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Abstract

Aims: To conduct a pooled analysis to assess the performance of intermittently

scanned continuous glucose monitoring (isCGM) in association with the rate of

change in sensor glucose in a cohort of children, adolescents, and adults with type

1 diabetes.

Material and Methods: In this pooled analysis, isCGM system accuracy was assessed

depending on the rate of change in sensor glucose. Clinical studies that have been

investigating isCGM accuracy against blood glucose, accompanied with collection

time points were included in this analysis. isCGM performance was assessed by

means of median absolute relative difference (MedARD), Parkes error grid (PEG) and

Bland-Altman plot analyses.

Results: Twelve studies comprising 311 participants were included, with a total of 15

837 paired measurements. The overall MedARD (interquartile range) was 12.7% (5.9-

23.5) and MedARD differed significantly based on the rate of change in glucose

(P < 0.001). An absolute difference of �22 mg/dL (�1.2 mmol/L) (95% limits of agree-

ment [LoA] 60 mg/dL (3.3 mmol/L), �103 mg/dL (�5.7 mmol/L)) was found when glu-

cose was rapidly increasing (isCGM glucose minus reference blood glucose), while a

�32 mg/dL (1.8 mmol/L) (95% LoA 116 mg/dL (6.4 mmol/L), �51 mg/dL (�2.8 mmol/

L)) absolute difference was observed in periods of rapidly decreasing glucose.

Conclusions: The performance of isCGM was good when compared to reference

blood glucose measurements. The rate of change in glucose for both increasing and
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decreasing glucose levels diminished isCGM performance, showing lower accuracy

during high rates of glucose change.
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1 | INTRODUCTION

The accessibility and use of continuous glucose monitoring (CGM) sys-

tems have facilitated the management of type 1 and type 2 diabetes,

leading to sustained improvements in hypoglycaemia management,

decreased fear of hypoglycaemia, and fewer acute hypoglycaemic events

and disease-associated days absent from work.1

Currently, two different types of personal CGM systems are avail-

able: real-time CGM and intermittently scanned CGM (isCGM). Both sys-

tems measure the glucose concentration in the interstitial fluid via a

subcutaneous sensor and transfer the value via a transmitter to a reader/

scanner device. Real-time CGM systems automatically transfer the cur-

rent sensor glucose level to a contactless reader device via Bluetooth

(every 1-5 minutes), while isCGM systems require proactively conducted

swipes with a scanning device via near-field communication.

Various studies have assessed the performance of all these tech-

nologies for sensor accuracy, detailing a substantial variety of median

absolute relative differences (MedARDs), ranging from �9% to

45%.2-5 Elevated MedARDs are often observed during phases of high

glucose swings6 that are attributed to the physiological lag time for

the glucose to diffuse from the bloodstream into the interstitial fluid.7

The performance of isCGM systems was often assessed during rou-

tine environmental conditions,8 exercise5 and glycaemic challenges.9 Due

to methodical differences in study designs, for example, different refer-

ence blood glucose measurements methods used, different cohorts and

rates of glucose change, generalizable and large-scale accuracy data are

currently not available for isCGM systems. Furthermore, as the isCGM

system is approved as a non-adjunctive glucose-sensing device, people

with type 1 diabetes using multiple daily injections or continuous subcu-

taneous insulin infusion therapy need to know if the displayed glucose

level is reliable during episodes of stable and rapidly changing glucose.

Although most studies have shown that isCGM systems are within a

safe clinical range10-12 conclusive large-scale assessments of isCGM per-

formance and the impact of the rate of change in glucose are currently

lacking. Therefore, the aim of this pooled analysis was to assess isCGM

(FreeStyle Libre 1; Abbott Diabetes Care, Alameda, California) perfor-

mance and the rate of change in sensor glucose in a cohort of children,

adolescents, and adults with type 1 diabetes.

2 | MATERIALS AND METHODS

This study was conducted as a retrospective pooled analysis, in which

isCGM accuracy was assessed against reference blood glucose levels

derived from following standardized systems: the Contour Plus One

glucometer (Ascensia Diabetes Care, Leverkusen, Germany), YSI 2300

STAT (Yellow Springs Instrument Inc., Yellow Springs, Ohio), Super GL

Glucose Analyser (Dr. Müller Gerätebau GmBH, Freital, Germany),

Freestyle Freedom Lite (Abbott Diabetes Care, Chicago, USA), Contour

Next USB (Ascensia Diabetes Care, Leverkusen, Germany), EKF Biosen

C-Line (EKF Diagnostic GmbH, Barleben, Germany), COBAS 8000

(Hoffmann-La-Roche Ltd, Basel, Switzerland) with respect to the rate

of change in glucose in individuals with type 1 diabetes (Supplementary

Appendix S1). The study protocol was approved by the Ethics Commit-

tee of the Medical University of Graz, Austria (32-372 ex 19/20) and

registered with German Clinical Trials (DRKS00024682). Additionally,

the study was conducted in full conformity with the 1964 Declaration

of Helsinki and all its subsequent revisions and in accordance with the

guidelines provided by the International Conference on Harmonization

for Good Clinical Practice (E6 guidelines).

2.1 | Study selection

A nonsystematic database search was performed in PubMed, selecting

publications that investigated isCGM (FreeStyle Libre 1) accuracy in

people with type 1 diabetes until March 2020. The following search

terms were used: type 1 diabetes AND intermittently scanned glucose

monitoring OR Freestyle Libre OR flash glucose monitoring AND per-

formance OR accuracy. In total, 23 studies were preselected,

and authors were requested to provide their data for this pooled anal-

ysis. Eleven studies were excluded; one study did not meet the selec-

tion requirements and data for 10 studies could not be shared for

analyses for various reasons, including not having an allowance for

data transfer, ethical reasons, or timeline issues. In total, 12 studies

were included that met the following inclusion criteria for participants:

clinical diagnosis of type 1 diabetes; use of an isCGM system against

reference blood glucose measurements; and time points of measure-

ments recorded to assess the rate of change.

Prior to quality assessment, we received in total 54 830 points of

comparison from 311 participants with type 1 diabetes. In total, for

the general assessment of isCGM accuracy independent of the rate of

change, 15 837 paired datapoints were available (reference blood glu-

cose and sensor glucose). For the assessment of glucose sensor accu-

racy in relation to the rate of change, 4041 datapoints were excluded

as the maximum time between two reference blood glucose points

exceeded 120 minutes. This maximum time was defined to ensure

that the real rate of change in glucose was captured. In total, 11 796

points of comparison, accompanied by the associated rate of change

in sensor glucose, were available (Figure 1).
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F IGURE 1 Flow chart of included and excluded participants and study data
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In this pooled analysis, the accuracy of the isCGM system

(FreeStyle Libre 1) was assessed depending on the rate of change in

sensor glucose. Data from various studies that investigated isCGM

accuracy against blood glucose (all types), accompanied by collection

time points (in order to assess the rate of change in glucose), were

obtained. For the assessment of the rate of change, a maximum time

between sampling time points of 2 hours was allowed. Both sexes, all

age groups, and all types of insulin treatments were included. All con-

ditions were included: laboratory conditions, real-life data, resting,

and physical activity/exercise data.

2.2 | Statistical analyses

Data were tested for normal distribution by means of a Shapiro-Wilk

normality test. Based on the distribution, sensor accuracy was mea-

sured according to MedARD, with interquartile ranges, between

isCGM sensor glucose and reference blood glucose.

Absolute difference between sensor glucose levels and reference

blood glucose levels was analysed via the Bland-Altman method. The

clinical safety of isCGM accuracy was assessed by means of Parkes error

grid (PEG) analysis, dividing isCGM performance into five grids, defined

as follows: zone A: clinically accurate measurements, no effect on clinical

action; zone B: altered clinical action, little or no effect on clinical out-

comes; zone C: altered clinical action, likely to affect clinical outcomes;

zone D: altered clinical action, could have significant clinical risks; and

zone E: altered clinical action, could have dangerous consequences.13

Participants’ characteristics including age, body mass index, diabetes

duration and glycated haemoglobin (HbA1c) level were given as mean

± standard deviation. Analyseswere also separated for nighttime and day-

time (06.00 AM to 12.00 AM), laboratory (YSI Inc., United States/EKF Diag-

nostics, Germany)14 and glucometer assessments, age groups (<18 years

and ≥18 years), physical activity/exercise and non-physical activity/exer-

cise. Furthermore, isCGMaccuracy was also investigated for the following

glycaemic ranges: hypoglycaemia level 2 (<54 mg/dL (<3.0 mmol/L)),

hypoglycaemia level 1 (54-69 mg/dL (3.0-3.9 mmol/L )), euglycaemia (70-

180 mg/dL (3.9-10.0 mmol/L)), hyperglycaemia level 1 (181-250 mg/dL

(10.0-13.9 mmol/L)) and hyperglycaemia level 2 (>250 mg/d 13.9 mmol/

L)).15 The collected glucose levels were divided based on their associated

rates of change into four quantiles: low (0 to 25th percentile, 26th quartile

to 50th percentile, 51st to 75th percentile and above the 75th percentile);

additionally, the rate of change was assessed based on the providers’
trend arrows: increasing/decreasing >2 mg/dL/min, increasing 1 to

2 mg/dL and not increasing/decreasing >1 mg/dL/min at the time of glu-

cose measurement. Group comparisons were performed by means of

one-way analysis of variancewith Tukey's post hoc testing (P < 0.05).

3 | RESULTS

Of the 12 studies included, 10 were performed in adults and two in

children and adolescents with type 1 diabetes8,9,16-24 (Supplementary

Appendix S1). In one adult study, isCGM accuracy was assessed in

pregnant women with type 1 diabetes. Five studies were performed

in a clinical research facility setting, four studies in a real-world set-

ting, and three studies in a combined clinical research facility and real-

world setting. In four studies isCGM performance was investigated

around exercise and in two studies during a glycaemic challenge. The

two studies performed in children and adolescents assessed isCGM

accuracy during a summer camp. Participants’ characteristics are

shown in Table 1.

TABLE 2 Median absolute relative differences based on
glycaemic thresholds, time of day, exercise and age

Glycaemia
isCGM accuracy, %;
Median (IQR)

MedARD

(IQR)

Overall 12.7 (5.9-23.5)

n = 15 837

Hypoglycaemia level 2

(<54 mg/dL; < 3.0 mmol/L)

17.8 (8.0-29.6)

n = 350

Hypoglycaemia level 1

(54-69 mg/dL; 3.0-3.9 mmol/L )

20.5 (9.4-37)

n = 1153

Euglycaemia

(70-180 mg/dL; 3.9-10.0 mmol/L)

13.7 (6.5-24.7)

n = 10 253

Hyperglycaemia level 1

(181-250 mg/dL; 10.0-13.9

mmol/L)

9.6 (4.2-17.9)

n = 2809

Hyperglycaemia level 2

(>250 mg/dL; >13.9 mmol/L)

8.9 (4.6-15.4)

n = 1272

Daytime

(06.00 AM to 12.00 AM)

13.1 (6.0-24.0)

n = 14 782

Night-time

(12.01 AM to 05.59 AM)

9.3 (4.1-16.1)

n = 1055

During exercise adults 23.6 (14.9-33.4)

N = 1481

Adults; no exercise 12.9 (5.9-24.0)

N = 11 199

Children/adolescents overall 9.1 (4.2-15.9)

N = 3157

Abbreviation: IQR, interquartile range.

TABLE 1 Participants’ characteristics assessed at screening for
each specific study

Participants’ characteristics (n = 311)

Sex: female/male, % 53/47

Age, years 27 ± 15

BMI, kg/m2 23.4 ± 4.3

Type of therapy: CSII/ MDI, % 64/36

HbA1c, % (mmol/mol) 7.3 ± 1.0 (56.3 ± 9.3 mmol/mol)

Diabetes duration, years 13 ± 10

Note: Data are given as mean ± standard deviation, unless otherwise

stated.

Abbreviations: BMI, body mass index; CSII, continuous subcutaneous

insulin infusion; HbA1c, glycated haemoglobin; MDI, multiple daily

injections.
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3.1 | Median absolute relative difference

In this retrospective pooled analysis, the overall MedARD was 12.7%

(IQR 5.9-23.5). When isCGM accuracy was assessed by means of

glucometer, the MedARD was 10.8% (IQR 5.1-19.8), and was 15.6%

(IQR 7.2-28.5) when assessed against a laboratory measurement

device. When comparing these two MedARDs based on the assess-

ment tool, the MedARD was significantly lower for glucometer assess-

ment (P < 0.001). MedARDs based on glycaemic thresholds, time of

day, exercise and age are given in Table 2.

3.2 | Rate of change in glucose and MedARD

The rates of change quartiles in glucose based on the instruction leaflet

and based on the quartiles are shown in Figure 2. The rate of change in

glucose based on the instruction leaflet significantly altered the MedARD

(P < 0.001), displaying a U-shaped relationship. When accuracy was

assessed based on the quartiles in rate of change in glucose, theMedARD

was elevated for those in the highest quartile of glucose change, for both

decreasing and increasing glucose levels (both P < 0.001).

When assessing the rate of change in glucose within the different

glycaemic ranges, the specific glycaemic range had a significant impact

on the MedARD over all rates of changes in glucose (Table 3).

3.3 | Clinical assessment of isCGM accuracy

Overall, clinical performance assessed by means of PEG analysis was as

follows: 75.1% in zone A, 22.1% in zone B, 2.6% in zone C, 0.3% in

zone D, and no values in zone E. When data were separated for age

groups and resting and exercise conditions, the following clinical accu-

racy rates were found: adults, rest: 75.4% in zone A, 21.9% in zone B,

2.3% in zone C, 0.4% in zone D, and no values in zone E; adults, exer-

cise: 43.2% in zone A, 46.7% in zone B, 9.9% in zone C, 0.3% in

zone D, and no values in zone E; children and adolescents: 88.9% in

zone A, 10.7% in zone B, 0.4% in zone C and no values in zones D or

E. PEG analysis based on the rate of change (trend arrows) showed the

following clinical performance results: stable glucose: 77.47% in

zone A, 20.17% in zone B, 2.15% in zone C, 0.22% in zone D, and no

values in zone D; slightly decreasing glucose: 73.48% in zone A,

22.09% in zone B, 4.03% in zone C, 0.40% in zone D, and no values in

zone E; slightly increasing glucose: 73.66% in zone A, 23.75% in

zone B, 1.76 in zone C, 0.83% in zone D, and no values in zone E; rap-

idly decreasing glucose: 50.17% in zone A, 40.22% in zone B, 9.09% in

zone C, 0.43% in zone D, 0.09% in zone E; rapidly increasing glucose:

56.63% in zone A, 40.81% in zone B, 2.18% in zone C, 0.38% in

zone D, and no values in zone E (Supplementary Appendix S2).

3.4 | Assessment of isCGM based on Bland-
Altman method

Assessment of isCGM accuracy showed an overall bias of 3 mg/dL

(95% limits of agreement [LoA] 74 mg/dL (4.1 mmol/L), �68 mg/dL

(-3.8 mmol/L)), for adults during resting conditions of �3 mg/dL (95%

LoA 61 mg/dL 3.4 mmol/L)), �67 mg/dL(�3.7 mmol/L), for adults dur-

ing exercise of 39 mg/dL (2.2 mmol/L) (95% LoA 110 mg/dL (6.1

mmol/L), �32 mg/dL (�1.8 mmol/L)) and for children and adolescents

of 7 mg/dL (95% LoA 56 mg/dL, �42 mg/dL (�2.4 mmol/L)). Bland-

Altman analysis based on the instruction leaflets’ rate of change in glu-

cose is given in Supplementary Appendix S3.

F IGURE 2 Median absolute relative difference (MedARD; %) based on the rate of change in glucose (instruction leaflet; [A]) and based on
quartiles (B)
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4 | DISCUSSION

4.1 | Sensor accuracy and glycaemia

In line with different CGM systems, isCGM performance slightly dete-

riorated during hypoglycaemia.25 Over the course of CGM advance-

ment, the performance during hypoglycaemia clearly improved, with

MedARDs similar to those found in our study: up to 21.7%

(Senseonics Eversense)26 and up to 26.9% (Medtronic Guardian Sen-

sor 3),8 which was also seen for Dexcom G6.27 Several factors influ-

ence CGM performance during hypoglycaemia; however,

hypoglycaemia is induced by a mismatch of insulin to blood glucose

ratio, and hence is associated with a drop in glucose levels. Consider-

ing this, our data clearly showed that when separating the rate of

change in glucose within different glycaemic ranges, isCGM has a

higher MedARD during hypoglycaemia compared to the other

glycaemic ranges (Table 3).

Nevertheless, a MedARD of 17.8% during hypoglycaemia level

2 and 20.5% during hypoglycaemia level 1 is still acceptable, especially

for those with normal awareness of hypoglycaemia.28 The MedARD

during euglycaemia was lower than observed during hypoglycaemia but

was higher than observed during hyperglycaemia. Additionally, in line

with previous studies comparing different CGM systems,8 isCGM sen-

sor performance was more accurate during the nighttime period when

compared to the daytime period. This difference in the MedARD might

underline the lower rate of change in glucose during phases when no

or fewer carbohydrates are ingested and no bolus insulin injections are

performed.

4.2 | Sensor accuracy and exercise

In line with the results of a large number of studies performed during

physical activity and exercise for different CGM systems,7,29-31 isCGM

sensor accuracy decreased, leading to a MedARD of 23.6% in adults

with type 1 diabetes. In exercise with more rapidly changing glucose

values, achieving an agreement between sensor glucose and blood

glucose is even more challenging, hence current CGM systems help to

overcome this challenge by providing regularly updated algorithms.

As shown by Zaharieva et al,7 the lag time for the Dexcom G4

device was 12 ± 11 minutes during aerobic exercise when compared

with reference blood glucose. However, as isCGM and CGM systems

display trend arrows accompanied by the actual sensor glucose levels,

therapy actions should be performed based on consideration of both.32

4.3 | Rate of change in glucose and sensor
performance

The rate of change in glucose might be the strongest predictor for

isCGM sensor performance, showing the highest MedARD during rap-

idly increasing and decreasing glucose levels (Figure 2 and Supple-

mentary Appendix S2). isCGM tended to overestimate reference

blood glucose levels during rapidly decreasing glucose levels (bias

32 mg/dL (1.8 mmol/L)) and tended to underestimate reference blood

glucose levels during rapidly increasing glucose levels (�22 mg/dL

(�1.2 mmol/L); Supplementary Appendix S3), which reflected the

expected lag time as observed during exercise,7 and which was con-

firmed in another study.6 Furthermore, due to the absolute difference

of 32 mg/dL during decreasing glucose values, assessing both the

trend arrow and the actual sensor glucose level might also lower the

risk of wrong therapeutic decisions.33 From our point of view and

based on our findings, diabetes education needs to highlight the fact

that the physiological lag time for glucose to diffuse from the blood

stream into the interstitial space can be assessed via trend arrows.

This means that, for example, for downwards trend arrows (rapidly

decreasing glucose) the actual sensor glucose level can be assumed to

be subtracted by approximately �32 mg/dL.

TABLE 3 Median absolute relative differences based rate of change in glucose

Glycaemic range

Rate of change in glucose

<54 mg/dL (<3.0

mmol/L)
MedARD (IQR), %

54-69 mg/dL

(3.0-3.9 mmol/L)
MedARD (IQR), %

70-180 (3.9-10

mmol/L) mg/dL
MedARD (IQR), %

181-250 mg/dL
(10.0-13.9 mmol/

L) MedARD
(IQR), %

>250 mg/dL

(>13.9 mmol/L)
MedARD (IQR), % P value

# 37 (28-52)

n = 17

30 (19-46)

n = 69

24 (13-36)

n = 817

14 (6-22)

n = 208

9 (5-15)

n = 55

<0.0001

& 21 (10-30)

n = 47

24 (12-37)

n = 171

14 (7-25)

n = 1124

8 (3-16)

n = 288

9 (4-16)

n = 108

<0.0001

! 16 (8-28)

n = 161

19 (9-35)

n = 569

13 (6-23)

n = 4495

9 (4-16)

n = 1092

9 (4-16)

n = 437

<0.0001

↗ 30 (24-50)

n = 7

26 (13-45)

n = 41

15 (8-28)

n = 578

10 (4-19)

n = 286

10 (6-17)

n = 170

<0.0001

↗ 4 (34-46)

n = 2

20 (7-35)

n = 8

24 (11-47)

n = 562

18 (10-31)

n = 293

8 (4-12)

n = 191

<0.0001

arr. #, rapidly decreasing; &, slightly decreasing; !, stable; ↗, slightly increasing; ↗, rapidly increasing.

Abbreviations: IQR, interquartile range; MedARD, median absolute relative difference.
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This study has some limitations. Firstly, as we received data from

different studies, we could not assess the actual software version

(algorithm) of the isCGM systems; updated algorithms incorporated

into isCGM systems improve sensor performance and lower physio-

logical lag time. As we were not able to retrieve data from all identi-

fied studies, our study analysis is not fully representative of all data

published for isCGM. Additionally, from a statistical point of view,

datapoints from each person were not weighted; however, due to the

large number of points of comparison, we do not suspect that this sta-

tistical limitation would mitigate our findings. Furthermore, we

decided to assess isCGM sensor accuracy by means of MedARD, PEG

and Bland-Altman analysis instead of ISO 15197:2013 due to the den-

sity of our data. Additionally, as our data analyses were based on test-

ing for normal distribution, we decided to show our data only as

MedARD and not as MARD. Notwithstanding, this study was well

powered and showed clearly that glycaemia and, in particular, its rate

of change, alter isCGM sensor accuracy.

This analysis showed that isCGM measures the interstitial glucose

accurately when compared to reference blood glucose, with a MedARD

of 12.7% in a total of 15.837 points of comparison. The rate of change

in glucose altered isCGM performance, with lower accuracy during high

rates of change, for both increasing and decreasing glucose levels.
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