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Abstract
In this work four different machine learning approaches

have been implemented to perform the color space transforma-
tion between CMYK and CIELAB color spaces. We have ex-
plored the performance of Support-Vector Regression (SVR), Ar-
tificial Neural Networks (ANN), Deep Neural Networks (DNN),
and Radial Basis Function (RBF) models to achieve this color
space transformation, both AToB and BToA direction. The data
set used for this work was FOGRA53 which is composed of 1617
color samples represented both in CMYK and CIELAB color
space values. The accuracy of the transformation models was
measured in terms of ∆E∗ color difference. Moreover, the pro-
posed models were compared, in practical terms, with the per-
formance of the standard ICC profile for this color space trans-
formation. The results showed that, for the forward transfor-
mation (CMYK to CIELAB), the highest accuracy was obtained
using RBF. While, for the backward transformation (CIELAB to
CMYK), the highest accuracy was obtained with DNN.

Introduction
Color management is an essential task in several fields of re-

search and industry, such as graphic design, photography, print-
ing, and image processing, among others [13]. In general terms,
color management is the process of controlling how colors are
represented across different devices, such as digital cameras, pro-
jectors, printers, monitors, etc [6]. The main goal of color man-
agement is to make sure that colors will look equal (or at least as
similar as possible) on different devices [9].

CMYK and CIELAB are two color spaces that are widely
used today in different applications [10]. CMYK is a device-
dependent color space used in the printing industry due to its
subtractive nature. It represents each color using four compo-
nents: cyan, magenta, yellow, and black [14]. CIELAB is a
device-independent color space derived from the previous CIE
1931 XYZ color space with the aim of creating a more uniform
color space. It represents each color using three values, L* for
lightness, a* for the green-red component, and b* for the blue-
yellow component. Like CIEXYZ, CIELAB is important in color
management because it works as a profile connection space [11].

Color space transformation, also known as color space con-
version, is a fundamental part of color management. Its objec-
tive is to transform the representation of a given color from one
color space to a different one [2]. This is an essential issue be-
cause different devices use different color spaces depending on
the specific application [16]. There are different methods to per-
form color space transformation. The first developed methods
included polynomial regression and Look-Up Tables (LUT) [3].
A color LUT is a matrix of color information that is searched to
properly convert colors from a source to a destination, where the
source/destination could be either a file or a physical device.

There are recent research works where different machine
learning methods have been implemented to perform and opti-

mize color space transformations. Some of them are Artificial
Neural Networks (ANN) [4], Support-Vector Regression (SVR)
[7], Deep Neural Networks (DNN) [8], Radial Basis Function
Network (RBF) [1], among others. However, as far as we know,
there are no research works about comparing the performance
of color space transformation with those machine learning tech-
niques. Furthermore, most of the research works about this area
focus on relatively simple transformations, such as RGB to XYZ,
or RGB to CIELAB, which can be easily solved by simpler meth-
ods, such as polynomial regression or Tone Reproduction Curve
(TRC) matrix [15][12]. There are few research papers that ex-
plore the implementation of machine learning methods to per-
form more complex color space transformations, such as between
the CMYK and CIELAB.

In this work, four different machine learning approaches
will be implemented to perform the color space transformation
between CMYK and CIELAB color spaces. We explore the per-
formance of SVR, ANN, DNN, and RBF models to perform this
color space transformation, both AToB and BToA directions. The
accuracy of the transformation models will be measured in terms
of ∆E∗ color difference. In addition, the proposed models will be
compared, in practical terms, with the performance of the stan-
dard ICC profile for this color space transformation.

The structure of this work is as follows. In the next sec-
tion, we will explain the most relevant related works which will
serve as a starting point for the work. Then, we will explain the
methodology followed to obtain our experimental results includ-
ing the data set, the specifications of each model, and the ac-
curacy measurement establishment to analyze and compare the
models. After this, we will show the results from each model,
and we will analyze and compare them in terms of color differ-
ence. Finally, we will present our conclusions and ideas for fu-
ture works to expand the practical applications of this research.

Related Works
Li and Zhang [7] established a model that converts from

RGB to CIELAB using SVR. For the experiment, the authors
selected the ANSI/ISOIT8.7/2 as the target with D50 as the il-
luminant. To generate the training and test data set, they ob-
tained the CIELAB and RGB target values with an X-Rite Eye-
One spectrophotometer and Microtek ScanMaker 3750i respec-
tively. In the results, based on the CIEDE2000 color difference
formula, the model reached maximum and minimum color differ-
ences equal to 4.142 and 0.423, respectively. The average color
difference obtained was 1.932.

Fdhal et al. [4] developed an ANN-based color space trans-
formation from RGB to CIELAB and compared it, in terms of ac-
curacy, with the corresponding LUT ICC Profile. The proposed
model consisted of a three-layer ANN trained with the back-
propagation Levenberg-Marquardt algorithm. This architecture
is composed of an input layer with three neurons, a hidden layer
with 360 neurons, and a final output layer with three neurons.
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The test accuracy was analyzed in terms of E∗
ab. The ANN-based

method obtained an average E∗
ab = 0.28, while the ICC Profile

obtained an average E∗
ab = 0.46. In this way, the authors demon-

strated that the proposed ANN-based method exceeded the ac-
curacy obtained with the corresponding ICC profile. They ex-
plained that this accuracy difference is produced because LUT
ICC profiles can suffer interpolation errors, while ANN-based
transformation models can achieve a more continuous mapping.

MacDonald and Mayer [8] developed a variation of the pre-
vious ANN architecture to perform the transformation from RGB
to XYZ. They implemented a DNN, after an optimization process
they used a five-layer DNN composed of one input and one out-
put layer of three neurons each, and three fully connected hidden
layers of 21, 77, and 21 neurons. To train the model, a data set of
100,000 samples were used. The results showed that 85% of the
test values were below the ∆E∗

2000 visibility threshold, assuming
a just noticeable difference of 1.

Congjun and Qiangjun [1] proposed a different machine
learning approach to perform color space transformation be-
tween the CMYK and CIELAB color spaces. They implemented
a RBF Network to complete this transformation in both direc-
tions (AToB and BToA). To train the model, the authors used
the ECI2002 standard color target for offset printing. This data
set contains 1268 CMYK color patches with their correspond-
ing CIELAB measurements. In the results, during the forward
transformation color (CMYK to CIELAB), the proposed method
obtained an average E∗

ab = 0.4, and the percentage of test patches
with E∗

ab < 6 reached 100%. While in the backward color trans-
formation (CIELAB to CMYK), the proposed method obtained
an average E∗

ab = 4.34, and the percentage of test patches with
E∗

ab < 6 reached 80%.

Methodology
Data Set

We will use the FOGRA53 characterization data set. This
data set is composed of 1617 color samples with each sample
represented both in CMYK and CIELAB color space values. The
measurement conditions of this data set include D50 illuminant
and 2-degree observer. Unlike other characterization data sets,
such as FOGRA52 or FOGRA51, the substrate in this data set
is defined as “universal” which results in general printing condi-
tions and a large gamut color exchange space.The data set will be
divided into two parts. The first part contains 85% of the samples,
and it will be used as the training data set for the transformation
models, while the second part contains the remaining 15% which
will be reserved for testing purposes.

Models
The first model that we will implement is the Support-

Vector Regression (SVR) which is a special type of Support-
Vector Machine (SVM) oriented to solve regression problems.
The SVR architecture has some parameters such as kernel scale,
epsilon, and box constraint. These parameters were assigned the
same as those of the previous work of Li and Zhang [7].

The second model that we will implement is an Artificial
Neural Network (ANN) with a shallow architecture.The ANN ar-
chitecture that we have chosen for our specific color transforma-
tion model between CMYK and CIELAB spaces is composed of
180 RELU neurons trained with the Backpropagation Levenberg-
Marquardt algorithm. The chosen architecture will be the same
for both the AToB and the BToA models. The only difference
between them is the input and output network size. In the AToB
transformation, the input and output size will be 4 and 3 respec-

tively, while in the BToA case the input and output size will be 3
and 4. The maximum number of epochs was set to 1000, and the
learning rate was set to 0.01. The optimization method used was
Adam. We have chosen this specific configuration, based on the
previous work by Fdhal et al. [4] who used this to perform the
transformation from RGB to CIELAB color space.

The third model that we will implement is a Deep Neu-
ral Network (DNN). The configuration and functioning of this
model is very similar to the previous one. However, instead of
concentrating all neurons in just one single layer, this model uses
multiple hidden layers to distribute the neurons and process the
information sequentially layer by layer. The specific DNN archi-
tecture we will use is based on the research by MacDonald and
Mayer [8] who used three fully connected hidden layers of 21,
77, and 21 neurons, respectively. Thus, we will adapt the archi-
tecture proposed by them (which was originally implemented for
the transformation from RGB to XYZ) to create our transforma-
tion model between the CMYK and CIELAB color spaces.

The last model to be implemented is the Radial Basis Func-
tion Network (RBF). This is a special three-layer network that is
very efficient in solving regression problems and approximation
of functions. Because the neurons of this model use non-linear
RBF activation functions, the training does not require a back-
propagation process, which leads to a very fast training stage.
The only parameter we have to adjust is the spread Value. Fol-
lowing the process described by Congjun and Qiangjun [1] to ob-
tain this parameter, the spread Value for our specific color space
transformation was set to 70.

Theoretical Accuracy Measurement
To compare the precision of the color transformation meth-

ods, we will use two versions of the ∆E∗ formula, these are
CIE1976 and CIEDE2000. The CIE1976 version, denoted as
∆E∗

ab, is a standard color difference formula that appeared to-
gether with the creation of the CIELAB color space. The
CIEDE2000 version, denoted as ∆E∗

2000, is an improvement of
the first formula that takes into account some non-uniformities
of CIELAB space to calculate the color difference in a more ac-
curate way. Although in the results we will calculate the color
differences using both versions, during the analysis and compar-
ison of the methods, we will focus on using the ∆E∗

ab version.

Forward Transformation Accuracy
In the transformation from CMYK to CIELAB color space,

the accuracy will be calculated directly by applying the ∆E∗

color difference formula, both CIE1976 and CIEDE2000 ver-
sions, using the actual and estimated CIELAB color values. This
process is shown in Figure 1.

Figure 1. Forward transformation accuracy measurement.

Backward Transformation Accuracy
In the transformation from CIELAB to CMYK color space,

we cannot apply the ∆E∗ color difference formula directly with
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the estimated and actual CMYK color values. Instead, we first
have to transform those values back to CIELAB space, and once
there, use the color difference formula to calculate the color dif-
ference. There are different ways to do this, in our case we will
use the round-trip color transformation. This means that, after
performing the backward color space transformation (CIELAB
to CMYK), we will use the previously implemented forward
transformation (CMYK to CIELAB) to go back and obtain the
CIELAB color values. This will cause the calculated color dif-
ference to be much larger than in the forward case due to the im-
plicit error added by the second transformation. Despite that, it
will serve as a good reference to compare the implemented color
transformation models. This process is shown in Figure 2.

Figure 2. Backward transformation accuracy measurement.

Practical Accuracy Measurement
After training and testing the proposed models using the

color samples of the FOGRA53 data set. It is necessary to test
our models in practical terms, that is, through printing and mea-
suring the CMYK values obtained with each model. To print
the CMYK values, we use an OCE COLORWAVE 600 Poster
Printer, and to measure the corresponding CIELAB values we
will use a GretagMacbeth Spectro Scan. This will give us the
practical accuracy of our four machine learning transformation
methods.

We will use the eciCMYK profile, which is the commercial
profile for the CIELAB to CMYK transformation generated us-
ing FOGRA53. This ICC profile is available on the web page of
the European Color Initiative (ECI). This profile will serve us to
perform two fundamental steps. On the one hand, it will help us
to generate a new CIELAB test data set with 225 samples (dif-
ferent from those present in FOGRA53), ensuring that all those
samples are inside the gamut of the transformation. On the other
hand, eciCMYK will serve as a reference point to calculate the
color differences obtained with the four proposed methods. This
practical comparison process is explained in Figure 3.

Figure 3. Practical accuracy measurement with respect to the ICC Profile.

Experimental Results
Forward Transformation Accuracy

In Table 1 we can see the accuracy obtained with the four
models for the transformation from CMYK to CIELAB color
space. This table shows the accuracy in terms of minimum, max-

imum, and average ∆E∗. Furthermore, this table includes an in-
terpretation of ∆E∗

ab in terms of perceptibility and acceptability.
Based on the work of Hardeberg [5], for industrial applications,
the color differences can be classified into three groups. A ∆E∗

ab
color difference less than 3 is defined as “Hardly perceptible”, a
∆E∗

ab between 3 and 6 is defined as “Perceptual, but acceptable”,
and a ∆E∗

ab greater than 6 is defined as “Not acceptable”.

Table 1. Forward transformation accuracy
∆E∗2000
Mean

∆E∗ab
Min

∆E∗ab
Max

∆E∗ab
Mean

∆E∗ab <
3.0

3.0 ≤ ∆E∗ab <
6.0

∆E∗ab ≥
6.0

SVR 0.194 0.027 3.674 0.299 99,59% 0,41% 0,00%
ANN 0.225 0.022 3.870 0.318 99,59% 0,41% 0,00%
DNN 0.201 0.009 10.693 0.284 99,59% 0,00% 0,41%
RBF 0.135 0.012 2.973 0.195 100,00% 0,00% 0,00%

We can notice that, in the forward transformation, the per-
formance of all models is very high. In the four models almost
100% of color differences were defined as “hardly perceptible”
because they were less than 3. The RBF model had the low-
est average ∆E∗

ab = 0.1947. The transformation from CMYK to
LAB is relatively easy, and therefore the four proposed models
complete this color transformation with high precision.

Backward Transformation Accuracy
In Table 2 we can see the accuracy of the backward trans-

formation, where the DNN model obtained the lowest average
with a ∆E∗

ab = 3.236, and only 11% of its color differences were
defined as “not acceptable” because they were greater than 6.

Table 2. Backward transformation accuracy
∆E∗2000
Mean

∆E∗ab
Min

∆E∗ab
Max

∆E∗ab
Mean

∆E∗ab <
3.0

3.0 ≤ ∆E∗ab <
6.0

∆E∗ab ≥
6.0

SVR 2.457 0.262 25.262 3.988 44.44% 38.68% 16.87%
ANN 2.573 0.268 25.105 4.098 49.38% 32.51% 18.11%
DNN 2.109 0.127 31.3202 3.236 62.55% 26.34% 11.11%
RBF 2.198 0.492 37.592 3.590 62.96% 21.40% 15.64%

If we consider just the “hardly perceptible” color difference
percentage, the performance of the RBF and DNN transforma-
tion methods might seem equal because both methods reached
almost the same percentage in that category. However, if we also
consider the “not acceptable” category, the DNN method per-
forms better than the other three methods since it has the lowest
percentage of error in that category, which is equal to 11% of the
total test samples. This can also be seen in Figure 4.

44%
49%

63% 63%

39%
33%

26%
21%

17% 18%

11%
16%

0%
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20%
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SVR ANN DNN RBF

Color Differences (ΔE*ab)

∆𝑬 < 𝟑.𝟎 𝟑.𝟎 ≤ ∆𝑬 < 𝟔.𝟎 ∆𝑬 ≥ 𝟔.𝟎

Figure 4. ∆E∗
ab histogram analysis for the backward transformation

It is important to note that the accuracy obtained in the back-
ward transformation is lower than in the forward transformation.
This is because of two important reasons. The first reason is
that the transformation from CIELAB to CMYK is more com-
plex than in the opposite direction because of the existence of
non-unique solutions. The second reason is due to the round trip
that was made to return to CIELAB space and calculate the ∆E∗

color difference, as we already saw in Figure 2. This causes the
forward transform error to be implicitly included in the precision
calculation of the backward model.
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Practical Accuracy
After printing and measuring the CMYK values obtained

with the four models, they were compared with the CMYK val-
ues (also printed and measured) obtained with the ICC profile.
In Table 3 the method that showed the best performance was
the DNN-based transformation method. We can notice that this
method obtained the lowest average ∆E∗

ab = 4.649, and 20% of
its color differences were defined as “not acceptable” because
they were greater than 6.

Table 3. Practical accuracy measurement
∆E∗2000
Mean

∆E∗ab
Min

∆E∗ab
Max

∆E∗ab
Mean

∆E∗ab <
3.0

3.0 ≤ ∆E∗ab <
6.0

∆E∗ab ≥
6.0

SVR 3.687 0.143 35.838 5.370 36.89% 34.22% 28.89%
ANN 3.796 0.154 41.588 5.568 33.78% 34.67% 31.56%
DNN 3.115 0.437 22.190 4.649 44.00% 35.78% 20.22%
RBF 3.556 0.333 40.477 5.367 38.78% 33.78% 627.44%

In Figure 5 we can notice that the DNN-based transforma-
tion method reached the highest percentage of color differences
categorized as “hardly perceptible”. Additionally, it reached the
lowest percentage of color differences categorized as “not ac-
ceptable” compared with the other three methods.
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Figure 5. ∆E∗
ab histogram analysis for the practical accuracy measurement

To be able to analyze the color differences in more detail,
the individual ∆E∗

ab of each of the 225 test color samples is repre-
sented in Figure 6. We can notice how the graph of the color dif-
ferences produced by the DNN method concentrates on a lower
average ∆E∗

ab compared to the other three methods. In addition,
we can notice that the methods SVM, ANN, and RBF have max-
imum color differences up to 40, while the maximum color dif-
ference of the DNN method is lower.

In Figure 7 we can see the measured color difference be-
tween the printed color test chart produced using the ICC and
DNN-based method. We can see that the results obtained with
both methods are visually very similar, except for a few color
patches that have a very noticeable color difference. Those color
patches have been represented with yellowish color in Figure 7.

Conclusions
In this work, four different machine learning approaches

have been implemented to perform the color space transforma-
tion between CMYK and CIELAB color spaces. We have ex-
plored the performance of SVR, ANN, DNN, and RBF models
to perform this color space transformation both AToB and BToA
directions. The accuracy of the transformation models was mea-
sured in terms of ∆E∗ color difference.

The results showed that, for the forward transformation
(CMYK to CIELAB), all four methods obtained a very high
transformation accuracy. In particular, the RBF method obtained
the lowest average ∆E∗

ab color difference equal to 0.1947. More-
over, all color difference values obtained with this transforma-
tion method were less than 3. In the backward transformation
(CIELAB to CMYK), the transformation accuracy obtained with
all methods is lower compared to the forward transformation.
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Figure 6. Color difference distribution for the practical accuracy measure-

ment. The x-axis is the sample index, and the y-axis is the ∆E∗
ab value.

We showed that the DNN model obtained the lowest average
∆E∗

ab = 3.236, and only 11% of its color differences were greater
than 6.

We proceeded to make a practical comparison of our meth-
ods with respect to the original ICC profile. The method that
obtained the least color difference with respect to the ICC pro-
file was the DNN-based transformation method. This method
obtained the lowest average ∆E∗

ab = 4.649, and 20% of its color
differences were larger than 6.

Finally, for future works, it would be recommended to per-
form these approaches with more color space transformations.
In particular, it would be interesting to implement these transfor-
mation methods with the CcMmYK model which is a six-color
model very used in the industry and professional printing.

Figure 7. Representation of the ∆E∗
ab between the ICC and the DNN-based

method after measuring the printed test color charts
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