCT R̃−1
t+1CG)−1.

where,

Xt = APtA
T +GDtG

T +Q, (4.22)

Kt+1 = XtCT (CXtCT +R)−1, (4.23)

Mt+1 = DtG
TCT (CXtCT +R)−1. (4.24)

The conditional covariances of these estimates are given by

cov(x̂t+1|t+1) = Xt −XtCT (CXtCT +R)−1CXt, (4.25)

cov(d̂t|t+1) = Dt −DtG
TCT (CXtCT +R)−1CGDt. (4.26)

Let {U,Σ, V } be the singular-value decomposition of G. That is,

G = UΣV T ,

=
[
U1 U2

] [ Σm

0(n−m)×m

]
V T ,

where U1 is an orthonormal basis for Ra(G), U2 is an orthonormal basis for
Ra(G)⊥, an Σm is a full-rank m ×m diagonal matrix of positive singular
values. Using the state space transformation

x̄t =

[
x̄1,t

x̄2,t

]
= UTxt =

[
UT1
UT2

]
xt,

[
w1,t

w2,t

]
=

[
UT1
UT2

]
wt,
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rewrite the state equation (4.1)[
x̄1,t+1

x̄2.t+1

]
=

[
Ā11 Ā12

Ā21 Ā22

] [
x̄1,t

x̄2,t

]
+

[
Σm

0

]
dt +

[
w1,t

w2,t

]
.
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Abstract

Input estimation is a signal processing technique associated with deconvo-
lution of measured signals after filtering through a known dynamic system.
Kitanidis and others extended this to the simultaneous estimation of the
input signal and the state of the intervening system. This is normally posed
as a special least-squares estimation problem with unbiasedness. The ap-
proach has application in signal analysis and in control. Despite the con-
nection to optimal estimation, the standard algorithms are not necessarily
stable, leading to a number of recent papers which present sufficient condi-
tions for stability. In this chapter we complete these stability results in two
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ways in the time-invariant case: for the square case, where the number of
measurements equals the number of unknown inputs, we establish exactly
the location of the algorithm poles; for the non-square case, we show that
the best sufficient conditions are also necessary. We then draw on our pre-
vious results interpreting these algorithms, when stable, as singular Kalman
filters to advocate a direct, guaranteed stable implementation via Kalman
filtering. This has the advantage of clarity and flexibility in addition to
stability. En route, we decipher the existing algorithms in terms of system
inversion and successive singular filtering. The stability results are extended
to the time-varying case directly to recover the earlier sufficient conditions
for stability via the Riccati difference equation.

5.1 Introduction

Simultaneous Input and State Estimation (SISE) algorithms take a system
with an unknown disturbance input sequence, {dt}, and measured output
signal, {yt}, plus possibly also a known input sequence, {ut}, and produce
estimates of both dt and the system state xt, based on fixed lag smooth-
ing. There have been a great number of recent papers on these algorithms,
with a recent subset Marro and Zattoni (2010), Fang et al. (2011), Fang
and De Callafon (2012), Yong et al. (2016) focusing on conditions for sta-
bility. A feature of SISE algorithms is that the disturbance signals have
uncertain provenance. So SISE presumes that no model is available for this
signal and the algorithm proceeds without an explicit description of the dis-
turbance signals’ statistical properties. Thus techniques such as extended
state observers Guo and Zhao (2016) and augmented Kalman filters An-
derson and Moore (2012), Simon (2006) are inapplicable, as both rely on
disturbance models. A recent paper by the authors Bitmead et al. (2019)
establishes that, when stable, the linear system SISE algorithm of Gillijns
and De Moor (2007a) coincides with the Kalman filter with {dt} modeled
by white Gaussian noise of unbounded variance. Various approaches con-
sider first estimating the state Marro and Zattoni (2010) and then using
the state recursion to reconstruct dt, or estimating the disturbance first and
then reconstructing the state Gillijns and De Moor (2007a;b), Yong et al.
(2016). These methods rely on geometric approaches and system inver-
sion, although there is a strong overlap with least-squares state estimation
concepts of unbiasedness and optimality.

SISE algorithms go back to least to Kitanidis Kitanidis (1987) with ante-
cedents Glover (1969), Mendel (1977), Sanyal and Shen (1974) concentrating
on input signal reconstruction. Here, we follow the formulation from Yong,
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Zhu and Frazzoli Yong et al. (2016), which in turn builds on Gillijns and
De Moor (2007a;b). We consider linear time-invariant systems to add clar-
ity and to explore the connection to optimal estimation before extending to
uniformly time-varying systems.

Input estimation is a signal processing technique associated with deconvo-
lution of measured signals after filtering through a known dynamic system.
Examples include the estimation of rainfall given river flow and the cal-
culation of salinity in the ocean accommodating for sensor dynamics Fang
et al. (2013). Here, the central objective is to estimate the driving disturb-
ance signal dt and there is little interest in the sensor state. The algorithm
should be stable, however. Our particular driving problem, on the other
hand, is the estimation of generator states in part of a power grid when the
interconnection signals are unknown Abooshahab et al. (2019). Here the
priority is to estimate network generator states in the face of unmodeled
and unmeasured consumption, which is treated as the disturbance signal.
In spite of these distinct objectives, the same algorithms have been used.

Contributions & organization

Our objective in this chapter is to attempt to bring some clarity and unity
to this picture by establishing precisely the connection to system inversion
and optimal estimation by deriving necessary and sufficient conditions for
stability using explicit system inverse formulæ and algebraic Riccati equa-
tions, starting with the time-invariant case. Earlier stability conditions were
sufficient only but derived in the time-varying situation. We recover these.
Further, when stability is not achieved by these SISE algorithms, we propose
a modification based on inner-outer factorization, which maintains state es-
timation performance at the expense of simple disturbance recovery. This
can be compared with the techniques advanced in Marro and Zattoni (2010)
for approximate system inversion with delay. Beyond this work, we know
of no other which addresses estimation when the stability conditions fail.

Section 5.2 presents the SISE problem for a linear time-invariant system.
Section 5.3 studies the zero direct feedthrough case and the correspond-
ing SISE of Gillijns and De Moor (2007a) and shows that, in the square
case where the number of measurements equals the number of disturbance
channels, the input estimator is the inverse of the dt-to-yt system and the
state estimator is a plant simulation. Stability depends on the transmission
zeros of the former system. These necessary and sufficient stability condi-
tions then are extended to the non-square case with more measurements.
This involves the Riccati difference equation and a detectability condition.
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Section 5.4 expands this analysis to the full-rank direct feedthrough case
and comments on the non-full-rank case of Yong et al. (2016). Section 5.5
draws connections to earlier works of singular filtering and introduces an
accommodation to circumvent stability issues using the inner-outer factoriz-
ation. It also contains the extension to time-varying systems via the Riccati
equation. Section 5.6 reinforces the connections to system inversion and
concludes. The Appendix contains the proofs.

5.2 Problem statement

SISE algorithms have been formulated for linear time-varying systems Gil-
lijns and De Moor (2007a;b), Yong et al. (2016) and for nonlinear time-
varying systems Fang et al. (2013), Kim et al. (2020). However for clarity in
development, we consider the linear, time-invariant system with zero known
control input,

xt+1 = Axt +Gdt + wt, (5.1)

yt = Cxt +Hdt + vt, (5.2)

with xt ∈ Rn, dt ∈ Rm, yt ∈ Rp. Zero-mean white noises {wt} and {vt} are
independent and independent from {dt} and x0. The covariance of wt is
Q ≥ 0 and the covariance of vt is R > 0. Denote the signal measurements
Yt , {yt, yt−1, . . . , y0}. The aim is to produce from Yt, a recursive filtered
state estimate, x̂t|t, and filtered and/or smoothed estimates, d̂t|t+1 or d̂t|t,

depending on the properties of G and
[
C H

]
. We make the following

assumption.

Assumption 5.1. System (5.1-5.2) has [A,C] observable, rankG = m,
[A,Q] reachable, and R > 0.

Full-rank direct feedthrough, i.e. rank(H) = m, is treated in Gillijns and
De Moor (2007b); zero direct feedthrough, H = 0, in Gillijns and De Moor
(2007a) with rank(CG) = m; and, Yong et al. (2016) provides a generaliza-
tion, ULISE, with mixed rank properties between H and CG. A noise-free
variant is treated in Marro and Zattoni (2010).
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5.3 Zero direct feedthrough

For H = 0 in (5.2), SISE from Gillijns and De Moor (2007a) is the recursion.

Xt = APt−1A
T +Q, (5.3)

Kt = XtC
T (CXtC

T +R)−1, (5.4)

Mt = [GTCT (CXtC
T +R)−1CG]−1

×GTCT (CXtC
T +R)−1, (5.5)

Pt = (I −KtC) [(I −GMtC)Xt

×(I −GMtC)T +GMtRM
T
t G

T
]

+KtRM
T
t G

T , (5.6)

d̂t−1|t = Mt(yt − CAx̂t−1|t−1), (5.7)

x̂t|t = Ax̂t−1|t−1 +Gd̂t−1|t +Kt

× (yt − CAx̂t−1|t−1 − CGd̂t−1|t). (5.8)

cov(xt|Yt) = Pt, (5.9)

under the following structural condition.

Assumption 5.2.
rankCG = m. (5.10)

An immediate observation is that SISE contains no specific information re-
lated to a model for the unmeasured disturbance dt. Indeed, it is frequently
claimed that signal {dt : t = 0, 1, . . . } possesses no model whatsoever. Al-
though, for bounded covariance Xt, i.e. when the algorithm is stable, the
authors derived this version of SISE in Bitmead et al. (2019) as a Kalman
filter with {dt} modeled as a white noise process of unbounded variance. We
shall return to this point later. Evidently, Assumption 5.2 requires p ≥ m
and rankC ≥ rankG = m. Firstly, we treat the square case, p = m, where
the number of measurements equals the dimension of the disturbance input.
Then we shall derive more general results.



66 Paper II: Simultaneous input & state estimation, singular filtering and
stability

5.3.1 Square zero-feedthrough case

From Assumption 5.2 when p = m, CG is invertible. Since, from (5.5),
MtCG = I or Mt = (CG)−1, we have

d̂t−1|t = (CG)−1(yt − CAx̂t−1|t−1), (5.11)

0 = yt − CAx̂t−1|t−1 − CGd̂t−1|t, (5.12)

x̂t|t = Ax̂t−1|t−1 +Gd̂t−1|t, (5.13)

= [I −G(CG)−1C]Ax̂t−1|t−1 +G(CG)−1yt. (5.14)

This estimation algorithm:

– is time-invariant;

– does not depend on Q or R, the noise variances;

– is independent from the covariance calculations.,

– has zero x̂t|t innovations (5.12), (5.8).

SISE reduces to (5.11-5.14).

x̂t|t = [I −G(CG)−1C]Ax̂t−1|t−1 +G(CG)−1yt,

d̂t−1|t = −(CG)−1CAx̂t−1|t−1 + (CG)−1yt.

Note that, using the matrix inversion lemma, we may rewrite the SISE
yt-to-d̂t−1|t transfer function as

(CG)−1

− (CG)−1CA(zI −A+G(CG)−1CA)−1G(CG)−1

=
[
CG+ CA(zI −A)−1G

]−1
,

=
[
zC(zI −A)−1G

]−1
. (5.15)

The filtered state estimate error satisfies

x̃t|t , xt − x̂t|t,
= [I −G(CG)−1C]Ax̃t−1|t−1 + [I −G(CG)−1C]wt−1 −G(CG)−1vt.

The stability of SISE, i.e. the boundedness of the covariance of x̃t|t, depends
on the eigenvalues of [I −G(CG)−1C]A.
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Theorem 5.1. For system (5.1-5.2) with p = m and subject to As-
sumption 5.2, the eigenvalues of the SISE estimator system matrix,[
I −G(CG)−1C

]
A, lie at the transmission zeros of the square transfer func-

tion zC(zI−A)−1G. Accordingly, the SISE estimator is asymptotically stable
if and only if these transmission zeros all lie inside the unit circle.

The proof of this theorem follows immediately from (5.15). An alternate is
given in the Appendix for completeness and to establish connections to sin-
gular filtering. We note that condition (5.10) in Assumption 5.2 implies that
zC(zI−A)−1G possesses exactly n finite transmission zeros with exactly m
at zero.

We see that, in the square case, the poles of SISE can be located precisely
at the transmission zeros of the dt-to-yt transfer function. SISE therefore
is performing system inversion to recover d̂t−1|t from Yt. The dependent
recursion (5.13) for x̂t|t is a simulation of the state equation (5.1) driven by

d̂t−1|t. Effectively all the information in Yt is used in generating the dis-
turbance estimate, leaving simulation (5.13) to generate the state estimate.

When SISE is stable, it was shown in Bitmead et al. (2019) that the state
estimation algorithm implements a Kalman filter with a model for {dt} as
a white noise of unbounded variance, D. In this case, the state estimation
problem has driving noise variance Q+GDGT and measurement noise vari-
ance R. The identical filter, but not the covariances, will be achieved by
taking driving noise GDGT for finite D and R → 0. That is, SISE is a
singular filter. The connection to Maciejowski (1985) in the proof is to the
equivalent result in Loop Transfer Recovery for LQG control. When one
selects R = 0, as opposed to R → 0 from above, then the poles are placed
at the transmission zeros. The limiting operation, on the other hand places
the poles at the stable transmission zeros and the inverses of the unstable
transmission zeros Shaked (1985).

5.3.2 Non-square zero-feedthrough case

From Assumption 5.2, we take p ≥ m and make a transformation of the
output signal as follows. This is a variation on the technique of Yong et al.
(2016). Take the singular value decomposition of p×m CG.

svd(CG) = UΣV T ,

=
[
Um Up−m

] [Σ
0

]
V T .
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Define the p× p transformation

T =

[
UTm − UTmRUp−m(UTp−mRUp−m)−1UTp−m

UTp−m

]
, (5.16)

and transform the original output signal, call it ȳt,

yt = T ȳt =

[
C1

C2

]
xt +

[
v1,t

v2,t

]
, (5.17)

yielding

det C1G 6= 0, C2G = 0, cov

[
v1,t

v2,t

]
=

[
R1 0
0 R2

]
.

Theorem 5.2. For system (5.1-5.2) with p ≥ m and subject to Assump-
tions 5.1 and 5.2, if and only if the pair [A(I − G(C1G)−1C1), C2] is de-
tectable then the filtered state covariance, Pt, is bounded and converges to a
limit P∞ as t→∞.

The corresponding gain matrices, K∞ and M∞, yield the limiting SISE
system matrix, (I − K∞C)(I − GM∞C)A, with all its eigenvalues strictly
inside the unit circle.

The proof of this result appears in the Appendix and is based on proving that
the state covariance satisfies a Riccati Difference Equation. Although this
condition is not strictly the same as the condition in Yong et al. (2016), the
theorem condition implies theirs. Hence, their condition is also necessary.
Theorem 5.2 similarly extends the condition in Fang et al. (2011). The
sufficient stability result in Kim et al. (2020) is predicated on Pt being
bounded a priori. We already know from Theorem 5.1 the eigenvalues of
A(I −G(C1G)−1C1) are stable if and only if zC(zI − A)−1G is minimum-
phase.

We see that, when p > m, the surfeit of measurements beyond those strictly
needed to produce d̂t−1|t are brought to bear on estimating xt. The stability
of SISE depends on either the square case yielding stability via Theorem 5.1,
i.e. via stable transmission zeros, or there being sufficient information in
the additional measurements to stabilize the estimator.

When SISE is stable, then the algorithm implements a singular filter, as
explained above. However, now the corresponding singular filter is partially
singular, a term introduced in Priel and Shaked (1986). That is, the pro-
cess noise variance is finite but the measurement noise variance, R, is less
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than full rank rather than zero. The approach of Priel and Shaked (1986),
under the banner of stable optimal filtering, in this case involves precisely
a succession of a singular estimator and followed by a regular estimator, as
in SISE. The result in Bitmead et al. (2019) derives this stable (partially)
singular filter when the plant satisfies the conditions of Theorem 5.2.

5.4 Nonzero direct feedthrough

When H 6= 0 in (5.2), SISE alters. Gillijns and De Moor Gillijns and
De Moor (2007b) provide a SISE algorithm, subject to the following, for
the time-invariant case.

Assumption 5.3. RankH = m.

Subject to this assumption, the SISE formulation for time-invariant system
(5.1-5.2) is

x̂t|t−1 = Ax̂t−1|t−1 +Gd̂t−1|t−1, (5.18)

P xt|t =
[
A G

] [P xt−1|t−1 P xdt−1|t−1

P dxt−1|t−1 P dt−1|t−1

] [
AT

GT

]
+Q,

R̃t = CP xt|t−1C
T +R,

Mt = (HT R̃tH)−1HT R̃−1
t ,

d̂t|t = Mt(yt − Cx̂t|t−1), (5.19)

P dt|t = (HT R̃tH)−1,

Kt = P xk|k−1C
T R̃−1

t ,

x̂t|t = x̂t|t−1 +Kt(yt − Cx̂t|t−1 −Hd̂t|t), (5.20)

P xt|t = P xt|t−1 −Kt(R̃t −HP dHT )KT
t ,

P xdt|t =
(
P dxt|t

)T
= −KtHP

d
t|t.

When rankH < m, Yong et al. (2016) provide ULISE, a carefully developed
SISE algorithm which uses the singular value decomposition as in Sub-
section 5.3.2 but more widely to handle the more complicated interaction
between filtered and smoothed estimates for dt.

5.4.1 Square full-rank case

As with the H = 0 case, we consider first rankH = m and m = p. That is
H is invertible and, since MtH = I, Mt = H−1. Then SISE reduces to the
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recursion

d̂t|t = H−1(yt − Cx̂t|t−1)

0 = yt − Cx̂t|t−1 −Hd̂t|t, (5.21)

x̂t+1|t = Ax̂t−1|t−1 +Gd̂t−1|t−1, (5.22)

= (A−GH−1C)x̂t|t−1 +GH−1yt,

x̃t+1|t = (A−GH−1C)x̃t|t−1 + wt −GH−1vt.

Theorem 5.3. For system (5.1-5.2) subject to Assumption 5.3, the eigen-
values of the SISE estimator system matrix, A−GH−1C, lie at the transmis-
sion zeros of the square transfer function H + C(zI − A)−1G. Accordingly,
the SISE estimator is asymptotically stable if and only if these transmission
zeros all lie inside the unit circle.

Proof:Applying the matrix inversion lemma to the square transfer function
between dt and yt,[

H + C(zI −A)−1G
]−1

= H−1 −H−1C(zI −A+GH−1C)−1GH−1.

The poles of the square direct feedthrough SISE lie at the transmission zeros
of the dt to yt transfer function. �

Again, this result adds necessity to that of Yong et al. (2016) in this case.
Further, the result does not rely on optimality arguments. As in the square
zero feedthrough case, the SISE estimator is time-invariant and independ-
ent from Q and R, and the state estimate filter innovations is zero. The
condition rankH = m ensures that all n transmission zeros are finite. We
note again that the state innovations sequence (5.21) is zero and the filter
(5.22) simulates x̂t+1|t from d̂t|t.

5.4.2 Non-square full-rank case

The careful derivation of ULISE to accommodate rankH ≤ m is a central
contribution of Yong et al. (2016) and involves separation into subspaces.
Take the singular value decomposition of p×m H possessing rank r.

svd(H) = UΣV T ,

=
[
Ur Up−r

] [H̄ 0
0 0

]
V T .
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Matrices take on the (r, p− r) structure.

H =

[
H̄ 0
0 0

]
, C =

[
C1

C2

]
, G =

[
G1 G2

]
,

Kt =
[
K1,t K2,t

]
, Mt =

[
M1,t M2,t

]
.

As earlier, define the p× p transformation

T =

[
UTr − UTr RUp−r(UTp−rRUp−r)−1UTp−r

UTp−r

]
, (5.23)

and transform the original output signal, call it ȳt,

yt = T ȳt =

[
C̄1

C̄2

]
xt +

[
H̄
0

]
dt +

[
v̄1,t

v̄2,t

]
. (5.24)

yielding det H̄ 6= 0 and cov

[
v̄1,t

v̄2,t

]
=

[
R̄1 0
0 R̄2

]
. When rankH = m, H̄ is

m×m and we have the following result stemming from M1,tH̄ = Im.

Theorem 5.4. Subject to Assumptions 5.1 and 5.3, p ≥ m, SISE with
feedthrough is stable if only if [A−GH̄−1C̄1, C̄2] is detectable.

The proof of this result is in the Appendix. This extends the detectability
condition1 of Theorem 5 of Yong et al. (2016) to a necessary and suffi-
cient condition for stability of SISE in this case. It also is the analog of
Theorem 5.2 for the full-rank feedthrough case.

An alternative way to view necessity is to write the system matrix of SISE
as

A− [AKt + (G−AKtH)Mt]C

= A−GH̄−1C̄1 − (AK2,t +GM2,,t −AK1,tH̄M2,t)C̄2.

For this matrix to be stable, a multiple of C̄2 must stabilize A−GH̄−1C̄1.

5.4.3 Less than full rank feedthrough

We build again on the decomposition above of Yong et al. (2016) and make
the following assumption.

Assumption 5.4. rank C̄2G2 = m− rank H̄.

1Note that Yong et al. (2016) uses p to denote our m.
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In Yong et al. (2016), the authors derive a sufficient condition for stability
which we now extend to necessity.

Theorem 5.5. Subject to Assumptions 5.1 and 5.4, general feedthrough
SISE is stable if only if [A−G1H̄

−1C̄1, C̄2] is detectable.

This detectability condition is shown in Yong et al. (2016) to be sufficient for
stability by using the filter recursion for x̂t|t. If one calculates the alternative
recursive prediction, x̂t|t−1, then it is evident that the ULISE system matrix
is again of the form

(A−G1H̄
−1C̄1)(I − L̃tC̄2)(I −G2M2,tC̄2)

= A−G1H̄
−1C̄1 +WtC̄2,

for appropriate Wt. Evidently, this can be stable only if the detectability
condition holds.

5.5 Upshots

5.5.1 Stability and singular filtering

The preceding analysis provides necessary and sufficient conditions for the
stability of linear SISE algorithms. Further, for the square cases, it yields
the precise locations on the algorithm poles and demonstrates that the em-
phasis is on dt-to-yt system inversion to recover dt followed by best efforts
to estimate the state. We have pointed out the successive estimation nature
of SISE, as have others. The question remains as to actions to be taken
when SISE proves to be unstable, noting these central properties:

1. SISE is stable when the dt-to-yt system is stably invertible.

2. When SISE is stable, it corresponds (at least in the zero feedthrough
case) to a singular Kalman filter.

3. Subject to: detectability of [A,C], stabilizability of [A,Q
1
2 ], and R

+→
0; the singular Kalman filter is a stable estimator by construction.

4. The stability conditions for the singular Kalman filter are more relaxed
than Assumptions 5.2, 5.3 or 5.4.

5. When SISE proves to be unstable, it differs from the Kalman filter.
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with guaranteed statistical and optimality properties. This follows since To
is stably invertible by construction. Further, this stability depends on the
standard assumptions above for Kalman filter stability. If one uses SISE,
then depending on the delay properties of To(z), i.e. its behavior as z →∞,
a modified variation of the algorithm and Assumption 5.2, 5.3, or 5.4 might
be needed to accommodate dt-to-yt invertibility. This is discussed further
in Section 5.6.

To recover estimates for original system inputs {dt} from those for {ďt}
requires deconvolution (input estimation) without state estimation for the
maximum-phase but stable system Ti. If delay is not an issue, then this can
proceed stably via a fixed-interval smoother or reverse-time input estima-
tion.

If the state estimates of xt themselves are the objective, then the recon-
struction of ďt versus dt is immaterial. This is the nature of the problem
addressed in partially-known power system state estimation Abooshahab
et al. (2019).

The singular filters derived by Shaked and co-authors Shaked (1985), Priel
and Shaked (1986), Shaked and Soroka (1987) rely on the Return Difference
Equality and spectral factorization for their calculation. In the case where
the transmission zeros are unstable, the filter solution replaces them by their
inverses akin to the inner-outer factorization.

The Kalman filter of Bitmead et al. (2019) for To(z) may be derived from
the state-space model below with appropriate covariances,[

xt+1

ďt+1

]
=

[
A Ǧ
0 0

] [
xt
ďt

]
+

[
In 0
0 Im

] [
wt
δt

]
,

yt =
[
C Ȟ

] [xt
ďt

]
+ vt,

or using the direct construction as in Bitmead et al. (2019), which avoids
an explicit model for dt but yields the same filter.

Marro and Zattoni Marro and Zattoni (2010) provide guidance on the re-
covery of the disturbance input signal when the dt-to-yt system is non-
minimum-phase. Their approach involves the approximate inversion of this
system using a long delay to accommodate the nominal instability of this
inverse. Such techniques are reminiscent of those advanced in B. Widrow, E.
Walach (1995). While the approach in Marro and Zattoni (2010) centers on
state-estimation first, their development is geometric and noise free and so,
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it is unclear how this affects performance. Of course, the geometric analysis
throws up the same initial reliance on minimum-phase zeros for stability
and exact inversion.

5.5.3 Extension to time-varying systems

Developments so far have been limited to the time-invariant case and have
availed themselves of concepts of transmission zeros, stable invertibility and
inner-outer factorization, each of which is problematic to extend to time-
varying systems. However, since alternative results have been phrased for
the time-varying case, we consider this extension now, relying on examin-
ation of SISE recursions via Riccati difference equations in the proofs of
Theorems 5.2 and 5.4.

Appealing to Gillijns and De Moor (2007a;b) for the time-varying SISE
algorithms in the case of Theorem 5.2 and zero direct feedthrough, Riccati
equation (5.29) becomes

Xt+1 = ĀtXtĀ
T
t − ĀtXtC

T
2,t(C2,tXtC

T
2,t +R2,t)

−1

× (ĀtXtC
T
2,t)

T + Q̄t,

where,

Āt = At(I −Gt−1(C1,tGt−1)−1C1,t),

Q̄t = AtGt−1(C1,tGt−1)−1R1,t(Gt−1(C1,tGt−1)−1)TATt +Qt,

and, in the case of full-rank feedthrough, (5.31) becomes

Xt+1 = ÂtXtÂ
T
t − (ÂtXtC̄

T
2,t)(C̄2,tXtC̄2,t + R̄2,t)

−1

× (ÂtXtC̄
T
2,t)

T + Q̂t,

where,

Ât = At −GtH̄−1
t C̄1,t, Q̂t = Qt +GtH̄

−1
t R̄1,tH̄

−T
t GTt .

with now time-varying quantities {At, Gt, . . . , }. We may appeal to standard
sufficient results, e.g. Jazwinski (1970), Anderson and Moore (2012) and
Theorem 5.3 in Anderson and Moore (1981), on the exponential stability of
the Kalman filter subject to uniform reachability and detectability. Subject
to the uniform satisfaction of time-varying equivalents of Assumptions 5.1,
5.2 and/or 5.3 as appropriate, this extends these stability conditions to the
uniformly time-varying case.
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5.6 System Inversion and SISE

For the square cases of SISE satisfying Assumptions 5.2 or 5.3, we were
able to demonstrate that the SISE dt-estimator implements exactly the left
inverse of the yt-to-dt system. The simultaneous xt-estimate is the state of
the inverse system the stability of which depends on the transmission zeros
of the original system.

Conditions for left invertibility of a linear time-invariant system are provided
by Sain and Massey Sain and Massey (1969) and for stable invertibility by
Moylan Moylan (1977) via the Rosenbrock system matrix. Both papers con-
struct the inverse system. Moreover, in Sain and Massey (1969), Sundaram
(2020), left invertibility with delay, L, is studied, where stacked measure-

ments
[
yTt yTt+1 . . . yTt+L

]T
are used to estimate dt. Marro and Zattoni

blend into this picture stable approximate inversion with delay.

From Sain and Massey (1969), we see that, for any p ≥ m:

– Assumption 5.2 is the left invertibility condition for C(zI − A)−1G
with delay one.

– Assumption 5.3 is the left invertibility condition for H+C(zI−A)−1G
with delay zero.

– Assumption 5.4 is the left invertibility condition for H+C(zI−A)−1G
with delay one.

Given the input recovery objective of SISE, this is not surprising. But it is
interesting to tie these ideas more closely.

It is worth remarking that many presentations of SISE algorithms make
connections to ‘unbiasedness’ and ‘optimality’ of the state estimate. As
Marro and Zattoni (2010), Bitmead et al. (2019) demonstrate, the probab-
ilistic concept of unbiasedness is really tied to a geometric property of the
algorithms and the nature of certain subspaces. The optimality of the state
estimates is within the class of estimators already satisfying the geometric
constraints. As is evident from, say, Theorems 5.1 and 5.2 and the Riccati
equation proof, there is no degree of freedom left for the state estimator
in the square case and limited degrees of freedom in the non-square case.
Indeed, in the square cases, (5.13-5.22) show that x̂t|t is computed by sys-
tem simulation using the estimated input; the measurements play no further
part. The detectability conditions on Theorems 5.2 and 5.4 show how the
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remaining degrees of freedom are used in the Riccati difference equations
(5.30) and (5.31).

In conclusion, the chapter attempts to unify the collection of SISE al-
gorithms by revealing their explicit connections to system inversion to re-
cover the otherwise unmodeled disturbance input dt followed by their ‘best
efforts’ subsequent estimation of the state xt. The result has been to de-
velop necessary and sufficient conditions for stability, at least in the linear
time-invariant case, in terms of the transmission zeros of the dt-to-yt plant
and then the detectability of the subsequent state estimator.

5.7 Appendix

Proof of Theorem 5.1

We loosely follow a calculation from Maciejowski Maciejowski (1985). From
(5.14) and the system equations the (time-invariant) transfer function from
dt to x̂t|t via yt is given by

Ψ(z) =
{
zI −

[
I −G(CG)−1C

]
A
}−1

zG(CG)−1 × C(zI −A)−1G, (5.25)

= {zI − [I −Π]A}−1 zΠ(zI −A)−1G,

where we have used Π , G(CG)−1C. Write

[zI − (I −Π)A]−1 zΠ

= [zI − (I −Π)A]−1 [zΠ− zI + (I −Π)A] + I,

= − [zI − (I −Π)A]−1 (I −Π)(zI −A) + I.

Then, since (I −Π)G = 0,

Ψ(z) =

− [zI − (I −Π)A]−1 (I −Π)(zI −A)(zI −A)−1G

+ (zI −A)−1G,

= − [zI − (I −Π)A]−1 (I −Π)G+ (zI −A)−1G,

= (zI −A)−1G. (5.26)

From (5.25), Ψ(z) is the product of two transfer functions and nominally
should have 2n poles; those at the eigenvalues of A and those at the eigen-
values of (I − Π)A. The transfer function zC(zI − A)−1G has McMillan
degree n with n finite transmission zeros. We see from (5.26) that only poles
at the eigenvalues of A are present in Ψ. This implies that the poles due to
the eigenvalues of (I−Π)A cancel the transmission zeros of zC(zI−A)−1G.
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Proof of Theorem 5.2

Define the following quantities.

Ht = GMt −KtCGMt +Kt, Z = C1G,

Y = (CXtC
T +R)−1 =

[
Y1 Y2

Y T
2 Y3

]
,

where Y is divided conformably with C and vt in (5.24).

From (5.7) and (5.8) the filtered prediction error satisfies

x̃t , xt − xt|t
= (I −HtC)Ax̃t−1 + (I −HtC)wt−1 −Htvt.

Whence,

Pt|t = cov(xt|Yt)

= (I −HtC)(APt−1|t−1A
T +Q)(I −HtC)T +HtRHTt .

Using (4.3) yields

Xt+1 = A
(
(I −HtC)Xt(I −HtC)T +HtRHTt

)
AT +Q. (5.27)

We show that this discrete Lyapunov equation is also a Riccati difference

equation by substituting for Ht using CG =
[
ZT 0

]T
.

Ht = G

([
ZT 0

]
Y

[
Z
0

])−1 [
ZT 0

]
Y −Xt

[
CT1 CT2

]
Y

[
Z
0

]([
ZT 0

]
Y

[
Z
0

])−1 [
ZT 0

]
Y +Xt

[
CT1 CT2

]
Y

=
[
GZ−1 GZ−1Y −1

1 Y2

]
+Xt

[
0 C2(Y3 − Y T

2 Y
−1

1 Y2)
]
, (5.28)

Using partitioned matrix inversion with Y gives

(Y3 − Y T
2 Y

−1
1 Y2) = (C2XtC

T
2 +R2)−1

Y −1
1 Y2 = −(C1XtC

T
2 )(C2XtC

T
2 +R2)−1.

Substituting this into (5.28) and (5.27) gives the following Riccati difference
equation.

Xt+1 = ĀXtĀ
T − (ĀXtC

T
2 )(C2XtC

T
2 +R2)−1

× (ĀXtC
T
2 )T + Q̄, (5.29)
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where,

Ā = A(I −G(C1G)−1C1),

Q̄ = AG(C1G)−1R1(G(C1G)−1)TAT +Q. (5.30)

Appealing to Theorem 14.3.1 Kailath et al. (2000) (p. 510), provided [Ā, Q̄
1
2 ]

is stabilizable and [Ā, C2] is detectable, then Xt converges to the maximal
solution of the algebraic Riccati equation, which is stabilizing.

Now, since by assumption [A,Q
1
2 ] is stabilizable, there exists a K such that

A−Q
1
2K is stable. Taking,

Q̄
1
2 =

[
Q

1
2 AG(C1G)−1R

1
2

]
,

and K̄ =
[
KT R

T
2

]T
, Ā− Q̄

1
2 K̄ also is stable. So stabilizability of [A,Q

1
2 ]

implies stabilizability of [Ā, Q̄
1
2 ].

Proof of Theorem 5.4

The proof parallels that of Theorem 5.2. Substitute (5.19) and (5.20) into
(5.18) to yield

x̂t+1|t = (A− LtC)x̂t|t−1 + Ltyt,

where Lt = AKt −AKtHMt +GMt. Then

x̃t+1|t , xt − x̂t+1|t,

= (A− LtC)x̃t|t−1 + wt − Ltvt,
Xt+1 = (A− LtC)Xt(A− LtC)T + LtRLTt +Q,

with Xt+1 , cov(xt+1|Yt). Dividing Kt and Mt conformably with CT :
Kt =

[
K1,t K2,t

]
, Mt =

[
M1,t M2,t

]
, one arrives directly at the following

Riccati difference equation.

Xt+1 = ÂXtÂ
T − ÂXtC̄

T
2 (C̄2XtC̄2 + R̄2)−1C̄2XtÂ

T + Q̂, (5.31)

where,

Â = A−GH̄−1C̄1, Q̂ = Q+GH̄−1R̄1H̄
−TGT .

The proof follows as that for Theorem 5.2 using Kailath et al. (2000).
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Chapter 6

Paper III: Disturbance and
State Estimation in Partially
Known Power Networks

This chapter is taken from Abooshahab et al. (2019).

Disturbance and State Estimation in Partially Known
Power Networks

Mohammad Ali Abooshahab
Morten Hovd
Robert R. Bitmead
2019 IEEE Conference on Control Technology and Applications (CCTA),
Hong Kong, China (2019)

Abstract

Due to privacy considerations, fault occurrence, geographical difficulties,
lack of sensors and so forth, some parts of a power network are not precisely
known. Thus, we name these systems ’partially known power networks’.
To perform dynamic state estimation for partially known power networks,
we study the application of the simultaneous input and state estimation al-
gorithm to solve the problem. This algorithm jointly estimates the state of
the system from a model and, through smoothing, the unmodeled disturb-
ance signals. Although traditional Kalman filtering approaches for state
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estimation of a power grid have achieved satisfactory results, they require
that all parts of the system including disturbance models be provided, even
if imprecisely known, which is problematic especially for the distribution
part of power grids.We model the power grid as a system with known and
unknown parts and derive the state estimation based solely on the model of
the known part of the system with the connected unknown part captured
by its disturbance signals. The specific nature of power grid models admits
the application of this estimation approach more widely than is suggested
by the disturbance reconstruction condition. Simulation results show the
effectiveness and the accuracy of the proposed method.

6.1 Introduction

The state estimation problem in power systems has been studied both stat-
ically and dynamically Gomez-Exposito and Abur (2004), Tebianian and
Jeyasurya (2015). Dynamic state estimation provides a fast response to
disturbances and other system changes. The weakness of many previous
works, including Aminifar et al. (2014), is that the estimation needs a model
of the entire system, including statistical descriptions of external disturb-
ances. However, a typical power system contains several interconnected ele-
ments or layers including generation, transmission, distribution and energy
consumption. Among them, some variables might be known and modeled
accurately, while others might be partially or totally unknown, and external
disturbances may have unknown and/or possess time-varying statistical de-
scriptions. Additionally, measurements from the distribution part of the
power grid are generally few and restricted due to personal privacy consid-
erations of the consumers and the lack of precise measuring devices. In this
case, it is important to develop a method that performs state estimation
considering these limitations.

We limit our attention to linear or linearized power systems and use the
term known to describe a subsystem whose dynamic model is available and
accurate in dimension and parameters. Unknown indicates the absence of
such a precise model. In a power grid such as that illustrated in Fig. 6.1
showing a circuit cut dividing the grid into two parts, the left side is known
and the right is unknown. The interaction between these parts if captured
entirely by the two current signals flowing between them. We treat these
currents as disturbances to the known part of the grid. We shall apply the
Simultaneous Input and State Estimation algorithm (SISE) Bitmead et al.
(2019) to the available measurements to yield estimates of the state of the
known part and of the disturbance signals. This method is indifferent to
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Figure 6.1: Transformerless dynamic power grid model of the Western System
Coordinating Council 9-Bus System, WSCC-9, with circuit cut dividing known and
unknown parts. Interactions between the parts are via two current signals.

the modeling of the unknown part and, provided an algebraic condition
is satisfied, the state estimates are minimum-variance in the absence of a
statistical description of the unknown signals.

In Ghahremani and Kamwa (2011a;c), a dynamic state estimator method
based on extended Kalman filtering with unknown input is proposed, whereby
the exciter output voltage measurement is not available. This method
is studied in Ghahremani and Kamwa (2016) in a decentralized fashion.
Recently, a derivative-free Kalman filtering based approach of dynamic
state estimation for power systems with unknown inputs was proposed in
Anagnostou and Pal (2018) that uses an augmented unscented Kalman fil-
ter for state estimation. The attention of the above approaches is on the
individual network components’ external signals (”bottom-up perspective”).
On the other hand, an alternative perspective is proposed such that the
unknown parts of a partially known power system are modeled as inputs
flowing into the known part of the system (”top-down perspective”). Chan-
ging the perspective from the individual network components to a holistic
view of the known part of the system can help operators monitor partially
known power networks more simply.

The contribution of this chapter is to apply the viewpoint of the SISE state
and (disturbance) input estimation algorithm to a power system which is
split into known and unknown parts. This is the first stage of develop-
ing state estimation techniques for interconnected circuits with one (linear)
circuit known and interacting with connected (possibly nonlinear) entit-
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ies through port currents as external inputs Bitmead et al. (2019). The
structural constraints on the SISE method for it to be able to estimate the
unknown inputs are interpreted and discussed in a power system setting,
where they prove to be more powerful than in the general setting.

This chapter is organized as follows. In Section 2, we introduce and derive
the model for the Western System Coordinating Council (WSCC) 9-bus
system Anderson and Fouad (2008), which is used to demonstrate the pro-
posed state estimation method. Section 3 is devoted to the introduction of
the state estimation algorithm, including the SISE algorithm in its Kalman
filtering formulation. Moreover, the designed algorithms are developed for
state estimation of the WSCC-9-bus network. The simulation results re-
lated to the WSCC-9-bus network are presented in Section 4 to verify the
effectiveness of the proposed methods.

6.2 WSCC-9 Model Derivation

Because the example provides context for the methodology, we present it
first. The WSCC-9 model in Anderson and Fouad (2008) is static. How-
ever, in order to have a dynamic model for state estimation, we make some
modifications that are described below and in Table 6.1. For simplicity, we
make the following assumptions:

Assumption 6.1. 1. We ignore transformers in our dynamic estima-
tion procedure since their impedances are negligible compared to the
impedance of the transmission lines.

2. We ignore the conductances of transmission lines Hertem et al. (2006).

3. Bus 1 is a slack bus.

The 9-bus power network consists of three generators and three consumers
or loads. The dynamics of generators 1, 2 and 3 – their moments of inertia,
feedback control gains, mechanical and electrical properties – are available
in the full model along with the admittances of the network. The consumer
loads 4, 5 and 6 are also reliably modeled in the full model.

Ignoring the transformers, the 9-bus system can be reduced to a 6-bus sys-
tem with three dynamic loads and three generators shown in Fig. 7.7.
Generators 1, 2 and 3 are rotating machines that are described by their
mechanical dynamics. The models presented in most works in this area,
such as those investigating quasi-steady state estimation, are linearized in-
cremental models describing the (slow) time evolution of system variables in
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a periodically time-varying AC system. It is important to bear this in mind
when interpreting the dynamic equations since they mask the (fast) vari-
ation of currents and voltages at mains frequency. Generators 1, 2 and 3 are
rotating machines that are described by closed-loop mechanical dynamics
Blood (2011):

d

dt


a
Pm

ωr

δ


i

=


−kR 0 k 0

1/TCH −1/TCH 0 0
0 −1/M −D/M 0
0 0 1 0


i


a
Pm

ωr

δ


i

+


−k −k
0 0
0 0
0 0


i

[
Lref

ω0

]
i
+


0
0

−1/M
0


i

PEi, i = 1, 2, 3, (6.1)

where variables and parameters are:

state variables: valve position a, angular frequency ωr, mechanical power
Pm, shaft angle δ;
parameters: governor feedback gain k, droop characteristic R, rotor damp-
ing D, rotor inertia M , machine time constant TCH ;
external variables: external load PE , frequency set point ω0, load set
point Lref .

Similarly, loads containing rotating machines with known power, PL, can
be described as

d

dt

[
ωr

δ

]
i

=
[
−D/M 0

1 0

]
i

[
ωr

δ

]
i
+
[
−1/M

0

]
i

[
PLi

]
+
[
−1/M

0

]
i
PEi. (6.2)

The component dynamic models of each generator or load in bus i can be
rewritten concisely as

ẋi = Aixi +Biui +B
(P )
i PEi. (6.3)

where B
(P )
i is external load matrix. Note that ω0 and Lref do not affect the

state estimation procedure and can be neglected. The combination of the
generator and load models is as follows

x = [xT1 , · · · , xT6 ]T

P = [P TE1, · · · , P TE6]T

δ = [δT1 , · · · , δT6 ]T

A = blockdiag(A1, · · · , A6)

B(P) = blockdiag(B
(P )
1 , · · · , B(P )

6 ).
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The susceptance matrix of the reduced model of the 9-bus network in Fig.7.7
relates the currents out of the six nodes to the voltages at the nodes. Con-
sidering the reduced model of the WSCC-9-bus system, the susceptance
matrix for the network is

B =


−0.334 0 0 0.176 0.158 0

0 −0.455 0 0.306 0 0.149
0 0 −0.567 0 0.358 0.209

0.176 0.306 0 −0.482 0 0
0.158 0 0.358 0 −0.518 0

0 0.149 0.209 0 0 −0.358

,

In fact, the power injections are nonlinear (sinusoidal) functions of the bus
voltage angles Blood (2011). However, by considering Assumption 6.1, the
power injections can be approximated as:

P = Bδ.

Since the inputs are known and the models are linear, we may omit the
inputs from the description,

ẋ = Ax + B(P)Bδ,

then,

ẋ = (A + B(P)BSδ)x,

where Sδ is a δ selection matrix δ = Sδx. We re-organize the state vector
and the system matrix for each component as follows,

xi =
[
x̂i
δi

]
, i = 1, · · · , 6

Ai =

[
Gi 0

0 0 1 0

]
, i = 1, · · · , 3

Ai =

[
Li 0

1 0

]
, i = 4, · · · , 6 (6.4)

where Gi and Li are generators and loads dynamic states except for their
power angle.

For the re-organized system state vector, x̄ = [x̂T1 , · · · , x̂T6 , δT2 , · · · , δT6 ]T , the
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interconnected network has the system matrix as in (6.5),

A =



G1 I1
G2 I2

G3 I3
L4 I4

L5 I5
L6 I6

0 0 −1 0 0 1
0 0 −1 0 0 1
0 0 −1 1
0 0 −1 1
0 0 −1 1


, (6.5)

where Gi, i = 1, 2, 3 and Li, i = 4, 5, 6 are defined in (6.4) and from (6.1)

Ii =

 0
0

B(i, 2 : 6)/Mi,

, i = 1, 2, 3,

Ii =
[
B(i, 2 : 6)/Mi,

]
, i = 4, 5, 6.

Throughout the chapter, the simulations are performed with the full-order
linear model for the entire grid driven by load disturbance signals taken
from measured consumer data from Électricté de France Hebrail (2012).
Thus, there are no exact or statistically accurate disturbance models. So
the simulations provide a realistic test of the algorithms.

6.3 The SISE algorithm for interconnected sys-
tems

The aim of this section is to introduce the SISE algorithm and its formu-
lation, and reveal the advantages of the SISE for our power network state
estimation problem. We will use this algorithm in the next section in two
computational state estimation examples associated with different compart-
mentalizations into known and unknown parts associated with power system
circuit cuts. SISE is used to estimate the state of the known part and the
disturbance signals impinging from the unknown parts of the power system.

6.3.1 The classic SISE algorithm

Consider the following linear time-invariant system:

xt+1 = Axt +Gdt + wt, (6.6)

yt = Cxt + vt, (6.7)
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where xt is the state vector at time step t, dt is the unknown part modeled
as input demand estimation, and yt is the measurement vector. We make
the following basic assumptions.

Assumption 6.2. 1. xt, wt ∈ Rn, ut ∈ Rq, dt ∈ Rm, vt, yt ∈ Rp.

2. The initial condition x0 ∼ N (x̂0|0, P0), and noise sequences wt ∼
N (0, Q), vt ∼ N (0, R) are Gaussian and independent with the noises
being white.

3. Rt > 0,

4. [A, C] is completely observable,

5. rankCG = rankG = m.

Then, the simultaneous input and state estimation (SISE) algorithm, Kit-
anidis (1987), Gillijns and De Moor (2007a), is as follows.

Xt+1 = APtAT +Q,

where Xt+1 is the prior state covariance matrix

Kt+1 = Xt+1C
T (CXt+1C

T +R)−1,

where Kt+1 is the Kalman gain for the state vector

Mt+1 = [GTCT (CXt+1C
T +R)−1CG]−1 ×GTCT (CXt+1C

T +R)−1,

where Mt+1 is the Kalman gain for the unknown input vector

Pt+1 = (I −Kt+1C)
[
(I −GMt+1C)Xt+1(I −GMt+1C)T +GMt+1RM

T
t+1G

T
]

+Kt+1RM
T
t+1G

T ,

where Pt+1 is the posterior state covariance matrix

d̂SISE

t|t+1 = Mt+1(yt+1 − CAx̂SISE

t|t ),

x̂SISE

t+1|t+1 = Ax̂SISE

t|t +Gd̂SISE

t|t+1 +Kt+1 × (yt+1 − CAx̂SISE

t|t − CGd̂
SISE

t|t+1).

where x̂SISE

t+1|t+1, d̂
SISE

t|t+1 are posterior estimates for the state

and the unknown input of the system.

The SISE algorithm subject to Assumption 6.2 yields asymptotically un-
biased filtered state estimates and smoothed disturbance signal estimates.
With zero mean noises, the state estimates are minimum-variance subject
to projection into the null space of G Bitmead et al. (2019).
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6.3.2 State estimation of interconnected systems

SISE algorithms have usually been motivated by and applied to input es-
timation problems in geophysical exploration and environmental monitor-
ing, effectively as an approach to signal deconvolution through a known
linear system. However, early approaches Friedland (1969) concentrated on
bias estimation. As a byproduct of this deconvolution, a state estimate is
produced. We focus on the state estimation of a linear system, depicted
as P1(z) in Fig. 6.2, interconnected with an unknown system S2. We use

P1(z)u t

{wt, vt} yt

dt

qt

ztx1,t

known 
system

unknown 
system

+

!2

Figure 6.2: Depiction of interconnected known linear system P1(z) with state
x1,t to be estimated, unknown system S2 and unmeasured interconnection signals
dt and zt. Signals {wt, vt, ut, qt} are the noises and known input of P1, and other
external driving signals, respectively.

the word depicted advisedly, since there is not necessarily any causal rela-
tionship implied between dt and the other signals. However, the analysis of
interconnected systems exposes a potentially powerful application of SISE
in the capacity to estimate the state x1,t in isolation from its interconnec-
tions, which are entirely captured by dt. This is an n-vector state estimation
problem regardless of the complexity of the jointly interconnected system
S2. Further, the linearity of the known system P1, but not necessarily of
S2, is all that required, along with observability of P1 and Assumption 6.2.5
on the sufficiency of the measurements, which in turn relies on the topology
and nature of interconnection between the systems, but not the internal
dynamics of the known parts of the system.

6.4 Power network state estimation

In this section, we perform state estimation on the WSCC-9 test case with
unknown parts. We make a cut at the line through the network diagram
separating the known and the unknown parts of the system. The unknown
part of the circuit interacts solely through the two current signals flowing
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across the cut. We perform different cuts to see their effect on the state
estimation feasibility. With each cut, the definitions of the matrices in the
SISE description (6.6)-(6.7) alters to reflect the topology. Then, we apply
SISE to estimate the states of generators 1 and 2 and the current signals
from the unknown part. Our procedure for state estimation consists of the
following steps:

1. Identify the known and the unknown parts of the system.

2. Model the unknown part by disturbance inputs into the known part.

3. Derive the subsystem model.

4. Examine the rankCG condition from Assumption 6.2.5.

5. Apply SISE to estimate the states and the unknown currents.

6.4.1 The first cut

The first cut, shown in Fig. 7.7, divides the network into the known and
the unknown parts with the known part containing generators 1 and 2,
dynamic load 4 and transmission lines between load 4 and generators 1 and
2. The unknown part contains generator 3 and loads 5 and 6 and their
corresponding transmission lines. Note that we are using a complete model
to simulate the full system, while the estimation is based on a partial model
only.

The partial (known) system model is

d

dt



a1
P1

ω1

a2
P2

ω2

ω4

δ2
δ4


=



−5 0 100 0 0
0.2 −0.2 0 0 0
0 −0.1 −0.15 0 .02

−5 0 125 0 0
0.3 −0.3 0 0 0
0 −0.2 −0.3 −.1 .06

−1.5 .3 −.5
−1 1
−1 1



×



a1
P1

ω1

a2
P2

ω2

ω4

δ2
δ4


+



0 0
0 0

1/M1 0
0 0
0 0
0 1/M2

0 0
0 0
0 0


[
P̂1,5

P̂2,6

]
. (6.8)
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where P̂1,5 and P̂2,6 the unknown power disturbances entering bus 1 from bus
5, and entering bus 2 from bus 6, respectively. Then, a linear time-invariant
system for the first cut can be rewritten as

dx1

dt
= Ax1 + G1d1, y1 =

[
ω1

ω2

]
= C1x1 =

[
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0

]
x1.

(6.9)

Figures 6.3 and 6.4 show the performance of SISE’s state estimation and
disturbance estimation, respectively. The first six state estimates from SISE
closely track the true states, the states of generators 1 and 2. Fig. 6.3(a)
shows P2 and its corresponding estimation. Load 4’s speed and its estimate
are shown in Fig. 6.3(b). The phase difference between bus 4 and 1 and
its estimates is shown in Fig. 6.3(d). According to Fig. 6.4, we can deduce
that while the estimated disturbances are somewhat less accurate than the
estimates of the states of the known system, the disturbance estimates still
reliably show the trends in the disturbances.

6.4.2 The second cut

The network division is amended by replacing the first cut with that is
shown in Fig. 6.5. The load at bus 4 is now part of the unknown part of
the system and provides a third disturbance current signal to the network.
The same two measurements, ω1 and ω2, are retained. But now, with three
disturbance signals, Assumption 6.2.5 can no longer be satisfied. The system
model for the known part associated with the second cut is given by:

d

dt



a1
P1

ω1

a2
P2

ω2

δ2

 =


−5 0 100 0
0.2 −0.2 0 0
0 −0.1 −0.15 0

−5 0 125 0
0.3 −0.3 0 0
0 −0.2 −0.3 −0.09

−1 1 0





a1
P1

ω1

a2
P2

ω2

δ2



+



0 0 0
0 0 0

0.0176 1/M1 0
0 0 0
0 0 0

0.06120 0 1/M2

0 0 0


 δ̂LP̂1,5

P̂2,6

,

dx2

dt
= Ax2 +G2d2,

y2 =

[
ω1

ω2

]
= C2x2 =

[
0 0 1 0 0 0 0
0 0 0 0 0 1 0

]
x2. (6.10)
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(a) P2 (b) Load speed

(c) a1. (d) δ4

Figure 6.3: System states estimated for the first cut: P2 (mechanical power at
bus 2), ω4 (load speed at buss 4), a1 ( valve position of the generator at bus 1)
and δ4 (phase difference between buses 4 and 1). The actual value of the state is
shown in blue, while the SISE estimate is shown in red.

where P̂1,5 and P̂2,6 are the same as the first cut, while δ̂L is the unknown
power angle of the load at bus 4 (which determines the power drawn by the
load).

The second cut defines three disturbances and, as remarked above, the two
measurements do not suffice for precise reconstruction of the state and the
disturbance signals, because Assumption 6.2.5 does not hold. Fig. 6.6 shows
the degradation of estimation quality for P̂26, and the good estimation qual-
ity of a1. Although Assumption 6.2.5 is not satisfied, we can still run SISE
as our state estimator which leads to Lemma 6.1 below.

According to Assumption 6.2.5, one remedy to this collapse of disturbance
signal reconstruction could be to include an additional measurement – say
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(a) P̂15 (b) P̂26

Figure 6.4: External inputs/disturbances, P̂15 and P̂26, in blue and its estimates
with SISE in red for the first cut.

a PMU at Bus 4 – yielding a new 3× 7 measurement matrix C ′2 satisfying
rankC ′2G2 = 3. Indeed, this is a strength of SISE that the estimation con-
ditions are simply checkable and easily related to the measurement location.

However, the surprising aspect of the SISE applied to the second cut is
that the state estimates for the known part do not degrade in spite of the
compromised disturbance reconstruction. This will be explained below.

6.4.3 Recoverable disturbance directions

In the previous sub-section, we saw that rank(CG) = 2, but we still were
able to reconstruct all the signals in the known part of the system. In the
second cut, there are three unknown disturbances to the known part of the
system denoting with [δ̂L, P̂1,5, P̂2,6]. However, it is apparent from (6.10)
that the span of the three disturbance signals lies in a two-dimensional
subspace of the state space Rn. That is, no matter the set of disturbance
signals, the vector Gdt in (6.6) above belongs to this subspace. Indeed, this
observation holds for any cut which leaves the known system observable.

A consequence of this property for the known part of the system for cut 2 is
that all possible disturbances manifest as an equivalent set of two disturb-
ances as in cut 1. Accordingly, the state estimation proceeds without issue
and the Gdt term is recovered but the separation of Gdt into its constituent
components can fail. We have the following result derived from Bitmead
et al. (2019).

Lemma 6.1. If rankCG = rankG = k, then the dimension-k subspace
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Figure 6.5: Performing the second cut. In this cut, load 4 is also assumed to be
unknown, and the operator has only information and measurements from generator
1 and 2.

spanned by Gdt is recoverable by SISE with one-step-smoothed covariance

G
[
GTCT (CAPt+1ATCT + CQCT +R)−1CG

]−1
GT ,

which is independent of the power of dt.

6.4.4 Topology analysis

A central issue is whether the solution of our proposed method is feasible
in the practical and physical power network. In the second cut, we see
that we had only two paths of disturbances into the system. Analytically,
it means rank(CG) = 2. Hence, the rank of G represents the maximum
number of independent disturbance paths into the known system, and if
the number of the unknown disturbances into the system is more than the
rank of G, then we lose the ability to estimate the unknown disturbances
affecting the system. Generally, the unknown disturbances in the electrical
networks are power type signals, so they depend on the power angles of
other network buses. Hence, for each rotating machine in the power net-
work, there is only one input path into the system. For example, if we
have two rotating machines in the known part of the network, then only
two disturbance paths are identifiable. Thus, the important result is that
if we have n power disturbance paths in the power system needing to be
estimated, beside Assumption 6.2, we require at least n states connected to
those power disturbances. This can be illustrated with a cut with unknown
loads shown in Fig. 6.7. Since we have three disturbance inputs and three
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(a) a1 (b) P̂26

Figure 6.6: State, a1 (valve position of the generator at bus 1), and external
input, P̂26, in blue and their estimates for the second cut.

Figure 6.7: Load separation scheme. Loads 4, 5, and 6 are unknown parts of the
network, and the known part contains generators 1, 2, 3 and the transmission lines.

generators, the SISE would be able to estimate all three unknown disturb-
ances. Thus, we can assume that the load parts are the unknown part of
the power grid using the proposed cut. For this cut, the disturbance matrix
is given as follows,

G3 =



0 0 0
0 0 0

0.0176 0.0158 0
0 0 0
0 0 0

0.0612 0 0.0298
0 0 0
0 0 0
0 0.0716 0.0418
0 0 0
0 0 0


,
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so, by choosing

C3 =

 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0

,
results in Fig. 6.8 and Fig. 6.9 can be obtained demonstrating good accur-
acy state estimation for the proposed cut.

(a) a1 (b) δ3

Figure 6.8: The estimates of the states of the known part of the system for the
load separation. The blue line is the actual signal, and the red line is its estimate.

6.5 Conclusion

We apply the SISE method to dynamic state estimation in power grids with
known and unknown parts. This is done by moving the focus of SISE from
deconvolution and input estimation to state estimation. Thus we have been
able to present, and illustrate an approach to state estimation in networked
systems, including those with poorly known network neighbors. In addition,
different cuts, their requirements, and their impacts have been investigated
for a well-known power model. Simulation results reveal that the proposed
approach can obtain accurate results.
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(a) δ4 (b) δ5

(c) δ6

Figure 6.9: The estimates of all unknown disturbances for the load separation.
The blue line is the actual signal, and the red line is its estimate.
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Di, i = 1, ..., 6 1.5

TCH,1 5s

TCH,2 3s

TCH,3 4s

R1 0.05

R2 0.04

R3 0.033

k1 100

k2 125

k3 150

M1 10

M2 5

M3 8.33

M4 1

M5 3.33

M6 3.33

B14 0.176

B15 0.158

B24 0.306

B26 0.149

B35 0.358

B36 0.209

Table 6.1: Power network parameters
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Abstract

This chapter presents a fully distributed framework for implementing H∞
filtering over multi-agent networked systems. This is obtained through using
diffusion techniques for fusion of local filtering operations in order to enforce
cooperation between agents and achieve a network-wide cohesive filtering
operation. More importantly, we propose a diffusion-based algorithm which
uses only locally observable states. Furthermore, the work includes the
information formulation of the derived filtering framework. This information
formulation not only provides the basis of the performance analysis and
establishment of observability conditions, but also allows for the extension
of the derived filtering framework to nonlinear systems via the use of the
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unscented transform. Finally, the effectiveness of the derived estimation
framework is demonstrated in two simulation examples.

8.1 Introduction

Since its introduction in the 1960s, the Kalman filter has seen use for a vari-
ety of purposes Kalman (1960), Kailath et al. (2000). However, the Kalman
filter assumes accurate knowledge of the system model characteristics, in-
cluding noise processes Kalman (1960). Unfortunately, this information is
not readily available in most industrial applications Kumar (2015). In this
setting, the class of H∞ filters, that require no prior knowledge of noise char-
acteristics, have attracted significant attention within the signal processing
and control communities Li and Jia (2010), Wang et al. (2012). Unlike the
Kalman filter which implements a minimum variance estimator based on a
Gaussian assumption on the noise processes, the class of H∞ filters aim to
reduce the impact of the extreme case for the disturbance on the estima-
tion error. H∞ filters are therefore more robust against disturbances Simon
(2006). The H∞ filter is described as a filter/predictor minimizing the power
density of the peak error while the classic Kalman filter reduces the aver-
age power density of error Simon (2006), Li and Jia (2010), Grimble and
El Sayed (1990). Due to their natural ability to deal with model uncer-
tainty, the class of H∞ filters have found numerous applications, including
signal processing Hu and Yang (2011), Ding and Guo (2015) power network
monitoring Zhao and Mili (2018), Zhao et al. (2019b), Wang et al. (2019),
and robotics Loo et al. (2019), Havangi (2015).

Another area that has seen increased interest is that of networked multi-
agent state estimation applications Yin et al. (2018), Boem et al. (2019). Al-
though optimal solutions are available through the framework of centralized
state estimators Rego et al. (2019), in large-scale systems such as power dis-
tribution networks, centralized techniques impose high computational loads
on the central processing unit and require complex communication proto-
cols. This has led to the introduction of a wide range of distributed Kalman
filtering techniques Sayed (2014b), Talebi and Werner (2019). In this set-
ting, agents, i.e., buses in the power network, are able to communicate with
their neighbors, while no centralized estimation strategy is present. In addi-
tion, there is no hierarchy for the agents in the network Cattivelli and Sayed
(2010), Talebi and Werner (2019), Olfati-Saber (2007). Distributed Kalman
filtering techniques for networked systems are shown to be robust against
agent failure, more reliable when facing unforeseen topology changes, and
do not require complicated communication protocols Cattivelli and Sayed
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(2010), Talebi and Werner (2019), Olfati-Saber (2007). There are two major
classes of distributed Kalman filtering techniques, consensus-based Olfati-
Saber (2009) and diffusion-based Sayed (2014b), Cattivelli and Sayed (2009;
2010).

Akin to their single agent counterparts, distributed Kalman filtering tech-
niques also assume knowledge of system model characteristics. In order to
present a more robust distributed state estimation solutions, a consensus-
based distributed H∞ filter has been proposed in Ugrinovskii (2013). How-
ever, consensus-based distributed filtering schemes burden the network with
timing constraints; furthermore, these approaches require the estimator im-
plement the consensus step at faster rates than the local Kalman filtering
operation Talebi and Werner (2018). A so-called decentralized H∞ filter
has been introduced in Li and Jia (2010); however, no comprehensive dif-
fusion step is integrated into the algorithm. Thus, the estimation accuracy
using local filters are lower than the truly distributed approaches.

In this work, a class of fully distributed H∞ filtering techniques for state es-
timation in large-scale multi-agent networks is derived. Distributed filtering
is achieved through exploiting the diffusion technique in order to coordinate
the flow of information within the multi-agent network and achieve fusion of
local filtering operations, thereby accomplishing a cohesive filtering opera-
tion. Importantly, the effectiveness of the derived framework is investigated
and conditions for observability are provided. Furthermore, in order to
loosen observability conditions to practical levels achievable in most real-
world applications, a novel diffusion filtering method that allows each agent
to track locally observable dynamic modes, while ascertaining sufficient in-
formation regarding its unobservable dynamic modes through the diffusion
process is derived. For completeness, the framework is also extended to deal
with nonlinear system equations using the unscented transform. Finally, an
implementation of the framework is applied to target tracking problem and
the IEEE-14-bus network, demonstrating the effectiveness of the proposed
framework.

8.2 Preliminaries & Background

Consider the linear discrete-time dynamic model

xi+1 = Fixi + wi (8.1)

yi = Hixi + vi (8.2)

where at time instant i, the system state and measurement are denoted
by xi ∈ Rn and yi ∈ Rm, while the system dynamics and the observa-
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tion matrix are denoted by Fi and Hi, with the process noise, wi, and the
measurement noise, vi, being energy bounded l2[0,+∞) signals which have
unknown statistical properties, so that

∞∑
i=0

wT
i wi <∞ and

∞∑
i=0

vTi vi <∞. (8.3)

The aim is to estimate xi on the basis of measurements prior to and counting
time i. According to the methodology of game theory, nature takes the role
of an adversarial player, which can, in theory select any value for {wi, vi, x0}
given the objectives. In contrast, in the Kalman filtering arena, the prob-
ability density functions (pdf)s of noises in the system are assumed to be
known Simon (2006). Subsequently, this pdf knowledge is used to obtain
a minimum variance state estimate. In this case, nature’s possible actions
to degrade the state estimate are constrained by the prescribed pdf’s of the
process and measurement noises Banavar (1992), Simon (2006).

In the H∞ filtering problem, , the following cost function is considered:

J1 =

∑i
j=0 ‖xj − x̂j‖22

‖x0 − x̂0‖2P−1
0

+
∑i

j=0(‖wj‖2Q−1
j

+ ‖vj‖2R−1
j

)
(8.4)

where the estimate of xi is denoted by x̂i, with Qi and Ri being weighting
matrices that are analogous to the covariance estimates of wi and vi in clas-
sical state-space filtering approaches, while P−1

0 > 0 is a weighting matrix
that can be used to integrate a priori information about the accuracy of
the initial state estimate x̂0. The solution is to find x̂i that minimizes the
objective function in (8.3), while the opponent’s, henceforth referred to as
“nature”, goal is to find {wi, vi, xo} that maximize the error term (xi−x̂i) Si-
mon (2006).

The solution of J1 is not attainable in a straightforward fashion; therefore,
an approximation method that meets a performance threshold is sought Si-
mon (2006). In this setting, we have

J1 < λ2 (8.5)

where λ is a user-specified performance bound. Substituting (8.4) into (8.5)
results in

J =− λ2‖x0 − x̂0‖2P−1
0

+

i∑
j=0

[‖xj − x̂j‖22 − λ2(‖wj‖2Q−1
j

+ ‖vi‖2R−1
j

)] < 0.
(8.6)
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A sub-optimal solution to the H∞ filtering problem given in (8.6) can be
reached through the following iterations Einicke and White (1999), Li and
Jia (2010), Simon (2006)

At each time instant i:

x̂i|i−1 =Fix̂i−1|i−1 (8.7)

x̂i|i =x̂i|i−1 +Ki(yi −H(x̂i|i−1)) (8.8)

Pi|i−1 =Fi−1Pi−1|i−1F
T
i−1 +Qi (8.9)

Ki =Pi|i−1H
T
i (Ri +HiPi|i−1H

T
i )−1 (8.10)

Pi|i =Pi|i−1 − Pi|i−1

[
HT
i I

]
R−1
e,i

[
Hi

I

]
Pi|i−1 (8.11)

where x̂i|i−1 and x̂i|i denote the a posteriori and a priori estimaties of xi,
respectively, while Re,i is given by

Re,i =

[
Ri 0
0 −λ2I

]
+

[
Hi

I

]
Pi|i−1

[
HT
i I

]
.

In addition, applying the matrix inversion to (8.11), it can be shown that

P−1
i|i = P−1

i|i−1 +HT
i R
−1
i Hi − λ−2

i I. (8.12)

8.3 Diffusion H∞ filtering

Hereafter, the neighborhood of agent k is defined as the set of agents con-
nected to agent k, including agent k itself. The neighborhood of agent k
can be represented by the index set Nk = {`1, . . . , `|Nk|}. The number of
neighbors of an agent is referred to as the degree of agent k and is denoted
by |Nk| Cattivelli and Sayed (2009).

8.3.1 Local sequential H∞ filtering

The observation of agent k at time instant i is modeled as

yk,i = Hk,ixi + vk,i (8.13)

where yk,i, Hk,i, and vk,i denote the observation, observation function, and
observation noise of at node k at time instant i. For agent k, we define

Hcol
k,i = coll∈Nk

{Hl,i} (8.14)

Rdik,i = diagl∈Nk
{Rl,i} (8.15)
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where “coll∈Nk
{Hl,i}” represents a block column matrix of the set {Hl,i, l ∈

Nk} and“diagl∈Nk
{Rl,i}” is a block diagonal matrix of the set {Rl,i, l ∈ Nk}.

A local state estimator gain and estimation error covariance matrix at each
node l based on its own observation can be computed, so that at each time
instant i and node l we have

Kl,i =Pl,i|i−1H
T
l,i(Rl,i +Hl,iPl,i|i−1H

T
l,i)
−1 (8.16)

Pl,i|i =Pl,i|i−1 − Pl,i|i−1

[
HT
l,i I

]
R−1
e,l,i

[
Hl,i

I

]
Pl,i|i−1 (8.17)

Pl,i|i+1 =FiPl,i|iFT
i +Qi (8.18)

(8.19)

where

Re,l,i =

[
Rl,i 0
0 −λ2

l I

]
+

[
Hl,i

I

]
Pl,i|i−1

[
HT
l,i I

]
By applying the matrix inversion lemma to (8.17), one can obtain

(Pl,i|i)−1 = (Pl,i|i−1)−1 +HT
l,iR
−1
l,i Hl,i − λ−2

l I

where it has been assumed that node k has access to the measurement
matrices {Hl,i, l ∈ Nk} and λ−2 =

∑
l∈Nk

λ−2
l . From (8.18) and considering

that
Pl−1,i|i−1 = FiPl|Nk|,i−1|i−1F

T
i +Qi

successive substitution for |Nk| state updates yields,

(Pl|Nk|,i|i
)−1 =(Pl−1,i|i−1)−1 +Hcol

k,i
T
Rdik,i

−1
Hcol
k,i − λ−2I (8.20)

As far as the local estimator is concerned, the sequential incorporation of
the new information from neighboring nodes, yl,i ∈ Nl is implemented by
sequentially applying the following operations constitute a local filtering op-
eration:

For agent k, we perform |Nk| state updates on a local copy of the global
state vector for l ∈ {l1, · · · l|Nk|}, where l1 corresponds to the node itself and
l|Nk| corresponds to the last neighboring node:

x̂l,i|i = x̂l−1,i|i +Kl,i[yl,i −Hl,ix̂l−1,i|i], (8.21)

By using the matrix inversion lemma, an alternative scheme for (8.20) can
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be derived as follows:

(Pk,i|i)−1 = (Pk,i|i−1)−1 +
∑
l∈Nk

(HT
l,iR
−1
,l,iHl,i)− λ−2I. (8.22)

Additionally,

Kk,i =Pk,i|i−1H
col
k,i

T
(Rdik,i +Hcol

k,iPk,i|i−1H
col
k,i

T
)−1

=Pk,i|i−1H
col
k,i

T
(8.23)

[Rdik,i
−1

+Rdik,i
−1
Hcol
k,i (Pk,i|i−1 +Hcol

k,i
T
Rdik,i

−1
Hcol
k,i )
−1Hcol

k,i
T
Rdik,i

−1
]

=Pk,i|i−1[I −Hcol
k,i

T
Rdik,i

−1
Hcol
k,i (P−1

k,i|i + λ−2I)−1]Hcol
k,i

T
Rdik,i

−1

=(P−1
k,i|i + λ−2I)−1Hcol

k,i
T
Rdik,i

−1
. (8.24)

Based on these two formulations for decentralized H∞ filtering and using
a diffusion step, we propose the distributed H∞ filtering in the following
subsection.

8.3.2 Distributed H∞ filtering

The purpose of distributed filtering is to enable each agent to estimate the
state vector xi, via collaboration with its neighborhood. The goal here
is perform a state estimation approach of comparable accuracy with those
obtained by centralized approaches. Using H∞ filtering derivation in (8.13)-
(8.23), results in the filtering technique detailed in Algorithm 8.1. Note
that different strategies exist for selecting to select weight matrices cl,k for
the diffusion step Talebi and Werner (2019), Cattivelli and Sayed (2010),
Xiao et al. (2005); however, we simply calculate the averaged estimate of
neighbors.

An alternative form of diffusion H∞ filter is derived in Algorithm 8.2 that
can be used to simplify the interpretation and implementation of distributed
H∞ filtering. Note that we assume Pi > 0 for all i. Algorithm 8.2 is the
information formulation of the proposed filter, which is derived using (8.22).

8.3.3 Convergence Analysis

Assumption 8.1 (Sayed (2014b), Kailath et al. (2000)). : Matrices in
(8.1)-(8.2), F,H,R and Q are time-invariant i.e., Fi → F,Hi → H,Ri →
R and Qi → Q. It is further assumed that the solution of the filtering
recursions, excluding the diffusion step, is convergent for each agent Sayed
(2014b), Cattivelli and Sayed (2009; 2010).
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Algorithm 8.1: Distributed H∞ filter using diffusion step

For the system, (8.1) do for all k:
Initialization:

x̂k,0|−1 =E{x} = x0

Pk,0|−1 =P0

1. Update through measurement equation:

ψk,i ← x̂k,i|i−1

Pk,i ← Pk,i|i−1

for {l ∈ Nk},

(a) Update Kl,i through (8.16).

(b) Update Pl,i through (8.17).

(c)
ψk,i ← ψk,i +Kl,i(yl,i −Hl,iψk,i).

2. Diffusion step: for
∑

l∈Nk
cl,k = 1,

x̂k,i|i ←
∑
l∈Nk

cl,kψl,i

Pk,i|i ← Pk,i
x̂k,i+1|i ← Fix̂k,i|i

Pk,i+1|i ← FiPk,i|iFT
i +Qk,i.
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Algorithm 8.2: Information formulation of the distributed H∞ filter
using diffusion step

Information step:

Ik,i =
∑
l∈Nk

HT
l,iR
−1
l,i Hl,i (8.25)

Tk,i =
∑
l∈Nk

HT
l,iR
−1
l,i yl,i (8.26)

P−1
k,i|i = P−1

k,i|i−1 − λ
−2
k I + Ik,i (8.27)

ψk,i = x̂k,i|i−1 + (P−1
k,i|i + λ−2

k I)−1

[Tk,i − Ik,ix̂k,i|i−1] (8.28)

Diffusion step: for
∑

l∈Nk
cl,k = 1,

x̂k,i|i =
∑
l∈Nk

cl,kψl,i (8.29)

x̂k,i+1|i = Fix̂k,i|i (8.30)

Pk,i+1|i = FiPk,i|iFT
i +Qk,i. (8.31)
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Recall the definition of Hcol
k and Rdi

k from (8.14) and (8.15), now we are
able to rearrange the measurement steps in Algorithm 8.1 as follows:

Pk,i|i = Pk,i|i−1 − Pk,i|i−1

[(
Hcol
k

)T
I
]
R−1
e,k

[
Hcol
k

I

]
Pk,i|i−1 (8.32)

where

Re,k =

[
Rdi
k 0

0 −λ2I

]
+

[
Hcol
k

I

]
Pk
[
(Hcol

k )
T

I
]

We derive the Riccati recursive equation by substituting (8.32) in (8.31) as
follows:

Pk,i+1|i = FPk,i|i−1F
T +Q−Kp,k,iRe,k,iKT

p,k,i

where Kp,k,i = FPk,i|i−1

[
(Hcol

k )
T

I
]
R−1
e,k,i. Now, denoting by Psk the

steady state solution of the algebraic Riccati recursion obtained above, we
have,

Psk = FPskFT +Q−Kp,kRe,kKT
p,k

Assumption 8.2 (Kailath et al. (2000), Karvonen et al. (2014), Cattivelli
and Sayed (2010)). : The pairs {F,Hcol

k } and {F,Q1/2} are detectable and
stabilizable for every k, respectively.

Assumption 8.3. for each i ∈ Nk, choose λ2
i as Labarre et al. (2007):

λ2
i = ηmax{eig(P−1

i|i−1 +HT
i R
−1
i Hi)

−1} (8.33)

where η is a scalar larger than one.

Assumption 8.2 guarantees the existence and the convergence of Psk. As-
sumption 8.2 and Assumption 8.3 guarantee R−1

e,k,i > 0.

Lemma 8.1. The norm-2 expectation of estimates using distributed-state
estimators proposed in Algorithm 8.1 is bounded by the largest norm-2 ex-
pectation of estimates in the network, i.e

E{||x̂k,i|i||2} ≤ E{||ψmax,i||2}

where

E{||ψmax,i||2}
def
== max(E{||ψ1,i||2}, · · · ,E{||ψN,i||2}),
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Proof. As a reminder, we have the following diffusion step:

x̂k,i|i =
∑
l∈Nk

cl,kψl,i

Then,

E{||ψk,i||2} =
∑
l∈Nk

c2
l,kE{ψl,i} +

∑
m∈Nk

∑
l 6=m∈Nk

cl,kcm,kE{ψT
m,iψl,i}

Using the definition of, E{||ψmax,i||2}, and the fact that
∑

l∈Nk
cl,k = 1,

concludes the proof.

Generally, in the diffusion approach, every agent should have access to the
system state-space model and sufficient measurements to ensure the observ-
ability. This clearly limits the scalability of the method. To address this
problem, the diffusion filtering algorithm is modified to loosen observabiity
condition to that of the centralized approach.

We start by determining the observable space for each neighborhood. Then,
for the measurements yk at agent k, there exist the corresponding observ-
able state space Ook and the unobservable state space Ouk. The globally
observable subspace is the union of locally observable subspaces, while the
global unobservable subspace is the intersection of the locally unobservable
subspaces Ghosal et al. (2017), Kotta (2005). To relax Assumption 8.2, we
change the algorithm as follows: For every time instant i, perform the meas-
urement update only for Ook. In this case, the local H∞ filter will be stable
on the observable space of Ook. Furthermore, it follows that the estimator
will be stable. Note that for the unobservable states of the local agent,
the measurement update is not performed, and the state estimates are kept
unchanged. The existence of this state transition and the method to obtain
it are given in Chapter 13 of Rugh (1996). The proposed approach is sum-
marized briefly in Algorithm 8.3, where Fk,i is the state transition matrix
for the locally observable space, and Ωk is the decomposing transformation.
Note that superscript ob corresponds to observable spaces of the system,
while uob corresponds to the unobservable subspace. Note that all nodes
in the neighborhood must update their estimates within their individual
neighborhoods before the diffusion step is performed.

8.4 Decentralized Unscented H∞ filter

Here, we formulate the H∞ filtering problem in accordance with the unscen-
ted transform (UT) methodology. Thereafter, we reformulate the obtained
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Algorithm 8.3: Diffusion H∞ filtering only on locally observable state
vectors
Do for all neighborhood of node k, {l ∈ Nk}:

1. Obtain the local observable dynamics and measurement equation for
neighborhood of node k by using the following decomposition
definition given in Kailath et al. (2000):[

Fk,i 0
F uob1k,i F uob2k,i

]
def
== Ω−1

k FiΩk[
Hob
l,i 0

] def
== Hl,iΩk (8.34)

2. Update through measurement equation:

ψk,i ← x̂k,i|i−1

Pk,i ← Pk,i|i−1[
ψobk,i
ψuobk,i

]
def
== Ω−1

k ψk,i

(a) By substituting Hob
l,i instead of Hl,i, update Kl,i through (8.16).

(b) By substituting Hob
l,i instead of Hl,i, update Pk,i through (8.17).

(c)
ψobk,i ← ψobk,i +Kl,i(yl,i −Hob

l,iψ
ob
k,i).

ψk,i ← Ωk

[
ψobk,i
ψuobk,i

]
3. Diffusion step: considering that agent l uses the state vector basis for

agent k when it communicates its state estimate, then for∑
l∈Nk

cl,k = 1,

x̂k,i|i ←
∑
l∈Nk

cl,kψl,i

Pk,i|i ← Pk,i
x̂k,i+1|i ← Fix̂k,i|i

Pk,i+1|i ← Fk,iPk,i|iFT
k,i +Qk,i.
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H∞ filter into an information filtering format, so that it can be extended to
the distributed setting in a more straightforward manner.

8.4.1 Unscented H∞ filter

To extend our method for the nonlinear case, we assume the following non-
linear discrete-time model

xi+1 = fi(xi) + wi (8.35)

yi = hi(xi) + vi (8.36)

where fi(·) is the state evolution function and hi(·) is the measurement func-
tion. Consider the estimate x̂i−1|i−1 and the estimation covariance Pi−1|i−1

at time i − 1. Applying the unscented transform Julier et al. (2000), H∞
filtering can be obtained as described next Li and Jia (2010).

The prediction step is the propagation of 2n sigma points, x̃si−1|i−1, s =
1, . . . , 2n, which are the representatives of whole distribution, via system
equation at time i− 1. The generation of sigma points is as follows:

x̃0
i−1|i−1 = x̂i−1|i−1,

x̃si−1|i−1 = x̂i−1|i−1 + (
√
nPi−1|i−1)s, s ∈ {1, · · · , n}

x̃si−1|i−1 = x̂i−1|i−1 − (
√
nPi−1|i−1)s, s ∈ {n+ 1, · · · , 2n} (8.37)

Next, we apply the known system model to each sigma points, and then,
obtain the average value of the propagated sigma points. Thus, the imple-
mentation of the unscented transform Julier et al. (2000), Li and Jia (2010)
yields:

x̃si|i−1 =f(x̃si−1|i−1) (8.38)

x̂i|i−1 =
1

2n

2n∑
s=1

x̃si|i−1 (8.39)

Pi|i−1 =
1

2n

2n∑
s=1

[x̃si|i−1 − x̂i|i−1][x̃si|i−1 − x̂i|i−1]T +Qi. (8.40)

The corresponding predicted measurement would be 1:

ŷi|i−1 =
1

2n

2n∑
s=1

hi(x̃
s
i|i−1)

1It is recommended to re-sample sigma points around x̂i|i−1 using Pi|i−1, but this step
is omitted here for brevity.



136 Paper V: Distributed H∞ Filtering for Linear and Nonlinear Systems

The measurement covariance, Pyy, and cross-correlation covariance between
sigma points in state space and sigma points in the measurement space, Pxy,
can be obtained applying the sigma points prediction as follows

Pyyi|i−1 =E[yi − ŷi|i−1][yi − ŷi|i−1]T (8.41)

=
1

2n

2n∑
s=1

[hi(x̃
s
i|i−1)− ŷi|i−1][hi(x̃

s
i|i−1)− ŷi|i−1]T (8.42)

Pxyi|i−1 =E[xi − x̂i|i−1][yi − ŷi|i−1]T (8.43)

=
1

2n

2n∑
s=1

[x̃si|i−1 − x̂i|i−1][hi(x̃
s
i|i−1)− ŷi|i−1]T (8.44)

In this case, we rearrange the unscented transform framework equations by
taking advantage of the statistical linear error propagation method Julier
et al. (2000), Li and Jia (2010), which helps us to derive equations for
distributed H∞ filtering. Namely,

Pyyi|i−1 ≈ HiPi|i−1H
T
i (8.45)

Pxyi|i−1 ≈ Pi|i−1H
T
i (8.46)

Consequently, based on (8.11) and (8.46), we obtain the filtered estimates
as:

Pi|i = Pi|i−1 −
[
Pxyi|i−1 Pi|i−1

]
R−1
e,i

[
[Pxyi|i−1]T

PT
i|i−1

]
(8.47)

where

Re,i =

[
Ri + Pyyi|i−1 [Pxyi|i−1]T

Pxyi|i−1 −λ2I + Pi|i−1

]
Choosing the parameter λ is an important step in H∞ filtering problems,
since it affects the positiveness of Pi|i. By using Assumption 8.3 , (8.33),
(8.45) and (8.46), we can obtain λi as follows:

λ2
i = ηmax{eig(P−1

i|i−1 + P−1
i|i−1P

xy
i|i−1R

−1
i [P−1

i|i−1P
xy
i|i−1]T)−1}

With these developments, the unscented H∞ filtering method is obtained
using only calculated covariances, without the matrix Hi from (8.45) and
(8.46). This will be shown next.
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8.4.2 Information form of the Unscented H∞ filter

In order to obtain the decentralized diffusion procedure, the unscented H∞
information filter is derived. For this purpose, we can apply the matrix
inversion lemma, and rewrite the state estimator gain Ki as follows

Ki =Pi|i−1H
T
i (I +R−1

i HiPi|i−1H
T
i )−1R−1

i

=Pi|i−1(I +HT
i R
−1
i HiPi|i−1)−1HT

i R
−1
i

=(P−1
i|i−1 +HT

i R
−1
i Hi)

−1HT
i R
−1
i

As a reminder, Pi|i can be rewritten by taking the advantage of the matrix
inversion lemma,

P−1
i|i =P−1

i|i−1 +
[
HT
i I

] [Ri 0

0 −λ−2
i I

]−1 [
Hi

I

]
(8.48)

=P−1
i|i−1 − λ

−2
i I +HT

i R
−1
i Hi

Then, we can obtain

Ki =(P−1
i|i + λ−2

i I)−1HT
i R
−1
i

=(P−1
i|i + λ−2

i I)−1P−1
i|i−1P

xy
i|i−1R

−1
i

Thus, the filtered estimates can be obtained as

x̂i|i =x̂i|i−1 +Ki(yi − hi(x̂i|i−1))

=x̂i|i−1 + (Pi|i + λ−2
i I)−1P−1

i|i−1P
xy
i|i−1R

−1
i (yi − hi(x̂i|i−1))

8.4.3 Distributed nonlinear filtering

Based on the obtained information matrix (8.48) and substituting the (8.45)-
(8.46) into (8.48), the diffusion H∞ filtering can be obtained as in Algorithm
8.4.

8.5 Simulation results

We give two examples to verify our investigations. The first example is a
well known target tracking problem Talebi and Werner (2019), Talebi and
Werner (2018), Li and Jia (2010). The dynamics of target tracking problem
in xy-plane at time instant i is given by

xi =


1 0 1

fs
0

0 1 0 1
fs

0 0 1 0

0 0 0 1

xi−1 +


1
2 ( 1

fs
)2 0

0 1
2 ( 1

fs
)2

1
fs

0

0 1
fs

ai

︸ ︷︷ ︸
wi

+δx
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Algorithm 8.4: Distributed nonlinear H∞ information filter using dif-
fusion step

For the system model (8.35), starting with x̂k,0|−1 = 0 and
Pk,0|−1 = Π0, we have

Information update:

Ik,i =
∑
l∈Nk

P−1
l,i|i−1P

xy
l,i|i−1R

−1
l,i P

xy
l,i|i−1

TP−1
l,i|i−1 (8.49)

Tk,i =∑
l∈Nk

P−1
l,i|i−1P

xy
l,i|i−1R

−1
l,i (yl,i − hl,i(x̂k,i|i−1)) (8.50)

P−1
k,i|i = P−1

k,i|i−1 + Ik,i − λ−2I (8.51)

ψk,i = x̂k,i|i−1 + (P−1
k,i|i + λ−2I)−1Tk,i. (8.52)

Diffusion update:

1.
x̂k,i|i =

∑
l∈Nk

cl,kψl,i (8.53)

2. Update x̂k,i+1|i through (8.37)-(8.39).

3. Update Pk,i+1|i through (8.40).

if l ∈ Nk : yl,i =

[
1 0 0 0
0 1 0 0

]
xi + vl,i

where xi = [pxi , pyi , ṗxi , ṗyi ] for positions states pxi , pyi . The simulation res-
ults are performed using sampling rate fs = 25Hz. wi is the process noise
assumed to be zero-mean Gaussian, and ai can be interpreted as acceler-
ations in two orthogonal horizontal directions Talebi and Werner (2018).
The measurement noise vl,i is also assumed to be zero-mean Gaussian. The
topology of the network used for simulations is shown in Fig. 8.1. Fur-
thermore, Fig. 8.2 shows the mean square estimation error of first and
the second state of the system, pxi , pyi using a diffusion based Kalman
and H∞ filtering. A Monte Carlo simulation with 100 runs has been per-
formed which has similar statistic’s characteristics for both distributed Kal-
man and H∞ filtering methods. The process noise covariance is assumed to
be Qs = 0.0023 diag {0, 0, 1, 1}, and δx is additional unknown process noise
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Figure 8.1: A network with 10 agents and 20 edges

which we assume is modeled as uniformly distributed noise within ±0.002
and the measurement covariance is Rs = 0.16I. Even though, the diffusion
H∞ filtering requires higher computational cost because of the extra compu-
tation of the parameter η, it achieves a lower mean square error, as shown in
Fig. 8.2. The superior performance observed for H∞ filtering clearly comes
from the Kalman filter being unable to represent accurately the uniformly
distributed noise source δx. This illustrates the proposed H∞ filter is more
robust to errors and uncertainties in process noise and consequently in pro-
cess model. It should be mentioned that the mean square periodically goes
to zero for both filters. This is because the disturbance/acceleration is zero
for these times in all runs. Note that the diffusion step for this example
serves only as a means for propagating the global state estimate throughout
the system, as the local measurements for agent l are the only ones that
contain information about the states of agent l.

8.5.1 IEEE-14-bus network

The second example is the distributed dynamic state estimation for IEEE-
14-bus network, Fig. 8.3. The derivation of the model for this network
is as in Ghosal and Rao (2019), Abooshahab et al. (2019). The classical
synchronous generator model is given in Kundur et al. (1994), Machowski
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Figure 8.2: Mean square estimation error of distributed H∞ filter (blue dashed
lines) and Kalman filter (green solid line) using diffusion approach for 100 runs of
Monte Carlo simulation with different error covariances.

et al. (2020) as follows:

δ̇ = ω

ω̇ =
1

M
(Pm − Pe −Dω) (8.54)

where Pe is the air-gap electrical power. The other variables and parameters
are defined as follows:

state variables: ω denotes the difference between rotor rotational speed
and the synchronous speed, and δ refers to the rotor angle;
parameters for rotor: D and M represent the damping and inertia coef-
ficients, respectively.
external variables: Pm is the mechanical turbine power.

For this example, by measuring the power angles of buses one, two, three,
six, and eight, we get the result given in Fig. 8.4. In this example, the
covariances of the process noise assumed to be known, but the measurement
error vi with covariance matrix 0.0004I assumed to be added by an unknown
additive measurement noise δy, uniformly distributed within ±0.0002. We
plot power angles at buses three and five, and the rotational speeds at
buses three and four in Fig. 8.4 which shows that the H∞ filter also better
deals with the uncertainties in the measurement. It is also shows that the
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Figure 8.3: The IEEE-14-bus network Li et al. (2010).

estimates of the H∞ filter fluctuate less than those from the Kalman filtering
one. However, in this example, only the measurement error assumed to be
unknown and changed in different Monte Carlo runs, that The results for
the other states are similar and are therefore not shown.

8.6 Conclusion

In this chapter, we propose a fully distributed linear H∞ filtering by using
the diffusion strategy. Then we relax the assumption of global observability
for each agent by proposing a diffusion based algorithm which uses only
the locally (in the neighborhood) observable state vector. Then we extend
our framework to nonlinear systems using the unscented transform. Finally,
we verify the effectiveness of proposed method using two examples, a tar-
get tracking problem and the distributed state estimation for IEEE-14-bus
system
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Figure 8.4: States of a power system with their estimation using distributed H∞
(dashed red lines) and Kalman filter (dashed green line) for 100 runs of Monte
Carlo simulation.
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Chapter 10

Paper VII: A Covariance
Consistent Data Fusion
method for Power Networks
with Multirate Sensors

This chapter is taken from Abooshahab et al. (2020a).

A Covariance Consistent Data Fusion method for
Power Networks with Multirate Sensors 1

Mohammad Ali Abooshahab
Morten Hovd
Edmund Brekke
Xianfeng Song
2020 IEEE Conference on Control Technology and Applications (CCTA),
Montréal, Canada (2020)

Abstract

The quasi-static assumption has been often employed in the analysis of
a power system for state monitoring/estimation. Accordingly, only static
state estimates can be obtained. However, the increased penetration of

1This chapter (paper) use the same algorithms 9.5 and 9.6 as in chapter 9, and to
reduce repetition these algorithms have been removed from the present chapter.
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renewable generation, especially photovoltaic generators and wind farms,
introduces significant variability in the system and challenges this quasi-
static assumption. Thus, it is crucial to extract information about the
system dynamic states, which influences the stability of the system. There-
fore, dynamic schemes for state estimation, particularly Kalman filtering,
have been introduced for the power systems to perform dynamic state es-
timation. However, power systems usually have a low degree of instrument-
ation, which renders it necessary to exploit all the available information
and measurements in a power network. There are different sources of meas-
urements in distribution grids, such as SCADA and Phasor Measurement
Units (PMUs). These sensors, however, provide different rates of data.
Hence, multi-rate data fusion is required in a power system containing dif-
ferent types of sensors. Considering the demonstrated consistency with the
covariance intersection method (CI), we propose an unscented Kalman fil-
ter (UKF)-based CI data fusion approach to fuse the estimates based on
sensors with different data rates. This method is then compared to an ex-
isting multi-rate data fusion algorithm for power systems. The results show
that the proposed dynamic approach is effective and provides robust state
estimates for the power systems.

10.1 Introduction

In electric power systems, systematic, consistent, and precise state estim-
ation is required for most energy management system (EMS) operations
Ghosal et al. (2017). Any severe fault or sudden change can lead to major
problems for the power system, such as instability and blackout. In ad-
dition, in control procedures for power systems, including linear quadratic
regulator (LQR) Yang and Cimen (1996), estimation based model predictive
control (MPC) Roshany-Yamchi et al. (2011), sliding mode He et al. (2019)
and backstepping Cupelli et al. (2015), the controller needs to monitor the
variables (known as states) of the system. In general, these states are estim-
ated through processing noisy measured data from different sensors. The
states estimated based on these noisy measurements are then forwarded to
the control center, where the operator will respond accordingly. Historically,
it has been common for the state estimation methods applied to power sys-
tems to assume the system to be static/quasi-static, and for the estimator to
update its state estimates every few minutes. In contrast, electromagnetic
faults, dynamic loads, and distributed generation can introduce much faster
dynamics into the power system. Thus, we must engage dynamic estima-
tion instead of static estimation to detect and identify sudden changes in a
power system.
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Although the Kalman filter was discovered around six decades ago Kalman
(1960), the industrial application in power systems has been limited. Im-
portant reasons for this are the relatively slow measurements available in
SCADA systems and the large physical distances in power systems - mak-
ing it hard to synchronize measurements accurately relative to the operating
frequency of AC systems Gomez-Exposito and Abur (2004). The first PMU
was developed in the 1980s Phadke and Thorp (2006), and they have both
provided fast measurements and taken advantage of a global clock from
GPS signals. PMUs are becoming the most important sensors for modern
power grids Ghosal and Rao (2019). Thus, there is both an opportunity and
a need to perform dynamic state estimation in power grids. On the other
hand, many power systems still have limited instrumentation Ghosal and
Rao (2019), and it is therefore necessary to combine the information from
slow/infrequent measurements from SCADA systems and smart meters with
information from faster/more frequent measurements such as PMUs Ghosal
and Rao (2019).

In the last decade, the power systems community has spent significant ef-
fort in studying filtering methods for electromechanical Abooshahab et al.
(2019), Ghosal and Rao (2019), electromagnetic Anagnostou and Pal (2018),
and quasi-static Xie et al. (2017) states of the power systems. In Blood
(2011), the authors proposed a procedure for shifting from static to dy-
namic electric power network state estimation using a linear Kalman filter.
Various dynamic estimation methods, including particle filtering, the un-
scented, extended, and ensemble Kalman filtering for a power system, were
investigated in Zhou et al. (2015). In Ghahremani and Kamwa (2011a), a
dynamic state estimation procedure using the extended Kalman filter (EKF)
with unknown inputs was proposed. Such a method has been extended to
monitor partially known power networks Abooshahab et al. (2019) based on
a method introduced in Bitmead et al. (2019). In Ghahremani and Kamwa
(2011b), the UKF is implemented to obtain the state estimates of the power
system. In Huang et al. (2009), the effects of sampling rate on the perform-
ance of an estimator for a power grid were investigated.

Multi-rate data fusion methods have been successfully implemented in ro-
botics and signal processing applications Mitchell (2007). By using the
method introduced in Yan et al. (2010), multi-rate data fusion for power
networks using the Bar-Shalom Campo (BSC) fusion method is presented
in Ghosal and Rao (2019), Ghosal et al. (2017). Despite the good perform-
ance of the BSC fusion method in the proposed examples in Ghosal and Rao
(2019), the BSC method is subject to the challenges of instability or signific-
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ant error. Data fusion methods are performed based on some assumptions,
especially for the correlation between two local estimates. Such assump-
tions, however, can result in the estimates that are too optimistic. This
feature is called the trend of inconsistency, which might cause the filter to
diverge in specific circumstances, as explained in Maybeck (1982). Clearly,
consistent estimation is critical for power systems state estimation since
monitoring and advanced control methods are based on such state estim-
ates. Hence, large estimation errors can be hazardous. Besides, even though
power networks are sparsely equipped with PMUs, the results proposed in
Ghosal and Rao (2019) are based on strong observability assumptions for
both fast and slow sensors. Furthermore, the propagation of sigma points
exploited for the slow sensors to obtain the predicted states without meas-
urement update is complicated and computationally expensive.

It is proven in Deng et al. (2012) that the CI Kalman fuser is consistent;
therefore, we choose the covariance intersection as our fusion method to
obtain a consistent state estimation, which is essential for control schemes
of the power networks. Also, as a key step to exploit all data from sensors
with various sampling rates, we employ an additional operation in the state
prediction step, which simply extrapolates the state estimates and their as-
sociated covariances from the slower sensor. The simulation analysis shows
that the performance of estimators using CI is more reliable compared to
the BSC for the studied benchmark. The comparison shows applying the
extrapolation of estimates instead of propagating sigma points through the
equations for the system dynamics can reduce the execution time and the
complexity of the estimator without a significant influence on the covari-
ance of the estimation error. Furthermore, we perform the fusion only for
the intersection of the observable subspaces. In this case, the observabil-
ity condition is relaxed to: the system is observable if each state is in the
observable subspace of at least one subsystem.

The outline of this paper is as follows. We present our methodology and
obtain a model for the power system to validate the performance of the
proposed data fusion methods in Section 10.2. In Section 10.3, the state es-
timation and data fusion algorithms, including the UKF and covariance in-
tersection, are presented. The simulation results using the standard bench-
mark system WSCC-9-bus network L. Chen et al. (2005) are presented in
Section 10.4 to verify the robustness of the proposed methods and compare
them to methods proposed in the literature.
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10.2 Methodology

In this section, we introduce the full-order nonlinear model for our power
network.

10.2.1 Model Derivation

Power system models are not unique, and choosing an appropriate dy-
namical model, therefore, depends on the emphasis of components in the
power system and purpose of the monitoring. The purpose of the monitor-
ing/estimation will determine what dynamics will need to be included in the
model. One approach to characterizing power system dynamics is to separ-
ate them into three types of states based on their time-scale. These three
types are electromagnetic transients (few milliseconds), electro-mechanical
transients (tens of milliseconds to a few seconds), and quasi-steady-state
(more than ten seconds) Ghosal and Rao (2019). We know that fast dy-
namics (electromagnetic transients) has virtually no impact on the slower
dynamics (electro-mechanical and quasi-steady-state). In this study, we
consider the electro-mechanical transient dynamics to represent the power
system. Hence, the swing equations of the generators, as well as the power
flow equations, are used to describe the power system states. The classical
synchronous generator model is given in Kundur et al. (1994), Ghosal et al.
(2017), Machowski et al. (2020) as follows:

δ̇ = ω

ω̇ =
1

M
(Pm − Pe −Dω), (10.1)

where Pe is the air-gap electrical power. The other variables and parameters
are defined as follows:

state variables: ω denotes the difference between rotor rotational speed
and the synchronous speed, and δ refers to the rotor angle;
parameters for rotor: D and M represent the damping and inertia coef-
ficients, respectively.
external variables: Pm is the mechanical turbine power.

For power systems with multiple machines, we distinguish between two types
of nodes, which are dynamic component nodes, and bus nodes. The numbers
of bus nodes and component nodes are denoted by nB and nC , respectively.
The nC components determine the dynamics of the interconnected network.
For Y ∈ CnB ×nB as the admittance matrix of the network, we can obtain
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the following equation using circuit theory Sadamoto et al. (2019):

0nB = (Y (|V |∠θ)1:nB
).∗ ◦ (|V |∠θ)1:nB

− (P1:nB + jQ1:nB ), (10.2)

where ◦ and .∗ is the element-wise multiplication and conjugation operator,
respectively Sadamoto et al. (2019). The active and reactive power injected
from the ith bus are denoted by Pi and Qi Sadamoto et al. (2019). The
notations, (|V |∠θ)1:nB

, P1:nB , and Q1:nB are the accumulated matrices of
(|V |∠θ)i, Pi, and Qi for i ∈ {1, . . . , nB } Sadamoto et al. (2019). Note that
we drop all time indices for simplicity of exposition.

For buses without generators or loads, Pi + jQi = 0; Hence we can rewrite
(10.2) as:[

P1:nC + jQ1:nC
0

]
=

[
YC C YC B
YBC YBB

]
(|V |∠θ)1:nB

).∗ ◦ (|V |∠θ)1:nB
(10.3)

Thus, by applying the Krone reduction method Dorfler and Bullo (2013),
we obtain the bus reconstruction matrix Rv = −Y −1

BB YBC and, the reduced
admittance matrix Yr = YC C − YC BY

−1
BB YBC . Our test case only contains

synchronous generators as dynamic components. Thus, for an nC -generator
multi-machine power network, we have the following dynamics for the ith
synchronous generator Kundur et al. (1994), Ghosal and Rao (2019)

δ̇i = ωi, i = 1, · · · , nC

ω̇i =
(Pm,i − Pe,i(δ̄))

Mi
− Di

Mi
ωi,

and

Pe,i(δ̄) =

nC∑
j=1

[Ḡij cos (δi − δj) + B̄ij sin (δi − δj)],

Ḡij = |Ei||Ej |Gij , B̄ij = |Ei||Ej |Bij ,

δ̄ = [δ1, · · · , δnC ]T,

where Gij is the real part of Yr, and Bij is the imaginary part of Yr. Con-
sequently, we are able to define the state space as follows Ghosal and Rao
(2019):

x = [(δ2 − δ1), · · · , (δnC − δ1), (ω2 − ω1), · · · , (ωnC − ω1)]T, (10.4)
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where δ1 is the power angle at the reference bus. In this case, the state space
contains 2(nC − 1) state variables. By applying this state space definition,
the multi-machinery dynamical equations can be re-written as Ghosal and
Rao (2019):

ẋi = xj+nC−1,

ẋi+nC−1 =
Pm,i
Mi
− Pm,1

M1
− Di

Mi
xi+nC−1 +

Ḡ11

M1
− 1

Mi
[B̄i1 sin (xi) + Ḡi1 cos (xi)]

− 1

Mi

nC−1∑
j=1

[Ḡij cos (xi − xj) + B̄ij sin (xi − xj)]

− 1

M1

nC−1∑
i=1

[B̄i1 sin (xi) + Ḡi1 cos (xj)].

Then the compact nonlinear form of the multi-machine power network can
be expressed as follows Ghosal and Rao (2019),

ẋ = f(x, u) + w,

where the process noise signal w is a Gaussian zero-mean noise with covari-
ance matrix Qx.

10.2.2 Measurement model

It is recognized in power networks that there are two major types of sensors:
the fast and high-frequency sensors like PMUs, and the slow and low fre-
quency sensors like smart meters, SCADA sensors and also slower PMUs.
A set of PMU-based measurements usually contains the information of the
frequency, the voltage, and the current phasors. On the other hand, a set of
SCADA measurements can assess the real power, active power and voltage
magnitudes. For simplicity, we assume that our measurement model only
contains PMUs but involves different sampling intervals. The sensor se-
lection set is thus B = {b1, b2, · · · , bnf

} ⊂ {1, 2, · · · , nB } where nf is the
number of fast PMUs. For the PMU-based measurements, the magnitude
and phase angle of the corresponding voltage can be determined by Ghosal
and Rao (2019)

|vj | =

∣∣∣∣∣∣Rv,i1|e1|+
nC−1∑
i=1

Rv,ji|Ei|∠xi

∣∣∣∣∣∣
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θj = δ1 + arg(Rv,j1|e1|+
nC∑
i=1

Rv,ji|Ei|∠xi)

Note that Rv,ji, j ∈ {1, 2, · · · , nB }, i ∈ {1, · · · , nC } is an element of the
reconstruction matrix introduced in section 10.2.A. Hence, the fast PMU-
based measurement vector is

yf = [|vb1|, |vb2|, · · · , |vbnf
|, |θ̄b2|, · · · , |θ̄bnf

|]T,

where θ̄bi = θbi − θb1 , and θb1 is the reference angle. The fast PMU meas-
urement equation can be concisely rewritten as,

yf = hf (x) + νf .

In this stage, the noise signal νf in the PMU-based measurement is assumed
to follow a Gaussian zero-mean distribution, and the covariance matrix of
this noise signal is Rf . Similarly, the slow PMU measurement equation
vector would be as follows:

ys = hs(x) + νs.

10.3 State estimation

The importance of state estimation for the monitoring of power systems
has been explained in Section 10.1. However, power systems are highly
nonlinear. Consequently, nonlinear approaches should be used in the case
of dynamical state estimation Ghosal et al. (2017).

In standard Kalman filtering (as described in, e.g., Simon (2006)), all meas-
urements are sampled synchronously and with the same sampling rate, and
new measurements are immediately available to the Kalman filter Ghosal
and Rao (2019). Accordingly, the prior state estimates in the prediction
step should correspond to the concurrent measurements when updating the
estimates. In this work, we assume that we have two different types of
sensors with sampling rates rf (fast PMU) and rs (slow PMU), although
the sensor fusion methodology is straightforward to apply when there are
different sensor types in the system. Then we perform distributed state
estimation on each set of measurements and subsequently introduce data
fusion with CI.

10.3.1 Multi time-scale dynamical and measurement models

For the fast PMU with sampling rate of rf , we can discretize the dynamical
system at time-step Tf = 1/rf as
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xtf+1 = ff (xtf ) + wtf , (10.5)

where wtf is a Gaussian white noise with variance E{wtfwT
tf
} = Qf Ghosal

and Rao (2019), Huang et al. (2007). The discrete measurement equation
for the fast sensor can be expressed as,

ytf = hf (x(tf ), utf ) + νtf . (10.6)

Using the same procedure, we can obtain discrete dynamical system of slow
PMU measurements at time-steps Ts = 1/rs as

xts+1 = fs(xts , uts) + wts , (10.7)

where Qs = E{wtswT
ts}. The discrete measurement equation for the slow

sensor can be expressed as,

yts = hs(x(ts)) + νts . (10.8)

We aim to fuse the data from both types of sensors with different sampling
rates for power systems state estimation.

10.3.2 Unscented Kalman filter

In this paper, we use the UKF because it is derivative-free and inherently
has no need to calculate partial derivatives and the Jacobian matrix. Such
derivative-free state estimation procedures can reduce the heavy compu-
tational load. Furthermore, instead of performing Taylor expansion, the
UKF can give a better performance for the estimation of random variables
in nonlinear functions, especially when the higher-order terms in Taylor’s
expansion cannot be ignored Julier and Uhlmann (1996), Ghosal and Rao
(2019).

We choose arbitrary values for the initial conditions of the state estimates
and error covariance matrix (the initial covariance matrix has to be positive
definite). In the case of the initial condition selected, we can perform UKF
state estimation by exploiting the algorithm depicted in Figure 10.1. The
state estimation procedure using UKF shown in Figure 10.1 is summarized
in Algorithm 9.5-9.6.

10.3.3 Multi-sensor data fusion

It is noted the sensing elements collect data at different sampling rates. For
example, SCADA devices provide data with sampling rates around 0.5-2
samples per second, while PMUs have much higher sampling rates (30-120
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Figure 10.1: Summarized depiction of UKF in three stages

samples per second). In this subsection, we solve the multi-rate multi-sensor
data fusion to exploit all possible and appropriate data.

Lemma 1 Ghosal et al. (2017) For a given observable system, the a posteriori
estimation error covariance is P it|t. Provided an additional measurement
is available, the corresponding a posteriori estimation error covariance is
denoted P i+1

t|t . In this case,

trace{P it|t} ≥ trace{P
i+1
t|t }.

Thus, additional measurements with finite error covariance do not degrade
the performance of state estimators like Kalman filter.

In Ghosal and Rao (2019), it is assumed that the system is observable
when each of the sensor sets used. This assumption is very restrictive.
The proposed method in Algorithm 1 is characterized by more flexibility.
Consider the state estimation with slow sensor measurements at fast sensor
sampling rates; each set of estimated values is supposed to synchronize at
the same time instant for data fusion. Therefore, it is suggested to develop
an approach with slow measurements and predict the states between the
sampling points for the slow sensor, i.e., Ghosal and Rao (2019), Yan et al.
(2010):

x̂sf (tf + 1|tf + 1) = E
[
xtf+1|y1, y2, · · · , yts+1

]
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where x̂sf is the state estimate of the system using the slow measurements
with fast measurements sampling rate. We address this problem by applying
two methods. The obtained results in Section 10.4 suggest that the two
methods bring very similar results.

Figure 10.2: Three cases of measurement arrival Ghosal et al. (2017)

.

M1 The first approach was introduced in Ghosal and Rao (2019), and
three cases are considered as it is depicted in Figure 10.2.

– The measurements from the sensors are gathered at the same
time. In this case, data from the slower sensor would be used for
the state estimation.

– The latest slow measurements arrive between the current and
previous fast measurements. In this case, the UKF prediction
step in Algorithm 10.1 would be used to estimate the states using
the most recent slow measurement estimation, x̂s.

– The latest fast measurements arrive after fast measurements in
the previous step, while no measurement from a slow sensor is
available at this instant. The predicted xs is obtained using the
’slow’ model to propagate the estimate from its most recent es-
timate to the ’present’ time.

For further clarification, please refer to Ghosal and Rao (2019).

M2 The second solution, which is more straightforward, is to extrapolate
estimates from a slow sensor to the fuse estimates when slow measure-
ments are not available. This extrapolation can be weighted averaging
or regression-based extrapolations. The easiest version is to keep the
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estimated from the slow measurements constant until observing a new
measurement. This is the approach taken in this paper. The simula-
tion results show that this approach works effectively for the conducted
test case.

By assuming that the union of the observable subspaces of both sensors is
the observable space of the entire system, we propose the Algorithm 10.1.

Algorithm 10.1: Algorithm for multi-rate sensor data fusion

• Determine the observable space for each set of measurements. For
the fast measurements yf there exist the corresponding observable
state space N (Oof ) and the unobservable state space N (Ouf ).
Similarly, sub-spaces for ys are N (Oos) and N (Ous). The
intersections of these sub-spaces lead to the state space
decomposition Ghosal et al. (2017), Kotta (2005). Thus, we have

Xoo ∈ N (Oof ) ∩N (Oos),

• For each set of sensors:

– Find the lowest common multiple rates of sensors.

– Calculate the sigma-points and propagate sigma-points through
the system model (Algorithm 9.5) based on the lowest common
multiple rates.

– If a measurement is sensed, then update and propagate the
sigma points through the measurement equation using
Algorithm 9.6 and then perform a measurement-update using
Algorithm 9.6 (M1), or

– Propagate and update the slow model only at the sampling rate
of the slow measurements, and keep the slow model estimates
and covariances constant between each sample for the slow
measurements (M2).

• For each time-step, apply the fusion step only for the states in the
subspace Xoo only.
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10.3.4 Covariance intersection

Covariance intersection is a method of combining two pieces of information
in a way that the convex combination of the covariances characterizes the
intersection Julier and Uhlmann (2009). The CI algorithm takes a convex
combination of mean and covariance estimates that are represented inform-
ation (inverse covariance) space Julier and Uhlmann (2009). The covariance
intersection uses the following equations for obtaining the fused covariance
and estimate,

P−1
j = γP−1

f + (1− γ)P−1
sf

P−1
j x̄j = γP−1

f x̄f + (1− γ)P−1
sf x̄sf ,

where the subscript f represents the fast sensor estimate. The subscript
sf refers to the estimate based on the slow sensor but using fast sensor
time steps, and the subscript j is the joint (fused) estimate. γ ∈ [0, 1] is a
coefficient which changes the weights assigned to x̄f and x̄sf . The coefficient
γ can be adjusted to optimize the update to meet different performance
criteria, such as minimizing the trace or the determinant of Pf . Note that
the covariance size must be minimized at each time-update to guarantee
non-divergence; otherwise, an updated estimate could be larger than the
prior estimate. We use the optimization strategy in Julier and Uhlmann
(2009) to optimize γ for fusing the estimates using outputs from the fast
and slow filters.

Remark 10.1. Note that the CI method automatically updates the states
in the subspace Xoo only.

Alternatively, the Bar Shalom-Campo (BSC) formula Bar-Shalom and Campo
(1986) introduced in Ghosal and Rao (2019) can be applied. The fusion rule
for BSC is given bellow:

Fusion rule. The fused state estimate for the system observed via multi-rate
sensors can be defined as follows Ghosal and Rao (2019),

x̂j = [cf cs][x̂f , x̂sf ]T,

where cf + cs = I. The optimal Bar Shalom-Campo coefficients obtained in
Bar-Shalom and Campo (1986) are as follows:

c∗s = P−1
sf (P−1

f + P−1
sf )−1

and
c∗f = P−1

f (P−1
f + P−1

sf )−1.
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10.4 Simulation result

We use the WSCC-9 bus system Abooshahab et al. (2019), which is an
IEEE benchmark Delavari et al. (2018), to assess the performance of the
two different multi-rate data fusion approaches (sketched in Fig. 10.3). It is
assumed that measurement with PMUs at buses six, seven, eight, and nine
are sampled with higher rates, while measurement with PMUs at buses
two, three, four, and five are sampled slowly. The standard deviation of the

Figure 10.3: WSCC-9 bus system Abooshahab et al. (2019).

process noise is assumed to be 0.0003 p.u., and the measurement noise for
the fast and slow sensors are chosen to be 0.01 and 0.02 p.u., respectively.
It is assumed that a balanced three-phase fault is applied between the bus
four and six during time t = {5s, 5.2s}. The sampling rate for the fast PMU
is 0.03, which is four times faster than the slow PMU. According to the
results given in Fig. 10.4 and Fig. 10.5, it can be seen that when the process
and measurement noises are small, and enough information is available, all
algorithms work well; besides, Fig. 10.4 shows that the BSC data fusion
algorithm has the best performance in this case since it retains the smallest
trace value for the error covariance. In addition, we can see the performance
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Figure 10.4: Trace of estimation error covariance for each algorithm when stand-
ard deviation of process noise is 0.0003 p.u.

of the method M2, which gives virtually the same results as M1. Hence, one
may choose M1 proposed in Ghosal and Rao (2019), if the very accurate
estimation is required while the computational effort is not important, and
vice versa. The execution time for the total length of the simulation using
M1 is 5.494 s, and for M2 is 3.687 s.

A series of 100 Monte-Carlo runs with different conditions were conducted
processing the same data (to create an appropriate analogy), to investigate
the trend of consistency for the BSC data fusion and the proposed method
applying on our specific example. We use two methods to validate the per-
formance of data fusion methods in terms of consistency. The first method is
to find a condition that makes one of the filters unstable while the other one
is stable. Thus, we repeat the procedure introduced above (only increase the
value of the standard deviation of the process noise sampling at fast sensor
time-steps to 0.3 p.u.) to investigate the trend of consistency. The obtained
results illustrated in Fig. 10.6 shows that when we increase the standard
deviation, state estimates’ covariances using BSC starts to increase. In this
situation, CI performs better than BSC. It can be observed that when the
process noise’s standard deviation is 0.8 or larger, then both state estima-
tion based on slow sensor measurements and BSC fusion method tend to
be unstable while the CI-fusion is stable, see Fig. 10.7. Hence, the method
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Figure 10.5: States of the system and its estimates for each algorithm when the
standard deviation of process noise is 0.0003 p.u.

proposed in Ghosal and Rao (2019) is not applicable.

Secondly, we use the error metric; namely, the average normalized estima-
tion error squared (ANEES) Bar-Shalom and Kirubarajan (2004). For all
states, by averaging over all Monte Carlo runs and states, we can calculate
ANEES for each time step, refer to Huang et al. (2008) for more details. Fig.
10.8 shows compared to that of BSC, the covariance intersection data-based
fusion method exhibits better performance in the view of the ANEES. As a
result, based on these two observations, we can conclude that the CI-based
fusion method is more consistent in our nonlinear power system.

The substantial benefit of CI is that it is covariance consistent, which means
if one of the estimates’ covariance remains bounded, then the fused covari-
ance and its corresponding estimate would be bounded. However, good con-
sistency does not necessarily imply good Root Mean Square Error (RMSE).
On the contrary, one may lose precision to get a good consistency, which is
required for robust state estimation.

10.5 Conclusion

In this paper, we use CI as an alternative method for Bar Shalom-Campo
in order to perform sensor fusion in power systems. It is observed that for



10.5. Conclusion 201

0 1 2 3 4 5 6 7 8 9 10

 time(s)

0

100

200

300

400

500

600

T
ra

c
e

 o
f 

e
s
ti
m

a
ti
o

n
#

e
rr

o
r 

c
o

v
a

ri
a

n
c
e

s
 

only fast PMU trace

only slow PMU trace

BSC-fusion trace

CI-fusion trace
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standard deviation of process noise is 0.3 p.u. for the first and the second method
handling the covariance of the slowly sampled measurements.

power networks, CI can deliver more consistent and robust results. Although
BSC will, in some cases, provide more accurate results, state consistency is,
however, found to be more important for power-related problems since the
state estimation is used for operation critical purposes, including control,
fault detection, and optimization of power grids. Hence, divergence in state
estimation can lead to severe problems. In addition, we use extrapolation
instead of propagation in the state prediction step when there is no new
measurement. Finally, the fusion is only performed for the intersection
of the observable subspaces, so each state only needs to be observable in
(at least) one model/measurement for the overall system estimation to be
observable.
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Abstract

The synchronized phasor measurement unit provides fast, precise, and syn-
chronized measurements, which is very important for the dynamic mon-
itoring of the power systems. However, currently, very few nodes in the
European power grid is covered by PMU measurements, since PMUs are
expensive devices. Hence, with restricted budgets, the installation of these
measuring devices should be selective. Previous work has been focused on
steady-state estimation, and hence they focused on network topology to find
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optimal configurations making the whole network observable at steady-state.
However, this approach is not applicable for dynamic state estimation. In-
stead, we develop a greedy approach to obtain optimal PMU placement for
dynamic estimation of partially known power grids.

Monitoring is a crucial part of the power grid’s energy management sys-
tem. Thanks to the introduction and development of synchronized phasor
measurement units (PMUs), more frequent measurements are available in
different parts of a power grid. This allows for the exploitation of dy-
namic approaches for power grid monitoring instead of steady-state or quasi-
steady-state estimation. In this case, it is possible to track the sudden
changes, including electromagnetic transients Zhao et al. (2019a), cyber at-
tacks Ghosal and Rao (2019), Ghosal (2018), and dynamics of distributed
generators Sadamoto et al. (2019). However, few nodes can be covered by
PMUs in practice because they are expensive devices. Thus, it is necessary
to place the PMUs selectively and optimally. Several methods have been
conducted on PMU placement problems. A summary of different approaches
to solving the PMU placement problem can be found in Manousakis et al.
(2012). One of the most popular methods for solving the PMU placement
problem is the greedy algorithm Tran and Zhang (2018), Li et al. (2012)
due to its simplicity.

There are several interconnected elements or layers in a typical power sys-
tem, including generation, transmission, distribution, and loads. Many
parts of the system may be fully known with the information required for
dynamic modeling available, while other parts may be entirely or partially
unknown. Moreover, the availability of the measurements in some parts of
the modern electrical grids, especially in the distribution part, is limited.
This is due to the consumers’ personal privacy and the lack of expensive
and accurate measuring devices such as PMUs. Hence, the partially known
power system concept has been recently introduced in Abooshahab et al.
(2019). In this context, the Kalman Filtering - Simultaneous Input and
State Estimation (KF-SISE), which has been proposed and investigated in
Bitmead et al. (2019), Abooshahab et al. (2021), is used to estimate the
states and unknown parts of the partially known power system Abooshahab
et al. (2020b). This method requires fewer measurements in an extensive
power network because it reduces the complete model to the partially known
system, which needs only one measurement for each unknown signal; for fur-
ther information, see Abooshahab et al. (2019; 2020b). In previous studies,
however, optimal PMU placement for state estimation of partially known
systems has not been investigated.
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The aim of this chapter is, first, to formulate the optimization problem
to solve optimal PMU placement for state estimation of partially known
systems. To achieve this goal, we obtain the information version of KF-SISE
and then propose ‘best in’ and ‘worst out’ greedy algorithms to optimize
the placement of PMUs in a power network. The criteria we optimize is
minimizing the covariance of estimation error. Finally, we present the results
of numerical simulations on the IEEE-14-bus and WSCC-9-bus test systems,
validating the performance of the proposed PMU placement method for KF-
SISE based state estimation of partially known power networks.

This chapter is organized as follows. Section 11.1 introduces the KF-SISE
and concept of partially known power systems. In Section 11.2, we formulate
the sensor placement problem, and we solve this optimization problem using
the greedy algorithm. The simulation results related to the WSCC-9-bus
and IEEE-14-bus network are presented in Section 11.3 to show the proposed
methods’ performance.

11.1 Partially known power networks state estim-
ation

We aim to minimize the overall covariance of the estimation error for the
same number of PMUs. We first describe the filtering method. A summary
of a KF-SISE, presented in Bitmead et al. (2019), is given in the following
subsection.

11.1.1 Filtering algorithm

To simplify matters, we consider initially a linear time-invariant formulation
without direct feedthrough for the known system:

xt+1 = Axt +Gdt + wt, (11.1)

yt = Cxt + vt, (11.2)

where xt, wt ∈ Rn are the state vector and process noise at time step t,
dt ∈ Rm is the disturbance signal from the unknown part of the system,
and yt, vt ∈ Rm are the measurements and the measurement noise. The
following assumptions are required to use the Kalman filtering formulation
of SISE Bitmead et al. (2019).

Assumption 11.1. The assumptions are listed below:

i wt ∼ N (0, Q), vt ∼ N (0, R) and initial condition xO ∼ N (x̂0|0, PO) are
mutually independent Gaussian white noises,
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ii R > 0,

iii Pair (A,C) is observable, and rankCG = rankG = m.

iv The disturbance signal dt ∼ N (d, D) is independent from xO, wτ , vτ for
all t and τ .

By defining Xt+1, Kt+1, Mt+1, Dt and Pt+1 respectively as the prior state
covariance matrix, the Kalman gain for the state vector, the Kalman gain
for the unknown input vector, the posterior disturbance covariance matrix
and the posterior state covariance matrix, and x̂t+1|t+1 as the posterior

estimates for the state and d̂t|t+1 as the estimate for the unknown input of

the system, the measurement sequence, Yt+1 , {yt+1, yt, . . . , y1}, we can
give the summarized algorithm for KF-SISE as in Algorithm 1.

Algorithm 11.1: State and disturbance estimation using KF-SISE

Prediction step: compute Xt+1, Kt+1, Mt+1 as follows:
Xt+1 = APtAT +GDGT +Q, (11.3)

Kt+1 = Xt+1C
T (CXt+1C

T +R)−1, (11.4)

Mt+1 = DGTCT (CXt+1C
T +R)−1. (11.5)

Update step: compute xt+1|t+1, dt|t+1, Pt+1 and Dt, as follows:

x̂t+1|t+1 = Ax̂t|t +Gd +Kt+1(yt+1 − CAx̂t|t − CGd), (11.6)

d̂t|t+1 = d +Mt+1(yt+1 − CAx̂t|t − CGd), (11.7)

Pt+1 = (I −Kt+1C)Xt+1, (11.8)

Dt = (I −Mt+1CG)D. (11.9)

11.1.2 Information matrix derivation for KF-SISE

In this subsection, we derive the information matrix for KF-SISE Bitmead
et al. (2019), which can simplify the analysis of estimation error and its
covariance further in this study. The following lemma provides us with the
information version of the KF-SISE.

Lemma 11.1. Considering (11.3)-(11.8), the Information matrix It+1 =
P−1
t+1 for the SISE can be obtained as follows:

It+1 = X−1
t+1 + CTR−1C (11.10)
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Proof. Let us show that It+1 = P−1
t+1. This will be done by showing that

It+1Pt+1 = I, using the expression for Pt+1 in (11.8).

Note that P−1
t+1 is full rank due to the observability condition in Assumption

11.1. We have, using (11.4):

It+1Pt+1 = (X−1
t+1 + CTR−1C)(I −Kt+1C)Xt+1

=(X−1
t+1 + CTR−1C)

×(Xt+1 −Xt+1C
T (CXt+1C

T +R)−1CXt+1)

=I − CT
[
(CXt+1C

T +R)−1 −R−1

+R−1CXt+1C
T (CXt+1C

T +R)−1
]
CXt+1

=I − CT
[
(CXt+1C

T +R)−1(I +R−1CXt+1C
T )

−R−1
]
× CXt+1

=I − CT [R−1 −R−1]CXt+1

=I

Since the inverse of a full rank matrix is unique, we conclude It+1 = P−1
t+1.

11.1.3 Steady state formulation of estimation

For the steady-state Kalman filter version of SISE, KF-SISE, we would have
to solve an ARE (11.11) to obtain X∞ - and then (11.12)-(11.15) follow
Bitmead et al. (2019):

X∞ = dare(AT , CT , Q+GDGT , R); (11.11)

K∞ = X∞CT (CX∞CT +R)−1; (11.12)

M∞ = DGTCT (CX∞CT +R)−1; (11.13)

P∞ = (In − CK∞)X∞; (11.14)

D∞ = (Im −M∞CG)D. (11.15)

The ARE solution, here denoted X∞, is the steady-state prediction error
covariance from (11.3). P∞ indicates the expected state estimation error
corresponding to the given measurement matrix. For the same number of
PMUs, we aim to minimize this overall error.

11.1.4 Model for the test system

This subsection is devoted to describe a dynamic model for the power net-
work and to clarify the partially known power network concept. To derive a
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State variables External variables Parameters

angular frequency ωr external load PG rotor damping coeficient D

mechanical power Pm frequency setpoint fO time constant TS
rotor shaft angle δ load setpoint Lcre governor feedback gain k

valve position a droop characteristic R

motor inertia M

Table 11.1: Variables and parameters for components in the test cases.

dynamic model for our power network, the following assumptions are con-
sideredAbooshahab et al. (2019):

Assumption 11.2. The assumptions are listed below:

i Transformers are neglected because their impedances are negligible com-
pared to the impedances of the transmission lines.

ii The ratio of the transmission lines reactance to their resistance is as-
sumed to be significantly above unity Hertem et al. (2006).

iii The power angle at Bus 1 is assumed to be the network’s reference power
angle.

In the test systems, synchronous generators and loads contribute to the
power system dynamics. Generators dynamic model can be described as
Blood (2011), Kundur et al. (1994):

∂

∂t


ωr

Pm

a
δ


k

=


−D/M −1/M 0 0

0 −1/TS 1/TS 0
k 0 −kR 0
1 0 0 0


k


ωr

Pm

a
δ


k

+


0 0
0 0
−k −k
0 0


k

[
Lcre

ωO

]
k

+


−1/M

0
0
0


k

PGk, (11.16)

where variables and parameters are given in Table 11.1. Similarly, buses
containing rotating loads with known PL is Blood (2011),

∂

∂t

[
ωr

δ

]
k

=
[
−D/M 0

1 0

]
k

[
ωr

δ

]
k

+
[
−1/M

0

]
k
PLk +

[
−1/M

0

]
k
PGk. (11.17)

The model derivation process for the WSCC-9-bus network as in Abooshahab
et al. (2019) is given in the Appendix. The abridged version of the power
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network model can be given as:

˙̄x = Ax̄ + w

where w represents the noise originating from modeling uncertainties, and
ū is the input corresponding to reordered state vector with input matrix B.
For this simplified model, the states associated with unknown parts will not
appear in the system dynamics. The unknown inputs are denoted by d and
the truncated state vector and its system matrix are denoted by x̄tr and
Atr, respectively. Thus, the model for a partially known power network can
be given as:

˙̄xtr = Atrx̄tr + Gd + wtr

where wtr denotes the modeling noise for the partially known power net-
work. Note that the truncated part of B(P)δ corresponds to the Gd here.
We refer to Abooshahab et al. (2019; 2020b) for further details.

11.1.5 The measurement model

The modern PMUs can measure several variables in the power system, in-
cluding bus voltage, bus current, valve position, and the output of the power
system stabilizer Yang et al. (2007), Wang et al. (2012). Moreover, state
variables for a bus with a PMU can be measured directly Wang et al. (2012).
In this case, we can choose the valve position ak, the mechanical power Pm,k,
rotor velocity ωr,k, and power angle δk as available measurements at node i
with PMU Wang et al. (2012). Thus, the PMU-based measurement equation
can be modeled as a linear function of states.

y = Cx + v, y, v ∈ Rp

Next, we assume measurement noises are independent, and therefore that
R is diagonal. Let C[k] denote the kth row of the measurement matrix C,
and R[k,k] denote the kth diagonal element of R. Next, we introduce the
following definition:

Definition 11.1. Sensing precision matrix.

For each measurement k, the sensing precision matrix Sk, and its assimilated
version S̃ are defined in Yang et al. (2015; 2013) as follows:

Sk = CT[k]R
−1
[k,k]C[k], (11.18)

S̃ =

p∑
k=1

CT[k]R
−1
[k,k]C[k] (11.19)
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Remark 11.1. Note that the assimilated sensing precision matrix S̃ is the
second term of the information matrix equation (11.10), thanks to the struc-
ture of R.

This model fits the model (11.1)-(11.2), so filtering algorithms described in
Section 11.1 are applicable for partially known systems.

11.2 Sensor placement problem formulation

This section aims to propose a systematic way for sensor placement for
power network state estimation using S-SISE. The sensor selection vector is
defined in Liu et al. (2016) as

w = [w1, · · · , wm]T , wk ∈ {0, 1},

where wk indicates whether the ith sensor is available or not. Hence, avail-
able measurement equation can be expresses as

ywt = Cwxt + Φwνt

and Cw = ΦwC, (11.20)

where Φw ∈ {0, 1}||w||1p is a matrix constructed from diag(w) such that all
rows corresponding unselected sensors have been omitted from this matrix.

11.2.1 Problem statement

The problem we wish to solve can be stated as

min
w

trace(P∞,w) subject to 1Tw ≤ ns, (11.21)

with (P∞,w) in (11.14) and defined above, where ns ≤ p is the maximum
number of sensors available. Note that Boolean variables in w in the con-
straints of the optimization problem and the matrix Cw the optimization
problem make it non-convex. The two lemmas below will be used in our
first result, which shows that adding a sensor can only improve the cost in
(11.21).

Lemma 11.2 (Zhang et al. (2017), Yang et al. (2015)). For two selections
w and w̃, if wk = w̃k for i ∈ {1, · · · ,m}\j, wj = 0 and w̃j = 1 then
Xt+1,w̃ ≤ Xt+1,w and X∞,w̃ ≤ X∞,w.

Lemma 11.3 (Zhang et al. (2017), Horn and Johnson (2012)). For two
given matrices A, B if A ≥ B then A−1 ≤ B−1
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Theorem 11.1. If w and w̃ are two sensor selections such that wk = w̃k
for i ∈ {1, · · · ,m}\j, wj = 0 and w̃j = 1 then P∞,w̃ ≤ P∞,w.

Proof. Based on Lemma 3, we exploit information matrix for t = 0, · · · , k−
1, using (11.10) and (11.18) we obtain

I1,w̃ = X−1
1,w̃ + S̃w + Sj

where S̃w is the assimilated sensing precision matrix for the sensor selection
set w, and Sj is the the sensing precision matrix defined in (11.18). From
Lemma 2 and Lemma 3, we have that X−1

1,w̃ ≥ X
−1
1,w; thus,

I1,w̃ ≥ (X−1
1,w + S̃w) + Sj = I1,w + Sj

Sj ≥ 0; hence,

I1,w̃ ≥ I1,w.

Repeating this procedure until k − 1, yields

Ik,w̃ ≥ Ik,w.

Then, following Lemma 1, we have

Pk,w̃ ≤ Pk,w,

which holds for all k, letting k →∞ gives

P∞,w̃ ≤ P∞,w.

As a result, activating a new sensor does not degrade the estimation per-
formance. Therefore the inequality constraint in (11.21) can be changed to
an equality constraint.

Note that, if we in KF-SISE also wish to take the input estimation into
account, so the problem given in (11.21) can be extended to:

min
w

trace(P∞,w) + trace(D∞,w) subject to 1Tw ≤ ns, (11.22)

Theorem 11.2. If w and w̃ are two sensor selections such that wk = w̃k
for i ∈ {1, · · · ,m}\j, wj = 0 and w̃j = 1 then Dw̃ ≤ Dw.
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Proof. Take

Kt+1 = Xt+1C
T (CXt+1C

T +R)−1

By performing matrix inversion, we can obtain

Kt+1 = Pt+1CR
−1 = Xt+1C

T (CXCT +R)−1.

Thus,

CT (CXt+1C
T +R)−1 = X−1

t+1Pt+1CR
−1.

Therefore,

Mt+1 = DGTX−1
t+1Pt+1CR

−1.

In addition,

Dt = (I −Mt+1CG)D. (11.23)

Consider the second term of above equation

Mt+1CGD = DGTX−1
t+1Pt+1CR

−1GD.

Now, we rewrite the above equation for yw̃t+1 as

Mw̃
t+1Cw̃GD = DGTX w̃t+1

−1Pw̃t+1Cw̃R
−1Cw̃GD.

Using Theorem 11.1 leads to:

Mw̃
t+1Cw̃GD ≥ DGTXwt+1

−1(Xwt+1
−1 + Sj)

−1(CwR
−1CTw + Sj)GD.

Note that since Pwt+1
−1 ≥ Xwt+1

−1 ≥ CTwR−1Cw, we have

Mw̃
t+1Cw̃GD ≥ DGTXwt+1

−1Pwt+1(CTwR
−1Cw)GD,

and then

Mw̃
t+1Cw̃GD ≥Mw

t+1CwGD,

which means

Dw̃t+1 ≤ Dwt+1.
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11.2.2 Greedy algorithm for sensor placement

This section proposes two methods based on a greedy algorithm to solve
Problem (11.21). The solution is obtained such that the equality constraint
in (11.21) holds. One algorithm starts with zero sensors, nw = 0, and
increments nw until (11.21) holds; we call this the ‘best in’ greedy algorithm.
The second algorithm starts with nw = p and decrease nw until nw = ns,
we call this the greedy algorithm ‘worst out’.

Note that Assumption 11.1. iii should be satisfied to reconstruct all signals
of our interest, The two greedy algorithms are given in Algorithm 11.2 and
11.3.

Algorithm 11.2: Greedy algorithm ‘best in’ Shamaiah et al. (2010)

1. Initialization:
k = 1, Φk = Φw,wk = {}

where Φw is defined in (11.20).

Necessary measurements selection:
Identify measurement sets wk of minimum cardinality satisfying
Assumption 11.1. iii.

(a) From sets of measurements satisfying Assumption 11.1. iii,
select wk such that:

wk = arg min trace(Pw∞)

(b) Update the measurement set:

Φk+1 = Φk\wk,wk+1 = wk ∪ wk

2. Next measurement selection:

wk = arg min trace(Pw∞)

3. Update the measurement set (as in 1)b) above)

4. If 1Twk < ns go to step 2) else Stop.

Algorithm 3 is called the Greedy descent algorithm or greedy ’worst out’
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Algorithm 11.3: Greedy descent ‘worst out’

1. Initialization:
k = 1, Φk = Φw,

and wk is initialized as vector of ones.

2. Next measurement selection for deletion:

wk = arg min |trace(Pw∞(wk\{wk}))|

3. Update the measurement set and select the next measurement:

Φk+1 = Φk\wk,wk+1 = wk\wk

4. If 1Twk > ns go to step 2) else Stop.

algorithm. In this algorithm, it is assumed that all measurements are avail-
able. Then the worst measurement from the measurement set would be
omitted.

Remark 11.2. Algorithm 11.3 is easier to implement, and it does not need
to perform a recoverability check (Assumption 11.1. iii). Hence, it is more
straightforward to exploit Algorithm 11.3 when using the KF-SISE method in
general. However, for large systems with a low number of sensors, Algorithm
11.3 should be used because of its lower computational cost and faster speed.

11.3 Numerical results

In this section, we test the proposed method on the WSCC-9-bus network
Fig. 11.1 and evaluate its optimality. To illustrate the proposed method,
we assume each sensor can measure one state at each bus. Hence, we need
to solve Problem (11.21) with ns = 4. After solving the Problem (11.21)
with the Greedy algorithm given in Algorithm 11.2, we found that first,
we need two measurements to assess the angular frequency at bus 1 and 2;
in addition, measuring valve position first at bus one and then at bus two
can give us the minimum value for our objective function, while Table 11.2
shows that this solution is the optimal solution for this problem.

We also implement Algorithm 11.3 for this problem. We start with the full
set of available sensors (for simplicity, it is assumed the maximum num-
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ber of sensors is nine and each sensor can measure only one state of the
system), and then select the worst sensor concerning the optimality cri-
teria and remove the worst sensor from the optimal sensor set. This is
done until the optimal sensor set contains the maximum number of meas-
urements that is ns = 4 here. Using Algorithm 11.3 yields removing ωr4,
P1, P2, δ2, δ4 from the the optimal sensor set, respectively and results in
Cw∗ = {ωr,1, ωr,2, a1, a2} as the the optimal sensor set. This sensors set is
the same as the one we obtained with Algorithm 11.2.

The estimation results for the WSCC-9-bus system is given in Fig. 11.2.
From Fig. 11.2-11.4, we see that the estimates are accurate for the system
states.

Figure 11.1: WSCC-9 bus system Abooshahab et al. (2019).

We further use the sensor selection method for the IEEE-14 bus system
having only 3 measurements. The optimal sensor selection set is found as
{ωr,1, ωr,2, ωr,3}. For this sensor selection, trace(P∞+D∞) = 86.75+17.61.
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Figure 11.2: State estimation for the WSCC-9-bus system using KF-SISE and
the proposed sensor placement algorithms.
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Measurements traceP∞ + traceD∞
ωr1, ωr2 30.62 + 6.84
ωr1, ωr2, δ2,δ4 11.84 + 2.52
ωr1, ωr2, δ2,a1 7.59 + 1.69
ωr1, ωr2, δ2,P1 9.59 + 2.09
ωr1, ωr2, δ2,a2 4.6 + 1.24
ωr1, ωr2, δ2,P2 5.79 + 1.52
ωr1, ωr2, δ2,ωr4 12.61 + 3.12
ωr1, ωr2, δ4,a1 10.14 + 2.24
ωr1, ωr2, δ4,P1 11.97 + 2.82
ωr1, ωr2, δ4,a2 5.1 + 1.46
ωr1, ωr2, δ4,P2 6.19 + 1.62
ωr1, ωr2, δ4,ωr4 10.15 + 2.42
ωr1, ωr2, a1,P1 14.52 + 3.49
ωr1, ωr2, a1, a2 4.16 + 0.84

ωr1, ωr2, a1,P2 7.61 + 1.71
ωr1, ωr2, a1,ωr4 15.41 + 3.76
ωr1, ωr2, P1,a2 6.59 + 1.65
ωr1, ωr2, P1,P2 10.15 + 2.34
ωr1, ωr2, P1,ωr4 21.591 + 4.42
ωr1, ωr2, a2,P2 8.56 + 1.74
ωr1, ωr2, a2,ωr4 9.90 + 2.11
ωr1, ωr2, P2,ωr4 14.56 + 3.62
ωr1, ωr2, P1, P2,δ2 4.77 + 1.02

Table 11.2: Trace of P∞ + trace of D∞

Several state estimates and their actual states for IEEE-14 bus system are
depicted in Fig. 11.4.

Conclusion

This chapter presents two greedy algorithms for the optimal placement of
PMUs for partially known power networks. Simulations are carried out on
two power benchmarks, and results are presented. The information version
of KF-SISE is derived, and it is used to solve the optimization problem
with the greedy algorithm. Also, we investigate the optimality of the two
proposed greedy algorithms. By considering the effects of disturbance on
KF-SISE, we derive the new formulation for the optimization problem.
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Figure 11.3: Transformer-less dynamic power grid model of IEEE-14-bus-system,
with circuit cut dividing known and unknown parts Abooshahab et al. (2020b).
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Figure 11.4: State estimation for the IEEE-14-bus system using KF-SISE and
the proposed sensor placement algorithms.
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Chapter 12

Additional topics on dynamic
power system monitoring

The preceding chapters document that benefits of using the dynamic state
estimation specifically S-SISE (KF-SISE) for the dynamic state monitoring
of power systems include:

1. Although power systems are continuous-time systems, their state es-
timation process is mainly done discretely. The discrete-time model
of a continuous-time system is more likely to contain a non-minimum
phase zeros since the standard sampling process is known to intro-
duce zeros, some of which may lie outside the unit circle Maciejowski
(1985). The schemes given Ghahremani and Kamwa (2011a;c; 2016)
for the DSE of power networks with unknown inputs are not stable
when the system has NMP zeros. Hence, they do not seem to be ap-
propriate approaches dealing with DSE problem for power networks
with unknown inputs. However, our method is a good tool to handle
unwanted non-minimum phase behavior of the discrete model of the
process.

2. The topological description of the state estimation does not have to
change for different operating conditions.

3. Our proposed method needs fewer measurements compared with con-
ventional state estimation methods.

4. Another possible alternative to address the problem of monitoring par-
tially known power networks is the augmented Kalman filter (AKF).

221
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In the S-SISE model, we seek to construct an estimate of the disturb-
ance first and then compute an estimate of the state next; and we do
this without imposing a model structure on disturbance. With the
AKF model, we assign a model to the disturbance and try to estimate
both the plant state and the disturbance model state from the same
output. Therefore, the observability properties of AKF for power sys-
tems applications are more stringent. Furthermore, if we have an
exact model of the network, then it is completely” known” otherwise
it is ”unknown” at least in part. Choosing the disturbance dynamics
as an integrator, as is commonly done with the AKF is otherwise hard
to justify, whereas S-SISE is insensitive to the disturbance model. For
power grids, the unknown parts are typically fast rather than slow due
to DERs, responsive loads, and microgrids.

Several advantages of our proposed estimation methods will be described in
this chapter.

1. For the small signal stability analysis, electromechanical states of a
power system are needed. Subsequently, the estimates of these states
can be exploited to adjust the PSSs’ parameters, and so improving
the system stability. The conventional PSS uses local measurements
for stabilizing local states. The functionality of local PSS will be im-
proved if it has information about the other unknown parts of the
system. Thus, by applying our framework, we can estimate the un-
known signals from other parts of the system without the need for
additional measurement from other parts. That can be a big develop-
ment for the PSS (this advantage will become clear after reading the
details of point in Section 12.5).

2. The TSO/DSO interacting signals can be easily estimated using our
proposed method (more details are provided in Section 12.4).

3. The reliability of the protection system can be improved Zhao et al.
(2019a). Checking consistency between the measurements and the
outputs of the dynamical model of the protection zone leads to detect
anomalies stemming from internal and external faults. This results
in more reliable protection systems compared with the traditional
coordinated settings-based schemes (we will propose fault detection
methods in Section 12.2.

We first need to introduce the decentralized version of S-SISE, since it is
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not only useful for fault detection but also for scalability of the estimation
and the handling of topology changes.

12.1 Decentralized filter using S-SISE

A decentralized scheme of estimation is a practical alternative for large and
complex interconnected systems. We term a local assembly of interconnec-
ted components a unit. Now assume that we want to estimate the states of
one of the units in the system, and we call this unit the local unit while all
units connected directly to the local unit are termed interconnecting units.
Interconnecting (coupling) signals between interconnecting units and the
local unit are assumed to be unknown inputs for the local state estimator.
This formulation, which is not unique, allows us to decouple the dynamic
equations of the local unit from the dynamic equations of interconnect-
ing units. Furthermore, just the knowledge of interconnecting signals for
many networked systems is sufficient to estimate the dynamics of the local
unit. These interconnecting signals can be obtained by measuring them
with measuring devices or estimating them as unknown inputs using SISE.
Note that the reference angle must be the same for all units, and this can
be assumed as a coordinating signal between different units.

Consider the following linear time-invariant equation as a model for the jth
unit satisfying Assumption 4.1.

xjt+1 = Ajxjt +Gjdjt + wjt , (12.1)

yjt = Cjxjt + vjt , (12.2)

where wjt and vjt are mutually independent Gaussian white noises, wjt ∼
N (0, Qj), vjt ∼ N (0, Rj). Algorithm 12.1 proposes the decentralized version
of S-SISE.

12.2 Bad data and fault detection

There are two objectives in fault detection in the distribution system. The
first is to identify the faulted line section or the faulted network area to
make a fast system restoration by switching and changing some loads or
switching topology to recover generation. The second objective is to identify
the exact fault location to repair the faulty component. Here, we focus on
the identification of the faulty section. The identification of the exact fault
location to repair the component is usually made by visual inspection for
overhead lines or with dedicated devices for underground cables Gerstner
et al. (2013).
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Algorithm 12.1: Decentralized DSE for the jth unit using S-SISE

Begin Determine Aj , Gj , Cj , Qj , Rj . Initialization;

xj0 ∼ N (x̂j0|0, P
j
0 )

while t ≥ 1 do
Covariance prediction;

X jt+1 = AjPjtAj
T

+GjDjGj
T

+Qj ,

Kalman Update;

Kjt+1 = X jt+1C
jT (CjX jt+1C

jT +Rj)−1,

Mj
t+1 = DjGj

T
Cj

T
(CjX jt+1C

jT +Rj)−1.

Pjt+1 = X jt+1 −X
j
t+1C

jT (CjX jt+1C
jT +Rj)−1CjX jt+1,

= (I −Kjt+1C
j)X jt+1,

Output and time update;

x̂jt+1|t+1 = Aj x̂jt|t +Gjdj

+Kjt+1(yjt+1 − C
jAj x̂jt|t − C

jGjdj),

d̂jt|t+1 = dj +Mj
t+1(yjt+1 − C

jAj x̂jt|t − C
jGjdj),

t = t+ 1

end
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Many solutions have been suggested to identify the fault and its location
in distribution systems such as using fault passage indicators. Fault pas-
sage indication can be used for short-circuit and/or earth-fault location in
distribution networks Lehtonen et al. (1995). These devices trigger if they
sense a certain amount of current, which indicates if the fault is upstream
or downstream at the measurement point. This information can be used
for the identification of the faulty zone of the network. In Lehtonen et al.
(1995), it is found that such methods are prone to having not enough dir-
ectional functions for networks with distributed generation (DG), while it
becomes more complicated to find which way the current is flowing in closed
loop systems.

The other method is to use the traveling wave algorithms in distribution
systems Saha et al. (2009). However, the transmission of power from the
generators to the distribution parts are often composed of different types
of line sections: the cross sectional area decreases further away from the
generators as less power is transmitted. This results in discontinuities of
impedance in the distribution part, which generates many wave reflections.
Generation of many wave reflections requires complicated signal processing
and needs fast devices Saha et al. (2009), in order to reliably use traveling
wave algorithms for fault detection. In isolated or islanded networks, the
distribution system’s charging transients should be taken into account for
islanding fault location Janssen (2014). The reason is that the fault current
value can be too small to be sensed in steady-state measurements. An al-
ternative is to measure current magnitude. A short-circuit calculation may
be derived for every part of the system such that a list of current magnitudes
for every generation become available. Then during a fault occurrence, the
computed current magnitude will be sent to the SCADA, and this value
is compared with the list in order to determine the faulted part Lehtonen
et al. (1995). An extension of such methods is to determine the reactance
measured by distance sensors which is known as the impedance-based fault
detection algorithm Janssen (2014). However, impedance-based fault detec-
tion in distribution systems has the following issues when comparing with
its transmission counterpart:

• The distribution system topology is mostly radial.

• The substations are unbalanced.

• The connecting lines are shorter, which can complicate the detection
of the fault location.
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• The network length can range from a few kilometers for urban power
networks to hundreds of kilometers for rural areas Lehtonen et al.
(1995).

• The ratio of the system resistance to the system reactance, r/x is often
large.

There exist several impedance-based fault detection methods taking ad-
vantage of substation voltage and current measurements for radial networks
Girgis et al. (1993), Filomena et al. (2009). A problem with these methods
is that they cannot handle introduction of DGs in a power system. Hence,
they will not be applicable for modern distribution grids with several DGs.

In Bretas and Salim (2006), the DGs are modeled as their Thevenin equi-
valent models to simplify the system. In Kezunovic (2011), it is suggested
to use the feeders’ voltage measurements as well as other branches voltage
magnitudes for fault detection. In Venkata et al. (2013), they extend such
approach for distributed synchronized voltage phasor measurements. The
main weakness with all aforementioned fault detection methods is that they
cannot detect transient faults since they are designed for quasi-static oper-
ating points in power networks. Hence, we present a fault detection method
based on decentralized SISE in the following section.

Principle of the proposed fault detection algorithm

The use of distributed measurements may enhance the robustness and ac-
curacy of fault detection, especially in the context of networks with DGs.
In this chapter, a fault detection algorithm using distributed measurements
is proposed. The algorithm is based on the state estimation framework
already developed in this thesis, S-SISE for partially known power systems,
which is a novel strategy for fault detection. The main idea is based on
the fact that faults change the system admittance; and after fault occur-
rence the system matrix will be changed; further, SISE performance for
each local system is completely independent of unknown parts; hence, dur-
ing fault occurrence in one local subsystem only its own estimator would
have large estimation error, but estimation accuracy for other parts of the
system would be unchanged. In addition, our fault detection method can
distinguish between different types of bad data in a power network. Hence,
we start with introducing different types of data.

12.2.1 Different types of bad data

Bad data can be determined by using the normalized measurement residuals.
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Definition 12.1 (Normalized measurement residuals Gomez-Exposito and
Abur (2004), Ghosal et al. (2017)). The normalized measurement residuals
is defined as

ryt+1 = εTt+1R̃
−1
t+1εt+1 (12.3)

where R̃−1
t+1 = (CXt+1C

T +R)−1 and εt+1 = yt+1 − CAx̂t|t.

ryt+1 is a random variable with χ-squared distribution with mi degrees of
freedom, where mi is the number of independent measurements Gomez-
Exposito and Abur (2004), Ghosal et al. (2017), Caro et al. (2011). In a
state estimator, bad data is detected if the following inequality is true:

ryt+1 > rbd,

at any time instant t + 1 , where rbd is an appropriately chosen threshold
value.

Definition 12.2 (Malicious measurement Ghosal et al. (2017)). Malicious
measurement, ya ∈ Rm, is represented by

yat+1 = yt+1 + at+1 = Cxt+1 + vt+1 + at+1,

where a ∈ Rm is termed the attack vector.

The malicious data is a type of bad data and consequently is detected if the
following inequality is true:

ryt+1 > rbd,

at any time instant t + 1. Thus, there is a requirement for determination
of different types of bad data, while each one requires a specific action for
being handled. The value of rbd could be determined by ensuring that under
normal conditions (no attack) the value of the normalized measurement
residuals is less than rbd with certain high probability (referred to as the
confidence level).

12.3 Methodology based on decentralized version
of SISE

By computing the normalized measurement residuals, defined as ryt+1 in
(12.3) , we can determine the suspicious measurements. If the majority of
measurements in the system (especially measurements close to each other)
are found to be suspicious, then it is possible that a system fault is happened.
In this section, we propose a novel fault detection method to distinguish
between the different faults. We start with the following definitions for
various faults happening in a power system.
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12.3.1 Stealth attack

During a stealth attack the original measurement yt+1 is modified to yst+1

but still satisfying the following inequality Miao et al. (2014),

rsyt+1
= εsTt+1R̃

−1
t+1ε

s
t+1 ≤ rbd

Definition 12.3. A stealth attack is defined as the act of perturbing the
measurements y between time-instants (t0 + 1) to (t0 + tf ), for some tf ≥ 1
, such that rsyt+1

≤ α ∀t ∈ {t0, · · · , t0 + tf − 1} but the resulting deviation
in the state estimates due to the attack exceeds some pre-defined threshold
β > 0 by the time instant (t0 + tf ).

Here, we focus on a specific scenario for the stealth attack by assuming that
the attacker wants to inject a stealth attack signal in such a way that the
state estimation error is large at the same time instant, i.e. tf = 1 . In this
work, we consider an additive attack model as presented below. Suppose
the modified measurement vector is:

yst+1 = yt+1 + Γat+1

Here, Γ is a normalized attack vector whose elements in each row signify
how the attack is channelized into the measurements, while ak+1 ≥ 0 is a
non-negative scalar which quantifies the magnitude of the injected attack
Kwon et al. (2013), Ghosal et al. (2017).

In our proposed method, we first try to detect anomalies in the system.

When a suspicious measurement ys is found such that ∀ k, |y
k
t+1−CkAkx̂t|t

R̃k,k
t+1

| >
rbd. Then we enable a number of secure measurements satisfying rankCG =
m for each unit. The remaining measurements are treated as (potentially)
suspicious. After that each node shares the estimated interacting signals
with their neighbours. From Corollary 4.1, we concluded S-SISE prioritize
the estimation of the unknown input over that of the state. Hence, there
is a possibility to use only reliable measurements for recovering unknown
inputs and then use these estimated unknown inputs to estimate states of
the system. In the presence of reliable measurements, the S-SISE can be
described in four steps. In this setting, the secure measurements and estim-
ated unknown inputs based on S-SISE approach have impact on the state
estimates; however, the unreliable measurements would not affect the estim-
ation of the input signals. By comparing different estimates of interacting
signals from different units/nodes i.e. the interacting signals from neighbour
dflow and their estimates d̂flow, we can determine the faults type such that if
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the unknown input estimation error, which is found from comparing input
estimates with neighboring units i.e, ||d̂flow

t|t+1 − d̂t|t+1||, is large then we will
have a system fault. For the small unknown input error, less than Thd, the
suspicious measurements are malicious data (note that the uncertainties due
to the measurement noise are considered in the confidence interval). The
threshold Thd can be determined by selecting a proper confidence value
based on the inverse cumulative probability distribution. For the cases that
we have no suspicious data but we have large unknown input estimation er-
ror then the system may face stealth attack. The algorithm is summarized
in Algorithm 12.2.

12.4 TSO/DSO state estimation

Monitoring in a traditional electric grid typically has been done in a tree
structured way. A conventional hierarchical multilevel state estimation
structure is shown in Fig. 12.1. At the lowest level, a local SE can be imple-
mented in the distribution level to preliminarily deal with the information
collected within a substation or small set of adjacent substations. A great
majority of raw measurements will be processed at this distributed level,
where a modest but sufficient computing power already exists. Distribution
substations, delivering power to a large number of secondary transformers
through a set of radial feeders, constitute a particular relevant case. In those
substations, it is advantageous and makes sense to process each radial feeder
in a decoupled manner, leading to a fourth level of information processing.

The results provided by the local SE have to be transmitted through existing
RTUs and communication channels to the TSO-level SE (TSE). At this
intermediate level, commercially available software can be adopted with
minor modifications, the major difference with respect to a conventional SE
being that prefiltered rather than raw measurements are handled.

At the uppermost level, a regional SE (RSE) will be needed to synchronize
and refine the results separately provided by each TSO affiliated with the
interconnected system, particularly near the border nodes. The RSE will be
a customized tool, designed in such a way that the amount of information
exchanged with subordinate TSEs is kept to a minimum. This SE level will
significantly benefit from wide-area measurements provided by PMUs.

12.4.1 A flat structure TSO/DSO state estimation based on
SISE

Here our aim is to construct a pedagogical approach to flatten the con-
ventional estimation methods using SISE and synchronization methods for
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Algorithm 12.2: A systematic way to find bad data and their types in
a power network

Available information: measurements y such that rank(C) > m and
rank(CG) = m, and the input estimation error prior to time t,
||d̂flow

t−1|t − d̂t−1|t||. For each time step (t+ 1)

1. Identify: suspicious measurements ys, by ∀ k, |y
k
t+1−CkAkx̂t|t

R̃k,k
t+1

| > rbd.

2. Determine: the threshold Thd for ||d̂flow
t|t+1 − d̂t|t+1||.

3. If suspicious measurement is found

(a) Enable a set of sufficient number of measurements (rank
CG = m) as secure ones.

(b) Receive from neighboring units estimates of the flowing
(interconnecting) signals into the system defined as d̂flow

t|t+1.

(c) Estimate the unknown inputs (interconnecting signals) d̂t|t+1

using SISE.

(d) Check: ||d̂flow
t|t+1 − d̂t|t+1|| > Thd then we have system fault, else

we have malicious data.

4. If suspicious measurement is not found, but ||d̂flow
t|t+1 − d̂t|t+1|| > Thd,

then the system is exposed to a stealth attack. When a stealth
attack is detected, one may find which suspicious measurement(s)
contribute more to the input estimation error - and thereby identify
the measurement(s) under attack.

When a suspicious measurement (bad data), a system fault or a stealth
attack is found, then recognize the susbsystem as a possible fault
location.
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DSO

TSO

Regional

First level

Third level

Second level

Figure 12.1: Hierarchical multilevel architecture of conventional state estimation.
The adjacent levels may share information with each other that is represented by
the double arrows.

sensors. As we stated in Chapter 1, the uncertainty and speed of changes
in modern electrical grids are increasing, and many basic assumptions for
power systems are therefore becoming doubtful. As a result, there should
be fundamental changes in energy management systems (EMSs) of future
power systems. One of those assumptions being doubtful is the quasi-static
assumption. The hierarchical structure shown in Fig. 12.1 is designed based
on quasi-static assumption. In this multi-level state estimation, information
in each layer will be shared with upper layer estimator corresponding to the
sensors’ sampling rates.

In modern power systems, fast sensors such as PMUs will be placed on
nodes both in the transmission and distribution levels of these systems,
while only these types of sensors can capture the fast changes and their
dynamics in modern grids. The other change in the future smart grids is
that it will not be easy to partition power networks into high and low voltage
parts, as we may have higher voltage parts in the distribution part of the
system than that of the current distribution systems. In such situations, it
is important to use all information provided in the system to obtain the best
state estimates. In this case, we need to capture the fast dynamics of the
system, while at the same time synchronize state estimators’ frequencies of
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Figure 12.2: Sampling rate and time steps for three types of sensors.

different types of sensors.

12.4.2 Synchronization between estimates results from mul-
tirate sensors

In this section, we aim to establish a mathematical approach for synchroniz-
ing state estimators’ frequencies of different types of sensors. The sampling
case of multisensor multirate systems can be described in Fig. 12.2. Three
types of sensors for example are considered in Fig. 12.2. The circles show
the sampling time of different sensors. The sensors have the sampling rate
rTl = 1/Tl, l = 1, 2, 3. The sampling period of the second sensor is rT1/2 and
the third sensor is rT1/3. It is clear that the least common multiple of three
sample rates and sampling time are rT1 and 6T1, respectively. This means
that the samplings of different sensors are asynchronous in each data block
of the length 6T1. Individual sensors provide their local estimates based on
their own observations. Then local estimators are sent into a centralized or
local fusion center. with sampling rate rT1 . However, from Fig.12.2, one can
conclude that sensor 2 and 3 do not have measurements at many time steps.
In addition, there exist some issues regarding discretization of a continuous
system which are listed below Axelsson and Gustafsson (2015):

• For the nonlinear case, the first or second order Taylor series expansion
is considered for the system approximation.

• The Euler or Runge-Kutta integration is used to discretize the con-
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tinuous system function.

• The discrete-time noise is an aggregation of the total effect of the
process noise between two time-steps. The problem with this approx-
imation is that the process noise is based on the sampling time, while
in practice it can have its own statistical characteristics.

To address these problems, the comminuted version of Kalman filtering
based estimation is given.

12.4.3 The Comminuted Estimator (CE)

Consider the continuous-time system (4.1). The comminuted version of
Kalman filtering based estimation for a sensor is implemented in a sampling
time smaller than the sensor’s sampling time i.e. the CE is implemented
with sampling time TCE = T/n, where n ∈ N. For the missing measurement
instances, the prediction step is performed. Doing more iterations in the
Kalman filter’s prediction step is referred to oversampling in Axelsson and
Gustafsson (2015).

As mentioned, some parts of a power network can be unknown for some
particular operators, for example, distribution system operators may have
no information about the transmission part of the system. In this respect,
the effects of transmission system on the distribution part can be modeled
as unknown input signals, and then apply S-SISE to estimate the system
dynamics and also TSO/DSO interaction signal. First we need to divide the
DSO/TSO parts by performing cuts and obtain the decoupled DSO subsys-
tems and TSO part (as shown in Fig. 12.3). S-SISE allows for the unknown
power inputs to be estimated simultaneously with the state estimation, for
each subsystem independently. The algorithm to perform a flat-structured
state estimation for a power network can be summarized as in Algorithm
12.3.

12.5 Power system stabilizer

The power system stabilizer (PSS) control target is to damp the generator
rotor angle swings, which are in a broad range of frequencies in the power
system. These range from low-frequency modes (0.1 - 1.0 Hz), to local modes
(typically 1 - 2Hz), to intra-plant modes (about 2 -3 Hz). The low-frequency
modes, commonly called interarea modes, are caused by coherent groups
of generators swinging against other groups in the interconnected system.
These modes are present in all large-scale power systems, and the damping
is a function of tie-line strength and unit loading factors. Weak ties due to
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Figure 12.3: Decoupling a system with TSO/DSO parts into different subsystems
(Bus X is part of transmission part and Bus Y is connection between the DSO and
TSO.

Algorithm 12.3: a flat-structured state estimation for a power network

1. Synchronize all estimators in a DSO part. Synchronize all estimators
in a TSO part.

2. Distinguish connecting points between TSO and DSO parts.

3. Decouple the system into TSO/DSO parts. For the DSO, the
unknown disturbance is the signals coming from TSO and vice versa.

4. Apply S-SISE to jointly estimate the interacting signals and states of
the DSO. Apply S-SISE to jointly estimate the interacting signals
and states of the TSO.
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line outages and heavy system loads can lead to poorly damped modes. PSS
control can generally provide significant improvements in interarea mode
damping by applying stabilizers to most units that participate in power
swing modes.

The block diagram of a synchronous machine dynamics containing PSS and
auto voltage regulator (AVR) is shown in Fig. 12.4. As we can see in Fig.
12.4, the input for the PSS is the rotor speed deviation ∆ωr, which is used
to generate a damping torque component.
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Figure 12.4: Block diagram of a synchronous machine dynamics containing PSS
and automatic voltage regulator (AVR). Gtf

tr , Gtf
ex, Gtf

f and Gtf
sw are denoting the

transfer functions of the voltage transducer, exciter system, field current dynamics
and swing dynamics. ∆Tm is the external mechanical torque.

If the Gtfex and swing dynamics were pure gains, direct feedback of ∆ωr
would generate the damping torque. However, both the generator and the
exciter input contain frequency dependant gain and phase characteristics.
Thus, the PSS transfer function, GtfPSS should have phase compensation,
see Fig. 12.5.

12.5.1 Loop shaping regulator for power system stabilizers

The optimal linear quadratic Gaussian power system stabilizer (LQG-PSS)
has been investigated before in Zolotas et al. (2006), Seo et al. (1996), Singh
and Pal (2018), Singh and Pal (2016), Florescu et al. (2012). These refer-
ences all assume that all parts of the system are known. Using SISE for the
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Figure 12.5: Block diagram of a PSS containing a phase compensation.

linear-quadratic Gaussian (LQG) problem can make it complicated because,
in SISE, we have unknown inputs needing to be estimated, and control in-
puts needing to be properly determined at the same time. However, as we
discussed before, the S-SISE algorithm is a regular Kalman filter for finite
D. Thus, it is possible to employ Kalman filtering based control strategies
including the LQG with S-SISE. In order to investigate the effect of LQG,
we need to consider the control signal coming from the LQG-PSS in the
state space model of a generator. This is modeled as follows:

ẋi = Aixi +Biui + BPSSiuPSSi +B
(P )
i PEi. (12.4)

where

BPSSi =
[
0 0 1

MiτCi
0
]T

The procedure of designing the S-SISE-LQG regulator for the partially
known power system (PKPS) contains two steps. First, S-SISE is designed
to obtain the state estimates of the PKPS. Then based on the estimated
states rather than actual states the control input for the system can be cal-
culated (see Fig. 12.6). In this section, we investigate the application of
S-SISE for PKPS from different aspects. We start with a simple example
to explain the basics of our proposed method, and then we discuss some of
the properties related to power systems applications.
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Figure 12.6: Block diagram of the S-SISE-LQG regulator

12.5.2 IEEE-3-bus test case

Fig. 12.7 (from Blood (2011)) depicts a three-bus power network consisting
of two generators and one consumer. The link admittances are as displayed,
and Generator 1 is managed by the network operator with Generator 2 being
managed by an alternative supplier. Accordingly, the dynamics of generator
1 – its moment of inertia, feedback control gain, mechanical and electrical
properties – are fully known to the operator along with the admittances
of the network. A model is available for Generator 2, meaning that its
precise mechanical and electrical properties are known. The consumer load
is unreliably modeled and could exhibit sudden rapid changes.

Suppose that no model is available for the machine at bus 3. and we regard
the power flow at that bus as an input signal. Then states associated with
that machine no longer appear in the system model, and the model for the
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known part of the system becomes

d

dt



a1

P1

ω1

a2

P2

ω2

δ2


=



−5 0 100
0.2 −0.2 0
0 −0.1 −0.15 0.08

−5 0 125
0.3 −0.3 0
0 −0.2 −0.3 −0.1 −0.3

−1 1



×



a1

P1

ω1

a2

P2

ω2

δ2


+


0.01

0.14


[
δ3

]
. (12.5)

With measurement vector

C1 = [0 0 1 0 0 0 0],

we have observability – meaning that, given the external inputs and meas-
urement of Generator 1 rotor frequency, we can estimate the system state
for the known part of the network. Importantly, we also satisfy the single
input estimation condition Assumption 4.1 that rank C1G1 = 1 , with
G1 = [0 0 0.01 0 0 0.14 0]T . In this example, we have two gener-
ators located at bus one and two. At each generator bus, we have a PSS,
but we measure only ω1. Based on this measurement, the S-SISE-LQG reg-
ulators for the PSSs at bus 1 and 2 are implemented. For the external load
input, we apply a square signal in order to observe the rotor angle swings.
The measurement noise is chosen to be R = 1e − 8 and the process noise
is Q = 3e − 3. The weights used in the design of the LQ controller are
W = 3 × BPSS × BTPSS and V = R, then the dynamic response of the
state variables a1 and ω1 are obtained as in Fig. 12.8. This contrasts with
both previously published LQG-PSS design (which assumes a model of the
complete system is available), and PSS design using local measurements
only (which would require measuring both ω1 and ω2). It can be observed
that the controller dampens the system response and reduces overshoot and
oscillations; also, the low-frequency behaviour of the system is improved.

If the measurement noise is increased, the LQG is unstable which is related
to the fact that the model of the known part of the system does not describe
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Figure 12.7: Transformer-less dynamic power grid model of IEEE-3-bus perform-
ing the first cut. The dashed line represents the virtual cut separating the known
and unknown parts of the network.

the total dynamics, and it is illustrated in Fig. 12.9. It is known that LQG
lacks robustness to system uncertainty Doyle (1978). One can decrease
the controller sensitivity by artificially increasing the LQG weight W ; this
method is known as LQG/LTR Stein and Athans (1987). However, this can
degrade the the performance of the closed-loop system significantly George
(2014). As a remedy to the lack of robustness of LQG, Glover-McFarlane
loop-shaping method McFarlane and Glover (1992) that uses a combination
of loop shaping and robust stabilization is applied.

12.5.3 McFarlane Glover loop shaping method

This method is chosen because it can obtain the closed-loop stability and
improved stability margins without significant degradation in the large and
small gain regions of the open-loop response. In this method, we obtain
the H∞ normalized coprime factor loop-shaping controller K s for a plant
G with pre-compensator and post-compensator weights Υ1 and Υ2. In our
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Figure 12.8: The rotor frequency at bus 2 and the valve position at bus 1 for
the first cut when no control, the S-SISE-LQG and the S-SISE-LQG-MCFarlane
methodologies are applied for the PSS.

example, Υ1 = I and Υ2 = KLQG. Then we perform a robust coprime
factors stabilization to compute K s by minimizing:

||
[
I

K s

]
(I + Υ2GPΥ1K s)[I Υ2GPΥ1]||∞ = γ

where γ specifies the bound of uncertainty, and GP is the transfer function
for PKPS. The control procedure as it is shown in Fig. 12.10 consists of
following steps:

1. The S-SISE is designed to obtain the state estimates of PKPS.

2. The LQR controller is designed based on SISE estimates.

3. Based on the controller gain obtained from the LQG compensator, a
Glover-McFarlane controller is designed.
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Figure 12.9: The rotor frequency at bus 2 and the valve position at bus 1 and their
estimates for the first cut by using the S-SISE-LQG and S-SISE-LQG-MCFarlane
based PSS, with R = 1e− 6.

The transfer functions 1 in Fig. 12.11 are listed bellow:

• The S-SISE-LQG compensator:

((I −KC)A− BPSSKLQG,K,KLQG, 0)

.

• The S-SISE-LQG-McFarlane compensator:

((I −KC)A− BPSSKLQG,K,KLQG, 0)

×(AMc, BMc, CMc, DMc)

where

K s : (AMc, BMc, CMc, DMc).

1where each quadruple (A,B,C,D) shows a dynamic system with system matrix A,
input matrix B, measurement matrix C, and feedthrough matrix D
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Figure 12.10: Block diagram of the S-SISE-LQG-McFarlane regulator, where
Υ2 is the original LQG-based controller, and K s is the McFarlane-Glover robust
loop-shaping controller.

• Full state uncontrolled system:

(A,BPSS , C, 0)

To assess robustness, we check the maximum singular value of the sensitiv-
ity function at the plant input, while large singular values of the sensitiv-
ity function are indicators of robustness problems Skogestad and Postleth-
waite (2007). Fig. 12.12 shows the robustness improvement using Glover-
McFarlane method, as the peak value of the maximum singular value is
significantly reduced.

Conclusion

Based on the frequency response of the closed loop system, one can observe
the oscillatory behaviour of the system and the possible frequency that the
oscillations are happening. Based on this information and by using robust
control schemes, one can stabilize the system by damping the oscillatory
swing modes. In addition, we have demonstrated how S-SISE can be used
to design PSS, with a reduced number of measurements.
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Chapter 13

Conclusion and future works

In this thesis, we clarify some ”myths” regarding SISE that have existed for
a while, by deconstructing SISE and deriving an equivalent Kalman filtering
formulation in which unknown disturbances are modeled as noises with un-
bounded variance. Then we study the stability properties of (conventional)
SISE in detail, and show that the Kalman filtering based version has im-
proved stability properties. This Kalman filtering based version of SISE,
called S-SISE, is used to develop an approach to dynamic state estimation
for partially known power systems.

For the case where coordination between different parts of a power network
is possible, we present a distributed algorithm using diffusion techniques to
implement H∞ and Kalman filtering in a multi agent setting. In order to
relax observability conditions in the diffusion filtering algorithms, we use
three strategies but the most novel one is using only the locally observable
states, which avoids local covariance matrices growing without bounds in
unobservable directions.

For a power system containing sensors with different data rates, a covari-
ance intersection (CI) method is applied to perform fusion sensor in power
systems measurement problems. We compare this method with that of Bar-
Shalom-Campo and demonstrate that CI is better in terms of consistency
but not necessarily concerning precision.

Finally, benefits and applications of using the proposed dynamic state es-
timation methods for the dynamic state monitoring of power systems are
investigated. A fault detection methodology, a sensor placement strategy,
an estimation approach that can account for the interactions between the

245



246 Conclusion and future works

transmission and distribution levels of the power system, and a power sys-
tem stabilizer have been proposed. A number of power systems examples
of increasing complexity illustrate the approaches and their capabilities.

To clarify our approach, we have assumed that the transmission lines re-
actance are significantly larger than their resistance in Chapters 7 and 11.
However, for distribution grids, the resistance can be significantly larger
than the inductance. This can raise the question of scalability for using our
approaches for distribution grids. In Section 7.5, however, the assumption of
ignoring the resistance of the transmission lines has been relaxed, and a more
general method has been proposed. Furthermore, using the S-SISE method
results in reducing the order of the global state by allowing each PKPS to
estimate only a subset of the global state space in addition to the num-
ber of unknown inputs. This solution consequently addresses the scalability
problem of state estimation when the order of the system increases. This
scalability property of using PKPS concept and S-SISE method has been
investigated in Chapter 7.

On the basis of the findings presented in this thesis, a number of extensions
are described that can be explored in the future. Below, they are addressed
concisely:

• The design of PSS can be supported with a more solid theoretical
framework: The disturbance model would make better control pos-
sible. However, the idea used here is to exploit loop shaping for robust
stability. The link is the LQG/LTR to recover the closed loop transfer
function of the estimator/controller and then use the obtained iden-
tified transfer function to design a robust controller. The theoretical
framework with strong mathematical guarantees is needed to evaluate
this loop-shaping approach.

• The design of proposed estimators can be supported with real-world
experiments: Our proposed methods are based on simplifying assump-
tions, and we are using 3-bus, 9-bus, 14-bus and 118-bus power sys-
tems. Hence it seems vital to design laboratory experiments for more
complex interconnected power systems to test and validate the applic-
ability of S-SISE for practical application.

• More complicated and larger test cases for S-SISE based PSS: More
complex simulation studies for larger systems should be tried out to
validate the performance of LQG loop shaping robust dynamic PSS
using S-SISE as estimation method. In addition, the number of PSSs



to use and their location would be relevant issues when dealing with
large systems.

• Cyber attack detector: While the S-SISE is robust and recovering
n interaction signals only need n measurement, then by using se-
cure measurements cyber attacks can be detected in a power system.
However, PMUs are exposed to GPS signal spoofing. Therefore, the
secure measurements are likely to be SCADA measurements, with
low sampling rates. The problem of cyber attack detection with low
sampling rate sensor information needs further investigations.

• The fault detection method and the diffusion strategy need coordin-
ation between different subsystems, sending and receiving these co-
ordinating signals need privacy preservation. This can be done by
state decomposition and the application of coding strategies to share
data securely. Using secure data sharing between different agents in a
power network should get more attention in future.

• In modern power systems, dynamic models of ICT systems contain
dynamic states and would contribute to the states of the model of
the overall system. The concept of PKPS can be used to decouple a
power system states from ICT ones. Developing a methodology for
decoupling ICT dynamics from power system dynamics can be a topic
for future work.
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