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A B S T R A C T

The soil temperature within the Arctic coasts within the continuous permafrost is not widely measured; the
temporal and spatial resolutions of the measured temperature observations are relatively high. In this study,
we examined the methods to interpolate, hindcast and forecast temperature measurements within the active
layer and shallow permafrost when the temperature measurements at the surface or near the surface are
available. The temperature variations along the year are periodic, and hence attempts are made to express the
seasonal variations with a combination of periodic function (Fourier components); which are used as boundary
conditions to reach the analytical solutions. The temperature measurements from surface to about 10 metre of
depths at the Baydaratskaya Bay, Kara Sea are available. We adopted a data-driven model based on simplified
analytical closed-form solution derived from the boundary conditions. The parameters of the solution are
calibrated from the field measurements and validated with field observations. The model then can be used to
hindcast and forecast temperature at any points within the soil.
1. Introduction

The erosion of the Arctic coasts reflects the complex interaction
between climate, coastal morphology and geology in which the unique
environmental conditions related to permafrost are subject to thermal
and mechanical instability (Are, 1988). Field observations identified
various erosion mechanisms such as a bluff failure by niche erosion
(thermoabrasion), bluff face thaw (thermodenudation), retrogressive
slumping processes in the Arctic coasts, either separately or in combina-
tions (Vijay et al., 2018). The models by Nairn et al. (1998), Kobayashi
et al. (1999), Leont’yev (2003, 2004), Hoque and Pollard (2009),
Ravens et al. (2012) and Barnhart et al. (2014) describe the Arctic
coastal erosion as an effect of the hydrodynamic and thermal driv-
ing forces on standardised one-dimensional (1D) or two-dimensional
(2D) coastal profiles to simulate coastal erosion because of the ther-
moabrasion process. Thermal energy transfer based on air–water–soil
temperature profiles, thawing of permafrost and the degradation of
the mechanical strength of the soil are ignored in most of the existing
conceptual models (Lantuit and Pollard, 2008). Comprehensive mod-
els of coastal erosion, including the effects of the thermodenudation
process, have not yet been developed (Vijay et al., 2018). Meanwhile,
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observations from the various Arctic coasts suggest that the ongoing
and foreseen thermokarst activities lead to considerable erosion by
thermodenudation. For example, we expect the thawing of permafrost
to increase unprecedentedly in connection with the effects of climate
warming (Lewkowicz, 1991). Temperature increase within permafrost
will lead to an increased rate of thawing of soil ice and may speed up
Arctic coastal erosion (Bernstein et al., 2008).

The permafrost is linked with the surrounding atmosphere by an
active layer, vegetation and snow covers which may vary enormously
with time and location (Romanovsky and Osterkamp, 1997). The active
layer thickness (or the depth of the seasonal thawing) is usually esti-
mated from satellite images, from in-situ measurements or using some
semi-analytical formula. The semi-analytical formulas are based on a
functional relationship between thawing depth, air temperatures and
the soil’s thermal properties (Lantuit and Pollard, 2008). The Stefan-
type equations (𝑥 = 𝑚 ⋅

√

𝑇𝑖𝑛𝑑𝑒𝑥 where 𝑇𝑖𝑛𝑑𝑒𝑥 is the thawing index, 𝑚 is
related to thermal properties of soil, and 𝑥 is the thawing depth) are
widely used to predict the depth of permafrost thawing or to estimate
the thermodenudation rate (Romanovsky and Osterkamp, 1997). Sim-
ilar simplified analytical solutions or empirical relations between the
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Fig. 1. The time-series of temperatures at a depth of 0.4 m, 2.15 m and 4.4 m
are shown. The blue dots are observations at 12 h intervals. The total length of the
observations is about 880 days. A sine-wave function is fitted (marked by the red line)
using the least square error method. The soil at the depth of 4.4 m never reaches the
unfrozen phase, i.e. temperature always remains below zero. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

thawing depth and temperature measurements are also applied (Gué-
gan, 2015; Romanovsky and Osterkamp, 1997). Limitations of all the
above formulas are: (a) unable to model temporal and spatial variation
of the soil temperatures, (b) the models are forced to use spatial- and
temporal-averaged values of temperature and (c) restricted to assume
constant thawing/freezing temperatures regardless of the variations
in the soil properties (e.g. effect of the salinity, organic matter on
the freezing temperature cannot be assessed) (Guégan, 2015). Only
continuous and high resolution (both temporal and spatial) soil tem-
perature profiles can solve the aforementioned limitations. Unlike other
environmental parameters, we rarely measure the soil temperature on
a regular basis (Holmes et al., 2008).

In this study, we adopt analytical closed-form solution to describe
the temporal variation of the soil temperatures at various depths (we
focus on the active layer and the shallow permafrost from 0.5 m to 10
m). We base the solution on the classical 1D heat convection–diffusion
equation to describe the heat transfer in the soil with boundary condi-
tions assuming temporal temperature variation at the air–soil interface
to be periodic. The temperature variation at the soil surface expressed
as a harmonic function is a suitable boundary condition to depict the
seasonal variations. The combinations of the multiple harmonic func-
tions can capture variations with higher accuracy and prediction errors
are smaller. We proceed by calibrating and validating the solution
against various consecutive years (from 2014 to 2018) of continuous
full-scale data of soil temperatures (from 0 metre to 9.9 m depths)
at five different locations representing different geological and mete-
orological conditions at Baydaratskaya Bay, Kara sea, Russia. For the
calibration, we use the first 80% of the data and apply machine learning
algorithms to estimate parameters like temperature wave-amplitude
reduction rate, temperature wave-phase lag, soil thermal diffusivity
and liquid water flux density. The remaining observations are used
for the validation of calibrated solutions. The calibrated and validated
solutions for the Arctic coasts presented in this paper may be used to
(1) hindcast, and forecast soil temperatures at various depths of the
soil on the basis of temperature measurement at or near the surface,
(2) estimate the thawing depth and thawing rates during the summer
and refreezing during the winter; taken into account the variation of
the freezing/thawing temperatures with the soil properties, and (3)
improve the understanding of the thermodenudation initiation process
and hence improve the capabilities of Arctic coastal erosion models.
2

2. Seasonal variation of temperature in the Arctic coasts

In this section, we use full-scale observations to establish an under-
standing of the problem. A comprehensive description of the full-scale
data is provided in Section 3.3. Here, we present one temperature
profile (see Fig. 1) only as a sample of the measurements.

Fig. 1 shows temperature measurements at three different depths,
i.e., at 0.4 m, 2.15 m, and 4.4 m. The three temperature measurements
are about 880 days, which means each time series consists of at least
two summers and two winters. Each of the three chosen observations
represents a certain layer of the soil in the Arctic. Typically, the active
layer on which some vegetation can be seen is 0.5 m to 1 metre
deep. The layer below the active organic layer is the transitional active
layer. It is low on organic material; but subject to annual freezing and
unfreezing, i.e. during summer, the soil is free of ice. The layer at 4.4
m is permafrost. The temperature at the permafrost layer never rises
more than zero degrees, i.e. during summer, the layer stays frozen.

A sine-wave is fitted on each of the observations (red line). Attempts
are made to represent the seasonal temperature variations with a
single harmonic function. One of the earliest model is the sine-wave
model, where the periodical temperature changes are described using
a single harmonic function (a sine function with time period of 365
days). Van Wijk and De Vries (1963) and Andersland et al. (2003),
proposed the following equation to express the temperature variation
at any depth in the soil:

𝑇𝑔(𝑧, 𝑡) = 𝑇𝑚(𝑧) + 𝑇𝑎(𝑧) ⋅ 𝑠𝑖𝑛(2𝜋𝑡𝑓 + 𝜙(𝑧)) (1)

where 𝑇𝑚 is the mean temperature, 𝑇𝑎 is the amplitude of the harmonic
sine wave, 𝑓 is the frequency of the wave, 𝑓 interchangeable with 𝜔
(= 2𝜋𝑓 ) -the angular frequency, 𝜙 is the phase of the wave. As shown
in the Fig. 1, the amplitude, 𝑇𝑎 and the phase, 𝜙 are different at two
depths but the frequency, 𝑓 remains the same. When Eq. (1) is applied
to Arctic coasts temperature measurements (as shown in Fig. 1) where
temperature variations also follow a periodical cycle, some deviations
are noticed. The errors of fitting a sine-waves are prominent close to the
peaks, which are again greater at a depth of 2.15 m when compared
with 0.4 m and 4.4 m of depth. According to our understanding, the
significant cause of such deviations is due to the requirement of latent
heat of phase-change. The effect of phase change on the deviations
are (1) delay in reaching the peak and (2) sometimes slightly lower
amplitude at the peaks.

To model the above observations, one can in principle solve the heat
balance equation in porous medium as shown in Eq. (2) with boundary
and initial conditions (Plaxis, 2021).
𝜕
𝜕𝑡

(

𝑛𝑆𝜌𝑤𝑒𝑤 + 𝑛(1 − 𝑆)𝜌𝑣𝑒𝑣 + (1 − 𝑛)𝜌𝑠𝑒𝑠
)

= −∇ ⋅
(

𝐽𝑤 + 𝐽 𝑣
)

+𝑄𝑇 (2)

where 𝑒𝑤, 𝑒𝑣 and 𝑒𝑠 are the internal energy in the water, vapour and
solid phases, 𝑄𝑇 is the heat source term, 𝐽𝑤 and 𝐽 𝑣 are the advective
internal energy flux in water, vapour and soil (porous medium), 𝑛 is
porosity of the soil, 𝜌𝑤, 𝜌𝑣 and 𝜌𝑠 are the density of the water, vapour
and soil.

It is possible to solve Eq. (2) numerically, but one has to pay special
attention to the phase change and enforce the right conditions at the
moving boundary. We use the software Plaxis to solve Eq. (2). Plaxis is
a commercial finite element software developed to model geotechnical
problems. The software features 2D deformation and stability analysis.
It also includes a module that offers to simulate geothermal effects, heat
flow within the soil, temperature distributions and phase change. The
software can simulate temperature-dependent water properties which
enables it to simulate permafrost in the Arctic coasts (Plaxis, 2021).

As a boundary condition, the temperature measurements at 0.4 and
4.4 m are used and analyses are performed to simulate the tempera-
ture profile at 2.15 m. The numerical model is based on the porous
medium’s heat balance equation, including the major thermal processes
such as conduction, convection by water and mass balance with phase
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Fig. 2. The numerical modelling using Plaxis. The observations at the 0.4 m and 4.4 m
are used as a boundary condition. The model estimates the temperature at the 2.15 m
depth. The estimated observations are then compared with the available observation.

changes, non-isothermal deformation, soil freezing, and unfreezing.
Two different approaches are used, (1) considering the latent heat
of phase change with measured parameters and (2) considering the
depth-averaged equivalent thermal conductivity but ignoring the phase
change. It is observed that the model, when not considering the heat
loss and gain during a phase change, has almost the same level of
error when compared with a model that considers the latent heats
(Fig. 2). When a whole cycle is considered, the energy required to melt
the ice within the soil’s pores at the active layers returns during the
freezing phase if yearly averaged water content remains constant. At
a yearly averaged value, the net effect of the heat flow changes due
to latent heat of ice melting is cancelled out by the release of heat
during the freezing. The figure also shows that neglecting the phase
change can still be a good approximation if equivalent (calibrated) soil
parameters are used. From this observation, we come to one of our
main hypotheses in this study, i.e., the temperature variation in the
permafrost can be modelled using a data-driven approach by solving
1D one-phase heat balance equitation with calibrated soil parameters,
i.e. solution to Eq. (2).

Based on this observation, a data-driven model is developed using
the simplified conduction–convection equation and the analytical solu-
tion. The solution of the equation is used to train the numerical model
to find out the patterns and correlations between the time series of the
temperatures at various depths. The analytical solution is the guiding
principle for the algorithm to seek out the correlation and establish a
localised custom relation between some basic parameters to predict the
temperature at various depths. In the next sections, we describe the
analytical solution used which is the basis of the pattern-seeking of the
machine learning algorithm.

2.1. Simplified thermal model

A typical Arctic coastal profile is shown in Fig. 3. A cliff stands at
the end of a narrow beach. During the winter, the beach, bluff face
and the cliff are covered with snow while the sea is covered with ice.
Coastal erosion due to thermodenudation occurs during the summer
after the snow is melted away. The direction of the heat transfer is
downward during the summer when the air temperature is warmer
than the soil temperature. The direction changes during winter as the
air temperature near the surface becomes colder than the permafrost
temperature. Our domain of interest is the Arctic coastal cliff and the
narrow beach where thermodenudation occurs. In this study, we want
to find a reliable method to estimate the temperature profiles inside the
cliff and the beach, estimating the temperature on a large scale. This
will allow an accurate estimate of the permafrost thawing depth and
improve modelling of Arctic coastal erosion due to thermodenudation.

2.1.1. Conduction–convection heat equation
To estimate the temporal variations of the soil temperature at any

depth, we idealise the problem as a one-dimensional (1D) heat transfer
problem. Let us assume that points A and B are two points at different
depths inside the cliff shown in Fig. 3. The distance between these two
points and the coordinate system used is shown in Fig. 3. The axes 𝑥
and 𝑦 are assumed to be along the cross-shore and alongshore direction,
respectively, the positive 𝑧-axis points to the downward direction.
3

2.2. Governing equation to establish a data-driven model

The 1D heat convection–diffusion equation can be used to describe
the heat transfer in the soil between point A and point B. Based on
the conservation of the energy, the Fourier thermal conduction and
convection equation for the 1D case is expressed as: (Stallman, 1965;
Gao et al., 2003, 2008),

𝜕𝑇 (𝑧, 𝑡)
𝜕𝑡

=
𝜕2𝑘(𝑧)𝑇 (𝑧, 𝑡)

𝜕𝑧2
+

𝜕𝑊 (𝑧)𝑇 (𝑧, 𝑡)
𝜕𝑧

(3)

where 𝑘 is the thermal diffusivity (unit = m2s−1) and 𝑘 = 𝜆∕𝐶𝑔 where 𝜆
is the thermal conductivity (unit = Wm−1C−1) and 𝐶𝑔 is the volumetric
heat capacity of the soil (unit = Jm−3C−1), 𝑊 is the liquid water
flux density. 𝑊 = 𝜕𝑘∕𝜕𝐶𝑤∕𝐶𝑔𝑤𝜂𝑧, 𝜕𝑘∕𝜕𝑧 is the gradient of the soil
thermal diffusivity in z direction, 𝐶𝑤 is the heat capacity of the water
(J◦C−1m−3), 𝑤 is the liquid water velocity(m/s), 𝜂 is the volumetric
water content of the soil (unit-less).

Eq. (3) is used as the governing equation of the problem; the
equation is valid for every point regardless of the temperature profiles.
However, the equation does not count for the heat sink or source at the
melting phase due to the phase change of water. As we have seen in
Section 2, the effect of the phase change is the deformation of the sine
wave and lag of the peak positive temperature.

2.2.1. Boundary conditions
The form of the fundamental solution of the Eq. (3) depends on

the boundary conditions. For 𝑧 = ∞ or at sufficient deep soil, the
solution of the equation reaches a steady state, i.e. the effect of the
surface-boundary conditions cannot be seen anymore. A time series of
the temperature measurements can be applied as a boundary condition
at point 𝐴. One of the properties of the heat equation is that it retains
the initial shape of the boundary condition (detail example is provided
in Appendix C). The time series at point 𝐴 can be expressed as a known
form of the function to reach the analytical solution. We considered
the temperature measurements at point A (𝑧 = 𝑧1) as a function of time
but a combination of harmonic functions with different amplitudes and
time periods. Application of the boundary condition can lead to the
respective solutions of Eq. (3); presented in the next section.

2.2.2. Analytical solution: a combination of harmonic functions as bound-
ary condition

Applying Eq. (4) as a surface boundary condition to Eq. (3) (as tem-
perature profile at point A at a depth 𝑧), a solution to soil temperature
𝑇𝑧 can be expressed as shown in Eq. (5) (see Verhoef et al., 1996; Hu
et al., 2016):

𝑇 (𝑧 = 0, 𝑡) = 𝑇𝑚(𝑧) +
𝑁
∑

𝑛=1
𝑇𝑎0𝑛 sin

(

2𝜋𝑓𝑛𝑡 − 𝜙0𝑛

)

, 𝑛 = 0, 1, 2,… , 𝑁 (4)

The effect of the phase changes is captured by the Fourier decomposi-
tion which a single sine wave model fails to do. The effect of change
in the shape and the lag of the peak are accounted for when the time
series is decomposed. Theoretically, the Fourier decomposition can be
decomposed to N/2+1 number of components where N is the number of
observations. The analytical solution is presented as (see Verhoef et al.,
1996; Hu et al., 2016):

𝑇𝑧(𝑧, 𝑡) = 𝑇𝑚(𝑧) +
𝑁
∑

𝑛=1
𝑇𝑎0𝑛 𝑒

[ −𝑊 −𝛼𝑛
2𝑘 ]𝑧 sin

[

2𝜋𝑓𝑛𝑡 − 𝜙0𝑛 − 𝑧
𝛽𝑛
2𝑘

]

(5)

where 𝑇𝑚 is independent of the frequency, 𝑇𝑎0𝑛 is the amplitude of
each harmonic function, 𝜙0𝑛 is the phase of each harmonic function
at the surface. 𝑊 and 𝑘 are independent of the harmonic functions
but dependent on depth (for simplicity, 𝑊 and 𝑘 are made depth-
averaged), and 𝛼 and 𝛽 are different for each harmonic function. We
can rewrite part of the Eq. (5) as follows:

𝑇 (𝑧, 𝑡) = 𝑇 ⋅ 𝑒−𝑧⋅
∑𝑁

𝑛=1 𝑅𝑅𝐹𝑆𝑛 (6)
𝑎 𝑎0
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Fig. 3. (a) A typical Arctic beach at the inception of the summer is shown. The coast consists of a cliff at the end of the profile and ice-wedge polygons are visible on the cliffs.
The active layer is beginning to thaw. Higher organic contents distinguish it from the rest and are situated just under the soil surface. The beach in front of the cliff is narrow,
which has an elevation such that during the high tides, water does not reach the base of the bluff. (b) The heat flux between two points (A and B) inside the soil is shown. The
𝑧-axis is assumed positive towards the downwards directions, i.e. the heat flow during the summer is assumed positive. The temperature at point B (𝑇𝑧2 ) is smaller than that of
point A (𝑇𝑧1 ).
Fig. 4. The study area is on an Arctic coast on the left side of the gulf of the Kara sea. The area starts from South (Latitude:68.867459N, Longitude:66.741529E) to East South
(Latitude:68.842112N, Longitude 66.984593E) along the coast. The coast is straight, and the shore-normal line creates a 72◦ angle with the North.
Source: google earth.
𝜙𝑛(𝑧) = 𝜙0𝑛 − 𝑧 ⋅ 𝑃𝐿𝐹𝑆𝑛
(7)

where 𝑅𝑅𝐹𝑆𝑛
= −𝑊𝑛−𝛼𝑛

2𝑘 and 𝑃𝐿𝐹𝑆𝑛
= 𝛽𝑛

2𝑘 for 𝑛 = 0, 1, 2, 3.... The
solutions are independent of the frequencies; the frequencies do not
change over depth (Van Wijk and De Vries, 1963). Field observations
can help to calibrate the parameters of the solution. In this paper,
we use the soil temperature observations of five different locations as
boundary conditions to calibrate the parameters of the Eq. (5). We used
the temperatures from 0 to 9.9 m depths to calibrate the parameters:
amplitude reduction rate, 𝑅𝑅 and phase lag, 𝑃𝐿.

3. Field measurements

The soil temperature has been measured at the coast of Bay-
daratskaya Bay in the Kara Sea. The field investigations are completed
each year, started from 2012 under the leadership of the Lomonosov
Moscow State University (MSU) with support from the Centre for
Research-based Innovation (CRI): Sustainable Arctic Marine and
Coastal Technology (SAMCoT).

3.1. Geo-morphological description of the study area

The study area is a coast named Baydaratskaya Bay, a shallow gulf
at the western side of the Kara Sea (Fig. 4). The region is inside the Arc-
tic circle, sparsely populated and with minimal access. Although many
alluvial patches, lacustrine and deposits of boggy materials are found
on the coast, mostly the Pleistocene marine and Glacial sediments
created the area between the Yamal Peninsula and Yugra Peninsula.
We believe the area was altered by the Pleistocene ice sheets, unlike
the eastern Russian coasts. Massive ice beds are present in the study
4

area. Visible Ice wedges polygons are found along the cliffs standing at
the end of the beaches and contribute to the large collapses of blocks by
thermoabrasion (Ogorodov et al., 2020). The depression formed by the
massive ice glaciers during the Pleistocene era developed the shallow
gulf, and during the Holocene period, seawater submerged the area.
The permafrost underneath the active layer is mostly continuous and
reaches 30–70 m thickness. The gasoline pipe of Bovanenkovo-Uhta
that transports gas to Europe passes the study area by 0.1 km in the
SE direction (Isaev et al., 2019). The total length of the study area is 8
km. The river Ngoyuyaha divides the area into two almost equal parts.
The Baydaratskaya bay is not the only depression along the coast of
the Kara Sea; there exist many similar depressions. Some active faults
bound the basin at the west side. The north part of the bay is formed
during the Pleistocene and Holocene. The clay and bottom mud found
in the deeper part of the bay are well-sorted, fine sands along Ural
shoreface and silty sand along Yamal coast.

3.1.1. Zonal division based on cliff height: S#1 and S#2
The study area is divided into two distinct zones, marked S#1 and

S#2, as shown in Fig. 5[a]. The low marine terrace with bluff heights
around 4–6 m is termed zone S#1. Zone S#2 has bluff heights of 10–17
m. The S#1 and S#2 sites are about 3.5 km in the N-W direction from
the cofferdam of the Bovanenkovo-Uhta gas pipeline. The study area
is spread from North West (68.867459N, 66.741529E) to East South
(68.842112N, 66.984593E). The zone S#1 is a low marine terrace with
a length of about 4 km, starts directly from the gas pipeline (the most
south-eastern point). The low terrace surface (up to 6 m) is smoothly
sloping. The top surface of the cliffs is grassy with minor swamped
hollows; some shallow thermokarst lakes are present, ice-wedge poly-
gons are visible on the soil surface, we find many erosion trenches
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Table 1
List of boreholes at the study area are shown. The boreholes are placed in the cliffs, both at the high and low marine terraces.

zone Borehole ID Depth Coordinates Drilled on Remarks

S#1 bh2 9.9 m N 68.853004
E 66.899996

Sep 2016 On the slope

S#1 bh3 9.9 m N 68.852599
E 66.899767

Sep 2016 30 m inside the crest

S#1 bh4 6.2 m N 68.853797
E 66.889794

Jun 2013 Inside the cliffs, discarded due to technical errors

S#1 bh5 9.9 m N 68.858327
E 66.838207

Sep 2014 5 m above the water level

S#2 bh6 5 m
[3.31 m]

N 68.857162
E 66.843057

Jun 2014 15 m above the water level
Table 2
Thermal properties of the sediments on the cliffs. The top organic active layer has very low thermal conductivity and act as a blanket hindering the thawing process. Other than
the top organic layer, thermal properties vary little along the depth.

Location Depth
m

Soil type Temperature during test
◦C

thermal conductivity (𝜆)
W/(mK)

Excavation-1
N68.85305
E66.88763

0-0.15 Peat, middle stage of decomposition, dark brown 1.3 0.386

Excavation-2
N68.85361
E66.89361

0-0.20 Layering of sand light-grey, frozen and dark grey light loam, cryoturbation 1.94 0.732

0.42–0.75 Sand, grey, fine grained, with layers of ferruginous matter 1.0 1.42

0.40–0.60 Loam, dark grey, soft plasticity with deep decomposed organics 1.5 1.48

0.60–0.9 Sand fine grain, light-grey with vertical band of ferruginous matter 1.15 1.16

0.9–1.3 Sand fine grain, light-grey with vertical band of ferruginous matter 0.47 1.39

Excavation-3
N68.85277
E68.87778

0-0.30 Loam dark-grey, soft plasticity with ferruginous matter 3 1.64

0.30–0.53 Sand light browny grey, middle grain size, with ferruginous matter layers and
inclusions of fine gravel matter

1.4 1.58

0.61–1.64 sand, light-grey, middle grain size, with horizontal layers of dark sand and
vertical bands of ferruginous matter

1.13 1.04
Fig. 5. The study area is divided into two zones: S#1 and S#2 identified by the bluff
height differences. The longshore sediment transport exists from zone S#2 to S#1. A
low lying laida separates the zones; the laida is excluded from the erosion studies.
Temperature measurements at various depths are available for both the S#1 and S#2
zone.
Source: Isaev et al., 2016.

along the coastline. The bluff-heights of the S#1, from the northwest,
gradually lowers and transforms into a laida of 1.5–2 m height with the
Ngouyaha river valley. A laida is a low lying land in the Arctic coasts
flooded during the high tides, an Arctic counterpart of the marshland
found in the warmer climate. The laida shoreline is almost 1.2 km long.
The laida consists of depressions with frost-thaw lakes. Some of them
5

are drained because of the retreat of the coastline. Lake occupancy on
some of the high laida areas exceeds 50%. The lower sections of the
laida are followed by the S#2 zone, a more elevated terrace of 10-
17 m. This S#2 zone is 4.65 km along the coastline. Deep trenches
more frequently cut the surface of the S#2 with dry thermokarst lake
basins (hasyrey) and younger thermokarst lakes, polygonal-shaped frost
clefts and weathering spots on the sandy soil. The cliffs mostly consist
of fine sediments. Unlike the sandy dune systems of the warmer climate
beaches, there is no active restoration mechanism to restore the cliffs.
The soil profiles of the cliffs are depicted in Fig. 6.

3.2. Soil temperature measurements

Various boreholes are constructed in the study area to measure the
temperatures (list of the boreholes provided in Table 1). Initially, two
boreholes were drilled, and temperature sensors were placed during
field measurements of June 2013 (bh4, 6 m deep) and June 2014 (bh6,
3.5 m deep). Bh4 borehole was dug in the low terrace (S#1), and bh6
was on the high terrace (S#2). Boreholes were dug using handheld
Augers, and M_log5 W (GeoPrecision GmbH) thermistors were placed
inside them. A plastic pipe protects the boreholes to avoid internal
collapse. The sensors of the thermistors are typically kept 0.3 m to 0.5
m apart. But near the surface, sensors are placed at 0 m and 0.1 m to
capture the surface temperature. The time interval to record the data
was set to be 12 h.

3.2.1. In situ thermal conductivity measurements
Lab tests of in-situ and post-work were performed to find the me-

chanical and thermal properties of the permafrost/cliff during the field
investigation (the summary of the thermal properties are in Table 2).
The experiment was performed on the cliff faces; due to the limitation
of the equipment, the investigation was completed only till 1.64 m.
Thermal conductivity was measured to be quite low on top of the
organic active layer.
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Fig. 6. Soil profiles at the two sites, S#1 and S#2. The cliffs comprise mostly fine materials. Permafrost is continuous after the depth of around 1.5 2 m. The active organic
layer is thin, more or less 0.3 m and quite poor with nutrition for the vegetation (Field observation was made in Summer, 2014). Thermal conductivity of the soil is measured;
presented in Table 2.
Fig. 7. Time series data of bh2: temperature measurements along with the 20 nodes
from depths of 0.4 m to 9.9 m. Each sub-figure contains the data of the five depths.
Some measurement anomalies are noticeable at the lower depths. However, compared
to the mean values of the temperatures, the anomalies are not significant. Matlab
functions ‘smooth’ and ‘filloutliers’ were used to remove the anomalies wherever
required.

3.3. Field observations

We choose five sets of time series data for analysis where mea-
surements are continuous and consistent. These observations are made
throughout the year on the cliff and the beach of the Baydaratskaya.
6

Table 3
Summary of the temperature observations. Five time series are used for the analysis
comprising temperature measurements from the zones S#1 and S#2.

Time series Borehole ID From To Total days nodes Depth

bh2 bh2 13-09–16 10-02–19 881 20 9.9 m
bh3 bh3 13-09–16 22-12–17 466 19 9.9 m
bh5–1 bh5 09-06–14 11-09–16 826 20 9.9 m
bh5–2 bh5 12-11–16 09-09–18 667 5 1.65 m
bh6–1 bh6 09-06–14 13-07–15 400 11 3.31 m

The earliest date of the measurements is 9 June 2014. The maximum
length of the time series is 881 days (2.41 years; continuous), two
periodical temperature variations are captured with the time series. The
sensors measure the temperature at 12 h intervals. We lost some sensors
to erosion. Moreover, temperature measurements at the deeper part
of some boreholes were not appropriately captured because of some
unknown sensor errors. As a result, data from all the nodes cannot be
considered. The summary of the observations as time series is given in
Table 3. Observations from both the high and low cliff areas (S#1 and
S#2) are available. The data are re-sampled for the daily averages since
the time resolution of the data is 12 h, not small enough to capture
the daily temperature variation of the site. The maximum depth of the
sensor was 9.9 m in both S#1 and S#2 zones. However, some anomalies
are observed within the measurement due to reasons of (1) interference
by local people, some strings were lost, (2) reallocation of borehole due
to erosion and (3) measurement errors. To avoid the unexplained and
unwanted behaviours of the measured data, parts of some time series
are omitted. However, the unprocessed measurements are added in the
Appendix A for references. Fig. 7 shows the time series of bh2; the rest
of the time series are provided in the Appendix A.

4. Calibration of the parameters from field observation

In this study, we split the time series into two groups: training and
testing data, adopting the machine learning approach. The training data
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Fig. 8. The workflow of the model.
set is used to calibrate the parameters of the solutions as mentioned in
Table 4,i.e. the solution is fitted to the training data set to determine
the parameters (𝑅𝑅 and 𝑃𝐿). Thereafter, the calibrated solutions are
used to numerically reproduce the remaining data, i.e. the testing data
set. The calibration accuracy is determined by comparing the numerical
prediction with the measurements, and the decision is made whether to
accept the calibration or to re-calibrate the parameters. If the error is
within the limit, the calibrated equation can be used as the governing
equations to hindcast or forecast soil temperatures for the specific local
area. The workflow of the methodology is shown in Fig. 8.

4.1. Pre-processing of the raw data

The field measurements contain some values which are clearly an
error in the sensor. Before proceeding, these values were identified and
cleared. Unusual values can greatly affect the quality of curve fitting.
A trend within the time series may be observed. Since a trend is not
considered when we sought the analytical solution, the trend must be
removed before the calibrations.

4.1.1. Removal of outliers
Any observation over three times the median absolute deviations

(MAD) away from the median is considered a measurement error and
termed as an outlier. The outliers are replaced with the value generated
by the piecewise cubic spline interpolation.
7

4.1.2. Removal of trend
The observations from the field typically have an upward or down-

ward trend of the mean temperature. A first-order ‘detrend model is
used to remove the trend from the observation.

𝑌𝑝,𝑞 = 𝑂𝑝,𝑞 − 𝑇𝑞,1 × 𝑂𝑝,𝑞 (8)

where the 𝑝 is the number of nodes along depth, 𝑞 is the number
of nodes in time-series, 𝑂𝑝,𝑞 is the matrix of the training data set
and 𝑇𝑞,1 is the matrix of the de-trending parameters and 𝑌𝑝,𝑞 is the
refined observations. When the calibrated solutions are used to make
predictions, the trend values are required to be included. The estimated
trend values using the parameters 𝑇𝑞,1 are added back using the relation
𝑇𝑞,1 × 𝑂′

𝑝,𝑞 ; where 𝑂′
𝑝,𝑞 is the predicted observation matrix.

4.2. Quantification of the error

The accuracy of the curve fittings are measured using the following
error formulas:

4.2.1. Standard error of estimates (SSE)
The SSE (Eq. (9)) measured the mean deviation between the fitted

value and measured value.

SEE =

√

∑𝑁
𝑡=1[𝑜(𝑡) − �̂�(𝑡)]2

(9)

𝑁 − 2
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Fig. 9. 80% of the points in the time-series are used as training data (see Table 4 for
details). The parameters are calibrated using the training data set. Then one observation
at or near the surface is used to predict the temperatures within the soil in the
testing data-set domain. Thus we obtain a predicted data set. The predicted data-set
is compared with the testing data set to decide if the calibration is acceptable. If not,
we re-calibrate.

where, N is the number of the samples, �̂�(𝑡) is the observed N values,
𝑜(𝑡) is the value estimated by the model (either sine curve fitting or by
Fourier analysis).

4.2.2. Coefficient of determination (𝑅2)
The value of 𝑅2 indicates the part of the variance in the dependent

variable, which we can estimate from the independent variables. How-
ever, the value of 𝑅2 does not indicate whether appropriate regression
was used.

R2 = 1 −
∑

(𝑜𝑖(𝑡) − 𝑃𝑖(𝑡))
2

∑

(𝑜𝑖(𝑡) − �̄�)2
(10)

where 𝑜𝑖 is the 𝑖𝑡ℎ observation, 𝑃 is the prediction of the statistical
model and �̄� is the average of the observation.

4.2.3. Root Mean Square Error (RMSE)
Root-mean-square error (RMSE) measures the differences between

the fitted curve/line values and the values observed. The following
equation was used to calculate RMSE.

RMSE =

√

∑𝑇
𝑛=1

(

�̂�𝑡 − 𝑜𝑡
)2

𝑁
(11)

5. Result and discussion

5.1. Preparation of training and testing data

The field observations mentioned in Table 3 are used to both
calibrate and validate the solution. The observations are divided into
two groups: training and testing data-sets, as shown in the Fig. 9 and
detailed in Table 4. The purpose of the testing data-set is to compare
the output after calibration. For this study, we used 80% of the time-
length of the observations as training data-set and the remaining 20%
for testing data-set. The maximum days of the testing data-set is 178
days for bh2, and the minimum is 80 days for bh6, which we believe
is enough to compare and estimate the errors. We could even use a
higher percentage of the data-set to train the model since our problem
poses no probability of a common error in machine learning: over-
training. The training data-sets are used to calibrate the parameters
of the Eq. (5). Then only one observation at the topmost node for the
time series is used to predict the temperatures at various depths, thus
obtaining the predicted data-set. An error estimate is made comparing
the observation in the testing data-set with the predicted data-set.
8

Fig. 10. The FFT analysis on the bh2 time series. The amplitude distributions over
the frequencies and depth are shown. The highest amplitudes are found at the lower
frequencies; also, the amplitudes reduce exponentially along with the depth. The
phase of the Fourier components are randomly distributed and no relation between
frequencies and depth can be found.

5.2. Calibration using training data-set

For every time series, there are 5 to 20 measurements at the nodes
at different depths (detailed in Table 3). We retrieve the time series of
the measurements at a 12-hour interval. Since the daily temperature
variations cannot be captured when measured at 12-hour intervals, we
convert the measurements to daily averages assuming that the average
of the two 12-hour interval measurements represents the daily average
temperature. The calibration starts with the Fast Fourier Transforma-
tion(FFT) analysis of the training data set. The output of FFT analysis
on the bh2 time series is shown in Fig. 10 as an example. The amplitude
distribution shows that peak amplitude (n = 1) are always at the lower
frequencies. The amplitude reduces exponentially along with the depth.
The smaller amplitudes are found at the higher frequencies representing
the smaller daily variations of the temperature. A summary of the
amplitude and frequency distributions for all the time series are shown
in the Fig. 11. We notice that the peak frequencies of each series do
not change along with the depth; it remains almost constant. However,
the peak frequencies are not related to 365 days; rather, the time
period ranges from 373 to 442 days. When a single sine-wave was
fitted, the time period was always found to be 365 days. But when
the time series is decomposed with FFT, the peak time periods are
always found to be greater than 365 days. An amplitude and frequency
distribution along the depth is drawn (Fig. 12). The related parameters
are described in Tables 5 and 6. The amplitudes (𝑇𝑎𝑛 ∶ 𝑛 = 1, 2, 3....)
decays exponentially over the depth. An exponential curve 𝑎 ⋅ 𝑒−𝑏𝑧 with
two parameters a and b fits the amplitudes distributions over the depth
(see the distribution of the peak frequency in Fig. 12). The results for
the top three peak amplitudes are summarised in Table 6. We notice
that for n = 1, the highest peaks, the curve fittings have better 𝑅2

values, however, not all the curve fitting has a high 𝑅2 value, a value
of 0.623 is also observed.

5.2.1. Phase-lags estimated from Cross Power Spectrum Density (CPSD)
analysis

Cross Power Spectral Density (CPSD) was used to determine the
true phase-lags between the signals at different depths. For a time
series, CPSD between the top layer and that time series provides the
cross power spectral density (CPSD) of the two signals, using Welch’s
averaged, modified periodogram method (Welch, 1967) of spectral esti-
mation. The phase difference is estimated as multiples of the 𝜋, which
is converted to days as the maximum phase lag 2𝜋 is equivalent to 365
days; shown in Fig. 13. As the analytical solution suggests, the phase lag
increases over depth. A linear equation: 𝑎+𝑚 ⋅ 𝑧 is fitted for each time
series. The estimated values of the parameters are given in Table 6.
The 𝑅2 values suggest the relationship is well described by a linear
equation.
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Table 4
The observations are divided into two groups: training and testing. 80% of the data resides in the training data-set while the
rest is put on the testing data-set.

Time series Training data-set Testing data-set

from to total days from to total days

bh2 13-09–16 18-09–18 705 18-09–18 10-02–19 178
bh3 13-09–16 21-09–17 373 21-09–17 22-12–17 94
bh51 09-06–14 18-05–16 710 18-05–16 11-09–16 116
bh52 12-11–16 29-04–18 534 29-04–18 09-09–18 133
bh61 09-06–14 24-04–15 320 24-04–15 13-07–15 80
Fig. 11. (a) Fast Fourier Transformation (FFT) performed on time series reveals the low frequencies are the dominating signal. (b) Frequency distributions of the peak harmonic
function (where n = 1 means the highest peak). The analysis shows the depth has no apparent effect on the frequencies. For the highest harmonic function, ranked n = 1, the
frequencies are almost similar for all the time series till 5 m depth, after that some minor variations are noticeable. As for the next ranked frequencies, the range gets bigger. The
spreading looks random for the n = 3.
Fig. 12. The peak amplitude 𝐴𝑝 for the n = 1, the peak frequency over the depth are depicted. The amplitude reduction is exponential; however, the frequency reduction is not
observed till 5 m. The peak amplitudes at depth over 5 m are quite small (less than 1 ◦C).
9
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.

Fig. 13. The phase-lag over the depth shows a linear relation. The parameters of the
curve fittings are mentioned in Table 6.

Table 5
An exponential curve (𝑎 ⋅ 𝑒−𝑏𝑧) is fitted to the amplitude distributions along the depth
(where z is the depths). Only the top three harmonic functions are shown in the table

Time series Parameter Rank of the peaks (n)

n = 1 n = 2 n = 3

a 6.514121 3.667414 1.746538
bh2 b 0.79755 1.32577 1.46048

𝑅2 0.990179 0.98182 0.994857

a 7.645913 1.381951 1.203991
bh3 b 0.81458 0.623 0.91589

𝑅2 0.992195 0.72056 0.581092

a 8.886689 3.962007 1.80939
bh51 b 0.60695 0.91638 0.95682

𝑅2 0.859604 0.679586 0.856837

a 27.27702 7.32094 1.574875
bh52 b 1.64306 2.22973 0.1253

𝑅2 0.877128 0.877806 0.95058

a 8.281672 1.419823 1.589165
bh61 b 0.50868 0.74842 1.25615

𝑅2 0.973705 0.942894 0.991782

Table 6
Phaselags of the signal determined by CPSD analysis, fitted to linear equation 𝑎 − 𝑚𝑧.

Time series a m lags(days/m) 𝑅2

bh2 −0.0310 0.0399 25.0403 0.980723
bh3 1.2221 0.0420 23.7847 0.991341
bh51 0.3061 0.0530 18.8733 0.923127
bh52 0.1039 0.0447 22.3904 0.836632
bh61 −0.1459 0.0350 28.5465 0.959164

5.2.2. Discussion on the calibration of the parameters

The following observations are made:

• For a particular frequency, the amplitude decreases exponentially
over the depth (see Figs. 10 and 12). The dominant amplitudes
reside at the lower frequencies. For most cases, the first few peaks
are significantly higher than the rest (see Fig. 11a). As expected,
the longer the original signal, the stronger the peaks at the higher
frequency (noticeable for bh5-1), indicating the model will be
prone to errors if the higher frequencies are ignored.

• The frequency of the peak amplitude remains constant along the
depths (see Fig. 11a). However, the peak frequencies are not the
same for all boreholes. The observation suggests that the time
period or seasonal variability has certain intervals and does not
change within a short time.
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• It is also observed that the highest amplitudes are found in the
first peaks (see Fig. 11a). In other words, the peak with the
highest time period also has the highest amplitude.

5.3. Validation of calibrated parameters and the solution using testing
data-set

After calibrated using the training data sets, the parameters are used
to predict the remaining 20% of the testing data set. In this section, we
discuss the predictions and assess the errors. The Fourier components
are determined from the training data set. The amplitude distributions
are found from the Fourier components over the depth for each fre-
quency. An exponential curve is fitted to relate the amplitude reduction
over the depth for each frequency. Once the parameters are estimated,
a prediction of the testing data set can be made. One example of the
prediction is shown in Fig. 14. Along the 𝑥-axis, predicted temperatures
and along the 𝑦-axis observed temperature are drawn. For a perfect
prediction, the dots will be placed along the blue line which is drawn at
a 45◦. Any deviation from the line indicates an error in the estimation.
Only the bh2 time series is shown in the Fig. 14. The rest of the time
series can be found in Appendix E. The errors of the estimations are
drawn along the depth in the sub-figures.

The following observations are made:

• The models has quite a high error at the top layers. The high
RMSE errors indicate the predictions model breaks down at the
organic active layer.

• When single sine-waves were fitted along with the time series,
it was found that sine-wave deviates from the observations at
the summer peak temperatures; the observations were lagged
and smaller in amplitude. In contrast to the single sine-waves,
when a combination of the harmonic wave functions is used, the
errors are more prominent at the lower peaks. i.e. during winter.
In other words, the summer temperatures are underestimated,
whereas the winter temperatures are overestimated.

6. Conclusion

Soil temperature measurements are available at the Arctic coasts in
the Kara Sea, Russia. The beach consists of continuous permafrost. The
study area has two distinct zones, S#1 with low 5 m high cliffs and S#2
with 12–15 m high cliffs. Boreholes are constructed and thermal strings
are placed inside them to measure the temperature until the depth of
9.9 m. The seasonal temperature variations are observed to be periodic.
The time series of the temperature measurements are modelled with the
boundary conditions as a combination of the harmonic waves. In this
study, we calibrated the parameters of the solutions and validated the
analytical solutions.

The salient outcome of the analysis can be summarised as follows:

• The seasonal variation of the temperature in the soil can be
represented by the sine wave or combination of sine waves. The
amplitude of such sine waves decreases exponentially. After 5 m
of depth, the seasonal variations are small (less than one degree
Celsius); we can neglect the variation.

• At the core of the pattern-seeking algorithm of the data-driven
model is the analytical solution of the conduction–convection
heat transfer equation. For the analysis, we calibrated the pa-
rameters only considering the depth-averaged values. But we
notice that the errors created with such assumption are within
the acceptable limit. The solution can be used to model a large
area of the coast.

• The local variations of the solution’s parameters are captured
within one single parameter, 𝑅𝑅 in Eq. (6) for each frequency,
i.e. for each observation at a certain location, the value of 𝑅𝑅 is
different. The smaller frequencies capture the effect of the heat
sink or sources, such as latent heat of phase changes.
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Fig. 14. Observed and predicted values are shown in the figures. A 45◦ line (thick blue) is drawn on the sub-figure to the left. The rest of the time series are shown in Appendix
E. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
• The phase-lag between the time series near the surface and the
deeper part in the soil is considerable. The low thermal conduc-
tivity at the organic-active layer is one of the significant factors
for the phenomenon. The summer high temperature of the soil at
a depth of 5 m is almost 100 days behind that of surface temper-
ature (see Fig. 13). The analytical model suggests the phase-lag
should have a linear relation with depth. The observations from
the field confirm the linear relation. The phase lag is estimated to
be around 20 to 25 days per metre of depth.

• Zone S#2 has higher 𝑅𝑅 values and a lower water table, indicat-
ing very low to negligible heat transfer via convection. The error
of the solutions is quite high in the shallow layers where surface
run-off and precipitation during the summer is significant.

• The deviations from the observed values are most prominent at
the positive temperatures, i.e. during summer. The solutions fail
to capture the peak temperatures of the summer accurately.

The model did not consider the temperature profiles near the end of
the cliffs, where the effect of the exposed bluff face on the temperature
profile can be captured. Unlike the soil inside the cliffs, the crest and
bluff-face are exposed to air on two planes. The temperature profiles
will require corrections when the heat flows in two dimensions (2D).
The precipitation and surface runoff from the flow of water of the
thawing lakes were not considered. A separate model may be required
to model the vegetation cover on the surfaces. The vegetation not
only works as a blanket for the thermal energy transfer also works as
cementing material against soil erosion.
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