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A B S T R A C T   

Assessment of spontaneous movements can predict the long-term developmental disorders in high-risk infants. In 
order to develop algorithms for automated prediction of later disorders, highly precise localization of segments 
and joints by infant pose estimation is required. Four types of convolutional neural networks were trained and 
evaluated on a novel infant pose dataset, covering the large variation in 1424 videos from a clinical international 
community. The localization performance of the networks was evaluated as the deviation between the estimated 
keypoint positions and human expert annotations. The computational efficiency was also assessed to determine 
the feasibility of the neural networks in clinical practice. The best performing neural network had a similar 
localization error to the inter-rater spread of human expert annotations, while still operating efficiently. Overall, 
the results of our study show that pose estimation of infant spontaneous movements has a great potential to 
support research initiatives on early detection of developmental disorders in children with perinatal brain in-
juries by quantifying infant movements from video recordings with human-level performance.   

1. Introduction 

During the first months of life, spontaneous infant movements may 
indicate later developmental disorders, such as cerebral palsy (CP), Rett 
syndrome, and autism spectrum disorder (Novak et al., 2017; Einspieler 
et al., 2005, 2014). Early identification of infants at high risk for 
developmental disorders is essential in order to successfully select 
appropriate follow-up approaches, and is of greatest importance in 
research to evaluate early interventions (Støen et al., 2017). The 
expert-based observation of general movements (GMs) from video re-
cordings, known as the general movement assessment (GMA) (Einspieler 
et al., 2004), has recently been recommended for clinical use in high-risk 
infants less than five months of age (Novak et al., 2017). It is especially 
the fidgety type of GMs, which typically occur between two and five 
months post-term age, that have shown to predict normal motor 
development with high accuracy (Einspieler et al., 2016). However, 
GMA is dependent on individual expert-based training and in-
terpretations, requires time for video observation and analysis, and 
triggers a high demand for skilled observers if implemented in 

large-scale screening (Støen et al., 2017). As an evolving alternative to 
observational GMA, computer-based methods for objective and consis-
tent risk-assessment are explored (Adde et al., 2010). This supports 
clinicians in diagnostics, ultimately identifying infants in need for early 
interventions and focused follow-up care. 

Computer-based assessment of infant movements aggregates quan-
titative movement information from video recordings to yield estimates 
for the risk of later disorders, like CP (Ihlen et al., 2020). Hence, higher 
level of correctness in the representation of movement kinematics, such 
as segment positions and joint angles, facilitates optimal risk analysis. 
Fidgety movements are small movements of moderate speed and vari-
able acceleration, of neck, trunk, and limbs, in all directions (Einspieler 
et al., 2004). Automated assessment of such movements requires precise 
localization of the body parts for proper computer-based risk analysis. 

The widespread use of conventional video recordings to capture in-
fant movements has established the need for markerless motion capture, 
which enables the extraction of movement information in an unobtru-
sive manner (Rahmati et al., 2015). This provides a low-cost alternative 
to sensor-based motion capture, which can be performed both at the 
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clinic and at home (Adde et al., 2021). Markerless motion capture has 
the potential to make movement assessments more widely available and 
promotes worldwide collaboration in analysis of infant movements. 
Moreover, existing large-scale databases of infant recordings, collected 
by clinical GMA networks (Støen et al., 2019; Orlandi et al., 2018; 
Ferrari et al., 2019; Morgan et al., 2019; Kwong et al., 2019; Gima et al., 
2019), can be exploited to yield more accurate computer-based methods 
for risk assessments. 

Convolutional neural networks (ConvNets) have improved the 
techniques for extracting human movement information from conven-
tional 2D videos (Toshev and Szegedy, 2014; Newell et al., 2016; Cao 
et al., 2019). State-of-the-art markerless motion capture tracks move-
ments automatically through frame-by-frame pose estimation, where 
the ConvNets predict x and y coordinates of a predefined set of body 
keypoints, directly from the raw video frames (Andriluka et al., 2014). 
However, most existing human pose estimation (HPE) methods are 
targeted towards adults, which compared to infants, differ in anatomical 
proportions and distribution of body poses (Sciortino et al., 2017). 
Employed on infant images, the localization performance drops signif-
icantly, with 10% of the estimated body keypoint positions placed 
outside a head length distance from the annotated ground truth posi-
tions (i.e., 90% in the PCKh@1.0 metric described in Section 2.3) 
(Sciortino et al., 2017). From this, Sciortino et al. (2017) conclude that 
there is a need to tune HPE ConvNets to the task of infant pose 
estimation. 

Following along these lines, Chambers et al. (2020) retrain the 
openly available OpenPose network (Cao et al., 2019) by utilizing a 
dataset of 9039 manually annotated infant images. This improves infant 
pose estimation, reducing the mean error by 60% (Chambers et al., 
2020). Despite this advance, a recent study carried out by our group 
found that OpenPose lacks the sufficient scaling of network depth, 
network width, and image resolution for optimal pose estimation (Groos 
et al., 2020b). Other alternatives to OpenPose, such as DeeperCut 
(Insafutdinov et al., 2016) used in DeepLabCut (Mathis et al., 2018), 
posses similar shortcomings as single-scale networks targeted towards 
multi-person pose estimation. Recent developments in HPE outperform 
OpenPose and variants by deploying novel multi-scale networks and by 
maintaining higher spatial resolution (Newell et al., 2016; Sun et al., 
2019). OpenPose is also computationally inefficient, which makes it less 
convenient for real-world applications (Groos et al., 2020b). ConvNet 
model scaling addresses this challenge by providing trade-offs in 

localization performance and computational efficiency across various 
computational budgets (Groos et al., 2020b), better serving 
single-person applications. 

The main objective of the present study is to obtain computationally 
efficient markerless pose estimation of the spontaneous movements of 
infants with a localization performance approaching that of human 
expert annotations. We exploit a large and heterogeneous infant pose 
dataset covering infant recordings from multiple sites across the world 
to conduct a comparative analysis of the localization performance and 
computational efficiency of eight different ConvNet models, including 
the commonly used OpenPose network. We compare the performance 
level of the ConvNets with the inter-rater spread of human expert 
annotations. 

2. Materials and methods 

In this section, we introduce In-Motion Poses, describe the ConvNet 
models included in the comparative study, and explain the various 
performance metrics used to evaluate the ConvNets. 

2.1. In-Motion Poses 

We developed a dataset comprising infant images with associated 
human annotations as the ground truth body keypoint positions. We 
used a large-scale database of 1424 recordings of 9–18 weeks post-term 
old infants to facilitate pose estimation of the spontaneous movements 
of infants in supine position across various recording setups. The videos 
were collected between 2001 and 2018 through different research 
projects on observational GMA, and all the recordings follow the stan-
dards for video-based GMA during the fidgety movement’s period (i.e., 
infants wear a diaper or a onesie, are awake, alert, and content, are not 
disturbed or using pacifier, and are positioned in the center of a mattress 
or blanket with the whole body visible) (Einspieler and Prechtl, 2005). 
The resolution of videos varied from 576 × 720 to 1080 × 1920. The 
study was approved by the regional committee for medical and health 
research ethics in Norway, under reference numbers 2011/1811 and 
2017/913 on 14 January 2019 and 9 October 2019, respectively. 
Written parental consent was obtained before inclusion. 

From these recordings, we proposed a dataset of 20000 video frames. 
The dataset emphasizes the heterogeneity in spontaneous movements by 
including videos from 12 different sites from seven countries across the 

Fig. 1. a) A selection of video frames from In-Motion Poses, originating from standardized and less standardized hospital recordings (top and middle row, 
respectively), and videos captured from home by parents using the In-Motion smartphone application (Adde et al., 2021) (bottom row). Infant faces are blurred to 
ensure anonymity. b) The set of 19 body keypoints annotated in the images of In-Motion Poses. 
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globe (i.e., Norway, India, United States, Turkey, Belgium, Denmark, 
and Great Britain). The videos cover different groups of infants (e.g., 
typically developing infants, preterm infants, and other high-risk infants 
enrolled in hospital-based follow-up programs), and are recorded either 
by clinicians in a hospital setup or by parents using a smartphone 
application at home (Adde et al., 2021; Støen et al., 2019) (see Fig. 1a for 
examples from the dataset). To ensure all video variations were repre-
sented, 8000 (40%) frames originated from standardized hospital re-
cordings, 8000 (40%) from home-based smartphone recordings, and the 
remaining 4000 (20%) from less standardized hospital videos. In each of 
these three subsets, 80% of the frames were randomly picked with an 
equal number of frames from each video. Moreover, to achieve proper 
variation of infant poses, the remaining 20% of frames cover infant poses 
that occur less frequently, and hence might be particularly challenging 
for an automatic pose estimator. These frames were manually selected 
from a random pool of 20000 separate frames (8000, 8000, and 4000 for 
each subset, respectively), with selection criteria including 1) legs 
moving towards upper body, 2) overlap of body parts, and 3) crossing of 
body parts. The resulting total of 20000 frames were split into training 
(14483 (72%)), validation (1493 (8%)), and test sets (4024 (20%)) in a 
common machine learning fashion. To mitigate bias and ensure objec-
tive evaluation, all frames of a single infant video were placed into one 
of these three sets. 

For the ConvNet models to learn from the data in a supervised 
fashion, and to be able to validate and test the models, the infant images 
were annotated to produce the ground truth positions. As depicted by 
Fig. 1b, 19 distinct body keypoints (i.e., head top, nose, ears, upper neck, 
shoulders, elbows, wrists, upper chest, right/mid/left pelvis, knees, and 
ankles) comprised a skeleton model of the infant. The definitions of the 
body keypoints were agreed upon by a group of human movement sci-
entists and clinical physiotherapists (see Appendix A for a complete 
overview). Using a separate software tool (Groos and Aurlien, 2018), 10 
human expert annotators (two human movement scientists, two phys-
iotherapists, and six engineers) estimated the x and y coordinates of 
body keypoints, through manual annotation. All body keypoints were 
annotated in all images regardless of their type of visibility (i.e., visible 
or occluded). This resulted in a total of 380000 human labels (i.e., 19 
annotated keypoint positions for each of the 20000 frames). To measure 
the consistency between the experts, all annotators estimated the posi-
tions of body keypoints in the same sample of 100 randomly selected 
inter-rater frames. The frames were selected with a similar distribution 
across recording setups as the full dataset (i.e., 40% standardized, 40% 
home-based, and 20% less standardized). We computed the inter-rater 

annotation disagreement in terms of the mean inter-rater spread H of 
each body keypoint b. We calculated the mean distance of an annotation 
(xb,i,j, yb,i,j) of an individual expert j of a body keypoint’s position in 
image i, to the average annotation (xb,i, yb,i), across the N (i.e., 10) ex-
perts for the S (i.e., 100) frames (see 1). H was normalized according to 
the head length of the infant in the image, defined as the distance from 
the top of the head to the upper neck (li). 

Hb =
1

N⋅S
∑S

i=1

∑N

j=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xb,i,j − xb,i)
2
+ (yb,i,j − yb,i)

2
√

li
(1)  

2.2. Comparative analysis 

By the use of the aforementioned dataset, we trained and evaluated a 
selection of ConvNet models for the task of infant pose estimation. First, 
the ConvNet of the state-of-the-art method for infant pose estimation, 
the OpenPose network (Cao et al., 2019; OpenPose, 2021) (see Fig. 2a 
for an architectural overview), was trained to yield baseline perfor-
mance on In-Motion Poses, while also evaluating the official OpenPose 
library without fine-tuning1 (OpenPose, 2021). Unless otherwise speci-
fied, OpenPose refers to OpenPose ConvNet fine-tuned on In-Motion 
Poses. Second, we trained a more computationally efficient approach 
inspired by OpenPose, named CIMA-Pose (see Fig. 2b), which has dis-
played promising results on infant pose estimation on videos from 
standardized clinical setups (Groos and Aurlien, 2018). CIMA-Pose 
comprises a ConvNet with low complexity, reflected by 2.4 million pa-
rameters compared to 26 million for OpenPose. OpenPose and 
CIMA-Pose operate on similar image input resolutions of 368 × 368 
pixels2. Third, EfficientPose (Fig. 2c) comprises a family of scalable 
ConvNets demonstrating 57% improvement in high-precision pose 
estimation compared to OpenPose, despite significant reduction in 
computational cost (i.e., FLOPs) and number of parameters (Groos et al., 
2020b). EfficientPose yields five model variants, EfficientPose RT and 
I-IV, obtained by the use of compound model scaling on input resolution, 
network width, and network depth. The computational requirements of 

Fig. 2. ConvNets address infant pose estimation from video frames in a frame-by-frame manner by 1) extracting image features, 2) determining features relevant for 
detection, and 3) estimating infant keypoint positions. The height of the ConvNet blocks (i.e., feature extractor, detector, and output) indicates the block’s spatial 
resolution in relation to the resolution of the input image. 

1 The raw images in In-Motion Poses were downsampled and zero padded to 
square aspect ratio to achieve the input resolution of the ConvNets.  

2 The latest version of OpenPose (v1.7.0) was used with default settings 
maintained. Evaluation on In-Motion Poses was performed on the keypoints in 
the 25-keypoint body model that exist in In-Motion Poses (i.e., all keypoints 
except head top and upper neck). 
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EfficientPose span from less than one GFLOP to 74 GFLOPs, which is 
substantially less than the 161 GFLOPs of OpenPose. Fourth and finally, 
we optimized an EfficientHourglass model with EfficientNet-B4 back-
bone (i.e., EfficientHourglass B4) (Groos et al., 2020a), displayed in 
Fig. 2d. Inspired by the original multi-scale hourglass of Newell et al. 
(2016), EfficientHourglass performs parallel processing of image fea-
tures at different scales, while conserving the level of detail (i.e., reso-
lution) inherent in the input image. With an input resolution of 
608 × 608, EfficientHourglass B4 maintains a resolution of at least 
152 × 152 pixels throughout the stages of the network (i.e., feature 
extractor, detector, and output), compared to the consistent low reso-
lution of 46 × 46 pixels in the detector and output of the single-scale 
OpenPose architecture (Cao et al., 2019; Groos et al., 2020a). For 
further details of the different ConvNets, the reader is referred to their 
original papers (Cao et al., 2019; Groos et al., 2020a, 2020b; Groos and 
Aurlien, 2018). 

In the experiments, all models (except the underlying model of the 
official OpenPose library) were trained using a standardized optimiza-
tion procedure. Pretraining on the general-purpose MPII HPE dataset 
(Andriluka et al., 2014) was performed, followed by fine-tuning on the 
training set of In-Motion Poses using the Adam optimizer for 100 epochs 
with a learning rate of 0.001. We applied data augmentation with 
random horizontal flipping, scaling (0.75–1.25), and rotation (+/− 45 
degrees). The optimization procedure was obtained through tuning of 
models on the validation set of In-Motion Poses. 

2.3. Evaluation protocol and performance metrics 

To evaluate the localization performance of the models included in 
the comparative analysis, positions of body keypoints were predicted on 
the separate test set of In-Motion Poses, comprising 4024 images. The 
retrained OpenPose, CIMA-Pose, EfficientPose, and EfficientHourglass 
were evaluated using the model outputs upscaled to input resolution 
with bilinear interpolation (e.g., three transposed convolutions, each 
with a stride of 2 and 4 × 4 kernel, performed 8 × upscaling in Open-
Pose, to increase the spatial resolution of outputs from 46 × 46 to 
368 × 368), omitting the expensive multi-scale testing and flipping 
procedure commonly used for benchmarking HPE (Tang et al., 2018; 
Yang et al., 2017), whereas default post-processing was employed with 
the official version of OpenPose. Model localization performance was 
determined by comparing the model outputs to human annotations. The 
performance metrics included percentage of correct keypoints according 
to head size (PCKh@τ), normalized mean error (ME), and a proposed 
metric; percentage of correct keypoints according to human-level 

performance (PCKh@Human0.95). PCKh@τ computes the fraction of 
keypoints within τli distance from the annotated position, where li is the 
infant head length of image i. To account for both model robustness and 
performance in high-precision pose estimation, we calculated measures 
of PCKh@τ across various percentages τ of the head size (see Fig. 3). 
Coarse evaluation was performed with PCKh@1.0, PCKh@0.5, and 
PCKh@0.3, and fine-grained evaluation by PCKh@0.2 and PCKh@0.1. 
Moreover, the ME measure reflects the average localization performance 
of model m on body part b in terms of the mean distance of a model’s 
predictions to the ground truth locations: 

MEm,b =
1
S

∑S

i=1
dm,b,i (2) 

where dm,b,i =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(xm,b,i − x̂b,i)

2+(ym,b,i − ŷb,i)
2

√

li 
is the Euclidean distance from 

the estimated keypoint position (xm,b,i, ym,b,i) of model m to the human 
annotation (x̂b,i, ŷb,i), for keypoint b in image i of the test set. ME was 
normalized with respect to the head length li. To compare model per-
formance against human-level performance, we introduce a metric, 
called PCKh@Human0.95. PCKh@Human0.95 defines the percentage of 
model predictions within the 95th percentile of the inter-rater spread of 
human experts: 

PCKh@Human0.95
m,b =

1
S

∑S

i=1
δ(dm,b,i) (3)  

δ
(
dm,b,i

)
=

{
1, if dm,b,i ≤ Hb

0.95

0, otherwise

}

(4) 

Here, δ is a binary step function with threshold Hb
0.95 defining the 

95th percentile of the inter-rater spread (where the mean inter-rater 
spread Hb is specified in Equation 1). In other words, PCKh@Hu-
man0.95 is equivalent to PCKh@τ when Hb

0.95 = τ. Thus, PCKh@Hu-
man0.95 = 95% reflects human-level performance. By utilizing the 
intraclass correlation coefficient (ICC) proposed by Fisher (1992), we 
also compared consistency (i.e., ICC(C, 1)) and agreement (i.e., ICC(A, 
1)) between model localization error and inter-rater spread across body 
parts. The ICC values, and associated 95% confidence intervals, between 
the model ME and the inter-rater spread H of the human experts were 
calculated using a two-way model. Perfect agreement and consistency 
with inter-rater spread across body keypoints (i.e., ICC(A, 1) = ICC(C, 
1) = 1) will suggest that a model displays human-level performance. 

In addition to model localization performance, we evaluated the 
computational efficiency of the ConvNet models. We provide measures 
for model complexity (number of parameters), computational cost 
(FLOPs), and inference time (latency). The inference latency per image 
was estimated from model predictions on an NVIDIA GTX 1080 Ti GPU 
with TensorFlow 2.5, CUDA 11.0, and CUDNN 8.1. We used a batch size 
of 128 and computed the median latency in milliseconds over 10 
computational runs. 

2.4. Sample efficiency 

To assess the amount of training data required for ConvNets to 
converge on the task of infant pose estimation, we carried out experi-
ments with variation in the number of images in the training set, across a 
range of samples from no fine-tuning3 to 100 images to the full training 
set of 14483 infant frames. To evaluate differences in sample efficiency 
between different ConvNet architectures, experiments were carried out 
for the most accurate ConvNet in each of the four model families. All 
experiments were performed over 100 epochs of training, and model 

Fig. 3. PCKh@τ, the percentage of predictions within τl distance from the 
ground truth location (e.g., nose), is computed across five different thresholds τ 
(i.e., 100%, 50%, 30%, 20%, and 10%), evaluating the localization perfor-
mance of a model, from coarse to fine. 

3 When models were evaluated without fine-tuning, predictions were made 
only on the subset of 16 body keypoints that were available both in the MPII 
dataset and In-Motion Poses. 
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Table 1 
The performance of the different ConvNets, pretrained on MPII (Andriluka et al., 2014) and fine-tuned on In-Motion Poses, as well as the official OpenPose library 
(OpenPose, 2021), in terms of localization performance on the test set of In-Motion Poses, and computational efficiency of the ConvNets from run-time experiments on 
an NVIDIA GTX 1080 Ti GPU.    

Localization performance Computational efficiency 

Model Resolution @1.0* @0.5* @0.3* @0.2* @0.1* ME Parameters FLOPs Latency 

OpenPose library - 96.99% 95.51% 90.90% 81.49% 49.66% 0.1432** - - 62.33*** ms 
OpenPose 368 × 368 99.94% 99.61% 97.65% 90.40% 54.89% 0.1087 26,011,743 161,077,013,640 35.21 ms 
CIMA-Pose 368 × 368 99.98% 99.83% 98.74% 93.09% 59.69% 0.0988 2,380,495 15,645,092,494 11.49 ms 
EfficientPose RT 224 × 224 99.96% 99.69% 98.15% 92.15% 58.71% 0.1022 481,336 955,490,248 5.06 ms 
EfficientPose I 256 × 256 99.98% 99.83% 98.81% 93.68% 60.78% 0.0974 743,476 1,785,432,722 7.05 ms 
EfficientPose II 368 × 368 99.97% 99.84% 98.54% 92.41% 62.25% 0.0969 1,759,372 7,944,292,598 19.38 ms 
EfficientPose III 480 × 480 99.99% 99.94% 99.54% 97.57% 78.21% 0.0732 3,258,888 23,777,830,318 41.92 ms 
EfficientPose IV 600 × 600 99.98% 99.93% 99.45% 96.77% 71.10% 0.0834 6,595,430 73,621,311,041 96.48 ms 
EfficientHourglass B4 608 × 608 99.99% 99.95% 99.56% 97.67% 81.11% 0.0681 18,699,936 27,009,544,472 47.01 ms  

* PCKh@1.0, PCKh@0.5, PCKh@0.3, PCKh@0.2, and PCKh@0.1 are abbreviated as @1.0, @0.5, @0.3, @0.2, and @0.1, respectively. 
** Keypoints in certain images, where the OpenPose library lack predictions due to not being confident, are excluded in computation of ME. 
*** Latency estimate of the OpenPose library includes time required to pre-process images and perform default post-processing of ConvNet predictions. 

Table 2 
The localization performance of OpenPose, CIMA-Pose, EfficientPose III, and EfficientHourglass B4, all pretrained on MPII (Andriluka et al., 2014) and fine-tuned on 
In-Motion Poses, on the test set of In-Motion Poses, in relation to human-level performance (i.e., inter-rater spread H) across body parts b, as evaluated by the proposed 
PCKh@Human0.95 metric.     

PCKh@Human0.95 

b Hb H0.95
b  OpenPose CIMA-Pose EfficientPose III EfficientHourglass B4 

Head top 0.0554 0.1158 60.39% 57.60% 81.59% 89.31% 
Nose 0.0301 0.0574 32.03% 42.89% 74.48% 82.41% 
Right ear 0.0603 0.1906 88.57% 92.40% 94.41% 92.00% 
Left ear 0.0502 0.1364 73.31% 77.49% 88.54% 89.04% 
Upper neck 0.0527 0.1212 80.67% 83.23% 88.77% 89.19% 
Right shoulder 0.0531 0.1106 62.97% 73.14% 85.71% 86.63% 
Right elbow 0.0429 0.0956 52.81% 71.00% 81.71% 86.73% 
Right wrist 0.0386 0.0851 45.43% 60.93% 80.14% 82.60% 
Upper chest 0.0643 0.1200 69.38% 72.44% 77.31% 79.42% 
Left shoulder 0.0576 0.1204 63.25% 60.71% 88.07% 88.74% 
Left elbow 0.0418 0.0959 48.19% 46.92% 82.50% 85.69% 
Left wrist 0.0388 0.0901 48.83% 52.44% 79.08% 84.74% 
Mid pelvis 0.0781 0.1587 82.75% 82.50% 86.43% 90.01% 
Right pelvis 0.0812 0.1553 78.31% 80.89% 87.30% 88.72% 
Right knee 0.0549 0.1119 66.58% 77.24% 86.63% 89.02% 
Right ankle 0.0417 0.0902 51.07% 60.21% 75.47% 80.79% 
Left pelvis 0.0828 0.1603 79.25% 77.53% 88.07% 90.31% 
Left knee 0.0489 0.1049 49.06% 48.29% 88.22% 89.71% 
Left ankle 0.0408 0.0861 45.75% 47.24% 75.70% 82.38% 
All body parts 0.0534 0.1161 62.03% 66.58% 81.59% 86.71%  

Fig. 4. From left: a-d) The distribution of model prediction errors of the different ConvNets on 1000 randomly sampled frames (according to the distribution of 
standardized hospital recordings, home-based smartphone recordings, and less standardized hospital recordings) from the test set of In-Motion Poses across body 
parts, and e) the distribution of the inter-rater spread of the 10 human experts across 100 inter-rater frames (i.e., a total of 1000 annotations). The prediction errors 
are normalized according to the head size of the infant in the sample image. 
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performance in ME, PCKh@0.5, and PCKh@0.1 were calculated on the 
test set of In-Motion Poses. The smaller training samples were con-
structed by randomly selecting a subset of frames from the original 
training set, while maintaining the distribution of videos proposed in 
Section 2.1. Hence, the smaller samples and the full training set have 
similar variation in recording setups. 

3. Results 

Table 1 gives an overview of the performances of the eight different 
ConvNets, as well as the official version of OpenPose, on In-Motion 
Poses. In terms of localization performance, a 6–37% decrease in ME 
compared to the OpenPose baseline is achieved. This is supported by a 
higher robustness (i.e., gains in PCKh@1.0, PCKh@0.5, and PCKh@0.3). 
In high-precision pose estimation, PCKh@0.1 from 58.71% to 81.11% 
can be observed, compared to 54.89% and 49.66% for fine-tuned 
OpenPose and official OpenPose, respectively. With regards to compu-
tational efficiency, all models are smaller, with 1.4–54 times fewer pa-
rameters, and require less computation than OpenPose, i.e., 2.2–169 
times less FLOPs. Moreover, the most computationally efficient Con-
vNet, EfficientPose RT, achieved run-time performance of 198 frames 
per second. 

Table 2 displays the localization performance of the top-performing 
ConvNet of each model family. The most accurate model, Efficien-
tHourglass B4, achieved an ME of 0.0681 compared to the average 
human inter-rater spread H of 0.0534. This equals an average percent-
age of human-level performance (i.e., PCKh@Human0.95) of 86.71%, 
compared to 62.03% for OpenPose. Fig. 4 shows a close resemblance 
between the spread of the human annotations and the estimates of 

EfficientPose III and EfficientHourglass B4 across body keypoints. This 
resemblance was supported by a significant consistency, ICC(C, 1), and 
high agreement, ICC(A, 1), between the spread of human expert anno-
tations and the mean error of EfficientPose III and EfficientHourglass B4 
(see Table 3). The lower ICC(A, 1) compared to ICC(C, 1) reflects a 
slightly higher ME for the ConvNet models compared to the inter-rater 
spread H of the human experts. A similar resemblance with human an-
notations was not achieved with OpenPose. 

Fig. 5 illustrates that fine-tuning significantly improves localization 
performance of infant pose estimation compared to no fine-tuning (i.e., 
W/O). Moreover, all ConvNets benefit from increased training set size, 
especially in terms of the PCKh@0.1 measure (Fig. 5c). However, 
whereas localization performance of OpenPose and CIMA-Pose saturates 
at sample sizes beyond 5000 images, EfficientPose III and Efficien-
tHourglass B4 benefit from larger training sets. There is also a tendency 
that EfficientPose III and EfficientHourglass are more stable across 
dataset sizes, with a smaller difference in localization performance from 
100 to 14483 images, compared to OpenPose and CIMA-Pose. 

In Fig. 6, the localization performance of EfficientHourglass B4 is 
assessed qualitatively by providing model predictions on a selection of 
challenging images (i.e., less frequently occurring infant poses as 
described in Section 2.1) in the test set of In-Motion Poses. 

4. Discussion 

The main objective of the study was to obtain computationally effi-
cient markerless infant pose estimation with a level of localization 
performance approaching that of human expert annotations. A 
comparative analysis has showed that performance levels comparable to 

Table 3 
Absolute agreement and consistency (i.e., ICC(A, 1) and ICC(C, 1)) of ConvNets in relation to human expert inter-rater spread across body parts, with 95% confidence 
intervals in brackets.   

OpenPose CIMA-Pose EfficientPose III EfficientHourglass B4 

ICC(A, 1) 0.00 [− 0.03, 0.07] 0.08 [− 0.04, 0.32] 0.47 [− 0.03, 0.84] 0.64 [− 0.03, 0.91] 
ICC(C, 1) 0.02 [− 0.43, 0.46] 0.45 [0.01, 0.75] 0.94 [0.85, 0.98] 0.96 [0.91, 0.99]  

Fig. 5. Localization performance of OpenPose, CIMA-Pose, EfficientPose III, and EfficientHourglass B4, all pretrained on MPII (Andriluka et al., 2014), without 
fine-tuning (i.e., W/O) and with increasing amounts of data (from 100 to 14483 images) for fine-tuning on In-Motion Poses. 
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human expert performance can be achieved, by utilizing contemporary 
ConvNets for HPE together with an extensive infant video database. This 
is reflected by PCKh@Human0.95 of the top-performing ConvNets 
approaching human-level performance, whereas the commonly applied 
OpenPose network does not reach similar level of localization 
performance. 

4.1. Improving localization performance 

The large improvement in localization performance compared to the 
state-of-the-art method OpenPose (Cao et al., 2019) is due to two main 
reasons. First, the hypothesis of Sciortino et al. (2017), that HPE Con-
vNets require fine-tuning on a selection of infant images to perform well 
on pose estimation of infants, is confirmed. The introduction of a 
large-scale infant pose dataset, In-Motion Poses, has improved the 
localization performance of OpenPose from 78.56% to 99.61% on 
PCKh@0.5, as illustrated by Fig. 5b. Taking into account the error tax-
onomy of Ruggero Ronchi and Perona (2017), this indicates that the 
coarse localization errors, like the frequency of inversions (i.e., the 
predictions that appear at an incorrect body keypoint, such as misin-
terpretation of the left and right wrist) and misses (i.e., the erroneous 
localizations that are made without interfering with other keypoints), 
have been reduced. Despite the increased robustness with regards to 
coarse prediction errors, the optimal level of localization performance 
has not been reached. Further improvement of the ConvNets may be 
achieved by more systematically studying the cases where the models 
fall short, for example with substantial occlusion of body parts or spe-
cific body postures. Fig. 6 indicates that such scenarios exist. Accord-
ingly, we could extend the existing dataset with images that target these 
situations to further improve model robustness through retraining. In a 
future perspective, it would also be valuable to assess if we could take 
into account the temporal information of a video to reduce prediction 
errors due to occlusion or rare body postures. Pose tracking that extends 
beyond frame-by-frame pose estimation may achieve this, but current 
progress in the field is restricted to processing a single pair of video 
frames with limited gap in time (Bertasius et al., 2019), which may not 
address cases of prolonged occlusion. 

Second, the large improvement in PCKh@0.2, PCKh@0.1, and 
PCKh@Human0.95 of CIMA-Pose, EfficientPose, and EfficientHourglass 

B4, compared to OpenPose, is due to a reduction in fine prediction er-
rors. EfficientPose III, EfficientPose IV,4 and EfficientHourglass B4 
reduce fine prediction errors better than OpenPose by operating on 
increased input and output resolutions. The consistent high resolution of 
EfficientHourglass B4 seems to maximize this benefit by displaying the 
highest values of PCKh@0.1 and PCKh@Human0.95. However, the in-
crease of resolution comes at the cost of reduced computational effi-
ciency, in terms of increased number of FLOPs and decreased latency 
(see Table 1). Thus, alternative methods for post-processing of ConvNet 
predictions (e.g., soft-argmax (Levine et al., 2016)), or post-processing 
of the frame-by-frame position estimates over consecutive frames by 
low-pass filters, such as median filtering (Tukey, 1977), might reduce 
fine prediction errors more effectively. However, this demands that the 
video has a sufficient sample rate (e.g., 60 fps). Furthermore, fine pre-
diction errors may also be minimized by decreasing the spread in an-
notated keypoint positions. As illustrated in Fig. 4, the distributions of 
prediction errors of EfficientPose III and EfficientHourglass B4 across 
body parts resemble the inter-rater spread of the human experts (e.g., 
higher variation in the placement of the keypoints of the pelvis, 
compared to the nose keypoint). This indicates that contemporary 
ConvNets for HPE, when supplied with sufficient amounts of training 
data (see Fig. 5 for the effect of sample size), are able to maximize the 
benefit of human annotations. Hence, a hypothesis for further studies is 
that more precisely annotated keypoints will further eliminate fine 
prediction errors, by model error being highly correlated with the 
inter-rater spread of human experts (see Table 3). Consequently, lower 
variation in the annotation of the keypoints of the pelvis may improve 
the ability of the ConvNets to localize these keypoints with high local-
ization performance. More consistent annotations between human ex-
perts, reflected by lower inter-rater spread, may be obtained by 
proposing more precise definitions of the keypoint positions, than those 
in Appendix A. This could be particularly valuable for body keypoints 

Fig. 6. Predictions of EfficientHourglass B4 on rare but normal infant poses in the test set of In-Motion Poses. The first and second row contain images where the 
model correctly predicted the position of body keypoints. The third row indicates cases where the model missed certain body keypoints (images from left to right: 1) 
right ankle, 2) head top and nose, 3) right elbow and right wrist, and 4) right wrist and left wrist). Infant faces are blurred to ensure anonymity. 

4 EfficientPose IV displayed lower localization performance than Effi-
cientPose III on In-Motion Poses, due to small batch size during training, which 
was necessary for the model to fit into GPU memory. As demonstrated by Ta-
bles 1 and 5, EfficientPose IV performed better than EfficientPose III in case of 
similar batch sizes. 
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that currently have higher inter-rater spread (e.g., for the keypoint of the 
upper chest). Human expert annotations may also be supplemented or 
replaced by other methods, such as marker-based solutions and 3D 
motion capture systems. These approaches may also yield performance 
improvements beyond fine prediction errors, by providing more precise 
annotations of occluded keypoints than can be achieved with 2D videos. 
We suggest that studies on infant pose estimation, and HPE in general (e. 
g., on challenges such as MPII (Andriluka et al., 2014)), judge locali-
zation performance against metrics related to human-level performance, 
such as PCKh@Human0.95, to evaluate the progress on these tasks in 
relation to human-level performance. 

4.2. Improving computational efficiency 

Our comparative analysis has shown that a large model size (i.e., 
number of parameters) is not necessary for high-precision infant pose 
estimation. On similar input resolution, both OpenPose and CIMA-Pose 
were outperformed by the more computationally efficient low- 
complexity EfficientPose II model on PCKh@ 0.1 (see Table 1). 
Instead, it appears that high-precision infant pose estimation can be 
obtained with a relatively small number of parameters. This is demon-
strated by EfficientPose III displaying only 5.12% decrease in 
PCKh@Human0.95, compared to EfficientHourglass B4, despite having 
5.7 times fewer parameters. Combining this observation with the in-
fluence of high input and output resolution on localization performance, 
we would suggest further studies to investigate the effect of high reso-
lution with low-complexity ConvNets. This could potentially narrow the 
current gap in localization performance between computationally effi-
cient ConvNets, such as EfficientPose RT, and high-precision counter-
parts that are less computationally efficient, like EfficientPose III and 
EfficientHourglass B4. It would also be of particular interest to system-
atically study the optimal trade-off between localization performance 
and computational efficiency, by carefully assessing the localization 
performance of ConvNets of various complexities across different image 
resolutions. Our study suggests that ConvNets developed for HPE can be 
simplified when transferred to the infant pose estimation domain. HPE 
targets more complex circumstances and environments (e.g., images of 
multiple persons, a wide range of different activities, individuals of 
varying age, and substantial occlusion), whereas infant pose estimation 
is concerned with a single, clearly visible infant in supine position ac-
cording to the guidelines of GMA (Einspieler et al., 2004; Andriluka 
et al., 2014). Potential paths for reducing network complexity could be 
1) a decrease in network width (i.e., number of feature maps), and 2) less 
extensive use of multi-scale ConvNet architectures. The former may 
more appropriately address the little diversity in infant videos compared 
to the far-reaching HPE task, whereas the latter takes into account the 
small variation in an infant’s distance to the camera and anatomical 
proportions. Nevertheless, from studying the inference latency of the 
ConvNets, we observed processing speeds from 10 to 198 fps (Table 1) 
on an NVIDIA GTX 1080 Ti consumer GPU. Further speedups of the pool 
of models studied in this paper may be obtained by implementing the 
ConvNets in low-level code like C++ or CUDA. Thus, a three-minute 
video of infant spontaneous movements could potentially be processed 
by a high-precision pose estimator in less than three minutes, which is 
feasible for clinical use. Moreover, the efficiency of the ConvNets can be 
further enhanced by utilizing techniques for compressing models with 
minimal loss of localization performance. Quantization-aware training, 
knowledge distillation, model pruning, and sparse kernels are paths that 
are worth to investigate (TensorFlow, 2020; Bucilua et al., 2006; Tung 
and Mori, 2018; Elsen et al., 2020). By obtaining accelerated and com-
pressed ConvNets, the automatic pose estimation have the potential to 
be deployed locally at smartphones in the clinic and at home. Thus, 
infant pose estimation will be more easily applicable, while preserving 
patient privacy through decentralized processing of infant recordings on 
local devices. 

4.3. External validity 

In previous studies on ConvNet-based markerless infant pose esti-
mation from 2D videos, investigations have been restricted to small or 
synthetic samples of infant videos (Hesse et al., 2018; Chambers et al., 
2020). Hence, the external validity of such approaches is debatable, 
since ConvNets require large amounts of realistic images across various 
settings related to the task at hand to perform well on pose estimation. In 
this study, we have utilized a large-scale international database of GMA 
certified video recordings to train the ConvNets. Subsequently, we have 
validated the models on a separate set of 284 infant videos from a 
diverse range of hospital and home-based setups (see Fig. 1a). The high 
resistance to coarse prediction errors of the evaluated ConvNets suggests 
that infant pose estimation promotes flexibility in application in 
real-world scenarios. This encompasses various settings (e.g., clinic, 
research center, and home), across different countries, and without 
depending on specific camera equipment. When assessing the transfer 
validity of the ConvNets fine-tuned on In-Motion Poses on the synthetic 
dataset proposed by Hesse et al. (2018), only the best performing Con-
vNet on In-Motion Poses, EfficientHourglass B4, outperformed the offi-
cial version of the state-of-the-art method OpenPose and displayed an 
acceptable transfer by maintaining a high level of localization perfor-
mance (Table 6 and Fig. 8). This could suggest that the high-capacity 
multi-scale feature extractor of EfficientHourglass B4, through pre-
training on MPII (Andriluka et al., 2014) and fine-tuning on In-Motion 
Poses, has learnt features that generalize beyond the natural infant im-
ages of In-Motion Poses. On the contrary, the feature extractors of 
OpenPose, CIMA-Pose, and EfficientPose are of lower relative capacity 
and contain fewer abstraction levels (i.e., scales) compared to Efficien-
tHourglass B4 (Fig. 2). Hence, these fine-tuned ConvNets might lack the 
ability for appropriate transfer beyond recording setups of In-Motion 
Poses (e.g., plain backgrounds, and natural lighting and shading). 
However, the consistent localization performance of the official Open-
Pose library (OpenPose, 2021) (Tables 1 and 6) suggests that training on 
a sufficiently heterogeneous and large-scale human pose dataset, such as 
COCO (Lin et al., 2014) of 250000 human poses from various contexts, 
may combat the lack of high-capacity and multi-scale feature extraction 
to yield better generalizability. Similar effects could be achieved by 
combining In-Motion Poses with synthetic or natural infant pose data-
sets covering the variation in recording setups we want ConvNets to be 
tuned towards. Nevertheless, we should take into consideration the 
overall model capacity (i.e., number of parameters), which for 
CIMA-Pose and EfficientPose might not be sufficient to achieve appro-
priate transfer from In-Motion Poses to synthetic infants. We could 
therefore investigate ConvNet compound scaling on infant pose esti-
mation, to determine the appropriate scaling factors of input resolution, 
network width, and network depth. Further studies should also more 
thoroughly assess the external validity of the trained ConvNets on 
real-life infant recordings, to verify that the high level of localization 
performance demonstrated by the present study indeed can be repro-
duced. This involves assessing the robustness in operating on video re-
cordings from different recording setups with large variations in aspects, 
such as video quality, background environment, camera angle, and 
lighting conditions. The infant pose estimators could also be validated 
across groups of infants with different age, size, skin color, clothing, and 
postural variability within datasets like In-Motion Poses. Moreover, the 
degree of localization performance of the ConvNets in relation to 
state-of-the-art marker-based motion capture systems could also be 
assessed (Vicon, 2020; Qualisys, 2020). It is worth stressing that it is 
unrealistic to expect flawless pose estimation in recording situations 
highly dissimilar to the settings the models have been trained and 
evaluated in. However, the models can be retrained on other video da-
tabases when keypoint annotations are available. It is also worth 
investigating if the predefined set of body keypoints is sufficient for 
performing relevant assessments of characteristics of infant spontaneous 
movements identified in clinical GMA. However, for applications 
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emphasizing movement kinematics of other body keypoints (e.g., rota-
tion of hands and feet, and relative movements of fingers or toes), the 
proposed infant pose estimation can be extended through retraining of 
ConvNets on different annotated sets of keypoints. 

In summary, with improved ConvNet architectures and an extensive 
database of infant video recordings, body keypoint positions can be 
estimated with human-level performance. This will enable capturing 
more subtle infant movements and postures, and, consequently, improve 
early detection of risk-related infant movement kinematics (Ihlen et al., 
2020; Einspieler et al., 2019). These improved ConvNets will also 
facilitate the assessments of infant movement kinematics which require 
a high level of detail, like fidgety movements or postural patterns in 
specific parts of the body, such as side-to-side head movements and 
atypical head centering (Einspieler et al., 2019). 

5. Conclusions 

The present study represents a significant progress towards clinically 
feasible markerless pose estimation of infant movements between two to 
five months of post-term age. This has been achieved by combining 
state-of-the-art ConvNets for human pose estimation with a novel 
heterogenous infant dataset. Highly precise detection of body keypoints 
enables accurate localization of segments and joints, which may facili-
tate computer-based assessment of characteristics of infant spontaneous 
movements related to risk of developmental disorders. With no de-
pendency to body-worn markers, sensors or other expensive laboratory 
equipment, the automatic infant pose estimation can handle videos both 
captured by parents at home and by physicians at a hospital clinic. In 
conclusion, this technology has the potential to facilitate further 
research initiatives on infant movement analysis and motivate national 
and worldwide collaborations. 

CRediT authorship contribution statement 

Daniel Groos: Conceptualization, Methodology, Software, Valida-
tion, Formal analysis, Investigation, Data curation, Writing – original 
draft, Writing – review & editing, Visualization. Lars Adde: Conceptu-
alization, Validation, Formal analysis, Investigation, Resources, Data 
curation, Writing – review & editing, Visualization, Supervision, Project 
administration, Funding acquisition. Ragnhild Støen: Conceptualiza-
tion, Investigation, Resources, Writing – review & editing, Supervision, 
Project administration, Funding acquisition. Heri Ramampiaro: 
Conceptualization, Methodology, Resources, Writing – review & editing, 
Supervision, Project administration. Espen A.F. Ihlen: Conceptualiza-
tion, Methodology, Software, Validation, Formal analysis, Investigation, 
Resources, Data curation, Writing – original draft, Writing – review & 
editing, Visualization, Supervision, Project administration, Funding 
acquisition. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

This study was possible only due to the unified In-Motion research 
initiative on computer-based assessment of infant spontaneous move-
ments and prediction of cerebral palsy, resulting in the multi-site data-
base of infant recordings. The authors would like to acknowledge the 
following key personnel and institutions contributing in collecting video 

recordings: Norway; Toril Larsson Fjørtoft at St. Olavs University Hos-
pital, Inger Elisabeth Silberg at Oslo University Hospital, Nils Thomas 
Songstad at University Hospital of North Norway, Angelique Tiarks at 
Levanger Hospital, Henriette Paulsen at Vestfold Hospital Trust, India; 
Niranjan Thomas at Christian Medical College Vellore, United States; 
Colleen Peyton at University of Chicago Comer Children’s Hospital, 
Raye-Ann de Regnier and Lynn Boswell at Ann & Robert H Lurie Chil-
dren’s Hospital of Chicago, Turkey; Akmer Mutlu at Hacettepe Univer-
sity, Belgium; Aurelie Pascal at Ghent University, Denmark; Annemette 
Brown at Nordsjællands Hospital Hillerød, Great Britain; Anna Basu at 
Newcastle upon Tyne Hospitals. This work was supported by the Liaison 
Committee between the Central Norway Regional Health Authority and 
the Norwegian University of Science and Technology under project 
number 90056100, the Joint Research Committee between St. Olavs 
University Hospital and the Faculty of Medicine and Health Sciences, 
Norwegian University of Science and Technology, the DeepInMotion 
project funded by the Research Council of Norway with grant number 
327146, and RSO Funds from the Faculty of Medicine and Health Sci-
ences, Norwegian University of Science and Technology under project 
number 81115200. 

Appendix A. Keypoint definitions 

The set of 19 body keypoints along with their definitions (see Fig. 7 
and Table 4) were agreed upon by an expert group of human movement 
scientists and infant physiotherapists. The body keypoints were selected 
to cover most effectively the many degrees of freedom in the infant 
movements, while at the same time being properly defined to facilitate 
consistent annotation across humans. 

Fig. 7. The placements of the 19 different body keypoints on an infant.  
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Appendix B. Batch size inspection 

We assessed the effect of fine-tuning the EfficientPose models on a 
reduced batch size of four images (i.e., the batch size of EfficientPose IV) 
to investigate possible performance degrade with EfficientPose IV due to 
inappropriate batch size. In comparison to Table 1, Table 5 displays 
performance degrade from training with reduced batch size, most 
evident in terms of high-precision localization, with 11.20–30.83% 
reduction in PCKh@0.1. 

Appendix C. Transfer validity 

To investigate the transfer validity of the methods in our comparative 
analysis, we evaluated the localization performance of the models fine- 
tuned on In-Motion Poses, as well as the official OpenPose library, on the 
openly available MINI-RGBD dataset proposed by Hesse et al. (2018) 
(Table 6). The MINI-RGBD dataset comprises 12 synthetic infant video re-
cordings of quite different nature than the recordings in In-Motion Poses. 
Localization performance, in terms of PCKh@1.0, PCKh@0.5, PCKh@0.3, 
PCKh@0.2, PCKh@0.1, and ME, was measured on the subset of 12 body 
keypoints that are similar for MINI-RGBD and In-Motion Poses (i.e., nose, 
upper neck, shoulders, elbows, wrists, knees, and ankles). Since MINI-RGBD 
does not contain a keypoint for the top of the forehead, the head length of an 
infant was estimated as two times5 the distance between the annotated 
keypoints of the nose and upper neck. This ensures that the evaluation 
metrics reflect a similar level of correctness as the metrics used with the 
evaluation on In-Motion Poses in Table 1. 

Furthermore, for the most accurate ConvNet, namely Efficien-
tHourglass B4, we conducted a qualitative experiment by estimating the 
locations of the 19 body keypoints in In-Motion Poses on a randomly 
selected frame in each of the 12 infant videos in the MINI-RGBD dataset 
(Fig. 8). 

We also supply as Supplementary material frame-by-frame pre-
dictions of keypoint locations in a real, external infant recording for the 
best performing ConvNet in each model family, as well as by the use of 
the official version of OpenPose. The recording follows the standards for 
GMA (Einspieler and Prechtl, 2005), and has been recorded using the 
setup of the In-Motion App (Adde et al., 2021), which is similar to the 
home-based smartphone recordings in In-Motion Poses. 

Table 4 
Definitions of body keypoints.  

# Body keypoint Definition 

1 Head top Top of the forehead 
2 Nose Tip of the nose 
3 Right ear Center of the right ear 
4 Left ear Center of the left ear 
5 Upper neck Center of the larynx 
6 Right shoulder Center of the right shoulder joint 
7 Right elbow Center of the right elbow joint 
8 Right wrist Center of the right wrist joint 
9 Upper chest Midway between 6 and 10 
10 Left shoulder Center of the left shoulder joint 
11 Left elbow Center of the left elbow joint 
12 Left wrist Center of the left wrist joint 
13 Mid pelvis Midway between 14 and 17 
14 Right pelvis Right spina iliaca anterior superior 
15 Right knee Center of the right knee joint 
16 Right ankle Center of the right ankle joint 
17 Left pelvis Left spina iliaca anterior superior 
18 Left knee Center of the left knee joint 
19 Left ankle Center of the left ankle joint  

Table 5 
The localization performance of EfficientPose RT and I-III on the test set of In-Motion Poses, when trained with the batch size of EfficientPose IV, followed by the 
performance difference in relation to the experiments in Table 1.  

Model PCKh@ 1.0 PCKh@ 0.5 PCKh@ 0.3 PCKh@ 0.2 PCKh@ 0.1 ME 

EfficientPose RT 99.80% (− 0.16%) 99.32% (− 0.37%) 92.93% (− 5.22%) 72.50% (− 19.65%) 27.88% (− 30.83%) 0.1717 (0.0695) 
EfficientPose I 99.94% (− 0.04%) 99.66% (− 0.17%) 97.22% (− 1.59%) 85.42% (− 8.26%) 38.38% (− 22.40%) 0.1311 (0.0336) 
EfficientPose II 99.98% (0.01%) 99.78% (− 0.06%) 98.01% (− 0.53%) 89.85% (− 2.56%) 49.73% (− 12.52%) 0.1137 (0.0168) 
EfficientPose III 99.99% (0.00%) 99.94% (0.00%) 99.47% (− 0.07%) 96.48% (− 1.09%) 67.01% (− 11.20%) 0.0884 (0.0152)  

Table 6 
The transfer validity of the different ConvNets, pretrained on MPII (Andriluka et al., 2014) and fine-tuned on In-Motion Poses, and the official OpenPose library 
(OpenPose, 2021), in terms of localization performance on the MINI-RGBD dataset (Hesse et al., 2018).  

Model PCKh@1.0 PCKh@0.5 PCKh@0.3 PCKh@0.2 PCKh@0.1 ME 

OpenPose library 98.35% 97.02% 94.47% 90.75% 73.80% 0.1030 
OpenPose 88.59% 79.59% 71.77% 62.27% 38.41% 0.3926 
CIMA-Pose 95.72% 88.99% 81.27% 71.83% 46.68% 0.2415 
EfficientPose RT 94.98% 91.28% 86.91% 79.98% 53.83% 0.2135 
EfficientPose I 93.13% 91.09% 88.16% 81.98% 56.19% 0.2772 
EfficientPose II 92.49% 90.41% 87.41% 80.57% 54.60% 0.3263 
EfficientPose III 83.79% 81.45% 79.60% 76.06% 58.56% 0.8559 
EfficientPose IV 93.02% 91.15% 89.05% 86.14% 71.35% 0.2565 
EfficientHourglass B4 99.81% 99.17% 97.52% 94.13% 75.86% 0.0845  

5 The head length of an infant (i.e., the distance from head top to upper neck) 
in In-Motion Poses was in average 1.98 times the distance from nose to upper 
neck. 
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Appendix D. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.compmedimag.2021.102012. 
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