
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

H
enrik G

rønbech
M

ulti-Instrum
ent Autom

atic M
usic Transcription w

ith D
eep Learning

Henrik Grønbech

Multi-Instrument Automatic Music
Transcription with Deep Learning

Master’s thesis in Computer Science
Supervisor: Björn Gambäck

June 2021

M
as

te
r’s

 th
es

is

Henrik Grønbech

Multi-Instrument Automatic Music
Transcription with Deep Learning

Master’s thesis in Computer Science
Supervisor: Björn Gambäck
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract
Automatic music transcription (AMT) is the task of using computers to turn audio of
music into a symbolic representation such as Musical Instrument Digital Interface (MIDI)
or sheet music. This task can be regarded as the musical analog of speech-to-text and
the symbolic representation is at least as useful as written text is for natural language.
Sheet music enables musicians to learn new pieces and can aid during live performances.
Digital music representations can be used to remix music, create new arrangements, and
analyze chord progressions and other musical structures. Automatic music transcription
has long been regarded as one of the most di�cult tasks in signal processing, but with
the progress in deep learning the performance in a single-instrument setting on piano is
almost solved with a state-of-the-art note F1 score of 96.72.

The goal of this Master’s Thesis is to extend this to a multi-instrument setting and
several experiments have been conducted. The first set of experiments investigates
di�erent architectures and music source separation pre-processing for multi-instrument
AMT. These experiments show that the current single-instrument AMT model works
well on a multi-instrument audio source, and can be further enhanced by using a joint
music source separation and automatic music transcription architecture. Music source
separation pre-processing did not improve performance, but the model was not fine-tuned
on the used dataset.

Another experiment shows that it is possible to train a universal note-level AMT model
solely on a mixture audio source. This model reaches a note F1 scores of 90.6 on piano
and 95.8 on bass audio, only slightly behind the current state-of-the-art in the single-
instrument setting. The transcription performance varies greatly between instrument
classes and the note-with-o�set scores are still far behind the current single-instrument
for all instrument classes except bass.

Finally, a stream-level model is trained that is able to transcribe piano, guitar, bass,
drum and all the pitched instruments simultaneously in 5-10 times real-time performance
on CPU and 10-100 times real-time performance on GPU.

All the experiments are conducted on the synthetically rendered MIDI dataset Slakh.
During the work on this dataset, several systematic and non-systematic errors were found
and reported to the creators of the dataset. An e�cient and convenient PyTorch data-
loader is created for this dataset which addresses these errors and enables reproducibility.

i

Sammendrag
Automatisk transkribering av musikk går ut på å bruke datamaskiner til å transformere
lydfiler til en symbolsk representasjon, som MIDI-filer («Musical Instrument Digital
Interface») eller noter. Denne oppgaven er den musikalske versjonen av tale til tekst og
er vel så nyttig som tekst er for naturlig språk. Noter hjelper musikere å lære musikk
og brukes også under fremføringer. Digitale representasjoner av musikk kan brukes til
å remikse musikk eller lage nye arrangementer og for å analysere akkordprogresjoner
og andre strukturer i musikken. Automatisk transkribering av musikk har lenge blitt
sett på som en av de vanskeligste oppgavene innenfor digital signalbehandling, men med
utviklingen av dyp læring har problemet nesten blitt løst for piano med en state-of-the-art
note-F1-verdi på 96,72.

Målet med denne masteroppgaven er å utvide transkriberingen til et flerinstrument-
miljø. Den første gruppen eksperimenter i denne oppgaven undersøker ulike arkitekturer
og e�ekten av å separere lydfilene med eksisterende modeller på forhånd. Disse eks-
perimentene viser at den eksisterende enkeltinstrumentarkitekturen fungerer godt i et
flerinstrumentmiljø. Resultatene blir enda bedre med en kombinert musikkseparerings-
og transkriberingsarkitektur. Separering av lydfilene på forhånd ga ikke bedre resultater,
men modellen var heller ikke finjustert på datasettet brukt i eksperimentene.

Et annet eksperiment viser at det er mulig å trene en universell transkriberings-
modell. Denne modellen er trent på lydfiler av et fullt band og klarer å transkribere
enkeltinstrumenter med en note-F1-verdi på 90,6 på piano og 95,8 bass – rett bak state-of-
the-art-verdiene for piano. Resultatene varierer likevel mye mellom ulike instrumenttyper,
og note-med-slutt-resultatene ligger langt bak state-of-the-art for alle instrumenttypene
utenom bass.

I det siste eksperimentet er det trent en modell som transkriberer alle instrumenter på
én gang og klassifiserer notene som piano, gitar, bass, trommer og annet. Denne modellen
kjører i 5-10 ganger sanntid på CPU og 10-100 ganger på GPU.

Alle eksperimentene er utført på det MIDI-genererte datasettet Slakh. Gjennom arbeidet
med dette datasettet har flere feil ble funnet og rapportert til de som lagde datasettet.
En e�ektiv datalaster i maskinlæringsverktøyet PyTorch har blitt laget som tar høyde
for disse feilene og gjør det lett for andre å reprodusere eksperimentene.

ii

Preface
This Thesis is submitted as the final part to achieve a Master’s degree in Computer
Science with specialization in Artificial Intelligence from the Norwegian University of
Science and Technology (NTNU). The work was done at the Department of Computer
Science and was supervised by Björn Gambäck. The work equates to 30 ECTS-credits,
equal to one semester.

The Thesis is based on the work from my specialization project, Automatic music
transcription with deep learning (Grønbech, 2020), and chapters, sections, formulations,
and figures are taken or adapted from that report. These sections will be indicated at
the beginning of each chapter.

Special thanks go to Björn for encouraging me to follow my passion for music and
computer science/artificial intelligence and letting me choose this research project. I am
grateful for the discussions and thorough feedback on the Thesis.

I would like to thank Emmanouil Benetos for permitting me to reprint Figure 2.1 and
to Wikimedia Commons, Hawthorne et al. (2018), Kim and Bello (2019), Stoller et al.
(2018) and Jansson et al. (2017) for releasing their work under a CC BY-SA 4.0 license1

which enables me to reprint their figures.
The work would not be possible if Ra�el (2016) had not laid the groundwork by

creating the Lakh dataset and Manilow et al. (2019) the Slakh dataset. I appreciate that
Ethan Manilow has read and answered my GitHub issues and plans to release a new
version of the Slakh dataset based on the errors found in this work.

I appreciate the high-quality work by Kim and Bello (2019) and releasing the Onset
and Frames source code2 under the MIT license3. The code bases developed in this
Thesis are based on that work.

Furthermore, a thanks goes out to the HPC group at NTNU, for allowing the use of
the Idun cluster (Själander et al., 2019). The experiments in this Thesis would not have
been possible without these resources.

In addition, I would like to thank everyone that have done work in the field of automatic
music transcription and music source separation. Nothing would give me greater pleasure
if the work in this Thesis enables the field to move further.

Finally, I would like to express thankfulness to Mathias Bynke for helping with the
Norwegian translation of the abstract, and family, friends and loved ones for supporting
my work.

Henrik Grønbech
Trondheim, 11th June 2021

1https://creativecommons.org/licenses/by-sa/4.0
2https://github.com/jongwook/onsets-and-frames
3https://opensource.org/licenses/MIT

iii

https://creativecommons.org/licenses/by-sa/4.0
https://github.com/jongwook/onsets-and-frames
https://opensource.org/licenses/MIT

Contents
1. Introduction 1

1.1. Background and Motivation . 1
1.2. Goals and Research Questions . 2
1.3. Research Method . 3
1.4. Contributions . 4
1.5. Thesis Structure . 4

2. Background Theory 7
2.1. Music Information Retrieval . 7

2.1.1. Automatic Music Transcription . 7
2.1.2. Music source separation . 8

2.2. Audio and representations of music . 8
2.2.1. MIDI . 10
2.2.2. Fourier transformation . 10
2.2.3. Mel-scaled Spectrogram and Constant-Q Transform 10

2.3. Machine Learning . 11
2.4. Deep Learning . 11
2.5. Evaluation . 12

2.5.1. Precision, recall and F1-score . 12
2.5.2. Frame-level evaluation . 13
2.5.3. Note-level evaluation . 13
2.5.4. Note-level evaluation with velocity 13

3. AMT Datasets 15
3.1. MAPS . 15
3.2. MAESTRO . 16
3.3. Expanded Groove MIDI Dataset . 16
3.4. MusicNet . 16
3.5. Million Song Dataset . 17
3.6. Lakh MIDI Dataset . 17
3.7. SLAKH . 17
3.8. MUSDB18 . 18

4. Related Work 19
4.1. Di�erent Approaches to Multi-Pitch Estimation 19

4.1.1. Feature-based multi-pitch detection 19
4.1.2. Statistical model-based multi-pitch detection 20

v

Contents

4.1.3. Spectrogram factorization-based multi-pitch detection 20
4.2. Automatic Music Transcription with Neural Networks 21
4.3. Music Source Separation . 25

5. Architecture 29
5.1. Extended Onsets and Frames . 29
5.2. Extended Onsets and Frames with U-Net 31
5.3. Post-Processing . 32

6. Experiments and Results 35
6.1. Experimental Plan . 35

Experiment 0 – Baseline Experiment 35
6.1.1. Experiments on Pre-Processing and Model Architectures 36

Experiment 1 – Without Source Separation 36
Experiment 2 – With Source Separation 36
Experiment 3 – New Architecture 36

6.1.2. Experiments on Note-Level Multi-Instrument Transcription 36
Experiment 4a . 36
Experiment 4b . 37
Experiment 4c . 37
Experiment 5 – Evaluation on twelve Instrument Classes 37

6.1.3. Experiments on Stream-Level Multi-Instrument Transcription . . . 37
Experiment 6 . 37

6.2. Experimental Setup . 38
6.2.1. Dataset . 38
6.2.2. Parameters . 39
6.2.3. Environment and Resources . 40

6.3. Experimental Results . 41
6.3.1. Experiment 0–3 . 41
6.3.2. Experiment 4–5 . 44
6.3.3. Experiment 6 . 46

7. Evaluation and Conclusion 47
7.1. Evaluation . 47

7.1.1. Evaluation of Research Questions 47
7.1.2. Evaluation of the Main Goal . 52

7.2. Discussion . 53
7.2.1. Dataset . 53
7.2.2. Model Architecture . 54

7.3. Contributions . 55
7.4. Future Work . 55

Bibliography 59

vi

Contents

Appendix 65
A. Stems with errors in Slakh . 65

white-noise . 65
wrong-pitch . 65
wrong-octave . 65
missing-audio . 65
short-labels . 65
long-labels . 65

B. Additional Results . 69

vii

List of Figures
2.1. Di�erent representations of music . 9
2.2. A Long Short-Term Memory model . 12

4.1. Architecture of the original Onsets and Frames model 23
4.2. Computation graph of adversarial loss in Kim and Bello (2019) 24
4.3. Wave-U-Net architecture . 26

5.1. The extended Onsets and Frames architecture 30
5.2. The U-Net architecture . 31
5.3. Predictions and post-processed notes. 32

6.1. Transcription segment for experiment 2 42
6.2. Spectrograms for Experiment 0–3 . 43
6.3. Diagram of the results in experiment 5 . 45
6.4. Diagram of the results in experiment 6 . 46

7.1. Validation F1 scores during training for Experiment 0 48
7.2. Frame F1 results in experiment 5 with chroma 52

1. Experiment 0a, Track01881, 0.996|1.000|1.000 70
2. Experiment 0a, Track01892, 1.000|1.000|1.000 70
3. Experiment 0a, Track01895, 0.993|0.978|0.978 71
4. Experiment 0a, Track01901, 0.959|0.938|0.875 71
5. Experiment 0b, Track01878, 0.837|0.950|0.450 72
6. Experiment 0b, Track01881, 0.869|1.000|0.533 73
7. Experiment 0b, Track01888, 0.938|0.846|0.769 74
8. Experiment 0b, Track01889, 0.881|1.000|0.588 75
9. Experiment 0c, Track01877, 0.755|0.900|0.717 76
10. Experiment 0c, Track01892, 0.785|0.875|0.562 77
11. Experiment 0c, Track01893, 0.976|0.981|0.830 78
12. Experiment 0c, Track01895, 1.000|1.000|1.000 79
13. Experiment 4a, Track01882, 0.657|0.692|0.538 80
14. Experiment 4a, Track01892, 0.900|0.889|0.626 81
15. Experiment 4a, Track01932, 0.880|0.585|0.585 82
16. Experiment 4a, Track01950, 0.894|0.886|0.514 83
17. Experiment 4a, Track01955, 0.682|0.750|0.714 84
18. Experiment 4a, Track01956, 0.786|0.727|0.591 85

ix

List of Figures

19. Experiment 4a, Track01957, 0.808|0.658|0.342 86
20. Experiment 4a, Track01959, 0.000|0.000|0.000 87
21. Experiment 4a, Track01963, 0.588|0.913|0.261 88

x

List of Tables
4.1. Automatic music transcription results on piano 25

6.1. Parameters for mel-scaled spectrogram . 39
6.2. Trainable parameters for the di�erent models 40
6.3. Results for experiment 0–3 on the modified Slakh redux test dataset split 41
6.4. Results for experiment 4 on the modified Slakh redux test dataset split . 44
6.5. Results for experiment 5 on the Slakh redux test dataset split 44
6.6. Results for experiment 6 . 46

xi

1. Introduction
Automatic music transcription (AMT) is the task of using computers to turn audio of
music into a symbolic representation such as Musical Instrument Digital Interface (MIDI)
or sheet music. In other words, given an audio file, we want the computer to extract the
pitches and note durations from a musical piece. For stream-level transcriptions also the
instruments that play each note are extracted.

There was little to no progress in this field for a long time, but with the rise of deep
learning and new datasets, improvements have accelerated. For a single polyphonic
instrument, the piano, this task is now almost solved with a recent onset F1-score of
96.72. This Thesis extends this to a multi-instrument setting. The synthetically rendered
MIDI dataset Slakh is used in all the experiments.

1.1. Background and Motivation
Transcribing music is the process of listening to a piece of music audio, extracting the
notes the music consists of and writing down in a symbolic form such as sheet music or
into a music notation software. To an untrained ear, this can be challenging even if the
audio only consists of a single instrument that plays one note at a time in a clearly audible
frequency range. For polyphonic instruments, such as a piano, the task quickly becomes
almost impossible unless you have perfect pitch or several years of experience—and even
for professional musicians, the task is error-prone and very time-consuming. A typical
band song consists of drums, bass, guitar, piano, and vocals. Some instruments might
have several tracks and some tracks or instruments can be mixed very low in the audio.
A fully accurate transcription would not only capture all the instruments in the song but
what each instrument plays and how loud it plays each note. In other genres, such as
classical symphonies, there might be several dozens of instruments at a time. Given the
immense di�culty of this problem for humans, there is no wonder why the automatic
version of this task has been known to be one of the most di�cult tasks in the field of
music information retrieval (MIR) and signal processing.

Applications of music in a symbolic form are vast. Many musicians, especially those
that are classically trained, are used to learn musical pieces only from sheet music. If
they want to play in another setting, such as in a rock band where the musicians are more
used to learn music by ear, an automatic music transcription system would be highly
valuable. This would also open up a lot of possibilities for musicians wanting to learn
songs that do not have any sheet music yet. Likewise, arranging music for an ensemble
based on existing music audio would also benefit from automatic music transcription
software. Not only is it very time-consuming, but can be very di�cult to get started

1

1. Introduction

without the necessary experience. A high-quality automatic music transcription system
would democratize this to more people and drastically reduce arranging time.

Other applications of automatic music transcriptions software include those of auto-
matically creating transcriptions for games such as GuitarHero, RockBand or SingStar. It
can also be used when remixing songs and share musical ideas, just like it is easier to send
messages with text to each other than voice recordings. Furthermore, automatic music
transcription also has applications in live performances. It would open up possibilities to
mix acoustic and electric sounds. One could for instance augment the sound from an
acoustic piano with digital sound from a synthesizer in real-time.

An automatic music transcription model can reach super-human performance tran-
scribing music at many times real-time performance. Humans are inherently limited by
the speed we can perceive sounds—computer does not have this limitation. An automatic
music transcription model could be used as an pre-proseccing step to analyze music at a
large scale. Chords progressions, common bass-lines, and other musical structures can
be extracted from the audio. AMT systems could also be used to pattern match audio
which again can, for instance, be used for musical copyright infringement systems.

1.2. Goals and Research Questions
This Master’s Thesis has one goal that will be described below. To reach this goal, five
Research Questions have been composed.

Goal 1 Introduce multi-instrument automatic music transcription models.

Transcribing piano and drums on a single-instrument audio source has reached high
performance in the last couple of years. This Master’s Thesis will try to expand this to a
multi-instrument setting. Multi-instrument in this context has two meanings, the first
is a model that can transcribe several instruments simultaneously, and the other is a
model that can transcribe a single instrument in a multi-instrument audio source. Both
of these cases will be investigated in the Research Questions. As music source separation
also has gained a lot of momentum recently it will be investigated if it can be a useful
pre-processing step for automatic music transcription. The goal of this thesis will be
reached by answering the following research questions.

Research Question 1–3 will operate in the first multi-instrument case, namely, tran-
scribing a single instrument in a multi-instrument audio source.

Research question 1 How well do state-of-the-art single-instrument models perform in
a multi-instrument setting without music source separation?

To answer this Research Question a benchmark on a single-instrument audio source
will be created for comparison. The training process in this step will be very similar to
a single-instrument setting, however, the audio source will be changed with an audio
source containing several instruments.

2

1.3. Research Method

Research question 2 How well do state-of-the-art single-instrument models perform in a
multi-instrument setting when the audio is source separated by a pre-trained music
source separation model?

To answer this Research Question, a music source separation model will separate the
instrument of interest before the model is trained an evaluated. Music source separation
models typically separate music into vocals, drums, bass and accompaniment. When the
audio is separated, it should be easier for the automatic transcription models to focus on
the instrument that will be transcribed (this is equal to the single-instrument setting).
However, music source separation models still have some deficiencies so the transcription
model will need to take into account.

Research question 3 How well does a new architecture that joins source separation with
automatic music transcription perform in a multi-instrument setting?

This research question is connected to Research Question 2. Two considerations have
to be taken into account; will the new architecture be trained jointly on both source
separation and automatic music transcription or will the model only be trained on
automatic music transcription, but have a similar architecture that resembles the source
separation models.

Research question 4 How well does a note-level multi-instrument automatic music tran-
scription perform in a single-instrument setting?

A note-level multi-instrument model is a model that is able to transcribe several
instruments, but not able to tell which instrument played a given note. After the model
is trained, it will be evaluated on the same benchmark as the baseline described under
Research Question 1 as well as several other instrument classes.

Research question 5 How well does a stream-level multi-instrument automatic music
transcription perform?

A stream-level multi-instrument model is a model that is not only able to transcribe
several instruments but also tell which instrument played a given note. To answer this
Research Question a stream-level multi-instrument has to be engineered and trained. It
will be evaluated on the results from Research Question 1–3.

1.3. Research Method
To achieve the goal of the Master’s Thesis, an experimental research methodology will
be applied. The experiments will be trained and evaluated on the synthetically rendered
MIDI 1 dataset Slakh (Manilow et al., 2019). The common metric in the field of automatic
music transcription, provided by the Python library mir_eval (Ra�el et al., 2014), will

1
Musical Instrument Digital Interface

3

1. Introduction

be used to evaluate the models. Since several experiments will be performed on the same
dataset, a transparent comparison between the models should be possible. Regarding
Research Questions 3, the construction of the models will be subject to a large degree
of experimentation and mostly quantitatively evaluated. However, other aspects of the
models such as training time, inference time and memory size will influence the design
process.

1.4. Contributions

The main contributions of this Master’s Thesis are as follows:

1. An investigation of di�erent architectures for multi-instrument automatic music
transcription. This work shows that it is possible to use a state-of-the-art single-
instrument model on a multi-instrument source with promising results. The results
are further improved by using the popular music source separation model U-Net as
a backbone.

2. Experiments on using music source separation as a pre-processing step for automatic
music transcription.

3. A universal note-level automatic music transcription model is trained that can
transcribe individual instrument classes with promising results. An investigation of
which instrument classes are most easily transcribed are also shown.

4. A stream-level automatic music transcription model that can transcribe piano,
guitar, bass, drum and all pitched instrument simultaneously is trained. This model
e�ciently transcribes all the instruments commonly seen in a pop or rock band in
around 5-10 real-time performance on CPU and 10-100 times real-time performance
on GPU.

5. A PyTorch data-loader that e�ciently and conveniently loads audio and labels from
the Slakh dataset is created. Several systematic and non-systematic errors in the
dataset are accounted for in this work and reported to the creators of the dataset.

1.5. Thesis Structure

The Master’s Thesis is structured in the following manner:

1. Chapter 2 provides the background theory necessary to understand the rest of the
Thesis. The chapter includes topics such as music information retrieval, repres-
entations of audio and Fourier transformations, a brief introduction to machine
learning and deep learning, and the evaluation metrics used for automatic music
transcription.

4

1.5. Thesis Structure

2. Chapter 3 presents the dataset used for automatic music transcription, music source
separation and music information retrieval. Eight datasets are presented, where
five datasets are suitable for automatic music transcription.

3. Chapter 4 covers the related work carried out in the field of AMT and music source
separation. First, an overview of traditional automatic music transcription models
is given before the state-of-the-art deep-learning-based approaches.

4. Chapter 5 covers the model architectures which will be used for the di�erent
experiments.

5. Chapter 6 covers an experimental plan, the experimental setup and the results of
the experiments in this work.

6. Finally, chapter 7 evaluates and discusses the Master’s Thesis in light of the results
and findings of the experiments. Contributions and suggestions for possible further
work are presented at the end.

5

2. Background Theory
This chapter covers the theory and background behind the di�erent areas relevant to
this project. First, a general introduction to the field of music information retrieval
with an emphasis on automatic music transcription and music source separation will be
given. The next section gives an overview of audio and di�erent representations of music.
The following section gives a brief introduction to machine learning as well as relevant
architectures. The final section consists of theory and approaches for evaluation.

The following sections is based on the work in Grønbech (2020); 2.1.1 is from Section
2.1 with minor modifications; section 2.2 is from 2.2, 2.3 is from 2.3 and, 2.4 is from 2.4
and 2.5 is from Section 2.5 without any modifications.

2.1. Music Information Retrieval

Music information retrieval (MIR) is the field of study that is concerned with retrieving
information from music. There exist many di�erent subdisciplines of MIR such as music
classifications, recommender systems, music source separation, instrument recognition,
automatic music transcription and automatic music generation. Music classification
consists of genre classification (categorizing music into genres such as rock, jazz classical,
etc.), artist classification and mood classification. A music recommender system is a
system that tries to predict the rating a listener would give to a given piece of music.
This can be useful for streaming services such as Spotify1 to recommend music, for record
labels or even for musicians to make music more people like. An overview of the field of
automatic music transcription will be given in section 2.1.1 and music source separation
and instrument recognition will be given in section 2.1.2.

2.1.1. Automatic Music Transcription

Automatic music transcription is the task of converting audio of music into some form
of music notation. Depending on the application, the notation can be sheet music (an
example is shown in Figure 2.1(d)), guitar tablature, or Musical Instrument Digital
Interface (MIDI) files (see Section 2.2.1). Some of these notation requires a higher level
of understanding of the music than the other. Sheet music, for instance, does not only
require the pitches but also the time signature, number of voices, and key signature.
Automatic music transcription is regarded as one of the most di�cult tasks in field of
signal processing therefore this task has been divided into subtasks of di�erent degree

1https://www.spotify.com/

7

https://www.spotify.com/

2. Background Theory

of di�culty. Categorized by Benetos et al. (2019), the four levels of transcription are
frame-level, note-level, stream-level, and score-level.

Frame-level transcription, also called Multi-Pitch Estimation (MPE), is the task of
estimating the fundamental frequencies in a given time frame. The length of the frame is
usually on the order of 10ms. The frames can be estimated independently of each other.

Note-level transcription, or note tracking, is one level of abstraction higher than frame-
level transcription. In this level of transcription, we are interested in the note onsets
(when a note begins) and the duration of the note. Each frame can no longer be classified
independently. A longer context, at least in the order of seconds, is needed.

Stream-level transcription, also called Multi-Pitch Streaming (MPS), is yet one higher
level of transcription. Groups of notes are estimated into a stream, which typically
corresponds to one instrument or a voice in a choir. When transcribing into this level a
model can no longer just find the fundamental frequencies of each note, the timbre and
overtones must also be taken into consideration.

Score-level Transcription is the highest level of transcription. This level aims to
transcribe into a human-readable musical score. Transcription at this level requires a
deeper understanding of musical structures. Rhythmic structures such as beats and bars
help to quantize the lengths of notes. Stream structures aid the assignment of notes to
di�erent musical sta�s.

2.1.2. Music source separation

Music source separation is the task of separating the individual tracks or instruments
that makes up a piece of music. It is useful to separate the music into instruments such
as bass, drums, piano, vocals and the rest of the music. This task is both useful for
remixing music, but can also be used in an education setting for learning what each
instrument plays. Likewise, music source separation can be used as a pre-processing step
for automatic music transcription.

2.2. Audio and representations of music

Sound is variations in pressure in a medium. The most common medium we humans
perceive sound in is air but it can also be others such as water or through our bones. The
frequency in these pressure variations determines the tone and the magnitude di�erence
in the high and low pressure-periods determines the volume. We humans experiences
di�erences in frequencies logarithmic—the note A on the middle of the piano has a
frequency of 440Hz while the A an octave above has a frequency of 880Hz and the next
1,760Hz. Our ears can pick up frequencies between approximately 20Hz to 20,000Hz
(this, unfortunately, decays somewhat with age), but the fundamental frequency on the
piano is only between 27.5Hz to 4,186Hz. The fundamental frequency determines the
pitch while the overtones change the timbre. Overtones, also called partials, are usually
at integer multiples of the fundamental frequencies. In Figure 2.1(b) at the first note
after three seconds, we see that the fundamental frequency around 330Hz is strongest

8

2.2. Audio and representations of music

Figure 2.1.: Di�erent representations of music. (a) Waveform in time domain, (b) Time-
frequency representation, (c) Piano-roll representation, (d) Sheet music. The
example corresponds to the first 6 seconds of W. A. Mozart’s Piano Sonata
No. 13, 3rd movement (taken from the MAPS database). Reprint of Figure
1 from Benetos et al. (2019) with permission to reuse.

while the overtones are linearly spaced above.
Audio is digitally stored as a time series where each value represents a pressure

di�erence. This representation is often called the raw audio domain or waveform domain.
The sample rate is how many times the value is measured per second and bit depth is the
number of bits of information in each sample. A CD quality recording typically has a
sample rate of 44,100Hz and a bit depth of 16.

Four di�erent representations of music are shown in Figure 2.1. At the top, we see a
waveform domain representation as it would be stored digitally. Next, a time-frequency
representation is shown (see section 2.2.2 for more information). Thirdly, a matrix-like
piano roll representation is shown. This is typically how an automatic music transcription
system would output the data and this representation is often used in Digital Audio
Workstations. Lastly, sheet music that is normally used by musicians for performing
music is shown.

9

2. Background Theory

2.2.1. MIDI

Musical Instrument Digital Interface (MIDI) is an open format for communicating and
storing musical signals. It was introduced in the 1980s to synchronize synthesizers which
previously had used proprietary communication formats. The format includes electrical
connections, messages, and a file format. The messages are events based—pitches has an
on and an o� message, and there are messages for velocity, vibrato/pitch bend, panning,
and clock signals.

One limitation of the format is that the pitch bend message is global for all the
pitches. This makes it impossible to create micro-tonal music. A new standard, the
MIDI 2.0 standard, was announced at the 2020 Winter NAMM show 2 which among
other improvements includes this ability.

2.2.2. Fourier transformation

It is possible to transform audio in the time domain to a frequency domain by a Fourier
transformation. The idea in this transformation is that we want to find the presence of
di�erent frequencies in the raw time-domain signal. This can be achieved by calculating
the “center of mass” in the complex plane by multiplying the time domain signal with
eif , where f denotes the frequency, and summing/integrating the values. A beautiful
animation and explanation can be seen in this video by 3Blue1Brown 3.

Mathematically, this can be expressed in the discrete case by

Xk =
N≠1ÿ

n=0
xne≠ i2fi

N kn, (2.1)

where x = {x0, x1, ..., xN≠1} is the input signal and X = {X0, X1, ..., XN≠1} is the
transformed frequencies.

This transformation, however, loses all the temporal information in the original signal.
Due to this, the short-time discrete Fourier transform is often applied to music. In this
transformation, the input signal x = {x0, x1, ..., xN≠1} is divided into smaller chunks.
The size of the chunk is called window size and the number of values between the start of
each chunk is called step size. Due to artifacts, the step size is usually smaller than the
window size. Each of these chunks is multiplied by a window function, such as a Hann
window or Gaussian window, and then discrete Fourier transformation as in equation 2.1
is calculated on each chunk.

2.2.3. Mel-scaled Spectrogram and Constant-Q Transform

The short-time discrete Fourier transform described in the last section creates a time-
frequency representation where the frequencies are linearly spaced. Since we humans
perceive sound logarithmically, the frequencies can be scaled to reflect this. This is called

2https://www.midi.org/midi-articles/midi-2-0-at-the-2020-namm-show
3https://www.youtube.com/watch?v=spUNpyF58BY

10

https://www.midi.org/midi-articles/midi-2-0-at-the-2020-namm-show
https://www.youtube.com/watch?v=spUNpyF58BY

2.3. Machine Learning

a mel-scaled spectrogram. This representation will have a lower frequency resolution in
the lower frequencies.

There is another time-frequency transformation that keeps the same frequency res-
olution in the logarithmic scale called the Constant-Q transform. The window length
is longer for lower frequencies and shorter for higher frequencies in the transformation.
Otherwise, it very similar to the short-time discrete Fourier transform.

2.3. Machine Learning
Machine Learning is a subfield of Artificial Intelligence. It is the study and exploration
of algorithms that can learn from data. In other fields, a programmer would need to tell
the computer how to solve a given task, while in machine learning the computer learns
to solve the task from data and previous examples. As such, machine learning enables us
to solve problems that have been hard or impossible for humans to handcraft rules.

Machine learning algorithms are generally divided into three categories—supervised,
semi-supervised and unsupervised learning. In supervised learning, the models have
labels for the problem at hand in the training process. In automatic music transcription,
the label would typically be MIDI files with the pitches and durations for each note.
Semi-supervised learning combines a small amount of labeled data with a large amount
of unlabeled data during training, and unsupervised learning does not use labels at all
during training.

2.4. Deep Learning
Deep learning refers to machine learning models that are based on neural networks.
Neural networks have its name since it vaguely resembles the human brains, but it is
simply a combination of linear transformations with a non-linear activation function.

Recurrent neural networks are a form of neural networks for processing sequential
data. The recurrent neural networks cell takes two inputs; one value of the sequential
data and a previous internal state. This internal state gives makes the model capable of
remembering previous input and acts as a kind of memory.

The Long Short-Term Memory (LSTM) is an extension of the regular recurrent neural
networks which is better at learning long-range dependencies. Due to the vanishing
gradient problem during backpropagation, a regular recurrent neural network is not able
to learn long-range dependencies. An LSTM network mitigates this problem by adding a
forget gate, an input gate. and an output gate. These gates make the network able to
choose how much of the previous state it will remember, what in the new input it will
pay attention to and how much it should store for future use. These gates enable this
model to learn longer-range dependencies. An overview of the LSTM architecture can be
seen in Figure 2.2. LSTM was introduced by Hochreiter and Schmidhuber (1997).

A bidirectional Long Short-Term Memory (BiLSTM) is a method to give an LSTM
more context on the future. In a vanilla LSTM, you will give the data to the LSTM
sequentially from the past to the future. With a BiLSTM you will run your inputs in

11

2. Background Theory

two ways, one from past to future and one from future to past. The output from these
runs will be concatenated for future processing.

xt-1

ct-1,ht-1

ot-1

xt

ot

ct+1,ht+1

xt+1

ot+1

LSTM unit

σ σ tanh σ

tanh

ct-1

ht-1

xt

ht

ct

Ft It
Ot

ht

.

Figure 2.2.: A Long Short-Term Memory model. Figure from fdeloche, CC BY-SA 4.0,
via Wikimedia Commons.

2.5. Evaluation

After an AMT system has made a prediction, we need a score to evaluate the generated
transcription to a ground-truth transcription.

2.5.1. Precision, recall and F1-score

Precision, recall, and F1-score are evaluation metrics that are ubiquitous in the field of
machine learning. These metrics are also used in the AMT evaluation and are presented
here for reference.

Precision =
qT

t=1 TP (t)
qT

t=1 TP (t) + FP (t)
(2.2)

Recall =
qT

t=1 TP (t)
qT

t=1 TP (t) + FN(t)
(2.3)

F1 = 2 · Precision · Recall

Precision + Recall
(2.4)

TP, FP, and FN are short for true-positive, false-positive, and false-negative respectively.
In this case, these values are dependent on the time index t in the musical piece.

12

2.5. Evaluation

2.5.2. Frame-level evaluation
In the frame-level evaluation, we are only interested in the fundamental frequencies (F0)
in a given time interval. We do not give any relevance to when a note begins, the onset,
and if the frequency is coherent over the entire note duration in the ground-truth. This
is a metric that is straightforward to implement and has no subjective hyper-parameters,
however, it lacks the very audible idea of note onsets and consistency over time.

We define true-positives, true-negatives, and false-negatives as in Bay et al. (2009).
True-positives, TP (t), are defined as the number of F0s that correctly correspond in
the prediction and the ground-truth. False-positives are the number of predicted F0s
that are predicted, but not in the ground-truth. False-negative is the number of active
fundamental frequencies in the ground-truth that are not in the prediction. To calculate
the frame-level metrics equations 2.2, 2.3, 2.4 are used.

2.5.3. Note-level evaluation
Note-level evaluation is a higher-level evaluation than the frame-level evaluation. Instead
of counting each frame independently, we look at the notes, more specifically the note
onset and o�set. Two evaluation methods are suggested in Bay et al. (2009), one that
only accounts for the note onsets and one that also includes the note o�set. In both
cases, we define a note onset to be a true positive if the fundamental frequency is within
a quarter note and the onset is within a given threshold. A common threshold is 50ms.

In the last case, the predicted note o�set is required to be 20% of the ground-truth
note’s duration. As in section 2.5.2, true-positives are defined as those notes that conform
to the previously mentioned requirements and the false-positives are defined as the ones
that do not. False-negative is again the number of active fundamental frequencies in the
ground-truth that are not in the prediction.

2.5.4. Note-level evaluation with velocity
Introduced in Hawthorne et al. (2018), note-level evaluation with velocity is an extension
to the previous evaluation. Unlike the previous evaluations, velocity has no absolute
meaning. As such, this evaluation is invariant under a constant scaling of velocities.
To calculate this metric, the velocities in the ground-truth are first scaled to be in a
range between 0 and 1 based on the overall highest velocity. After this, note pairs in the
ground-truth and estimation are matched based on the pitch and onsets/o�sets timing.
A scaling factor is calculated based on minimizing the square di�erence on these pairs.
All the note pairs with velocities within a given threshold are regarded as true-positives.

13

3. AMT Datasets

This chapter contains a list of datasets that have been used for automatic music tran-
scription (AMT) in related work and descriptions of them. It also contains datasets that
originally are created for other music informational retrieval fields, such as audio source
separation, but can be useful for AMT. All of the datasets, except MUSDB18, uses the
file format Musical Instrument Digital Interface (MIDI) for storing annotations.

The first four datasets, MAPS, MAESTRO, Expanded Groove MIDI Dataset, and
MusicNet, are specifically created for automatic music transcription and consist of piano,
piano, drums, and various classical instruments respectively. Million Song Dataset is a
database of audio features from one million contemporary songs and contains preview
clips for almost every song. The Lakh MIDI dataset is a large collection of MIDI files, and
some of the MIDI files have been aligned to preview clips from the Million Song Dataset.
Together these datasets can be used for supervised automatic music transcription. SLAKH
consists of a subset of Lakh and is synthesized using professional-grade sample-based
virtual instruments. MUSDB18 is created for audio source separation but can be used
for unsupervised or semi-supervised AMT models in a stream-level transcription (for
drums, bass, or vocal).

This section is equal to section 3 in Grønbech (2020) without any modifications.

3.1. MAPS

MAPS, an acronym for MIDI Aligned Piano Sounds, is a dataset of MIDI-annotated
piano recordings created by Emiya et al. (2010). This is the oldest dataset specifically
created for AMT on this list. The dataset consists of both synthesized piano audio and
recordings of a Yamaha Disklavier piano. The Yamaha Disklaviers are concert-quality
acoustic grand pianos that utilize an integrated high-precision MIDI capture and playback
system. The MIDI capture system makes this piano series ideal to generate audio from a
ground truth MIDI file.

The dataset is around 65 hours in total length and consists of four parts; one part
consists of isolated notes and monophonic excerpts (ISOL), one of chords with random
pitch notes (RAND), another of “usual chords” from Western music (UCHO), and the
last of pieces of piano music (MUS). MUS consists of several recordings conditions with
30 compositions in each part. Two parts are performed by the Disklavier MIDI playback
system.

15

3. AMT Datasets

3.2. MAESTRO
MAESTRO (MIDI and Audio Edited for Synchronous TRacks and Organization) is a
dataset composed of over 172 hours of piano performances introduced by Hawthorne
et al. (2019), the Magenta team at Google. The raw data is created from nine years
of the International Piano-e-Competition events. In the competitions, virtuoso pianists
performed on the Yamaha Disklavier piano, as was also done in section 3.1, but this time
the integrated MIDI system was used to capture the performance. In the competitions
this allowed judges to listen to the performances remotely on another Disklavier.

The MIDI data includes sustain pedal positions and key strike velocities. According to
Hawthorne et al. (2019), the MIDI files are alignment with 3ms accuracy. As in section
3.1, the audio and MIDI files are sliced into individual musical pieces. There is also a
suggested training, validation and test split such that the same composition does not
appear in multiple subsets and the proportions make up roughly 80/10/10 percent. This
dataset is around one order of magnitude larger than MAPS.

3.3. Expanded Groove MIDI Dataset
Expanded Groove MIDI Dataset is a dataset of MIDI-annotated drum performances. It
was first released as Groove MIDI Dataset (Gillick et al., 2019) and later as an Expanded
Groove MIDI Dataset (Callender et al., 2020). As the MAESTRO dataset, this comes
from the Magenta team at Google. The dataset consists of 444 hours of audio from
43 drum kits. The MIDI data comes from 10 drummers, mostly hired professionals,
performed on a Roland TD-11 electronic drum kit. The drummers were instructed to
play a mixture of long sequences of several minutes of continuous playing and short beats
and fills. All the performances were played with a metronome. This resulted in around
13.6 hours of human-performed MIDI files.

In Callender et al. (2020) the MIDI data was re-recorded on a Roland TD-17 drum
module with 43 di�erent drum kits, with both acoustic and electric drums. The recordings
were done at 44.1 kHz sample rate and 24-bit audio bid depth and aligned within 2ms of
the original MIDI files.

3.4. MusicNet
MusicNet (Thickstun et al., 2017) is a large-scale dataset consisting of 330 freely-licensed
classical pieces. It is 34 hours in length and has a total of 11 instruments (piano, violin,
cello, viola, clarinet, bassoon, horn, oboe, flute bass, and harpsichord). The pieces are
composed by 10 di�erent classical composers such as Beethoven, Schubert, Brahms,
Mozart, and Bach. Various types of ensembles are recorded such as solo piano, string
quartet, accompanied cello, and wind quintet. The labels are acquired from musical scores
aligned to recordings by dynamic time warping and later verified by trained musicians.
Thickstun et al. (2017) estimate a labeling error rate of 4%. However, Hawthorne et al.
(2018) point out that the onsets alignments are not very accurate.

16

3.5. Million Song Dataset

3.5. Million Song Dataset
The Million Song Dataset is a collection of audio features and metadata for a million
contemporary popular music tracks (Bertin-Mahieux et al., 2011) The dataset includes
information such as artist, artist location, tempo, key, time signature, year, and 7digital
track ID. 7digital 1 is a content provider and Schindler et al. (2012) were able to download
994,960 audio samples from their service. Most of these samples were preview clips of
length 30 or 60 seconds. While copyright prevents re-distribution of the audio snippets,
other researchers have obtained the audio for future research (Ra�el, 2016).

3.6. Lakh MIDI Dataset
Lakh MIDI dataset (LMD) is a collection of 176,581 unique MIDI files published by
Ra�el (2016). A subset of these files, 45,129, has been matched with the Million Song
Dataset (see section 3.5). The MIDI files were scraped from publicly-available sources
online and de-duplicated based on their MD5 checksum. The Lakh MIDI Dataset is
distributed with a CC-BY 4.0 license at this website 2.

In the doctoral thesis (Ra�el, 2016), several metrics on the MIDI files were calculated
and some of the files were aligned to the preview clips in the Million Song Dataset.
Dynamic time warping and other techniques were used to align the files. The word lakh
is a unit of measure used in the Indian number system for the number 100,000. This
word was used since the number of MIDI files were roughly of this order and it is a play
on the Million Song Dataset.

3.7. SLAKH
The Synthesized Lakh (Slakh) Dataset, as the name implies, is a subset of the Lakh
MIDI Dataset which has been synthesized using professional-grade sample-based virtual
instruments. The dataset is created by Manilow et al. (2019) and is originally intended
for audio source separation. A subset of 2100 MIDI files that contained the instruments
piano, bass, guitar and drums, where each of these four instruments plays at least 50
notes, was chosen from LMD. The MIDI files have a suggested train/validation/test split
of size 1500, 375, and 225 tracks, respectively.

Since this dataset was created for audio source separation, each of the individual
instruments has been rendered. To add variety Slakh uses 187 patches categorized into
34 classes in which each of the instruments has been randomly assigned. Some of the
patches are rendered with e�ects such as reverb, EQ, and compression. Some of the
MIDI program numbers that are sparsely represented in LMD, such as those under the
“Sound E�ect” header, are omitted.

The first release of this dataset, unfortunately, had some compositions that occurred
in more than one split. To not leak information between the splits two rearrange-

1https://www.7digital.com
2https://colinraffel.com/projects/lmd

17

https://www.7digital.com
https://colinraffel.com/projects/lmd

3. AMT Datasets

ments have been suggested by Manilow et al. (2019), namely Slakh2100-redux and
Slakh2100-split2. Slakh2100-redux omits tracks such that each MIDI files only oc-
curs once, while Slakh2100-split2 moves tracks such that no tracks occur in more than
one split.

3.8. MUSDB18
MUSDB18, like Slakh, is a dataset created for audio source separation and accordingly
does not contain annotations in the form of MIDI or other formats. It contains 150 full
length human-created music tracks along with their isolated drums, bass, vocal and others
stems. The tracks come from di�erent sources, 100 tracks are taken from the DSD100
dataset (Ono et al., 2015; Liutkus et al., 2017), 46 tracks are from the Medley DB dataset
(Bittner et al., 2014), and other material. The tracks have di�erent licenses, some are
under the Creative Commons license while a large portion of the tracks is restricted. The
authors, Rafii et al. (2017), have suggested a training split of 100 songs and a test split
of 50 songs.

18

4. Related Work
This chapter covers the related work that has been done on automatic music transcription
and music source separation. In the first section, di�erent approaches to automatic
music transcriptions that have been applied through the years are presented to give an
overview of the di�erent possibilities and solutions that exist. The second section covers
more recent approaches that use neural networks and these represent the state-of-the-art
solutions to date. The third section covers briefly the work that has been done on music
source separation.

Section 4.1 is equal to Section 4.1 in Grønbech (2020) with minor adaptions. Section
4.2 is based on Section 4.2 in Grønbech (2020).

4.1. Di�erent Approaches to Multi-Pitch Estimation

This section covers the di�erent approaches that have been implemented for multi-pitch
estimation (also called multiple-F0 estimation) through the years, excluding the neural
network approaches, which are presented in the next section. Multi-pitch estimation is a
subtask of automatic music transcription that focuses on frame-level transcription. These
approaches can be divided into three di�erent general methods, according to Benetos
et al. (2013). These three methods are:

• Feature-based multi-pitch detection

• Statistical model-based multi-pitch detection

• Spectrogram factorization-based multi-pitch detection

4.1.1. Feature-based multi-pitch detection

Most feature-based multi-pitch detection algorithms make use of methods derived from
traditional signal processing. Fundamental frequencies are detected using audio features
from the time-frequency representation. A pitch salience function (also called pitch
strength function) that estimates the most prominent fundamental frequencies in a given
audio frame is used. The pitch salience function usually emphasizes the magnitude of
the partials (fundamental frequencies and overtones) in a power spectrogram. In Benetos
and Dixon (2011) the partials are modeled as:

fp,h = hfp,1
Ò

q + (h2 ≠ 1)—p, (4.1)

19

4. Related Work

where fp,1 is the fundamental frequency (F0), —p is an inharmonicity constant and
h > 1 is the partial index. Inharmonicity can occur due to factors such as string sti�ness,
where all partials will have a frequency that is higher than their expected harmonic
value. Given the frequencies of the overtones in equation 4.1, a salient function can be
formulated. Since each partial can be shifted slightly given the instrument and pitch, a
grid search for —p and the number of partials to look for can be done on a labeled excerpt
of the instruments that will be transcribed.

After a salient function is modeled, a pitch candidate selection step that selects zero,
one, or several pitches is needed. A di�cult aspect is that the partials of di�erent
fundamental frequencies may overlap and that octaves above the F0 often have a high
value in the pitch salient function. One method to mitigate this is to iteratively choose
the most prominent F0-frequency and remove its partials from the frequency domain
until there are no more prominent pitches. More intricate selection steps that jointly
choose F0-pitches have also been suggested (Benetos and Dixon, 2011).

Since pitch salient features solely based on the time-frequency representation are prone
to octave-above errors, Su and Yang (2015) incorporate the lag (a.k.a. quefrency) domain,
such as the autocorrelation function and logarithm cepstrum. They call this the temporal
representation V (·) where · can be mapped to the frequency domain via the relationship
f = 1/· . Since the partials are approximately multiples of the F0 in the time-frequency
domain, it will be the inverse multiple in the temporal representation. Estimates in the
temporal representation are prone to sub-octave errors, hence combining these features
has increased performance in both the single-pitch estimation and multi-pitch estimation.

4.1.2. Statistical model-based multi-pitch detection
Multiple-F0 estimation can also be modeled in a statistical framework. Given a set of
all possible F0 combinations C and an audio frame x, the frame-based multiple-pitch
estimation problem can be viewed as a maximum a posteriori (MAP) estimation problem
(Emiya et al., 2010).

ĈMAP = arg max
CœC

P (C|x) = arg max
CœC

P (x|C)P (C)
P (x) (4.2)

where C = {F 1
0 , ..., F N

0 } is a set of fundamental frequencies, C is the set of all possible
fundamental frequencies combinations, and x is the audio frame.

4.1.3. Spectrogram factorization-based multi-pitch detection
Before the rise of deep learning, the spectrogram factorization-based approach non-
negative matrix factorization achieved the best results in multi-pitch estimation. First
introduced in Smaragdis and Brown (2003), non-negative matrix factorization tries to
factorize a non-negative input spectrogram, V , into two matrices called a dictionary, D,
and an activation matrix A.

V = DA (4.3)

20

4.2. Automatic Music Transcription with Neural Networks

This has an intuitive interpretation; matrix D contains the frequency information of
the input spectrogram while the activation matrix contains the temporal information
of when each note is active. If the frequencies for each pitch were stationary it would
be possible to decompose V as in equation 4.3. As this usually is not the case, the goal
is to minimize the distance between V and DA. Smaragdis and Brown (2003) derived
rules which can be used to update D and A to minimize this distance.

4.2. Automatic Music Transcription with Neural Networks

This section covers the state-of-the-art approaches for automatic music transcription
(AMT) that have been published mostly in the last decade. In this period, neural
networks have proven to be powerful for automatic music transcription, and have become
increasingly popular. However compared to other fields such as image processing, progress
on neural networks for automatic music transcription has been slower. All approaches and
systems in this section include the use of neural models. Since neural network approaches
have shown an increased performance, most of these models operate on the note-level
transcriptions and not solely on multi-pitch estimation.

One of the first attempts at AMT with neural networks was originally published
in 2001 with the work of Marolt (2004). Their model consists of adaptive oscillators
that track partials in the time-frequency domain and a neural network that is used for
note-prediction. Di�erent neural network architectures were tested such as multilayer
perceptrons, recurrent neural networks, and time-delay neural networks. The time-delay
neural gave the best results in their experiments.

One of the first successful approaches in more recent years is the system presented by
Böck and Schedl (2012). This system uses two parallel Short-Time Fourier Transforms
(STFT) with di�erent window lengths to capture both a high temporal and frequency
representation. The idea is that the high temporal resolution helps to detect note-onsets
and the increased frequency resolution makes it easier for the model to disentangle notes
in the lower frequency range. The magnitudes of the two spectrograms are then log-scaled
and aligned according to the pitches of the 88 MIDI notes. This representation is used
as an input to a bidirectional Long Short-Term Memory (BiLSTM) recurrent neural
network. The output of the network is the predicted note onsets for each of the 88 pitches.
The note o�sets or note durations are not predicted.

Later work has been inspired by speech recognition by extending an acoustic front-end
with a symbolic-level module resembling a language model (Sigtia et al., 2016). The
symbolic-level module is called a music language model (MLM) and the rationale with
this module is to learn long-range dependencies such as common chord progressions and
melodic structures. This module uses a recurrent neural network to predict active notes
in the next time frame given the past and can be pre-trained on MIDI files independently
of the acoustic model. The MLM improved performance in all evaluations in their work,
however, the increase was modest (around one point in F1-score).

Sigtia et al. (2016) were the first to use convolutional networks in their acoustic model.
There are several motivations for using a convolutional network for acoustic modeling.

21

4. Related Work

Previous work suggests that rather than classifying a single frame of input, better
prediction accuracies can be achieved by incorporating information over several frames
of inputs. This has typically been achieved by applying a context window around the
input frame or by aggregating information over time by calculating statistical moments
over a window of frames. Applying a context window around low-level features such
as STFT frames, however, would lead to a very high dimensional input which can be
computationally infeasible. Also, taking the mean, standard deviation or other statistical
moments makes very simplistic assumptions about the distribution of data over time in
neighbouring frames. Due to their architecture, convolutional layers are directly applied
to neighboring features both in frequency and time dimensions. Also, due to their weight
sharing, pitch-invariant features in the log-frequency representation can be learned.

Kelz et al. (2016) disregarded the music level model completely and did a comprehensive
study on what could be achieved only with an acoustic model. They also studied how
di�erent input representations a�ect performance. In their work, they only focused on
frame-level transcriptions. Four di�erent spectrograms were examined; spectrograms
with linearly spaced bins, spectrograms with logarithmically spaced bins (mel-scaled),
spectrograms with logarithmically spaced bins and logarithmically scaled magnitude,
as well as the constant-Q transform. For a shallow neural network, Kelz et al. (2016)
achieved the best performance with a spectrogram with logarithmically spaced bins and
logarithmically scaled magnitude. Hence a mel-scaled spectrogram with 229 bins and
logarithmically scaled magnitude is a common choice in more recent work (Hawthorne
et al., 2018; Kong et al., 2020). Models with convolutional layers outperform dense neural
networks, but whether or not the convolutional layers are followed by a dense layer was
not as significant for performance. Kelz et al. (2016) achieved a frame-level F1-score of
around 70 on the Yamaha Disklavier piano recordings in MAPS (see section 3.1).

The next leap in performance was done by Google’s Magenta1 team with the model
Onsets and Frames (Hawthorne et al., 2018). With this model, they focus on note-level
transcriptions of pianos. Since the piano has a perceptually distinct attack and the
note-energy decays immediately after the onset, Hawthorne et al. (2018) argue that
these frames should be given special relevance. The model is split into two parts, one
part detects note onsets and the other part detects fundamental frequencies in frames
conditioned by the onsets. The onsets are further emphasized by giving frame labels closer
to the onsets a higher value. The onsets detection head has several advantages, predicting
note onsets is easier than predicting fundamental frequencies of independents frames,
hence this mitigates the common problem of spurious predictions. Secondly, since active
frames is a much more common event, conditioning it on onsets also reduces the number
of false positives. This model architecture could, however, struggle to predict instruments
that do not have as prominent note onsets such as string and wind instruments when
starting the note softly. The architecture in the original model is shown in Figure 4.1.
Both the frame and onset detection head are trained jointly. Hawthorne et al. (2018)
achieved a note F1-score of 82.3 and a note-with-o�set score of 50.2 on the MAPS
Disklavier piano recordings. This is also the first model to predict note onset velocity.

1https://magenta.tensorflow.org

22

https://magenta.tensorflow.org

4.2. Automatic Music Transcription with Neural Networks

This is done with a similar stack as the frame and onset model but is not conditioned on
the others.

In a later revision, the team from Magenta achieved much higher performance with
an extended Onset and Frames model. In this model Hawthorne et al. (2019) added
an o�set detection head, inspired by Kelz et al. (2019). This o�set stack is not used
in inference but fed to the frame stack together with the onset stack. Hawthorne et al.
(2019) also simplified the frame value for the loss function by not decaying the weights.
The number of parameters in the new model is also increased significantly and together
with the much larger training dataset, MAESTRO (see section 3.2), this model achieved
a note F1-score of 86.44 and a note-with-o�set F1-score of 67.4 on the MAPS Disklavier
piano recordings. On the MAESTRO test dataset, this model achieved a 95.32 note
F1-score and 80.5 note-with-o�set F1 score.

Log Mel-Spectrogram

Conv StackConv Stack

BiLSTM

BiLSTM

Onset Loss

Frame Loss

Onset Predictions

Frame Predictions

FC Sigmoid

FC Sigmoid

FC Sigmoid

Figure 4.1.: Architecture of the original Onsets and Frames model. Reprint of Figure 1
from Hawthorne et al. (2018) under CC BY 4.0 license.

Kim and Bello (2019) used the extended Onsets and Frames model as a reference
and added an adversarial training scheme. They point out that many of the current
state-of-the-art transcription models, such as the one from Hawthorne et al. (2018),
use an element-wise sum of the pitch labels and prediction as a loss function which
indicates that each element is conditionally independent of each other. This encourages
the model to predict the average of the posterior, which can also be seen in image tasks
with similar loss functions resulting in blurry images. Kim and Bello (2019) added a
discriminator to the loss function inspired by GANs’ success on image translation tasks.

23

4. Related Work

The computation graph of the loss function is shown in Figure 4.2. The authors point out
that the discriminator e�ectively implements a music language model (MLM) and biases
the transcription towards more realistic note sequences. They achieve a note F1-score of
95.6 and a note with an o�set F1-score of 81.3 on the MAESTRO test dataset.

X Transcription
Model G(X) = Ŷ

Y

task
cGAN

Discriminator real/fake

L
L

Figure 4.2.: Computation graph of adversarial loss in Kim and Bello (2019). Reprint of
Figure 2 from Kim and Bello (2019) under CC BY 4.0 license.

More recently, a team from ByteDance2 Kong et al. (2020) has achieved an ever better
score on the MAESTRO test dataset. Their model, just as the extended Onsets and
Frames model, uses an onset, o�set, frame and velocity stack. One of the new ideas in
the model architecture is that the onset stack is conditioned on the velocity stack. Just
as in the Extended Onsets and Frames model, the frame stack is conditioned on both
the onset and o�set stack in addition to an activation stack. Kong et al. (2020) also
analytically calculate onsets and o�sets instead of rounding them to the nearest frame.
Together these changes increase note-level F1-score to 96.72 and a note-with-o�set F1
score 82.47 on the MAESTRO test dataset. This model also incorporates sustain pedal
prediction and achieves an F1-score of 91.86 on the same training set.

Hung et al. (2020) focus on stream-level transcription and use the dataset Slakh
(see section 3.7) for both training and evaluation. Their model performs music source
separation and transcription jointly using an adversarial approach. A separator, that acts
as a generator, outputs a time-frequency mask for each instrument, and a transcriptor
that acts as a critic, provides both temporal and frequency supervision to guide the
learning of the separator. The authors write that they achieve a transcription note
accuracy on Slakh2100-split2 of 86% on bass, 51% on guitar, and 61% on piano on
the mixture tracks.

Results for the most recent work in automatic music transcription are shown in
Table 4.1. Rows above the horizontal line are on the MAPS Disklavier piano recordings
and below on the the MAESTRO test split (see section 3.1 and 3.2). Since Sigtia
et al. (2016) and Kelz et al. (2016) did not calculate all the metrics in their paper, the
reproduced results from Hawthorne et al. (2018) are used. We notice that Hawthorne
et al. (2018) achieved significantly higher score that the prior work with the Onset and
Frames architecture on the MAPS dataset. We also see that Hawthorne et al. (2019)
got much higher results on the MAESTRO dataset than on the MAPS dataset with the

2https://www.bytedance.com

24

https://www.bytedance.com

4.3. Music Source Separation

Table 4.1.: Automatic music transcription results on piano. Rows above the horizontal
line are evaluated on MAPS and below on MAESTRO

Frame Note Note w/o�set
P R F1 P R F1 P R F1

Sigtia et al. (2016) 72.0 73.3 72.2 45.0 49.6 46.6 17.6 19.7 18.4
Kelz et al. (2016) 81.2 65.1 71.6 44.3 61.3 50.9 20.1 27.8 23.1
Hawthorne et al. (2018) 88.5 70.9 78.3 84.2 80.7 82.3 51.3 49.3 50.2
Hawthorne et al. (2019) 92.9 78.5 84.9 87.5 85.6 86.4 68.2 66.8 67.4
Hawthorne et al. (2019) 92.1 88.4 90.2 98.3 92.6 95.3 83.0 78.2 80.5
Kim and Bello (2019) 93.1 89.8 91.4 98.1 93.2 95.6 83.5 79.3 81.3
Kong et al. (2020) 88.7 90.7 89.6 98.2 95.4 96.7 83.7 81.3 82.4

same model. A possible explanation for this is that the labels for the MAPS dataset are
not fully accurate. Another trend is that the more recent work achieves better F1 scores
and that the precision is higher that the recall, except for the frame results in Kong et al.
(2020) which are lower than the previous works. Kong et al. (2020) did reproduced the
work in Hawthorne et al. (2019) with slightly worse score.

4.3. Music Source Separation

This section briefly covers the state-of-the-art approaches for music source separation
that have been published in the last couple of years. All of the presented models are
deep learning-based, and since deep learning models are inherently dependent on learning
data, deep learning models first kicked o� after the large-scale publicly available dataset
MUSDB18 (see Section 3.8) was released in 2017.

Open-Unmix by Stöter et al. (2019a) serves as an reference implementation for
deep learning-based music source separation and is from the same group3 that cre-
ated MUSDB18. Their work aimed to achieve state-of-the-art performance and be easily
understandable so it could serve as a basis for other researchers in the future. Stöter
et al. specifically state that Open-Unmix should be ‘MNIST-like’ and as such, is openly
available on GitHub4 and is encouraged to be hacked on by other researchers. The main
idea in the model architecture is as follows; we know that spectrograms (see Section 2.2.2)
can be losslessly reversed back to the original waveform signal by the inverse discrete
Fourier transform. What would happen if we changed the magnitude of the spectrogram
before doing the inverse transformation? It happens that this setup works well for
music source separation and is what the architecture does. It takes a magnitude-based
spectrogram as input, uses three BiLSTMs with a skip-connection to predict a mask, and
multiplies this mask with the original spectrogram. A separate model is used for each
instrument and the model is optimized in the magnitude domain using mean squared
error.

3https://sigsep.github.io
4https://github.com/sigsep/open-unmix-pytorch

25

https://sigsep.github.io
https://github.com/sigsep/open-unmix-pytorch

4. Related Work

Another model was created by a group from Deezer5 called Spleeter (Hennequin
et al., 2020). Spleeter also operates on the magnitude spectrogram domain but the
model is changed to a U-Net architecture. The U-Net architecture is a encoder-decoder
kind of architecture with skip-connections between all the layers of equal size. Both
the downsampling and upsampling-block consist of 2D convolutional layers. Since the
architecture in solely based convolutional layers, it is very e�cient. It is able to separate
three and a half hours of audio into four stems in less that two minutes on GPU while
competing with state-of-the-art results on the MUSDB18 dataset.

Upsampling block 1Downsampling block 1

Source 1 output

Crop and concat

Mixture audio

Crop and concat
Downsampling block 2

Crop and concat
Downsampling block L

...

Upsampling block 2

Upsampling block L

...

1D Convolution, Size 15

Downsampling

1D Convolution, Size 5

Upsampling

1D Convolution, Size 15

1D Convolution, Size 1

Source K-1 output

...

Crop and concat

Figure 4.3.: Wave-U-Net architecture. Reprint of Figure 1 from Stoller et al. (2018) under
CC BY 4.0 license.

Wave-U-Net is by Stoller et al. (2018) and operates directly on the waveform domain.
Most of the earlier work operates on the magnitude spectrogram, which ignores phase
information and relies on a fixed set of hyperparameters for the spectrogram. Stoller et al.
created an adaption of the U-Net architecture to the 1-dimensional input dimension. By
down-sampling the input features L times, the model operates on a longer and longer
temporal window. As we see in Figure 4.3, there are also skip-connections between
the downsampling and upsampling-block to propagate high-frequency information. The

5https://www.deezer.com

26

https://www.deezer.com

4.3. Music Source Separation

output layer is engineered to enforce source additivity to the K separated instruments.
CatNet is a more recent work by Bytedance that operates both in the time-frequency

domain and the raw waveform domain (Song et al., 2021). The framework concatenates
a U-Net separation branch using spectrogram as input and a Wav-U-Net separation
branch using time-domain waveform as input for music source separation. By combining
both representations the model can incorporate phase information and the frequency
information from a spectrogram. With this architecture state-of-the-art results were
achieved on vocal separation.

27

5. Architecture
The following chapter describes the model architectures and post-processing that will be
used in the experiments in chapter 6. First, the extended Onsets and Frames architecture
will be described. This architecture with minor variations has been used in several
recent papers in a single-instrument setting as described in section 4.2. The next section
describes the new multi-instrument automatic music transcription architecture that
combines the extended Onsets and Frames model with a U-Net architecture. The U-Net
architecture is inspired by the architectures that are typically used in Music Source
Separation (see section 4.3). Finally, the post-processing step to extract notes from the
piano-roll representation for automatic music transcription is shown.

Section 5.1 is based on Chapter 5 in Grønbech (2020).

5.1. Extended Onsets and Frames

The architecture used in most of the experiments in chapter 6 is shown in Figure 5.1. This
architecture was created by Hawthorne et al. (2019) and based on their previous work in
Hawthorne et al. (2018). The raw audio waveform is transformed into the time-frequency
representation by a mel-scaled spectrogram with logarithmically scaled magnitudes as
suggested by Kelz et al. (2016). Four detectors are then trained simultaneously to
predict note onsets, frame activation, note o�sets, and velocity. Each of the detectors
has the same architecture except the frame prediction detector that does not have the
convolutional stack. The convolutional stack works as an acoustic model and consists
of three 2D convolutional layers with padding 1 and kernel size 3. Each convolutional
layer is followed by a batch normalization layer and ReLU activation function. The last
convolutional layer has a max-pooling operation to reduce the number of dimensions
by half and a dropout of 0.25. After the last convolutional layer, a new max-pooling
operation is added as well as a new dropout of 0.25. The convolutional stack is followed
by a linear layer and a dropout of 0.5.

The convolutional stack is followed by a bidirectional LSTM, and a fully connected
layer with sigmoid activation functions. The output from the onset prediction, frame
activation prediction, and o�set prediction is then fed into the final frame prediction
model. The gradient propagation into the onset detector and o�set detector from the
frame network is stopped to make the training more stable. In practice, this means that
the onset detector and o�set detector are trained independently of the frame prediction
detector. The frame model only consists of a bidirectional LSTM and a fully connected
layer with sigmoid activation functions.

29

5. Architecture

Conv Stack

Log Mel-Spectrogram

BiLSTM

Onset prediction

BiLSTM

Frame prediction

Onset loss Frame loss Offset loss Velocity loss

FC Sigmoid

Conv Stack

BiLSTM

Activation prediction

FC Sigmoid

Conv Stack

BiLSTM

Offset prediction

FC Sigmoid

Conv Stack

BiLSTM

Velocity prediction

FC Sigmoid

FC Sigmoid

Figure 5.1.: The extended Onsets and Frames architecture. Reprint of Figure 5.1 in
Grønbech (2020)

The loss function for this model is the sum of the loss function for the di�erent
detectors.

L = Lonset + Lframe + Lo�set+Lvelocity (5.1)

Lonset, Lframe and Lo�set are calculated as the binary cross-entropy between the re-
spective prediction and label. The velocity loss is calculated as follows

Lvelocity =
qT

t=0
qpmax

p=pmin
Ionset(p, t)(Vpred ≠ Vlabel)2

�Ionset
, (5.2)

where T is the number of frames, pmin and pmax are the lowest and highest pitch in
the labels, Ionset is the onset label, and Vpred and Vlabel are the predicted velocity and
velocity label, respectively. The motivation of multiplying the square of the di�erence of
the velocities by the onset label is that we are only interested in the velocity at the note
onset. The onset label is zero when the note is not active, hence the other velocities will
not contribute to the loss function.

Due to the fact that there is no gradient propagation between the detectors, a weighting
of the loss function in equation 5.1 would not influence the backpropagation.

30

5.2. Extended Onsets and Frames with U-Net

Figure 5.2.: The U-Net architecture. Reprint of Figure 1 in Jansson et al. (2017) under
CC BY 4.0 license.

5.2. Extended Onsets and Frames with U-Net

This architecture aims to solve Research Question 3 by combining a music source
separation model with an automatic music transcription model. A U-Net model is added
between the log scaled mel-spectrogram and the Extended Onsets and Frames model
from Section 5.1. The U-Net architecture is a kind of encoder-decoder architecture with
additional skip-connections as can be seen in Figure 5.2. The left part in the Figure
is the encoder and consists of six Conv2D blocks. Each Conv2D block consists of a
2-dimensional convolutional filter with kernel size 5, stride 2 and padding 2. Following
the convolutional filter, a 2-dimensional batch normalization layer is added as well as a
leaky-ReLU activation function. For each of the Conv2D blocks, the width and height
are reduced in half, while the depth is doubled. This means that the number of features
is reduced significantly and the encoder operates on a longer temporal and frequency
window for each block. In the decoder, Deconv2D blocks are used. The Deconv2D block
consists of transposed convolutions to upscale the width and height by a factor of two.
Following the transposed convolution a ReLU activation function and a 2-dimensional
batch normalization is added. The non-activated output of the corresponding encoder
layers are concatenated to the previous Deconv2D block to propagate information more
directly from the encoder to the decoder. This is shown as arrows marked with ‘Concat’
in the Figure. In the final layer, a Sigmoid activation function is used to truncate the
values between 0 and 1 before it is multiplied by the input. This final layer works as a
mask that only keeps the frequencies in the input that are relevant.

31

5. Architecture

In Experiment 3 in Chapter 6 only the loss function for automatic music transcription
is used (the separated audio source is not given as labels).

This is the same architecture used in Hennequin et al. (2020) and the implementation
in this work is based on a re-implementation in PyTorch from this GitHub repository1.

5.3. Post-Processing

Figure 5.3.: Predictions and post-processed notes. In the upper half; blue represents onset,
purple frame and yellow o�set. Predictions that have not been processed to
notes are marked with a red ring.

The Onsets and Frames architectures operate in a discrete piano-roll representation of
music. To convert the piano-roll representation to MIDI files a post-processing step is
needed. The typical post-processing step used in the related work is as follows; the onsets
and frame prediction are binarized by a chosen frame threshold and onsets threshold.
The o�set prediction is neglected in this step. Every onset over the given threshold will
be the start of a note. Each frame value above the chosen frame threshold is appended
to the note length if it is at the same pitch and straight after a note onset or a chain of
consecutive frames after the onsets. The frame and onset thresholds used in the related

1https://github.com/tuan3w/spleeter-pytorch

32

https://github.com/tuan3w/spleeter-pytorch

5.3. Post-Processing

work are typically not specified, but a value of 0.5 for both is natural since the predictions
will be between 0 and 1.

In Table 4.1 (page 25) the automatic music transcription results for the related work
are shown. In that table, we see that the precision is higher than the recall in almost all
the metrics. For some applications, higher recall is more important than higher precision,
such as when using automatic music transcription models to compose music since it is
normally easier to remove wrong notes than add ones that do not exist. Since the recall
is lower, we want to increase the number of notes that get accepted without sacrificing
the precision too much. One strategy to do this is to reduce the frame threshold and
onset threshold.

The usual post-processing is shown in Figure 5.3 with onset and o�set thresholds of
0.5. The prediction is shown in the upper half and the post-processed notes in the lower
half. Blue represents onsets, purple frames and yellow o�sets. Since the onset needs to
be above a given threshold to start a note, not all frame predictions in the figure actually
contribute to a processed note. The predictions marked with a red ring are in fact a
correct prediction, but since the onset predictions are too weak it is not processed to a
note. A modification to the usual post-processing step is proposed in this work. Since no
information flows from the onset detector to frame detector in the Extended Onset and
Frames architecture (see Figure 5.1), more relevance is given to the frame predictions.
Instead of only using the predicted onset values to start a note, a note can start if there
is a weak onset value and strong frame value straight afterward. This would increase the
recall in the given figure. In the experiments in Chapter 6, both the usual and modified
post-processing steps are tested on the validation set. The processing step with the best
F1 scores is chosen for each experiment. All the experiments also use an onset threshold
and frame threshold lower than 0.5 to increase the recall.

33

6. Experiments and Results
As part of the research in this thesis, some experiments were carried out to answer ques-
tions related to the Research Questions and the overall goals of the thesis. This chapter
presents the experiments conducted to investigate whether multi-instrument automatic
music transcription is possible. Experiments 1–3 transcribe a single instrument from a
multi-instrument audio source without any pre-processing, with audio source separation,
and with a new architecture created for this purpose. Experiments 4–5 investigate if it is
possible to train a note-level multi-instrument automatic transcription model and measure
how well this model performs on di�erent instrument classes. Experiment 6 introduces a
stream-level multi-instrument model. This model is not only able to transcribe the audio
source, but also tell which instrument a note is played by. The first section presents the
overall plan for carrying out the series of experiments. The second section provides the
reader with an overview of each experiment, together with the information necessary to
reproduce the experiments. The final section presents detailed results obtained from each
experiment.

6.1. Experimental Plan

To keep a series of experiments e�ective and in a structured fashion, an experimental plan
is crucial. Seven di�erent experiments are presented. Experiment 0 serves as an upper
baseline for the other experiments since it operates in the simplified single-instrument
automatic music transcription domain. Experiment 1, 2 and 3 are designed to answer
Research Question 1, 2, and 3 respectively.

In experiment 4 a note-level multi-instrument model is trained. This model is evaluated
in three di�erent ways in experiment 4 and on twelve instrument classes in experiment 5.

Finally, in experiment 6 a stream-level multi-instrument model is trained. This model
is not only able to transcribe pitched sounds, but also able to tell whether the note is
played by piano, guitar, bass, a pitched instrument or drum. All the instruments and
trained and inferred simultaneously.

Experiment 0 – Baseline Experiment

The first experiments will work as an upper bound for the other experiments. For this
initial experiment, the Extended Onset and Frames model (see Section 5.1) will operate
in a single-instrument automatic music transcription domain. In this experiment, the
model will be trained and evaluated on electric bass, piano and guitar audio segments
from the Slakh dataset.

35

6. Experiments and Results

6.1.1. Experiments on Pre-Processing and Model Architectures
Experiment 1–3 investigates the e�ect of pre-processing and di�erent model architectures
for automatic music transcription. Just as in Experiment 0, three of the most common
instruments in the Slakh dataset are chosen–electric bass, piano and guitar. Electric bass
is chosen instead of all the bass instruments since was done in Hung et al. (2020).

Experiment 1 – Without Source Separation

Experiment 1 is designed to directly answer Research Question 1. In this experiment,
the same model as in Experiment 0 will be trained, however, this time the audio source
will be multi-instrument (full band music, labeled as ‘mix’ in Table 6.3). In this setting,
the model needs to filter out the instruments that are not relevant.

Experiment 2 – With Source Separation

Experiment 2 is designed to directly answer Research Question 2. The audio in this
experiment will be pre-processed by a music source separation model. First, the model
Spleeter by Hennequin et al. (2020) was used. This model, however, was not able to
separate the bass from the Slakh music source at all. Subsequently, the model Open-
Unmix by Stöter et al. (2019b) was used with much better results. Both models can
separate music into four di�erent stems—vocals, drums, bass and other separation. The
audio source in this experiment will be the separated bass stems.

Experiment 3 – New Architecture

Experiment 3 is designed to directly answer Research Question 3. This experiment has
the same setup as in Experiment 1 but a new architecture is created to both separate
and transcribe the input audio (see Section 5.2). In this experiment, only the automatic
music transcription labels will be used during training.

6.1.2. Experiments on Note-Level Multi-Instrument Transcription
Experiment 4 is designed to answer Research Question 4 by training a note-level multi-
instrument model. This note-level model is created and trained in such as way that it
should be able to transcribe all pitched notes but not be able to tell which instrument
the note comes from. This model will be trained on the ‘mix’ audio source and be given
the labels for MIDI stems with program numbers 0–95 (rest of the MIDI programs are
either sound e�ects or very rare instruments). The model trained in this experiment will
be evaluated in three di�erent ways in Experiment 4 and on twelve instrument classes in
Experiment 5.

Experiment 4a

In this experiment, the note-level multi-instrument model will be evaluated on the same
kind of audio source the model was trained on (‘mix’).

36

6.1. Experimental Plan

Experiment 4b

In this experiment, the note-level multi-instrument model will be evaluated on all the
instruments the model was trained on but this time the rest of the instruments in the
audio source will be removed (such as drums and sound e�ect). This experiment together
with experiment 4a will give some numbers on how much the e�ect of drums and other
kinds of musical noise influences the transcribing performance.

Experiment 4c

In this experiment, the model is evaluated on the electric bass labels with the ‘mix’ audio
source. This experiment is created to give a comparison to Experiment 1–3. Since this
model is not able to tell which instrument played a specific note, only the recall will be
presented. In other words, this experiment tries to answer – is the multi-instrument model
able to transcribe as much of the electric bass as the specialised models in experiment
1–3?

Experiment 5 – Evaluation on twelve Instrument Classes

Experiment 5 is designed to directly answer Research Question 4. The note-level multi-
instrument model trained in Experiment 4 will be evaluated on twelve di�erent instrument
classes. The instrument classes will be piano, chromatic percussion, organ, guitar, bass,
string, ensemble, brass, reed, pipe, synth lead and synth pad. The audio source will be
single-instrument—it will only consist of the instrument class it is evaluated on.

6.1.3. Experiments on Stream-Level Multi-Instrument Transcription

In this final experiment, a stream-level multi-instrument model is trained. This model
will not only transcribe all the pitched sounds as in Experiment 4, but also tell if a note
is played by bass, guitar, piano or drum. The model architecture is the Expended Onsets
and Frames as discussed in Section 5.1, however, the labels for the di�erent instruments
are concatenated. The post-processing step is slightly modified the take the concatenated
labels into account (but the algorithm described in Section 5.3 remains the same). This
model will be trained on piano, guitar, bass, all the pitched instruments and drums
simultaneously.

Experiment 6

The stream-level multi-instrument model is evaluated on the Slakh redux dataset. All
the tracks that contain pitch-bends or do not have any notes played by at least one of
the instrument classes are removed.

37

6. Experiments and Results

6.2. Experimental Setup
To make the results provided reproducible, the following section is dedicated to the details
of the experimental setup used and the libraries and tools used for the experiments. The
first codebase1 is for the model architecture and contains all the experiments. The second
codebase2 is a PyTorch dataset for Slakh which enables fast and convenient loading of
the audio and labels as well as necessary dataset modifications listed in section 6.2.1.
Both of these codebases is based on the work by Kim (2019).

6.2.1. Dataset

The Slakh dataset (see section 3.7) by Manilow et al. (2019) is used in all the experiments.
The dataset consists of 2100 tracks which are taken from the Lakh dataset (see section 3.6)
(Ra�el, 2016). Each track in Slakh consists of the following files; the original MIDI file
from Lakh called all_src.mid, the mixed music called mix.flac, a file with metadata
about the rendering called metadata.yaml, an individual audio track for each instrument
which is saved in a folder called stems and a MIDI file for each stem in the MIDI folder.
It is important to note that not all tracks in the original all_src.mid are rendered.
Likewise, not all tracks in the MIDI folder are necessarily rendered either. To find out
which tracks are rendered, the metadata.yaml file needs to be parsed.

For automatic music transcription, pitch bends should also be given special consider-
ation. Of the 2100 tracks in the Slakh dataset, 1486 tracks contain at least one pitch
bend that is a semi-tone above or below the note in the MIDI files. If we only look at
the eletric bass stems, 930 tracks contain at least one pitch bend. Electric bass stems
are MIDI tracks that have program numbers 33–37 (Electric Bass (finger), Electric Bass
(pick), Fretless Bass, Slap Bass 1 or Slap Bass 2).

The original Slakh dataset contains several duplicated songs but where each track
was rendered with di�erent patches and e�ects. The duplication of tracks in di�erent
dataset splits (training, validation and testing) should be avoided in the automatic music
transcription setting due to leakage between splits. This has been addressed by the Slakh
authors, Manilow et al. (2019), by providing two new splits of the dataset called redux,
splits_v2 together with the original split. The redux split removes all the duplicated
songs, while the splits_v2 split moves tracks so that each track only occurs in one
dataset split (training, validation or testing).

In the following experiments, the split that is used is the redux split but all the tracks
that contain pitch bends are removed. For the electric bass experiments, all the tracks
that contain more than two notes played simultaneously are also removed. This is done
since some of the stems only play chords at high pitches and were probably given the
instrument electric bass by a mistake. Some tracks also use a fretless bass to denote the
melody and are played at a much higher pitch than a typical bass. Both of these cases
are addressed by removing the stems that contain more than two bass notes played at
the same time.

1https://github.com/greenbech/multi-instrument-onsets-and-frames
2https://github.com/greenbech/slakh-pytorch-dataset

38

https://github.com/greenbech/multi-instrument-onsets-and-frames
https://github.com/greenbech/slakh-pytorch-dataset

6.2. Experimental Setup

Table 6.1.: Parameters for mel-scaled spectrogram. Experiment 0–2 use 229 frequency
bins while experiment 3–4 256 frequency bins.

Sample rate 16kHz
Hop length 512
Window length 2048
Frequency bins 229/256
Min frequency 30Hz
Max frequency 8kHz

Another aspect of Slakh worth noticing is that Manilow et al. (2019) made a mistake
when rendering and creating the MIDI files for bass stems. They truncated the MIDI
pitches between MIDI note 35 which is a B1 (fundamental frequency 61.74hz, one octave
above the deepest note on a 5-string electric bass) and MIDI note 79 which is G5
(fundamental frequency 783.99hz, one octave above the 24th fret on the highest string
on a 4/5-string bass). That means that the seven deepest notes on a four-string bass
and the deepest octave on a five-string bass are not present in the dataset. Likewise, the
bass synth was not able to render the highest octave. That means that there are some
pitches that are present in the labels that are not rendered in the audio. The PyTorch
dataset created during the work in this thesis 3 takes this into account by removing the
labels for the highest octave for bass. This dataset also removes tracks that were found
to errors. A detailed list of stems with errors can be found in Appendix A.

6.2.2. Parameters

The parameters for the mel-scaled spectrogram are shown in Table 6.1. Experiment 0–2
use 229 frequency bins as this is commonly used in the related work. The U-Net model
in experiment 3 requires the input features to be multiples of 26 = 62, hence the number
of frequency bins is increased to 256. Experiment 4 and 6 also use 256 frequency bins.

In the Extended Onsets and Frame model the convolutional layer has a kernel size of
3 and 1 padding. The number of filters for the convolutional layers are 48/48/96, the
bidirectional LSTM unit size 384 and the fully connected layers have 768 units.

All the convolutional layers for the U-Net model have a kernel size of 5, stride of 2 and
padding of 2. The number of convolutional layers are 16/32/64/128/256/512.

An onset threshold of 0.35 and frames threshold of 0.3 are chosen for most of the
experiments after a sparse hyper-parameter search.

The number of trainable parameters for the di�erent models are shown in Table 6.2.
An Adam optimizer with learning rate 0.0006 was chosen in all the experiments. The

learning rate decays with a factor of 0.98 every 10 000 iteration. In addition to this
learning schedule, an adaptive gradient clipping strategy called AutoClip by Seetharaman
et al. (2020) was used. This clipping strategy restricts the gradient step by a given

3https://github.com/greenbech/slakh-pytorch-dataset

39

https://github.com/greenbech/slakh-pytorch-dataset

6. Experiments and Results

Table 6.2.: Trainable parameters for the di�erent models
Experiment Parameters

Ex. 0 21.6 MB
Ex. 1 21.6 MB
Ex. 2 21.6 MB
Ex. 3 32.8 MB
Ex. 4 29.6 MB
Ex. 6 38.2 MB

percentile (p) of the observed gradient norms during training. A p-value of 10 was chosen
for all the experiments.

6.2.3. Environment and Resources
All the experiments were carried out on the NTNU HPC Idun Cluster (Själander et al.,
2019). The Slakh PyTorch dataset is created in such a way that it can either stream from
disc or keep all the labels and audio in memory. For faster training the audio should be
kept in memory, but that also requires slightly above 16GB of RAM for the entire Slakh
training and validation split. 16GB of VRAM is also required to run the models with
the batch size and number of parameters in this thesis. All the experiments took around
8–11 hours to train on a NVIDIA V100/P100.

40

6.3. Experimental Results

6.3. Experimental Results
This sections presents the results. All the results are calculated by the mir_eval Ra�el
et al. (2014) library implemented in Python. The average for all the tracks in the test
set are reported. Inference is relatively fast for all models in the order of 5–10 times
real-time performance on CPU and 10–100 times on GPU.

6.3.1. Experiment 0–3

Table 6.3.: Results for experiment 0–3 on the modified Slakh redux test dataset split
Instrument Audio Frame Note Note w/o�set

class source P R F1 P R F1 P R F1
Ex. 0a Electric bass Individual 99.4 97.9 98.5 99.8 98.6 99.1 98.6 97.4 97.9

Ex. 0b Piano Individual 90.7 89.5 89.6 97.5 96.3 96.9 72.2 71.3 71.7

Ex. 0c Guitar Individual 93.6 84.1 87.8 93.9 89.3 91.3 74.7 71.1 72.6

Ex. 1a Electric bass Mix 93.4 89.6 91.2 93.0 90.9 91.8 85.2 83.5 84.2

Ex. 1b Piano Mix 66.4 60.6 60.4 76.3 73.0 73.0 27.1 26.7 26.4

Ex. 1c Guitar Mix 69.3 56.5 59.4 73.1 62.9 65.3 38.4 33.9 35.1

Ex. 2 Electric bass Separated 87.9 82.6 84.9 88.6 84.4 86.2 77.7 74.0 75.6

Ex. 3a Electric bass Mix 93.1 91.4 92.1 92.7 93.4 92.9 84.6 85.3 84.8

Ex. 3b Piano Mix 69.9 60.2 62.4 84.2 69.6 74.3 31.7 27.5 29.0

Ex. 3c Guitar Mix 76.9 54.2 60.6 76.4 59.3 64.7 45.2 36.5 39.5

The results for the experiments 0–3 can be found in Table 6.3. We see that the baseline
experiment, Experiment 0, performs clearly better than the other experiments with
note F1 scores above 90 for all the instruments. For electric bass, the results are very
good with note F1 score of 99.1 and note-with-o�set F1 or 97.9 In fact, given that the
electric bass test set only consists of 71 non-pitch bend tracks, many of the tracks did
not have a single transcription mistake. For piano the results are also very good, beating
state-of-the-art results in Table 4.1 on note F1 score. For note-with-o�set values, the
piano results are around 10 percentage points behind state-of-the-art. Guitar is the most
di�cult instrument to transcribe with a note F1 score of 91.3, 5.6 points behind piano and
7.8 behind electric bass bass. Transcriptions segments from the test dataset are shown in
Appendix B. It is recommended to look at the frame F1, note F1 and note-with-o�set F1
scores in the caption to each figure to get an intuition for the metric and transcription
results.

Experiment 2 has the lowest score on all the metrics of the electric bass experiments
0–3. A transcription segment for this experiment is shown in Figure 6.1. In this figure a
(cropped) spectrogram is added above the transcription. We see that the model is not
able to predict the first two notes but also that the audio source does not fully contain
this information. At the end of the audio segment the audio source contains a distinct
note, but that note is not present in the labels. This probably means that the separation
model incorrectly separated a low-pitched piano or synth sound as bass.

Experiment 1 and 3 are closer in performance, but Experiment 3 is slightly better in
almost all metrics.

41

6. Experiments and Results

Figure 6.1.: From top to bottom: Input spectrogram, raw model predictions, reference,
post-processed notes and reference together. Correct predictions are shown in
black, wrong prediction in light blue and missed predictions in dark orange.

Spectrograms for the electric bass experiments 0–3 are shown in Figure 6.2. From
top to bottom we see the spectrogram for the individual electric bass audio source, for
the full band music (‘mix’), for bass separated by Open-Unmix and finally after U-Net
architecture in experiment 3. As expected, we see that the mixture spectrogram contains
a lot more information than the one for individual bass. We also see that the higher
frequencies for the separated bass are quite sparse and not very close to the individual
audio source but that the lower, and most important, frequencies seem to be more intact.
The U-Net spectrogram looks washed out compared to the one from ‘mix’ in most of the
frequencies, but the lower frequencies are emphasized. Since the log-scaled spectrogram
given as input to the U-Net architecture is symmetric around zero and that white pixel
values are given to the most negative values, it explains why frequencies the U-Net model
did not deem to be important are gray. If the magnitude was given as input to the U-Net
and the log-scale was done afterwards, unimportant pixels would be white just as the
separated spectrogram above.

42

6.3. Experimental Results

Figure 6.2.: Spectrograms for experiment 0–3. Top to bottom: individual electric bass
audio, mix audio, separated audio by Open-Unmix and spectrogram after
U-Net

43

6. Experiments and Results

6.3.2. Experiment 4–5

Table 6.4.: Results for experiment 4 on the modified Slakh redux test dataset split
Instrument Audio Frame Note Note w/o�set

class source P R F1 P R F1 P R F1
Ex. 4a All pitched Mix 74.6 71.8 72.4 81.3 67.0 72.6 37.5 31.5 33.9

Ex. 4b All pitched Individual 75.5 70.9 72.3 84.1 67.4 74.0 39.8 32.5 35.4

Ex. 4c Electric bass Mix - 89.6 - - 90.3 - - 70.6 -

The results for Experiment 4 are also shown in Table 6.4. We see that there is relatively
small di�erence in performance between Experiment 4a and Experiment 4b even though
Experiment 4a must filter out drums, sound e�ects and other musical noise that might be
in the audio source. The model trained in these experiments are, however, only trained on
a ‘mix’ audio source. If individual tracks were given during training larger performance
di�erence could be seen.

Only the recall for Experiment 4c is shown since the model does not tell which
instrument plays a given note and the model will predict all the other notes in the audio
source. The recall gives useful information about the proportion of the electric bass notes
the model is able to transcribe. We see that the recall is at the same level as Experiment
1 and 3 in Table 6.3 that operates with the same audio source on frame and note scores.
For note-with-o�set scores this model perform worse.

Table 6.5.: Results for experiment 5 on the Slakh redux test dataset split. Zero-indexed
MIDI program numbers are in parenthesis after the instrument class.

Instrument class Tracks Frame Note Note w/o�set
P R F1 P R F1 P R F1

Piano (0–7) 143 80.7 76.9 77.4 92.1 89.6 90.6 47.6 47.1 47.2

Ch. Percussion (8–15) 23 52.4 22.4 28.6 59.0 44.1 48.2 11.7 8.4 9.4

Organ (16–23) 42 44.7 28.8 33.0 43.7 38.6 38.9 22.1 20.9 20.9

Guitar (24–31) 74 83.3 72.0 75.3 87.6 75.6 79.8 58.3 51.5 54.0

Bass (32–39) 75 96.2 94.7 95.4 95.2 96.6 95.8 89.7 90.9 90.2

Strings (40–47) 16 70.6 62.8 59.4 77.7 70.7 70.2 40.6 35.2 36.0

Ensemble (48–55) 102 83.6 49.4 59.4 77.9 51.4 58.5 46.8 31.4 35.9

Brass (56–63) 25 65.2 49.9 54.8 65.6 56.0 58.9 54.4 46.6 48.9

Reed (64–71) 26 75.5 74.4 72.0 79.4 64.3 70.0 48.5 40.4 43.4

Pipe (72–79) 13 77.7 68.7 68.1 80.3 58.2 64.3 45.4 29.0 32.9

Synth Lead (80–87) 17 44.7 32.2 36.2 43.5 43.3 42.4 27.9 27.1 26.9

Synth Pad (88-95) 39 46.1 21.2 21.8 43.2 25.3 26.1 9.8 5.2 5.6

The experimental results for experiment 5 are shown in Table 6.5 and Figure 6.3. Since
an Onsets and Frames architecture is used, we would expect that the instrument classes
with a clear attack would be most easily transcribed as well as instrument classes with a
low level of notes played simultaneously. We see that the note-level multi-instrument
model is clearly best at transcribing bass, secondly piano and guitar. The note F1 results
on there instruments are 95.8, 90.6 and 79.8. The results in this experiment is comparable

44

6.3. Experimental Results

0

25

50

75

100

Pian
o

Ch.
Perc

us
sio

n
Orga

n
Guit

ar
Bas

s

Strin
gs

Ens
em

ble
Bras

s
Ree

d
Pipe

Syn
th

Le
ad

Syn
th

Pad

Frame F1 Note F1 Note w/offset F1

Figure 6.3.: Diagram of the results in experiment 5

to Experiment 0 since it also transcribes individual audio source (but acoustic bass and
synth bass added to the bass instrument class in this experiments). The bass performance
in this experiment is only slightly worse than the baseline even though the model did not
use any individual bass audio during training. A larger drop relative drop in performance
is seen for piano and even larger for guitar.

We see that the model struggles the most with synth pad. This is not surprising
since this instrument class does not have a clear attack. It is more surprising that
chromatic percussion, organ and synth lead are among the most di�cult to transcribe.
An evaluation of this, as well as a figure that show the performance where octave errors
are neglected are in Section 7.1.1 and shown in Figure 7.2 (page 52).

45

6. Experiments and Results

6.3.3. Experiment 6

Table 6.6.: Results for experiment 6
Instrument Tracks Frame Note Note w/o�set
class P R F1 P R F1 P R F1
Piano (0–7) 27 65.2 63.1 63.0 66.6 71.4 67.3 25.5 28.8 26.5

Guitar (24–31) 27 68.3 45.9 51.2 68.6 50.8 55.6 29.6 22.6 24.7

Bass (32–39) 27 92.7 87.2 89.5 91.1 89.1 89.9 79.3 77.6 78.3

All pitched (0–95) 27 82.2 75.3 78.3 81.2 70.2 74.4 44.2 38.4 40.6

Drum 27 68.6 64.2 65.2 75.5 66.9 69.9 75.5 66.9 69.9

We see the results for experiment 6 in Table 6.6 and Figure 6.4. This stream-level model
is able to transcribe piano, guitar, bass, all pitched instrument and drum simultaneously
from a mixture audio source. Again we see that bass is most easily transcribed. The
multi-instrument audio source is comparable to Experiment 1–3 and we see that the bass
performance is almost as good as Experiment 1 which uses the same architecture. The
results for the all pitched category are slightly better than Experiment 4a.

The drum score are calculated in the same manner as the pitched instruments. This
explains why the note and note-with-o�set score are equal.

Figure 6.4.: Diagram of the results in experiment 6

46

7. Evaluation and Conclusion
The goal of this Master’s Thesis was to extend automatic music transcription (AMT) to
a multi-instrument setting. Several experiments were conducted to achieve this goal. The
first set of experiments investigate di�erent architectures and if music source separation
pre-processing improves performance. These experiments show that the current single-
instrument AMT model works well on a mixture audio source, and can be further enhanced
by using a joint music source separation and AMT architecture. Music source separation
pre-processing did not improve performance, but the model was not fine-tuned on the
used dataset. The next experiment shows that it is possible to train a universal note-level
AMT model solely on mixture audio. This model reaches a note F1 score of 90.6 on piano
and 95.8 on bass, only slightly behind the current state-of-the-art. The transcription
performance varies greatly between instrument classes and the note-with-o�set scores
are still far behind the current single-instrument for all instrument classes except bass.
Finally, a stream-level model is trained that can transcribe piano, guitar, bass, drum and
all the pitched instruments simultaneously in 5-10 times real-time performance on CPU
and 10-100 times real-time performance on GPU. All the experiments are conducted on
the synthetically rendered MIDI dataset Slakh (see Section 3.7). During the work on
this dataset, several systematic and non-systematic errors were found and reported to
the creators of the dataset.

The following chapter will evaluate the findings in light of the initial Goal and Research
Questions. In addition, a discussion section is dedicated to the implications of the results,
as well as addressing additional questions which might have arisen based on the findings.
Finally, the contributions of this Master’s Thesis are summarized, and the Thesis is
ended with suggestions for future work.

7.1. Evaluation

Looking back to the introduction, this Master’s Thesis was written with a single goal in
mind: Introduce multi-instrument automatic music transcription models. This section
will first evaluate the initial Research Questions, and finally evaluate whether the answers
to the Research Questions have contributed to reaching the overall Goal.

7.1.1. Evaluation of Research Questions

Experiment 0 served as an upper baseline for all the Research Questions. The results of
Experiment 0a show that automatic music transcription more or less is a solved problem
for electric bass with a single-instrument audio source. This experiment achieved a

47

7. Evaluation and Conclusion

frame F1 score of 98.5, note F1 score of 99.1 and note-with-o�set F1 score of 97.9
on the modified Slakh test dataset. In fact, the automatic music transcription model
could almost be used as an e�cient lossless compression for this instrument just at
speech-to-text can for voice. To reach this score on electric bass some systematic errors
in the Slakh dataset had to be addressed as well as some errors for individual stems.
One systematic error was that all the notes in the highest octave in the labels were
not present in the audio. This error occurred in the generation of the dataset since
the notes were truncated one octave higher than the range of a 5-string electric bass.
That also means that the seven deepest notes on a 4-string bass are not present in the
dataset, which is unfortunate since these are very common notes on electric bass. The
maximum simultaneous harmony for electric bass was also restricted to two notes at the
same time to remove wrongly specified stems in the dataset (some stems looked like a
keyboard classified as electric bass with only playing chords). Several stems were also
found to have errors and were removed from the dataset during training and evaluation.
A comprehensive list of the tracks removed can be found in Appendix A.

The piano results in Experiment 0b show that the baseline reached a better note F1
score, 96.9, than the best state-of-the-art results in Table 4.1 (page 25). This happens
even though Experiment 0b is evaluated on the entire piano instrument class (MIDI
programs 0–7) while the related work is only evaluated on acoustic pianos. Since the same
architecture as in the related work is used, this probably reflects that the piano instrument
class in Slakh is an easier dataset than MAESTRO (see Section 3.2). MAESTRO consists
of classical performances by virtuous pianist which probably means that the dataset have
more fast notes and an higher level of notes played simultaneously. For note-with-o�set
results, Experiment 0b is worse than the results in the related work. This could be
explained by inaccuracies in the labels and that the model in this experiment is only
trained around one-tenth the number of epochs in the related work. By observing the
validation results during training in Figure 7.1 we see in the note-with-o�sets graph to
the right seem to have a slower upward-trend, at least for guitar and piano. This can
indicate that this metric would benefit the most for longer training.

Figure 7.1.: Validation F1 scores during training for Experiment 0. Purple is electric
bass, cyan piano and green guitar.

Experiment 0c shows that guitar is the most di�cult instrument to transcribe at least
when it comes to frame and note results. For note-with-o�set scores, guitar is slightly

48

7.1. Evaluation

better than piano.

Research question 1 How well do state-of-the-art single-instrument models perform in
a multi-instrument setting without music source separation?

Experiment 1 was directly designed to answer Research Question 1. This experiment
shows that it indeed is possible to use the Extended Onsets and Frames model in a multi-
instrument setting. For electric bass, the note F1 score of 91.8 in the multi-instrument
setting is comparable to the state-of-the-art single-instrument piano results. Experiment
1b and 1c also show that it is possible to transcribe piano and guitar in this setting
with note F1 scores of 73.0 and 63.3, respectively. These results are better than the
single-instrument state-of-the-art piano results from 2016 (Sigtia et al., 2016; Kelz et al.,
2016) (see Table 4.1, page 25). However, as expected, there is a significant performance
reduction to the baseline with a relative note F1 drop of 7.4%, 25% and 28% for electric
bass, piano and guitar, respectively.

A much larger relative reduction was seen for note-with-o�set F1 scores with 14%, 63%
and 51% for the same instruments. Note-with-o�set clearly is the harder metric and this
is further emphasized when the audio source is more di�cult. Given the post-processing
steps (see Section 5.3) this is not too surprising. If only a single frame prediction is
below the chosen frame threshold the note will be too short. This is in contrast to the
onset prediction where each onset above the onset threshold will be the start of a note.
A further study of the note-with-o�set mistakes would be valuable. If the majority of
the note-with-o�set mistakes were due to too short notes this could be addressed in the
post-processing step by for instance averaging the consecutive frame predictions at the
same pitch.

Research question 2 How well do state-of-the-art single-instrument models perform in a
multi-instrument setting when the audio is source separated by a pre-trained music
source separation model?

Experiment 2 was directly designed to answer Research Question 2. Since the pre-
trained music source separation model only separates into vocals, drums, bass and
accompaniment, and there are no vocals in the Slakh dataset, only an experiment for bass
was conducted. The first attempt at using a pre-trained model, Spleeter by Hennequin
et al. (2020), was unsuccessful since the model was not able to separate the bass at all.
Subsequently, the Open-Unmix model by Stöter et al. (2019b) was used with better
separating results. As can be seen in Table 6.3, Experiment 2 got the worst score in
all of the electric bass experiments with a note F1 score of 86.2 and a note-with-o�set
score of 75.6. This can to a large degree be explained by the spectrograms shown in
Figure 6.1 and Figure 6.2. The first figure shows that the spectrogram is not following
the labels and the second picture shows that the separated spectrogram and individual
bass spectrogram look quite di�erent.

One aspect of the experiments that could be changed if redone, is the choice of only
using electric bass and not also including the synth bass stems from the dataset. Electric

49

7. Evaluation and Conclusion

bass was chosen since it was used by Hung et al. (2020), but after listening to an excerpt
from the MUSDB18 dataset Open-Unmix is trained on, is it clear that several tracks use
synth bass in the bass stems. This can also explain the mediocre results since synth bass
can be added to the separated audio. In addition, fine-tuning the music source separation
model on the Slakh test set would probably increase separation quality considerably
given than Spleeter works well on real audio but did not work at all on the Slakh dataset.

Research question 3 How well does a new architecture that joins source separation with
automatic music transcription perform in a multi-instrument setting?

Experiment 3 was directly designed to answer Research Question 3. This experiment
has a better F1 score than Experiment 1 in all the metrics except note scores for guitar
where it is marginally worse. For the other F1 score the improvement in performance
is not drastic, only a few relative percent improvements. Nevertheless, the results show
that the addition of the U-Net model overall improves performance. Figure 6.2 (page 43)
also shows that the U-Net model emphasizes logical frequencies for bass.

Table 6.2 (page 40) shows that the model size is increased from 21.6MB to 32.8MB, over
a 50% relative increment, to the baseline model. Since the increase in model performance
is so modest, this might not be a favorable trade-o�. The training and inference time
was, however, not a�ected by the U-Net architecture to a large degree.

In Experiment 3 only the automatic music transcription labels were used. Further
investigation on using the separated audio as labels would be interesting. Would the
performance be any better and if, by how much? Loading more audio during training
would increase training time considerably since this is one of the most time-consuming
parts or require much larger RAM if the audio is kept in memory.

Furthermore, the U-Net architecture could probably be used more e�ciently as a
backbone for automatic music transcription. In the Extended Onsets and Frames with U-
Net architecture (see Section 5.2, page 31), the U-Net is only used as additional computing
power to modify the input spectrogram. But since this architecture can separate an
audio source into several stems in a music source separation setting, it needs to have
higher-level information such as when an instrument class is active and the note onsets
in addition to the specific frequencies the separated stems consist of. The layers before
the last layer in the U-Net are bigger in terms of the number of parameters and should
contain this high-level information. It would be interesting to use the second-to-last
layer in the U-Net model or several layers from the decoder to the transcription head.
Since the U-Net architecture works so well for music source separation, and music source
separation seems to be an even harder problem than automatic music transcription,
maybe the U-Net model is su�cient for good transcription results?

Research question 4 How well does a note-level multi-instrument automatic music tran-
scription perform in a single-instrument setting?

Experiment 5 was directly designed to answer Research Question 4. The results of
this experiment show that the single-instrument transcription performance is highly

50

7.1. Evaluation

dependent on the instrument class, at least in this dataset. However, for the three
instrument classes used in the baseline, the note F1 drop are not very high. The note F1
scores for bass, piano and guitar are 90.2 (3.1% drop), 90.6 (6.5% drop) and 79.8 (13%
drop), respectively. Again we see that the note-with-o�set is a more di�cult metric and
the relative drop to the baseline is higher (7.8%, 34% and 26% for the same instruments).
The model trained for this experiment only used the mixture audio as training data. This
means that the results for Experiment 5 are quite far from the audio source the model
was trained on unless some songs had longer parts with only a single instrument class.

The three instruments from the baseline are, however, the three instruments with
the best scores in Experiment 5. For synth pad, the note F1 is as low as 26.1 and the
other instruments are at least ten percentage points behind guitar. A lower score for
synth pad is expected since it has a slow non-distinct attack that does not fit the Onsets
and Frames family of architectures well. Many of the other instruments have gotten an
unreasonable low score either due to systematic octave misclassifications when rendering
the audio or that the strength of the partials are so far away from the most common
notes in the dataset so that octave errors occur. Figure 7.2 shows the frame F1 results
with the chroma results in a darker blue color. The chroma results are calculated in
the same manner as the frame results except that the notes are truncated to the same
octave. This figure shows that the note-level model has many octave errors, especially
for organ, brass and synth lead. With the chroma results, piano, guitar, brass, reed and
pipe are almost at the same level. For many applications, octave errors are not severe, at
least when they are consistent (it is for instance very easy to change octave in most note
editing software).

Table 6.5 shows the number of tracks for each instrument class in the test set in
addition to the metrics. We see that the number of tracks varies greatly. Piano have 143
tracks while pipe, strings and synth lead have 13, 16 and 17 tracks, respectively. This
tells that some of the results should be given more confidence.

Research question 5 How well does a stream-level multi-instrument automatic music
transcription perform?

Experiment 6 was directly designed to answer Research Question 5. The results show
that it is possible to train a stream-level automatic music transcription model with
good results. The results from this experiment are directly comparable to Experiment
1 which operates on the same instruments and labels and uses the same architecture.
Compared to Experiment 1 the results are only slightly worse with note F1 scores of
73.0 for piano (7.8% drop), 65.3 for guitar (15% drop) and 91.8 for bass (2.1%). In
comparison, the piano results are still better than state-of-the-art single-instrument piano
results from 2016 (Sigtia et al., 2016; Kelz et al., 2016) and around 20% relative drop
from 2018 (Hawthorne et al., 2018). For the all-pitched instrument class, the performance
is better than the note-level results from Experiment 4a with a note F1 score of 74.4
and note-with-o�set F1 score of 40.6. This is a 2.5% and 20% relative improvement to
Experiment 4a. It is reasonable that adding additional labels improves this transcription
category. If the model knows that a note is played by a given instrument it might give

51

7. Evaluation and Conclusion

0

25

50

75

100

Pian
o

Ch.
Perc

us
sio

n
Orga

n
Guit

ar
Bas

s

Strin
gs

Ens
em

ble
Bras

s
Ree

d
Pipe

Syn
th

Le
ad

Syn
th

Pad

Chroma F1 Frame F1

Figure 7.2.: Frame F1 results in experiment 5 with chroma

more confidence in the prediction. The reason why the model is worse for bass, piano
and guitar might only be because the bigger models need longer training to achieve the
same score (both experiments were trained 50 000 iterations).

Drums were added in this experiment to have a complete rock band automatic music
transcription model. For the sake of convenience and computing e�ciency, this model is
very appealing. The model is almost twice as big as the baseline Extended Onsets and
Frames models since the number of parameters in the last linear layers are increased
for the larger concatenated labels. However, the training and inference time are not
influenced much by the larger size. For deploying the model in production it certainly
is much easier to have one larger model than five di�erent models. The five di�erent
models would be much larger and have longer inference time.

7.1.2. Evaluation of the Main Goal

With background in the results obtained when answering the five Research Questions,
an introduction of several multi-instrument automatic music transcription models has
been made, which completes the main Goal of this Master’s Thesis. The first three
Research Questions were concerned with di�erent model architectures and music source
separation pre-processing. The result from this study shows that the state-of-the-art
single-instrument automatic music transcription model architecture works well in a
multi-instrument setting. In fact, the model archives better piano note F1 scores than

52

7.2. Discussion

the single-instrument state-of-the-art approaches from 2016 (Sigtia et al., 2016; Kelz
et al., 2016) without any modifications. For electric bass, the multi-instrument score
is even better, competing with state-of-the-art single-instrument piano scores from
2018 (Hawthorne et al., 2018). The experiments in this Thesis, however, are done on
synthetically rendered audio while the reference results are on real piano records so they
are not fully comparable. An increase in performance was seen with a joint music source
separation and automatic music transcription model, but the increment was modest and
with nearly twice as many model parameters this might not be a favorable trade-o�.

The last two Research Questions were concerned with note-level and stream-level
models. The results show that it is possible to train both kinds of models with decent
results. A note-level model trained on a full band audio source is able to transcribe piano
with a note F1 score of 90.6, only a few percentage points behind the current state-of-the-
art, albeit on a presumably easier dataset. A stream-level automatic music transcription
model is now also possible for piano, guitar, bass, drum and all pitched instruments
with above 50 note F1 scores for all instrument classes. For note-with-o�sets scores, the
multi-instrument models still are far behind the single-instrument state-of-the-art results
in all the experiments.

7.2. Discussion

The following section provides a discussion of the most influential part of this work. First,
a discussion of the limitations and pitfalls of the dataset is presented, as well as the
related work that has used this dataset. Secondly, a discussion of the assumptions and
possible modifications to the Onsets and Frames architecture is presented.

7.2.1. Dataset

A machine learning task cannot be better than the data the models are trained and
evaluated on. Therefore a discussion on the limitations and pitfalls on the dataset used
in this work is needed. Several stems contain some kind of errors, for a full list see
Appendix A. These errors range from stems where the audio only consist of white noise,
corrupted MIDI notes, the audio and labels are at di�erent pitches, and the length of the
labels and audio are not matched. The list in Appendix A certainly is not exhaustive
and mostly consists of electric bass stems. By removing erroneous stems, addressing
systematic errors in the bass octave labels, and removing pitch-bend tracks the results
in Experiment 1a and the corresponding result in Grønbech (2020) went from a note
F1 score of 65.2 to 91.8, a 41% relative improvement. For Experiment 4a the change
is less dramatic, but still present at a note F1 score of 63.5 to 72.6. How much the
performance improvement stems from the modifications to the training set or test set is
not clear, but it nevertheless shows the importance of the dataset.

Only Hung et al. (2020) in the related work have used the Slakh dataset for automatic
music transcription. They have reported the score in the less commonly used note
accuracy metric. It is not clear from their paper if they calculated the frame accuracy

53

7. Evaluation and Conclusion

from mir_eval library or if it is based on the note onsets. Since the code is not open
source it is also not possible to check the calculation. In addition, Hung et al. (2020) based
the results on the splits_v2 split which has duplicate tracks and only the instruments
electric bass, acoustic piano and distorted guitar was considered. Nevertheless, if the
frame accuracy was meant, Experiment 3 has almost comparable results to Hung et al.
(2020) with frame accuracy scores of 87.5% to 86.1% for electric bass, 47.2% to 51%
for piano and 46.9% to 61% for guitar (best mixture results from Hung et al. (2020) is
chosen). Given the uncertainty in the calculation of the metrics and since Hung et al.
have not reported the MIDI programs they have chosen, a fair comparison is not possible.

For reproducibility on the Slakh dataset a PyTorch data-loader1 has been created
during the work on this Thesis and is readily available on PyPI2. This data-loader
addresses some systematic errors in the Slakh dataset such as removing the labels from
the higher bass frequency since the for these notes are not present. In addition, is filters
out all the tracks with known errors from Appendix A. Ideally, a regeneration of the
Slakh dataset should be made which removes the duplicated tracks and addresses the
tracks with errors and systematic errors in the dataset.

The most important contribution for further progress on multi-instrument automatic
music transcription is probably a new high quality dataset. Just as MAPS (see Sec-
tion 3.1) has a synthesized training set and a real-audio test set, a real-audio test set for
multi-instrument music transcription would benefit the research community greatly. As
mentioned in the introduction, human-labeling such a dataset would be an incredible
time-consuming task, but using the note-level model from Experiments 4–5 as a pre-
process could save a lot of time. Also, if the music were originally played by sheet music,
an alignment could be done. A real-audio test set would show the generalizability of the
automatic music transcription models.

7.2.2. Model Architecture

The model architecture used in this work is based on the Onsets and Frames architecture
that has been used in the related work for piano transcriptions. One assumption in
this architecture is that the note onset is the most perceptual distinct part of the note.
This is also reflected in the post-processing step where the note onsets are given special
consideration since only the onset predictions can be the start of the note. One aspect
that might seem odd when looking at the architecture in Figure 4.1 (page 23) is that
only about one-fifth of the computing power goes to the onsets. No information from the
other detection head goes to the onset. But since the onsets are so distinct for piano more
computing power is not needed for good results. For many other instruments, however,
the onset is not the most perceptual part, such as for synth pads and can be for wind
instruments. Therefore, a modification to the architecture that gives more computing
power to the onsets and information flow from the frame detector to the onsets detector
can be investigated. One straight-forward modification would be to change the frame

1https://github.com/greenbech/slakh-pytorch-dataset
2https://pypi.org/project/slakh-dataset

54

https://github.com/greenbech/slakh-pytorch-dataset
https://pypi.org/project/slakh-dataset

7.3. Contributions

and onset label in Figure 4.1. This would give more information to the most import
predictions, the onset predictions, but at the cost of lower less frame computing power.
As shown in Experiment 6, concatenating several labels at the detection head does not
seem to degrade the performance. Maybe a simpler architecture where onsets and frame
were predicted as the same detector head would give better results?

7.3. Contributions
The contributions of this Master’s Thesis are manifold. This is the first work that
investigates di�erent architectures and music source separation pre-processing for multi-
instruments automatic music transcription. The results of this work show that it is
possible to transcribe one instrument from a mixture source using the current state-of-
the-art single-instrument architecture. For piano and guitar the score in this setting is
better than the best single-instrument piano scores from 2016 (Sigtia et al., 2016; Kelz
et al., 2016). For electric bass the score is even better at an note F1 score of 91.8, almost
as good at the current single-instrument state-of-the-art scores.

The experiments on note-level automatic music transcription show that it is possible
to train a multi-instrument model on a mixture source and reach good performance on
isolated tracks. This model shows that it is possible to train one model to transcribe
many di�erent instruments which can be valuable in many settings. If the model was
fine-tuned on isolated tracks the performance could have been even better.

Furthermore, the results in this Thesis shows that a stream-level automatic music
transcription is possible. This model can transcribe a full rock band simultaneously.

Finally, a PyTorch data-loader for Slakh has been created. This data-loader removes
systematic and individual errors from the Slakh dataset. With this data-loader it is
possible to load the audio and several instrument classes in a e�cient and convenient way.
During the work in this Thesis is was found that the bass stems in Slakh did not contain
the deepest octave due to an error in the generation of the dataset. Likewise, the audio
for the highest octave in bass are not present. These labels are removed when using the
data-loder. The data-loader enables reproducible results for researchers in the future.

7.4. Future Work
As mentioned in the discussion, the dataset is at the heart of every machine learning
task. During the work of this Thesis, several errors in the Slakh dataset (see Section 3.7)
were found. For further work improvement and fair comparisons in this field one of
the first things to look into should be to obtain or create a better dataset. This could
either be to re-render and fix the errors in the Slakh dataset, combine the existing
dataset or create a new one. For a multi-instrument model, the MAESTRO dataset (see
Section 3.2), the Expanded Groove MIDI Dataset (see Section 3.3) and MusicNet (see
Section 3.4) could be combined in training for more variation. MusicNet could serve as
a real-audio test set, but since a relatively high error rate is reported this would need
further investigation. In addition, a real-audio annotated dataset with vocals would

55

7. Evaluation and Conclusion

be highly beneficial for transcribing a typical pop or rock band. Maybe the existing
music source separation dataset MUSDB18 (see Section 3.8) could be transcribed for
an automatic music transcription use-case? Given the performance of the note-level
multi-instrument automatic music transcription model from Experiment 5, this model
could be used as a pre-process before being corrected by humans.

A limitation of the work in this project is that tracks with pitch bends are disregarded.
An investigation of parsing MIDI files with pitch bend to a piano-roll format as well as
supporting pitch bends in the model architecture would be a natural further extension of
the work. One strategy for incorporating pitch bends in the current architecture would
be to add an additional detector head that would predict the relative pitch bend for a
given note. Another idea could be to linearly interpolate between the frame prediction.

Experiment 3 shows that adding a music source separation model as a backbone to
the automatic music transcription model improves performance slightly. It would be
interesting to use the separated audio as labels in training for the U-Net and see if this
improves performance. By doing this a combined music source separation and automatic
music transcription model could be made.

Additionally, experiments on using the U-Net architecture directly for automatic could
be an interesting direction. Since the U-Net model is able to separate music, it needs to
have much the same high-level information as is needed in multi-instrument automatic
music transcription such as when an instrument is playing and when the onset is. Since
the U-Net model does not have an recurrent neural network this could be a highly e�cient
automatic transcription model.

In addition, new deep learning architectures from other fields could be tested in
an music setting to improve performance. The recent architecture Transformer from
natural language processing could be used instead of BiLSTM. But due to the quadratic
dependence on the input size, reaching a reasonable performance on an audio source
could be challenging. More recently, the FNet architecture seems to have comparable
performance to the transformer while being more e�cient and only scales O(N log N)
with the input size (Lee-Thorp et al., 2021). The new deep learning operation Involution
could also substitute some or all the convolution layers in the current architectures (Li
et al., 2021).

Experiment 5 shows that a universal note-level multi-instrument model is possible,
but the performance varies between di�erent instrument classes. An investigation of
fine-tuning such a model would be interesting. How many notes from a new instrument
are needed before the performance increases significantly?

Furthermore, Experiment 6 shows that it is possible to train a stream-level multi-
instrument model and that concatenating additional instrument classes in the label does
not seem to a�ect the performance negatively greatly. An investigation on solving more
Music Information Retrieval tasks from the same model would be interesting. Would the
same model be able to predict beats and down-beats in addition to the notes? What
about music source separation or predicting the mood of the music? It might be that the
internal model representation would be better if several tasks were solved simultaneously.

Finally, creating a new post-processing step for the current multi-instrument model to

56

7.4. Future Work

extract the chords should be feasible with the current performance. In many real-world
applications having the chords are more valuable than having a transcription. Pianists
and guitar players often play after chords, not sheet music. When transcribing the bass
and having a high frame performance, chord prediction should be possible. This would
presumable be more fitted for a rule-based approach due to the lack of training data.

57

Bibliography
Mert Bay, Andreas F. Ehmann, and J. Stephen Downie. Evaluation of Multiple-F0

Estimation and Tracking Systems. In Proceedings of the 10th International Society for
Music Information Retrieval Conference, pages 315–320, Kobe, Japan, October 2009.
ISMIR. doi:10.5281/zenodo.1418241. 13

Emmanouil Benetos and Simon Dixon. Joint multi-pitch detection using harmonic envel-
ope estimation for polyphonic music transcription. Selected Topics in Signal Processing,
IEEE Journal of, 5:1111–1123, November 2011. doi:10.1109/JSTSP.2011.2162394. 19,
20

Emmanouil Benetos, Simon Dixon, Dimitrios Giannoulis, Holger Kirchho�, and Anssi
Klapuri. Automatic music transcription: Challenges and future directions. Journal of
Intelligent Information Systems, 41:407–434, December 2013. doi:10.1007/s10844-013-
0258-3. 19

Emmanouil Benetos, Simon Dixon, Zhiyao Duan, and Sebastian Ewert. Automatic music
transcription: An overview. IEEE Signal Processing Magazine, 36:20–30, January 2019.
doi:10.1109/MSP.2018.2869928. 8, 9

Thierry Bertin-Mahieux, Daniel P. W. Ellis, Brian Whitman, and Paul Lamere. The
million song dataset. In Proceedings of the 12th International Society for Music
Information Retrieval Conference, pages 591–596. University of Miami, 2011. 17

Rachel M. Bittner, Justin Salamon, Mike Tierney, Matthias Mauch, Chris Cannam, and
Juan Pablo Bello. MedleyDB: A Multitrack Dataset for Annotation- Intensive MIR
Research. In Proceedings of the 15th International Society for Music Information Re-
trieval Conference, pages 155–160. ISMIR, October 2014. doi:10.5281/zenodo.1417889.
18

Sebastian Böck and Markus Schedl. Polyphonic piano note transcription with recurrent
neural networks. In 2012 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 121–124, 2012. doi:10.1109/ICASSP.2012.6287832.
21

Lee Callender, Curtis Hawthorne, and Jesse H. Engel. Improving perceptual quality of
drum transcription with the expanded groove MIDI dataset. CoRR, abs/2004.00188,
2020. URL https://arxiv.org/abs/2004.00188. 16

59

https://doi.org/10.5281/zenodo.1418241
https://doi.org/10.1109/JSTSP.2011.2162394
https://doi.org/10.1007/s10844-013-0258-3
https://doi.org/10.1007/s10844-013-0258-3
https://doi.org/10.1109/MSP.2018.2869928
https://doi.org/10.5281/zenodo.1417889
https://doi.org/10.1109/ICASSP.2012.6287832
https://arxiv.org/abs/2004.00188

Bibliography

Valentin Emiya, Roland Badeau, and Bertrand David. Multipitch estimation of
piano sounds using a new probabilistic spectral smoothness principle. IEEE
Transactions on Audio, Speech, and Language Processing, 18(6):1643–1654, 2010.
doi:10.1109/TASL.2009.2038819. 15, 20

Jon Gillick, Adam Roberts, Jesse H. Engel, Douglas Eck, and David Bamman. Learning
to groove with inverse sequence transformations. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97
of Proceedings of Machine Learning Research, pages 2269–2279. PMLR, 2019. URL
http://proceedings.mlr.press/v97/gillick19a.html. 16

Henrik Grønbech. Automatic music transcription with deep learning. Specialization
Project, Dept. of Computer Science, Norwegian University of Science and Technology,
Trondheim, Norway, December 2020. iii, 7, 15, 19, 29, 30, 53

Curtis Hawthorne, Erich Elsen, Jialin Song, Adam Roberts, Ian Simon, Colin Ra�el,
Jesse Engel, Sageev Oore, and Douglas Eck. Onsets and Frames: Dual-Objective
Piano Transcription. In Proceedings of the 19th International Society for Music
Information Retrieval Conference, pages 50–57, Paris, France, September 2018. ISMIR.
doi:10.5281/zenodo.1492341. iii, 13, 16, 22, 23, 24, 25, 29, 51, 53

Curtis Hawthorne, Andriy Stasyuk, Adam Roberts, Ian Simon, Cheng-Zhi Anna Huang,
Sander Dieleman, Erich Elsen, Jesse Engel, and Douglas Eck. Enabling factorized piano
music modeling and generation with the MAESTRO dataset. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
r1lYRjC9F7. 16, 23, 24, 25, 29

Romain Hennequin, Anis Khlif, Felix Voituret, and Manuel Moussallam. Spleeter: a
fast and e�cient music source separation tool with pre-trained models. Journal
of Open Source Software, 5(50):2154, 2020. doi:10.21105/joss.02154. URL https:
//doi.org/10.21105/joss.02154. Deezer Research. 26, 32, 36, 49

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation,
9(8):1735–1780, 1997. doi:10.1162/neco.1997.9.8.1735. 11

Yun-Ning Hung, Gordon Wichern, and Jonathan Le Roux. Transcription is all you need:
Learning to separate musical mixtures with score as supervision. CoRR, abs/2010.11904,
2020. URL https://arxiv.org/abs/2010.11904. 24, 36, 50, 53, 54

Andreas Jansson, Eric J. Humphrey, Nicola Montecchio, Rachel M. Bittner, Aparna
Kumar, and Tillman Weyde. Singing voice separation with deep u-net convolutional
networks. In Sally Jo Cunningham, Zhiyao Duan, Xiao Hu, and Douglas Turn-
bull, editors, Proceedings of the 18th International Society for Music Information
Retrieval Conference, ISMIR 2017, Suzhou, China, October 23-27, 2017, pages 745–
751, 2017. URL https://ismir2017.smcnus.org/wp-content/uploads/2017/10/
171_Paper.pdf. iii, 31

60

https://doi.org/10.1109/TASL.2009.2038819
http://proceedings.mlr.press/v97/gillick19a.html
https://doi.org/10.5281/zenodo.1492341
https://openreview.net/forum?id=r1lYRjC9F7
https://openreview.net/forum?id=r1lYRjC9F7
https://doi.org/10.21105/joss.02154
https://doi.org/10.21105/joss.02154
https://doi.org/10.21105/joss.02154
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/2010.11904
https://ismir2017.smcnus.org/wp-content/uploads/2017/10/171_Paper.pdf
https://ismir2017.smcnus.org/wp-content/uploads/2017/10/171_Paper.pdf

Bibliography

Rainer Kelz, Matthias Dorfer, Filip Korzeniowski, Sebastian Böck, Andreas Arzt, and
Gerhard Widmer. On the potential of simple framewise approaches to piano tran-
scription. In Michael I. Mandel, Johanna Devaney, Douglas Turnbull, and George
Tzanetakis, editors, Proceedings of the 17th International Society for Music In-
formation Retrieval Conference, ISMIR 2016, New York City, United States, Au-
gust 7-11, 2016, pages 475–481, 2016. URL https://wp.nyu.edu/ismir2016/wp-
content/uploads/sites/2294/2016/07/179_Paper.pdf. 22, 24, 25, 29, 49, 51, 53,
55

Rainer Kelz, Sebastian Böck, and Gerhard Widmer. Deep polyphonic ADSR piano
note transcription. In IEEE International Conference on Acoustics, Speech and Signal
Processing, ICASSP 2019, Brighton, United Kingdom, May 12-17, 2019, pages 246–250.
IEEE, 2019. doi:10.1109/ICASSP.2019.8683582. URL https://doi.org/10.1109/
ICASSP.2019.8683582. 23

Jong Wook Kim. Onsets and frames. https://github.com/jongwook/onsets-and-
frames, 2019. 38

Jong Wook Kim and Juan Pablo Bello. Adversarial learning for improved onsets and
frames music transcription. In Arthur Flexer, Geo�roy Peeters, Julián Urbano, and
Anja Volk, editors, Proceedings of the 20th International Society for Music Information
Retrieval Conference, ISMIR 2019, Delft, The Netherlands, November 4-8, 2019, pages
670–677, 2019. URL http://archives.ismir.net/ismir2019/paper/000081.pdf.
iii, ix, 23, 24, 25

Qiuqiang Kong, Bochen Li, Xuchen Song, Yuan Wan, and Yuxuan Wang. High-
resolution piano transcription with pedals by regressing onsets and o�sets times.
CoRR, abs/2010.01815, 2020. URL https://arxiv.org/abs/2010.01815. 22, 24, 25

James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and Santiago Ontañón. Fnet: Mixing
tokens with fourier transforms. CoRR, abs/2105.03824, 2021. URL https://arxiv.
org/abs/2105.03824. 56

Duo Li, Jie Hu, Changhu Wang, Xiangtai Li, Qi She, Lei Zhu, Tong Zhang, and Qifeng
Chen. Involution: Inverting the inherence of convolution for visual recognition. CoRR,
abs/2103.06255, 2021. URL https://arxiv.org/abs/2103.06255. 56

Antoine Liutkus, Fabian-Robert Stöter, Zafar Rafii, Daichi Kitamura, Bertrand Rivet,
Nobutaka Ito, Nobutaka Ono, and Julie Fontecave. The 2016 signal separation
evaluation campaign. In Latent Variable Analysis and Signal Separation, volume
10169 of Lecture Notes in Computer Science, pages 323–332, February 2017. ISBN
978-3-319-53546-3. doi:10.1007/978-3-319-53547-0_31. 18

Ethan Manilow, Gordon Wichern, Prem Seetharaman, and Jonathan Le Roux. Cutting
music source separation some slakh: A dataset to study the impact of training data
quality and quantity. In 2019 IEEE Workshop on Applications of Signal Processing

61

https://wp.nyu.edu/ismir2016/wp-content/uploads/sites/2294/2016/07/179_Paper.pdf
https://wp.nyu.edu/ismir2016/wp-content/uploads/sites/2294/2016/07/179_Paper.pdf
https://doi.org/10.1109/ICASSP.2019.8683582
https://doi.org/10.1109/ICASSP.2019.8683582
https://doi.org/10.1109/ICASSP.2019.8683582
https://github.com/jongwook/onsets-and-frames
https://github.com/jongwook/onsets-and-frames
http://archives.ismir.net/ismir2019/paper/000081.pdf
https://arxiv.org/abs/2010.01815
https://arxiv.org/abs/2105.03824
https://arxiv.org/abs/2105.03824
https://arxiv.org/abs/2103.06255
https://doi.org/10.1007/978-3-319-53547-0_31

Bibliography

to Audio and Acoustics, WASPAA 2019, New Paltz, NY, USA, October 20-23, 2019,
pages 45–49. IEEE, 2019. doi:10.1109/WASPAA.2019.8937170. iii, 3, 17, 18, 38, 39

Matija Marolt. A connectionist approach to automatic transcription of poly-
phonic piano music. Multimedia, IEEE Transactions on, 6:439–449, July 2004.
doi:10.1109/TMM.2004.827507. 21

Nobutaka Ono, Zafar Rafii, Daichi Kitamura, Nobutaka Ito, and Antoine Liutkus. The
2015 signal separation evaluation campaign. In Emmanuel Vincent, Arie Yeredor,
Zbynek Koldovsk˝, and Petr Tichavsk˝, editors, Latent Variable Analysis and Signal
Separation - 12th International Conference, LVA/ICA 2015, Liberec, Czech Republic,
August 25-28, 2015, Proceedings, volume 9237 of Lecture Notes in Computer Science,
pages 387–395. Springer, 2015. doi:10.1007/978-3-319-22482-4_45. 18

Colin Ra�el. Learning-Based Methods for Comparing Sequences, with Applications
to Audio-to-MIDI Alignment and Matching. PhD thesis, Department of Electrical
Engineering, Columbia University, New York, New York, July 2016. iii, 17, 38

Colin Ra�el, Brian McFee, Eric J. Humphrey, Justin Salamon, Oriol Nieto, Dawen Liang,
and Daniel P. W. Ellis. MIR_EVAL: A Transparent Implementation of Common
MIR Metrics. In Proceedings of the 15th International Society for Music Inform-
ation Retrieval Conference, pages 367–372, Taipei, Taiwan, October 2014. ISMIR.
doi:10.5281/zenodo.1416528. 3, 41

Zafar Rafii, Antoine Liutkus, Fabian-Robert Stöter, Stylianos Ioannis Mimilakis, and
Rachel Bittner. The MUSDB18 corpus for music separation, December 2017. URL
https://doi.org/10.5281/zenodo.1117372. 18

Alexander Schindler, Rudolf Mayer, and Andreas Rauber. Facilitating Comprehensive
Benchmarking Experiments on the Million Song Dataset. In Proceedings of the 13th
International Society for Music Information Retrieval Conference, pages 469–474,
Porto, Portugal, October 2012. ISMIR. doi:10.5281/zenodo.1417521. 17

Prem Seetharaman, Gordon Wichern, Bryan Pardo, and Jonathan Le Roux. Autoclip:
Adaptive gradient clipping for source separation networks. In 30th IEEE International
Workshop on Machine Learning for Signal Processing, MLSP 2020, Espoo, Finland,
September 21-24, 2020, pages 1–6. IEEE, 2020. doi:10.1109/MLSP49062.2020.9231926.
URL https://doi.org/10.1109/MLSP49062.2020.9231926. 39

Siddharth Sigtia, Emmanouil Benetos, and Simon Dixon. An end-to-end neural network
for polyphonic piano music transcription. IEEE ACM Trans. Audio Speech Lang.
Process., 24(5):927–939, 2016. doi:10.1109/TASLP.2016.2533858. URL https://doi.
org/10.1109/TASLP.2016.2533858. 21, 24, 25, 49, 51, 53, 55

Magnus Själander, Magnus Jahre, Gunnar Tufte, and Nico Reissmann. EPIC: An
energy-e�cient, high-performance GPGPU computing research infrastructure, 2019.
iii, 40

62

https://doi.org/10.1109/WASPAA.2019.8937170
https://doi.org/10.1109/TMM.2004.827507
https://doi.org/10.1007/978-3-319-22482-4_45
https://doi.org/10.5281/zenodo.1416528
https://doi.org/10.5281/zenodo.1117372
https://doi.org/10.5281/zenodo.1417521
https://doi.org/10.1109/MLSP49062.2020.9231926
https://doi.org/10.1109/MLSP49062.2020.9231926
https://doi.org/10.1109/TASLP.2016.2533858
https://doi.org/10.1109/TASLP.2016.2533858
https://doi.org/10.1109/TASLP.2016.2533858

Bibliography

P. Smaragdis and J. C. Brown. Non-negative matrix factorization for polyphonic
music transcription. In 2003 IEEE Workshop on Applications of Signal Pro-
cessing to Audio and Acoustics (IEEE Cat. No.03TH8684), pages 177–180, 2003.
doi:10.1109/ASPAA.2003.1285860. 20, 21

Xuchen Song, Qiuqiang Kong, Xingjian Du, and Yuxuan Wang. Catnet: music source
separation system with mix-audio augmentation. CoRR, abs/2102.09966, 2021. URL
https://arxiv.org/abs/2102.09966. 27

Daniel Stoller, Sebastian Ewert, and Simon Dixon. Wave-u-net: A multi-scale neural
network for end-to-end audio source separation. In Emilia Gómez, Xiao Hu, Eric
Humphrey, and Emmanouil Benetos, editors, Proceedings of the 19th International
Society for Music Information Retrieval Conference, ISMIR 2018, Paris, France,
September 23-27, 2018, pages 334–340, 2018. URL http://ismir2018.ircam.fr/
doc/pdfs/205_Paper.pdf. iii, 26

Fabian-Robert Stöter, Stefan Uhlich, Antoine Liutkus, and Yuki Mitsufuji. Open-unmix -
A reference implementation for music source separation. J. Open Source Softw., 4(41):
1667, 2019a. doi:10.21105/joss.01667. URL https://doi.org/10.21105/joss.01667.
25

Fabian-Robert Stöter, Stefan Uhlich, Antoine Liutkus, and Yuki Mitsufuji. Open-unmix -
A reference implementation for music source separation. J. Open Source Softw., 4(41):
1667, 2019b. doi:10.21105/joss.01667. URL https://doi.org/10.21105/joss.01667.
36, 49

L. Su and Y. Yang. Combining spectral and temporal representations for multipitch
estimation of polyphonic music. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 23(10):1600–1612, 2015. doi:10.1109/TASLP.2015.2442411. 20

John Thickstun, Zaïd Harchaoui, and Sham M. Kakade. Learning features of music from
scratch. In 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net,
2017. URL https://openreview.net/forum?id=rkFBJv9gg. 16

63

https://doi.org/10.1109/ASPAA.2003.1285860
https://arxiv.org/abs/2102.09966
http://ismir2018.ircam.fr/doc/pdfs/205_Paper.pdf
http://ismir2018.ircam.fr/doc/pdfs/205_Paper.pdf
https://doi.org/10.21105/joss.01667
https://doi.org/10.21105/joss.01667
https://doi.org/10.21105/joss.01667
https://doi.org/10.21105/joss.01667
https://doi.org/10.1109/TASLP.2015.2442411
https://openreview.net/forum?id=rkFBJv9gg

Appendix
A. Stems with errors in Slakh
During the training and evaluation on tracks in the Slakh dataset, several mistakes in
the dataset was found. This appendix lists all the stems that were found to have some
errors. These errors has been classified into the following cases:

white-noise

Something must have gone wrong with the audio rendering–the audio for the stem only
consists of white noise

wrong-pitch

The pitch of the label and audio are not the same

wrong-octave

The octave of the label and audio are not the same

missing-audio

Not all the notes in the label are rendered

short-labels

Some of the notes in the MIDI file parsed with PrettyMIDI are shorter than the rendered
audio

long-labels

Some of the notes in the MIDI file parsed with PrettyMIDI are longer than the rendered
audio

List on the next pages

65

Appendix

{
" Track00262 " : {

" S01 " : " short≠l a b e l s "
} ,
" Track00357 " : {

" S03 " : " white≠no i s e "
} ,
" Track00377 " : {

" S07 " : " white≠no i s e "
} ,
" Track00385 " : {

" S00 " : " white≠no i s e "
} ,
" Track00398 " : {

" S00 " : " white≠no i s e "
} ,
" Track00400 " : {

" S00 " : " white≠no i s e "
} ,
" Track00404 " : {

" S03 " : " long≠l a b e l s "
} ,
" Track00496 " : {

" S01 " : " wrong≠p i t ch "
} ,
" Track00629 " : {

" S01 " : " white≠no i s e "
} ,
" Track00633 " : {

" S01 " : " white≠no i s e "
} ,
" Track00737 " : {

" S01 " : " long≠l a b e l s "
} ,
" Track00749 " : {

" S01 " : " white≠no i s e "
} ,
" Track00893 " : {

" S01 " : " long≠l a b e l s "
} ,
" Track01629 " : {

" S00 " : " white≠no i s e "
} ,

66

A. Stems with errors in Slakh

" Track01876 " : {
" S01 " : " miss ing≠audio "

} ,
" Track01908 " : {

" S05 " : " miss ing≠audio "
} ,
" Track01918 " : {

" S10 " : " wrong≠p i t ch "
} ,
" Track01929 " : {

" S04 " : " wrong≠octave "
} ,
" Track01931 " : {

" S01 " : " wrong≠p i t ch "
} ,
" Track01993 " : {

" S01 " : " miss ing≠audio "
} ,
" Track01937 " : {

" S03 " : " wrong≠p i t ch "
} ,
" Track02024 " : {

" S13 " : " miss ing≠audio "
}

}

67

Appendix

68

B. Additional Results

B. Additional Results
Following are a collection of transcriptions from the Slakh test set to show the
performance of the models and to help get an intuition for the transcription metrics.
Each figure are around five seconds of audio. The upper half shows the models prediction
with di�erent colors. Blue comes from the onset detector head, purple from the frame
detector and yellow o�set from the o�set detector. Black in the lower half are correct
prediction, orange are incorrect prediction and light blue are missed prediction. Note
onsets are in a darker color in the lower half. If viewed on a display, an inversion of the
colors are recommended. In the caption for each figure, the experiment, track and frame
F1 score, note F1 and note-with-o�set F1 are shown. These metrics are from the shown
segment, not the whole track.

Figures on the next pages

69

Appendix

Figure 1.: Experiment 0a, Track01881, 0.996|1.000|1.000

Figure 2.: Experiment 0a, Track01892, 1.000|1.000|1.000

70

B. Additional Results

Figure 3.: Experiment 0a, Track01895, 0.993|0.978|0.978

Figure 4.: Experiment 0a, Track01901, 0.959|0.938|0.875

71

Appendix

Figure 5.: Experiment 0b, Track01878, 0.837|0.950|0.450

72

B. Additional Results

Figure 6.: Experiment 0b, Track01881, 0.869|1.000|0.533

73

Appendix

Figure 7.: Experiment 0b, Track01888, 0.938|0.846|0.769

74

B. Additional Results

Figure 8.: Experiment 0b, Track01889, 0.881|1.000|0.588

75

Appendix

Figure 9.: Experiment 0c, Track01877, 0.755|0.900|0.717

76

B. Additional Results

Figure 10.: Experiment 0c, Track01892, 0.785|0.875|0.562

77

Appendix

Figure 11.: Experiment 0c, Track01893, 0.976|0.981|0.830

78

B. Additional Results

Figure 12.: Experiment 0c, Track01895, 1.000|1.000|1.000

79

Appendix

Figure 13.: Experiment 4a, Track01882, 0.657|0.692|0.538

80

B. Additional Results

Figure 14.: Experiment 4a, Track01892, 0.900|0.889|0.626

81

Appendix

Figure 15.: Experiment 4a, Track01932, 0.880|0.585|0.585

82

B. Additional Results

Figure 16.: Experiment 4a, Track01950, 0.894|0.886|0.514

83

Appendix

Figure 17.: Experiment 4a, Track01955, 0.682|0.750|0.714

84

B. Additional Results

Figure 18.: Experiment 4a, Track01956, 0.786|0.727|0.591

85

Appendix

Figure 19.: Experiment 4a, Track01957, 0.808|0.658|0.342

86

B. Additional Results

Figure 20.: Experiment 4a, Track01959, 0.000|0.000|0.000

87

Appendix

Figure 21.: Experiment 4a, Track01963, 0.588|0.913|0.261

88

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

H
enrik G

rønbech
M

ulti-Instrum
ent Autom

atic M
usic Transcription w

ith D
eep Learning

Henrik Grønbech

Multi-Instrument Automatic Music
Transcription with Deep Learning

Master’s thesis in Computer Science
Supervisor: Björn Gambäck

June 2021

M
as

te
r’s

 th
es

is

	Introduction
	Background and Motivation
	Goals and Research Questions
	Research Method
	Contributions
	Thesis Structure

	Background Theory
	Music Information Retrieval
	Automatic Music Transcription
	Music source separation

	Audio and representations of music
	MIDI
	Fourier transformation
	Mel-scaled Spectrogram and Constant-Q Transform

	Machine Learning
	Deep Learning
	Evaluation
	Precision, recall and F1-score
	Frame-level evaluation
	Note-level evaluation
	Note-level evaluation with velocity

	AMT Datasets
	MAPS
	MAESTRO
	Expanded Groove MIDI Dataset
	MusicNet
	Million Song Dataset
	Lakh MIDI Dataset
	SLAKH
	MUSDB18

	Related Work
	Different Approaches to Multi-Pitch Estimation
	Feature-based multi-pitch detection
	Statistical model-based multi-pitch detection
	Spectrogram factorization-based multi-pitch detection

	Automatic Music Transcription with Neural Networks
	Music Source Separation

	Architecture
	Extended Onsets and Frames
	Extended Onsets and Frames with U-Net
	Post-Processing

	Experiments and Results
	Experimental Plan
	Experiment 0 – Baseline Experiment
	Experiments on Pre-Processing and Model Architectures
	Experiment 1 – Without Source Separation
	Experiment 2 – With Source Separation
	Experiment 3 – New Architecture

	Experiments on Note-Level Multi-Instrument Transcription
	Experiment 4a
	Experiment 4b
	Experiment 4c
	Experiment 5 – Evaluation on twelve Instrument Classes

	Experiments on Stream-Level Multi-Instrument Transcription
	Experiment 6

	Experimental Setup
	Dataset
	Parameters
	Environment and Resources

	Experimental Results
	Experiment 0–3
	Experiment 4–5
	Experiment 6

	Evaluation and Conclusion
	Evaluation
	Evaluation of Research Questions
	Evaluation of the Main Goal

	Discussion
	Dataset
	Model Architecture

	Contributions
	Future Work

	Bibliography
	Appendix
	Stems with errors in Slakh
	white-noise
	wrong-pitch
	wrong-octave
	missing-audio
	short-labels
	long-labels

	Additional Results

