Forceful Aerial Manipulation based on an Aerial Robotic Chain: Hybrid Modeling and Control

Huan Nguyen¹, and Kostas Alexis²

Abstract—This paper presents the system design, modeling, and control of the Aerial Robotic Chain Manipulator. This new robot design offers the potential to exert strong forces and moments on the environment, carry and lift significant payloads, and simultaneously navigate through narrow corridors. We contribute a hybrid modeling framework to model the system both in Free-flight mode, where the end-effector acts as a normal pendulum, and in Aerial Manipulation mode, where the system behaves as an inverted pendulum. Respective controllers are designed for both operating modes with stability guarantees provided by Lyapunov theory. The presented experimental studies include a task of valve rotation, a pick-and-release task, and the verification of load oscillation suppression to demonstrate the stability and performance of the system.

Index Terms—Aerial systems; mechanics and control, multi-robot systems, aerial robot manipulation

I. INTRODUCTION

Research in aerial robotics is pushing the frontier of autonomy, sensing, processing and endurance of Micro Aerial Vehicles (MAVs). Flying robots are being integrated in an ever increasing set of applications such as inspection, surveillance, or even physical interaction and manipulation [1–4]. However, aerial robots still present a set of key limitations. Largely, existing MAV designs are monolithic and thus present a common set of trade-offs, for example between payload and endurance or size. In the domain of aerial manipulation this implies rather sensitive designs with limited work-task execution capacity or resorting to large, complex and expensive platforms. Responding to a subset of these needs, reconfigurable and multilinked systems-of-systems of aerial robots have emerged [5–11] including our recent contribution on the Aerial Robotic Chain (ARC) [12]. Multilinked aerial systems such as the ARC can exploit a different design space and achieve simultaneously the ability to cross narrow sections, ferry significant payloads, enable distributed sensing and processing, incorporate redundancy and more. In this work we extend the potential of ARC by developing a custom aerial manipulation solution and proposing the modeling framework and control strategy that allow forceful physical interaction for work-task execution. The proposed design extension of the aerial robotic chain, called “Aerial Robotic Chain Manipulator” (ARC-M) is a multilinked robot consisting of two quadrotors (ARC-units) connected, using 3-Degree of Freedom (DoF) joints, through a rigid link that incorporates a manipulator with a lightweight finger end-effector. Fig. 1 depicts the system. Through its design, ARC-M presents a set of capabilities, including the ability to a) exert strong forces and moments, b) carry and lift significant payloads, and c) navigate narrow cross sections. Contrary to the majority of aerial manipulator designs where a single aerial robot is the basis for the overall force and moment exertion, ARC-M can apply significantly stronger moments and forces due to its ability to use the thrust vectoring of two independent quadrotors that are connected at a distance to each other and from the end-effector.

Beyond the design of ARC-M, this paper further contributes a) a hybrid modeling framework capturing both the free-flight and aerial manipulation modes of this multilinked aerial robot, as well as b) the control strategy for autonomous navigation and forcible aerial manipulation. In free-flight the end-effector behaves as a normal pendulum, whereas during aerial manipulation the whole system acts analogously to an inverted pendulum. The control design is accompanied with stability proof for both modes. The controller performance and its stability are demonstrated through a set of experimental studies relating to challenging work-task execution. Those include a) valve rotation and b) pick-and-release of objects, alongside c) verification of payload transfer stability.

Regarding the remainder of this paper: Section II presents related work. Section III overviews the system. Modeling and control are presented in Sections IV, and V, followed by results in Section VI and conclusions in Section VII.
II. RELATED WORK

This work relates to two sets of research studies, namely in the domains of a) multilinked aerial robots, and b) aerial manipulation. With respect to the first, the DRAGON robotic system [5, 6] is one of the most notable examples and is a dual-rotor-embedded multilink system with the ability of multi-DoF transformation. It can control the full pose in \(SE(3) \) and through a prototype consisting of four links, it demonstrates the ability to adjust its shape to go through a narrow window. The Large-Scale Aerial Skeleton with Distributed Rotor Actuation (LASDRA) [7] is a system that integrates distributed rotor 6DoF full actuation of each link. Its rotors are back drivable and it relies on distributed impedance control. The work in [8, 9] presents a multilinked multirotor made to enable the transportation of objects of significant size by exploiting form adaptation.

In the domain of aerial manipulation and broadly physical interaction, a set of approaches have been proposed. A set of researchers have contributed in the domain of physical interaction [13, 14], while the area has developed to cover complicated aerial manipulation [3, 4]. In this area, diverse manipulator designs have been proposed - from arms [2, 15], to delta configurations [16], multi-robot manipulation [17] and more - alongside a set of control strategies [18–21]. A common characteristic of these contributions is that the ability to exert significant forces and moments has to rely on the size and thrust generation capabilities of a typically underactuated aerial robot and thus often severe limitations apply. A different approach is presented in [10, 11] through multiple quadrupods connected to a rigid frame. This work contributes ARC-M and intersects the domains of multilinked multi-robot aerial robots and aerial manipulation.

III. SYSTEM OVERVIEW

ARC-M extends the ARC-Alpha robot [12], with the addition of the finger end-effector connected to the link through a lightweight carbon tube. The end-effector is equipped with an electromagnet to be able to attach to or pickup metallic objects. The manipulator carbon fiber tube is connected to the finger through a universal joint incorporating a stiff damper (Fig. 1) thus the finger has approximately the same orientation as the link in Free-flight mode and also acts as a compliant mechanism when attached to a fixed point in Aerial Manipulation mode. The length of the link connecting the 2 ARC-units is 0.37m and the length of the carbon tube to the finger is 0.42m. The masses of the finger, link and each ARC-unit are 90g, 150g and 900g, respectively.

IV. MODELING

In order to develop a model for the ARC-M system we first acknowledge the fact that the process of transition from free-flight to physical interaction takes place in infinitesimal time as the collision-dynamics are extremely fast. Given this observation, the dynamics of the system are modeled as a hybrid dynamical model with two modes of the Aerial Robotic Chain \(Q = (FF, AM) \), namely a) Free-Flight (FF) and b) Aerial Manipulation (AM). We use the framework of hybrid automata [22] to model this hybrid system as visualized in Fig. 2. The Domain Maps and Flow Maps governing the system in each mode are presented in Sections IV-A and IV-B, while the Guard Maps describing switching conditions between the modes and the Reset Maps encoding the state of the system after the switch are described in Section IV-C. The above hybrid system is simulated using the Hybrid Systems Simulation Toolbox for Matlab/Simulink (HyEQ) [23]. The notations used are defined in Table I and Fig. 3.

A. Free-Flight Dynamics

When the robot operates in the Free-flight mode, the link can freely rotate around the two 3-DoF joints at \(C_1 \) and \(C_2 \), therefore the finger is considered as a normal pendulum. The state of the ARC-M multi-body system in this mode is:

\[
x_{FF} = [x_L, v_L, R_1, \Omega_1, R_2, \Omega_2, R_L, \Omega_L, R_M, \Omega_M]^T
\]

with domain map:
TABLE I
NOTATIONS USED IN THE PAPER

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W, B_L, B_M, B_k</td>
<td>World frame, body-fixed frame of the link, finger and ARC-unit i (i = 1, 2) frames</td>
</tr>
<tr>
<td>${e_1, e_2, e_3}$</td>
<td>Unit-vectors in x, y, z axes</td>
</tr>
<tr>
<td>$m_{k}, m_{C_k}, m_{k_i} \in \mathbb{R}$</td>
<td>Link, finger, ARC-units (i = 1, 2) ’s mass</td>
</tr>
<tr>
<td>C_L, M, C_l</td>
<td>Origins of B_L, B_M and the joint connecting the link to ARC-unit i (i = 1, 2)</td>
</tr>
<tr>
<td>$L, M_{L}, L_i \in \mathbb{R}$</td>
<td>Length of the link connecting 2 ARC-units, the carbon tube connecting C_L to the finger</td>
</tr>
<tr>
<td>$d_i \in \mathbb{R}^3$</td>
<td>Vectors $C_G C_L, C_G C_T, C_T C_i$ (i = 1, 2) expressed in B_L</td>
</tr>
<tr>
<td>$u_i \in \mathbb{R}$</td>
<td>Vector from the Center-of-Gravity (CoG) of ARC-unit i to the joint C_i, expressed in B_i (i = 1, 2)</td>
</tr>
<tr>
<td>$M_{i} \in \mathbb{R}^3$</td>
<td>Thrust vector generated by ARC-unit i (i = 1, 2), expressed in W</td>
</tr>
<tr>
<td>$x_{L}, x_{M}, x_{i} \in \mathbb{R}^3$</td>
<td>Positions of C_L, the finger and ARC-unit i (i = 1, 2), expressed in W</td>
</tr>
<tr>
<td>(x_i, y_i, z_i)</td>
<td>x, y, z coordinates of x_{L}</td>
</tr>
<tr>
<td>$\Omega_L, \Omega_M, \Omega_i \in \mathbb{R}^3$</td>
<td>Velocities of C_L, the finger and ARC-unit i (i = 1, 2) expressed in W</td>
</tr>
<tr>
<td>$\phi_1, \theta_1, \psi_1 \in \mathbb{R}$</td>
<td>Angular velocities of the link expressed in B_L, finger in B_M, ARC-unit i in B_i, (i = 1, 2)</td>
</tr>
<tr>
<td>$J_L, J_M, J_i \in \mathbb{S}^3_{++}$</td>
<td>Inertia matrices of the link expressed in B_L, finger in B_M, ARC-unit i in B_i, (i = 1, 2)</td>
</tr>
<tr>
<td>$J_{MC} \in \mathbb{S}^3_{++}$</td>
<td>Lumped inertia matrix of finger and valve expressed in B_M</td>
</tr>
<tr>
<td>$\Omega_{L}, \Omega_{M}, \Omega_{i} \in \mathbb{R}^3$</td>
<td>Stiffness and friction coefficient matrices of the damper between finger and link</td>
</tr>
<tr>
<td>$M_{fric}, M_{fric}^{M} \in \mathbb{R}^3$</td>
<td>Friction moments that the damper and the universal joint apply to the carbon fiber tube expressed in B_L, the finger expressed in B_M</td>
</tr>
<tr>
<td>$M_{twist}, M_{twist}^{M} \in \mathbb{R}^3$</td>
<td>Twist moments that the damper and the universal joint apply to the carbon fiber tube expressed in B_L, the finger expressed in B_M</td>
</tr>
<tr>
<td>$\nu_{fric}, \nu_{fric}^{M} \in \mathbb{R}^3$</td>
<td>Other moments applied by valve’s base to the valve compensating for the moments in xy directions that the damper applies to the finger in AM mode expressed in B_M</td>
</tr>
<tr>
<td>$\nu_{fric}^{M} \perp \nu_{fric}$</td>
<td>Holding force of the electromagnet expressed in B_M, $\nu_{fric}^{M} = 0$ when it is turned off</td>
</tr>
</tbody>
</table>

The dynamics equations describing the system in Air-flight:

$$m_{L} \ddot{x}_{L} + m_{L} R_{i}^{T} R_{k} d_{1} \Omega_{L} + m_{L} R_{i}^{T} R_{k} d_{2} - m_{L} M_{L} \dot{\omega}_{L} = u_{1} + u_{2} - m_{L} g \epsilon_{3} + m_{L} R_{k} \dot{\Omega}_{L} d_{1} + m_{L} R_{k} \dot{\Omega}_{L} d_{2} - m_{L} M_{L} \dot{\omega}_{L},$$

$$-m_{1} \ddot{R}_{i} \dot{x}_{L} + (J_{1} - m_{i} \dot{d}_{i}) \dot{\Omega}_{L} + m_{1} \dot{d}_{i} R_{k}^{T} \dot{R}_{k} d_{1} \Omega_{L} = M_{1} \dot{\Omega}_{L} - \Omega_{L} (J_{1} - m_{i} \dot{d}_{i}) \Omega_{L} + m_{1} d_{i} \dot{R}_{R} d_{1} \epsilon_{1},$$

$$-m_{2} \ddot{R}_{i} \dot{x}_{L} + (J_{2} - m_{i} \dot{d}_{i}) \dot{\Omega}_{L} + m_{2} \dot{d}_{i} R_{k}^{T} \dot{R}_{k} d_{1} \Omega_{L} = M_{2} \dot{\Omega}_{L} - \Omega_{L} (J_{2} - m_{i} \dot{d}_{i}) \Omega_{L} + m_{2} d_{i} \dot{R}_{R} d_{1} \epsilon_{1}$$

where $J_{L}, J_{M}, J_{L_i} = J_{L} - J_{1} - J_{2} - J_{i} M_{L} (i = 1, 2)$, and $J_{LA} = J_{L} - J_{L} M_{L} - m_{L} \ddot{R}_{i}^{2} - m_{L} \ddot{R}_{k}^{2} - m_{L} \ddot{R}_{R}^{2} - m_{L} \ddot{R}_{L}^{2}$.

When neglecting terms containing $d_{1}, d_{2}, (15), (16)$ describe the rotational dynamics of the 2 ARC-units. The rotational dynamics of the link and the finger are governed by (17), (18) and are coupled through the terms for the effects of the damper and universal joint.
C. Guards and Resets

The transition from the FF to AM mode only occurs when the finger’s pose is close to the valve’s pose, and the electromagnet is turned on. We derive the guard maps \(\mathcal{G} \):

\[
\mathcal{G}(FF, AM) = \{ x_{FF} \mid \| x_{AM} - x_{value} \|_2 < r_{th}, \quad \Psi(R_{M}, R_{valve}) < \Psi_{th} \},
\]

where \(x_{AM} = x_{L} + R_{L}L_{M}, x_{value} \) is the contact point’s position, and \(\Psi \) is the attitude error function as in (1). \(r_{th}, \Psi_{th} \) are positive thresholds. Transition from AM mode back to FF occurs when the electromagnet’s holding force cannot keep the finger attached to the valve. Thus the guard map:

\[
\mathcal{G}(AM, FF) = \{ x_{AM} \mid (F_{int}^M - m_{LM}g_{e3}) \cdot R_M e_1 > F_{mag}^M \quad \text{or} \quad (F_{int}^M - m_{LM}g_{e3}) \cdot R_M e_2 > F_{mag}^M \quad \text{or} \quad \Psi(R_{M}, R_{valve}) > \Psi_{th} \}, \quad \Psi_{th} > 0
\]

where \(F_{int}^M \) is the internal force that the carbon fiber tube applies to the finger, expressed in \(\mathcal{W} \). \(F_{int}^M \) is calculated as:

\[
\begin{align*}
\dot{x}_L &= -R_L \ddot{\theta}_L^0 L_{M} + R_L \dot{L}_M \dot{\theta}_L
\end{align*}
\]

\[
\begin{align*}
\dot{x}_1 &= R_L \dot{\theta}_L^0 L_{M2} - R_L \dot{L}_{M2} \dot{\theta}_L - R_L \ddot{\theta}_L d_1 + R_L \dot{d}_1 \\
\dot{x}_2 &= R_L \dot{\theta}_L^0 L_{M2} - R_L \dot{L}_{M2} \dot{\theta}_L - R_L \ddot{\theta}_L d_2 + R_L \dot{d}_2
\end{align*}
\]

\[
\begin{align*}
F_{intL}^M &= m_1 \dot{x}_1 - u_1 + m_1 g_{e3} \\
F_{intL}^M &= m_2 \dot{x}_2 - u_2 + m_2 g_{e3} \\
F_{intL}^M &= m_L \dot{x}_L - F_{intL}^M - m_L g_{e3}
\end{align*}
\]

where \(F_{intL}^M \) is the force that the link applies to each ARC-unit \(i \), \(i = 1, 2 \) and \(\Omega_L, \Omega_M \) are derived from (15)-(18).

With respect to the reset maps \(\mathcal{R} \), when the system switches from FF to AM mode, the point \(x_{L} \) will move on the surface of a sphere with the center at \(x_{AM} = x_{value} \), thus the component of \(v_{L} \) that is parallel to \(R_L L_{M} \) is zeroed. We also assume that the \(z \)-components of \(\Omega_L, \Omega_M \) are small before and after the contact with the valve:

\[
\begin{align*}
e_{LM} &= \frac{R_L L_{M}}{L_{M}} \\
v_L^+ &= v_{L} - (v_{L} \cdot e_{LM}) e_{LM} \\
R^+_{L} v_L^+ &= \Omega^+_L \times (-L_{M}) \Rightarrow \Omega^-_L = -L_{M} R^+_{L} v_L^+ L_{M}
\end{align*}
\]

\[
\mathcal{R}(FF, AM) = [R_1, \Omega_L, R_2, \Omega_L, \Omega^+_M, \Omega^-_M, 0]
\]

The reset map from AM to FF \(\mathcal{R}(AM, FF) \) incorporates the constraints \(x_{L} = x_{AM} - R_L L_{M}, \dot{x}_{L} = -R_L \dot{\Omega}_L L_{M} \). Assuming that the damper between the link and the finger is stiff enough, then \(R_{M} \approx R_{L}, \Omega_{M} \approx \Omega_{L} \) in FF. Thus:

\[
\mathcal{R}(AM, FF) = [x_{AM} - R_L L_{M}, -R_L \dot{\Omega}_L L_{M}, R_1, \Omega_L, R_2, \Omega_L, R_1, \Omega_L, R_2, \Omega_L]
\]

V. CONTROL STRATEGY

In order to enable free-flight navigation and stable aerial manipulation, we develop respective controllers and use the following switching policies: the switch from FF to AM controller follows the guard map in (19) and the switch from AM to FF follows the guard map in (21) (activated by turning off the electromagnet). As can be seen from (10), (11), (15), (16), the rotational dynamics of the 2 ARC-units are independent of the translational and rotational dynamics of the link when we neglect the terms containing \(d_1, d_2 \). Thus, each ARC-unit can be thought of as a thrust vector individually controlled by its attitude controller. Assuming that the response of the attitude controller in each ARC-unit is much faster than the translational and rotational dynamics of the link, the reference thrust vector \(u_i \) \((i = 1, 2)\) for each ARC-unit can be tracked instantaneously. We derive the control law manipulating the thrust vector commands of the two ARC-units to guarantee the stability and tracking performance of ARC-M in both free-flight and aerial manipulation.

A. Controller for Free-flight Mode

The linearized model of the system around the hovering point in Free-flight mode is first derived. In order to decouple the \(x, y \) translational dynamics from the roll, pitch angular dynamics of the link, we will express the position of the link \((x_L^w, y_L^w, z_L^w) \) and its reference position \((x_L^{w, r}, y_L^{w, r}) \) in the yaw-aligned \(\mathcal{W} \):

\[
\begin{align*}
x_L^w &= R_L^w(\psi_L) x_L = (x_L, y_L, z_L) \\
x_L^{w, r} &= R_L^w(\psi_L) x_L^{w, r} = (x_L, y_L, z_L)
\end{align*}
\]

\[
e_L^{r} = R_L^w(\psi_L) e_L, \quad e_L = x_{L} - x_L^{w}
\]

We propose a parallel control architecture, shown in Fig. 4, consisting of four controllers for the link: the \(z \) controller, the yaw controller, the pitch and yaw-aligned \(x_L, y_L \) controller, as well as the roll and yaw-aligned \(y_L, z_L \) controller.

\[
\begin{align*}
\dot{x}_L &= \psi_L \dot{\psi}_L x_L \\
\dot{y}_L &= \psi_L \dot{\psi}_L y_L \\
\dot{z}_L &= \psi_L \dot{\psi}_L z_L
\end{align*}
\]

\[
\begin{align*}
x_L^{w} &= R_L^w(\psi_L) x_L = (x_L, y_L, z_L) \\
x_L^{w, r} &= R_L^w(\psi_L) x_L^{w, r} = (x_L, y_L, z_L)
\end{align*}
\]

\[
e_L^{r} = R_L^w(\psi_L) e_L, \quad e_L = x_{L} - x_L^{w}
\]

We propose a parallel control architecture, shown in Fig. 4, consisting of four controllers for the link: the \(z \) controller, the yaw controller, the pitch and yaw-aligned \(x_L, y_L \) controller, as well as the roll and yaw-aligned \(y_L, z_L \) controller.
\[
m_{\Sigma} \ddot{x}_L = m_{\Sigma} a_1 + m_{M} R_L \dot{L}_M \Omega_L \tag{39}
\]

\[
J_L f_L \dot{\Omega}_L + \dot{\Omega}_L \left(J_L f_L - \frac{m^2}{m_{\Sigma}} I^T_M \right) \Omega_L = LR_T^x u_{rot2} - L_M R_L^T m_{M}(a_1 + ge_x) \tag{40}
\]

Assuming \(\ddot{x}_L = 0 \), we can rewrite (39) as:

\[
m_{\Sigma} \ddot{e}_L = m_{\Sigma} R_L (-\psi_L) \hat{O}_L^2 e_L - m_{M} a_1 R_L (-\psi_L) \hat{O}_L e_L + 2 m_{M} R_L (-\psi_L) (\hat{O}_L)_e L_M + m_{M} R_L (\psi_L) R_L^T a_1 + m_{M} R_L (\psi_L) R_L (\psi_L) \hat{O}_L \Omega_L \tag{41}
\]

where \(\Omega_L = (0,0,\Omega_L^T) \) is the angular velocity of the link around z-axis in \(\mathbb{R}_L \). We now derive the control law for the control inputs in \(\mathbb{R}_L \) (\(A_1 \) and \(U_2 \)):

\[
R_L^T a_1 = A_1 = (A_{1x}, A_{1y}, A_{1z}) \Rightarrow a_1 = R_L^T a_1 \tag{42}
\]

\[
R_L^T u_{rot2} = U_2 = (0, U_{2y}, U_{2z}) \Rightarrow u_{rot2} = R_L U_2 \tag{43}
\]

Assuming \(J_L f_L \) is diagonal (true when \(J_L f_L, J_M \) are diagonal matrices), let \(J_L f_L = diag(J_{L fx}, J_{L fy}, J_{L fz}) \). Linearizing (40), (41) around the operating point \(x_L = x_L^d, \dot{x}_L = \dot{x}_L^d \) as:

\[
\begin{align*}
m_{\Sigma} \ddot{e}_L &= m_{\Sigma} A_{1x} + m_{M} L M \hat{O}_L e_L \\
m_{\Sigma} \ddot{e}_L &= m_{\Sigma} A_{1y} - m_{M} L M \hat{O}_L e_L \\
m_{\Sigma} \ddot{e}_L &= m_{M} A_{1z} \\
J_{L fx} \ddot{e}_L &= -m_{M} L M \hat{O}_L e_L \\
J_{L fy} \ddot{e}_L &= -m_{M} L M \hat{O}_L e_L \\
J_{L fz} \ddot{e}_L &= -m_{M} L M \hat{O}_L e_L
\end{align*}
\]

where \(\Omega_L = (0,0,\Omega_L^T) \) is the angular velocity of the link around z-axis in \(\mathbb{R}_L \). We now derive the control law for the control inputs in \(\mathbb{R}_L \) (\(A_1 \) and \(U_2 \)):

\[
A_{1x} = -K_{pL} \ddot{e}_L - K_{dL} \dot{e}_L \\
U_{2y} = \frac{J_{L fx}}{L} \left[-K_{pL} (\dot{\psi}_L - \dot{\psi}_L^d) - K_{dL} \dot{\Omega}_L \right]
\]

with

\[
\begin{align*}
K_{11} &= -m_{M} L M L_{fLx} \\
K_{12} &= -m_{M} L M L_{fLy} \\
K_{21} &= -m_{M} L M L_{fLz} \\
K_{22} &= -m_{M} L M L_{fLy} \\
H_1 &= \frac{m_{M} L M L_{fLx}}{J_{L fx}} (-K_{pL} \dot{\psi}_L - K_{dL} \dot{\Omega}_L) + m_{M} L M \dot{\theta}_L \\
H_2 &= \frac{m_{M} L M L_{fLz}}{J_{L fz}} (-K_{pL} \dot{\psi}_L - K_{dL} \dot{\Omega}_L) + m_{M} L M \dot{\theta}_L
\end{align*}
\]

From (45) and (47), we can derive the linear system governing \(x_{\psi \phi} = (\ddot{e}_L, \ddot{e}_L, \dot{\psi}_L, \dot{\phi}_L, \dot{\Omega}_L) \) as:

\[
x_{\psi \phi} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & \frac{m_{M} L M L_{fLx}}{J_{L fx}} & 0 & 0 \\ 0 & 0 & \frac{m_{M} L M L_{fLz}}{J_{L fz}} & 0 & 0 \\ 0 & 0 & -\frac{m_{M} L M L_{fLy}}{J_{L fy}} & 0 & 0 \\ 0 & 0 & \frac{m_{M} L M L_{fLy}}{J_{L fz}} & 0 & 0 \end{bmatrix} x_{\psi \phi} + \begin{bmatrix} 0 & 0 & 0 & \frac{m_{M} L M L_{fLx}}{J_{L fx}} \\ 0 & 0 & \frac{m_{M} L M L_{fLz}}{J_{L fz}} & 0 \\ -\frac{m_{M} L M L_{fLy}}{J_{L fy}} & 0 & \frac{m_{M} L M L_{fLx}}{J_{L fx}} & 0 \\ -\frac{m_{M} L M L_{fLy}}{J_{L fy}} & 0 & \frac{m_{M} L M L_{fLz}}{J_{L fz}} & 0 \end{bmatrix} A_{1y} \tag{53}
\]

The dynamics in (53) are similar to the dynamics of the 2D cart-pendulum system. One can verify that this system is controllable, hence we can choose the control law

\[
A_{1y} = -K_{\psi \phi} x_{\psi \phi} \tag{54}
\]
The control law during aerial manipulation is chosen as:
\[
\dot{L}R^T_{t}u_{ort2} - \dot{L}_M R^T_{t} (m_1 + m_2) a_{ort1} = -k_{RL} e_{RL} - k_{Ql} e_{Ql} + \Omega_L J_a \Omega_L
\]
where the attitude error vector e_{RL} and the angular velocity error vector e_{Ql} for the link are defined using (2), (3) as:

\[
e_{RL} = e_{R(R_L, R^d_L)}, e_{Ql} = e_{Ql} (\Omega_L, \Omega^d_L)
\]
Assign:

\[
\dot{L}R^T_{t}u_{ort2} = \dot{L}_M R^T_{t} (m_1 + m_2) a_{ort1} = \frac{1}{L_M} \dot{L}_M Ma_{e2}
\]

By substituting u_{ort2}, a_{ort1} as calculated in (65), (66) into (60), (61) we derive the desired control inputs u^1, u^2. The stability proof for the closed-loop system is given below. Assuming that the rotation angles between R_L, R_M and R^d_L are strictly less than 180°, as per [27], there exists a positive number $\psi < 2$ such that:

\[
\Psi(R_L(t), R^d_L(t)), \Psi(R^d_L(t), R_M(t)) \leq \psi < 2
\]
We also assume k_{RL} is chosen such that:

\[
k_{RL} > 3\sqrt{2}B\lambda_M(k_M), B = \sqrt{\frac{2}{2 - \psi}}
\]
We choose the Lyapunov function of the system as:

\[
V_a = \frac{1}{2} e_{Ql} \cdot J_{La} e_{Ql} + k_{RL} \Psi(R_L, R^d_L) + e_{RL} \cdot J_{La} e_{Ql} + \frac{1}{2} \Omega_M J_{MC} \Omega_M + \frac{1}{2} B(k_M - k_{RL}) e_{RL} e_{Ql}
\]
where c is a positive constant satisfying:

\[
c < \min \left\{ \frac{\sqrt{k_{RL}} \lambda_M (k_M)}{\lambda_M (J_{La})}, \frac{4Ak_{Ql}}{\sqrt{2} A_{\lambda M} (J_{La}) + k_{Ql}} , \right\}
\]
, ξ_1 is the smaller positive root of the quadratic equation:

\[
cAk_{Ql} - \frac{3\lambda_M (J_{La}) A}{\sqrt{2}} + \frac{k_{Ql}^2}{4} + \frac{\lambda_M (b_M) b_{RL}}{4} \xi_1^2 = 0\]

\[
A = k_{RL} - 3\sqrt{2}B\lambda_M(k_M) > 0, \epsilon = \frac{\lambda_M (b_M)}{\lambda_M (b_M)} > 0
\]
Plugging (64) into (62) and utilizing the assumption in (63), we obtain the AM-mode’s closed-loop dynamics:

\[
J_{La} e_{Ql} = -k_{RL} e_{RL} - k_{Ql} e_{Ql} + M_{fric} + M_{tw}^e
\]
From the detailed report in [25], we have:

\[
V_a \geq z^T_1 W_1 z_1 + \frac{1}{2} \Omega_M J_{MC} \Omega_M + \frac{1}{2} e_{RL} (R_M, R_L) \cdot k_M e_{RL} (R_M, R_L)
\]
\[
V_a < -z^T_2 W_2 z_2
\]
\[
V_a = -c_{RL} e_{RL}^2 - k_{Ql} e_{Ql}^2 + c_{RL} \cdot J_{La} e_{Ql} - \bar{c}_{Ql} e_{Ql} \cdot e_{Ql} + \frac{1}{2} \Omega_{M} J_{La} \Omega_{M} - \frac{1}{2} (R_M \Omega_{M} - R_L \Omega_{L}) \cdot b_M (R_M \Omega_{M} - R_L \Omega_{L}) + \Omega_{M} M_{fric}^+ \eta
\]
where $z_1 = (|e_{RL}|^2, |e_{Ql}|^2)^T \in \mathbb{R}^2$, $z_2 = (|e_{RL}|^2, |e_{Ql}|^2, |R_M \Omega_{M} - R_L \Omega_{L}|^2)^T \in \mathbb{R}^3$ and the matrices W_1, W_2 are given by:

\[
w_1 = \frac{1}{2} \left(\begin{array}{cc}
k_{RL} & -c_{RL} \lambda_M (J_{La}) \\
-c_{RL} \lambda_M (J_{La}) & \lambda_M (J_{La})
\end{array} \right)
\]
\[
w_2 = \left(\begin{array}{cc}
c_{RL} k_{RL} - \frac{1}{2} c_{Ql} k_{Ql} & -c_{RL} \lambda_M (J_{La}) \\
-\frac{1}{2} c_{RL} \lambda_M (J_{La}) & \lambda_M (b_M)
\end{array} \right)
\]
With the condition in (68), (70), W_1 and W_2 are positive definite matrices. The Lyapunov function V_a is bounded from below and non-increasing, hence it converges to a limit [28]. Since $V_a(t) < V_a(0)$, then $||e_{RL}||^2, ||e_{Ql}||^2, ||R_M \Omega_{M} - R_L \Omega_{L}||^2$ are bounded. We also have from [24]:

\[
||e_{RL}||^2 \leq \frac{3}{\sqrt{2}} ||e_{Ql}||^2
\]
and since $||R_M \Omega_{M} - R_L \Omega_{L}||^2 \leq ||\Omega_M||^2 + ||\Omega_{L}||^2$, $||e_{RL}||^2$ and $||R_M \Omega_{M} - R_L \Omega_{L}||^2$ are bounded. From (71), $||e_{Ql}||^2$ is bounded, therefore $||e_{RL}||^2$ is also bounded. Assuming $||M_{fric}^+ \eta||^2$ and $|||\Omega_{M}||^2+||\Omega_{L}||^2||^2$ are bounded, from (18), Ω_{M} is bounded and since $\Omega_{M} \perp \Omega_{M}$ in the AM mode, then $||\Omega_{M}||^2$ is bounded. Differentiating the two sides of (74), we derive that V_a is bounded. Per Barbalat’s lemma [28], we have $\lim_{t \to \infty} V_a = 0 \Rightarrow ||e_{RL}||^2, ||e_{Ql}||^2 \to 0$ as $t \to \infty$. From [25], we also have $||e_{RL} (R^d_L, R_M)||^2 \to 0$ as $t \to \infty$. As shown in [24], the only stable equilibrium of R_L, R_M when $t \to \infty$ is R^d_L.

Note: In terms of practical implementation, we choose k_{RL}, k_{Ql} in (64) as diagonal matrices instead of scalar values as in [29]. The condition in (68) is conservative and corresponds to the specifically chosen Lyapunov function, therefore the elements of the matrix k_{RL} are increased gradually until the system is stable in real experiments.

C. Stability Verification during Mode-switching

Beyond the individual controller stability for each of the FF and AM modes, we further study the stability during $AM \rightarrow FF$ and $FF \rightarrow AM$ switching. For the $AM \rightarrow FF$ case we limit our attention to the link’s roll and yaw-aligned y dynamics which in practice will be most likely to deviate from the linearized model (ϕ_L can be large, while the desired roll angle is always 0). Assuming y-axis translation and rotation around the yaw-aligned x-axis we have:

\[
\Omega_{L} = (0, 0, 0, 0)^T = \Omega_{L} e_{1}, e^\psi_{Ly} = [0, e^\psi_{Ly}, 0]^T = e^\psi_{Ly} e_{2}
\]
As detailed in [25] we derive the dynamics of ϕ_L and e^ψ_{Ly}:

\[
ed_{Ly} = m \frac{\dot{L} \dot{L}^T_{a} \cos \theta_L \tan \phi + \frac{m \dot{L} \dot{L}^T_{a} \cos \phi}{1 + \frac{1}{\cos \phi}} + \frac{m \dot{L} \dot{L}^T_{a}}{1 + \frac{1}{\cos \phi}} \lambda_M}{m \dot{L} \dot{L}^T_{a} \cos \phi} A_{Ly}
\]

\[
\dot{e}_{Ly} = -m \frac{\dot{L} \dot{L}^T_{a} \cos \phi \sin \phi + \frac{m \dot{L} \dot{L}^T_{a} \cos \phi}{1 + \frac{1}{\cos \phi}} - \frac{m \dot{L} \dot{L}^T_{a}}{1 + \frac{1}{\cos \phi}} \lambda_M}{m \dot{L} \dot{L}^T_{a} \cos \phi} A_{ly}
\]
where $-\pi/2 < \phi_L < \pi/2$. We perform reachability analysis with the CORA toolbox [30] to determine the set of initial states $[\phi_L, \Omega_{L}]$ in AM mode right before the switch to FF mode from which the closed-loop system with the control law A_{Ly} chosen in (54) converges to the equilibrium point 0. The pitch angle of the link θ_L before the switch is set to 0 degrees.
for this study. The switching is implemented by following the reset function in (32).

For the FF → AM switching, the AM mode controller is nonlinear on $SO(3)$ with the region of attraction as the region such that the rotation angles between $\mathbf{R}_L, \mathbf{R}_M$ and \mathbf{R}_L^d are strictly less than 180 degrees and allows for stable behavior. We further verify the safety of the system in AM mode after the FF → AM switching by reachability analysis with the condition in (77), $\theta^u = \psi^u = 0$, and $\mathbf{R}_L^d = \mathbf{R}_M = \mathbf{R}_\text{valve} = \mathbf{I}_{3 \times 3}, \Omega_L^d = \Omega_M = \mathbf{0}_{3 \times 3}$, the phase plot is given in Fig. 6(b). To verify the system stability during FF → AM switching with a wide range of ϕ_L^d, we allow ϕ_L^d right before the switching to vary from $-\frac{\pi}{3}$ to $\frac{\pi}{3}$ although the guard in (19) requires that $\mathbf{R}_L \approx \mathbf{R}_M$ is close to \mathbf{R}_valve for the FF → AM to occur. The switching is then implemented as per the reset function in (31).

D. ARC-M system with N ARC-units

The presented model may be extended to N ARC-units allowing the system to pickup multiple loads or increase the magnitude of exerted moments. By calculating the internal forces the link applies to neighbor ARC-units, the dynamics of an N ARC-unit system can be derived. This generalized ARC-M could be controlled using the proposed controller for the translation and angular dynamics of the first link (FF controller), or angular dynamics of the link corresponding to the contacted end-effector (AM controller), while the reference commands for the subsequent ARC-units can be derived using the parallel control architecture proposed in [12], with a time delay, ensuring that the internal forces are limited.

VI. EXPERIMENTAL STUDIES

A set of experimental studies were conducted using the ARC-M system to evaluate the stability and performance of its controller. The pose estimates of each ARC-unit and the connecting link are based on a Motion Capture system with sampling time $T_s = 0.02s$. In the first experiment, illustrated in Fig. 7, we demonstrate the ability of ARC-M to perform forceful work-task execution such as opening or closing an industrial valve. The ARC-M first operates in Free-flight mode to traverse to the location of the valve. The controller then switches to the Aerial Manipulation mode when the finger end-effector is attached to the valve by an electromagnet. The two ARC-units cooperate to exert a significant yaw moment (Fig. 7d) to rotate the valve by tilting around their roll axes, leveraging the length of the connecting link. The electromagnet is then turned off to detach the finger end-effector from the valve and the ARC-M switches back to Free-flight control to stabilize the roll and pitch angles of the link around zero as shown in Fig. 7c.

The second experiment demonstrates the ability of the FF mode controller to suppress load oscillations. An additional load of 50g is attached to the finger. The ARC-M is commanded to hover at a fixed position. The slung load is then manually held at a nonzero roll angle and released. ARC-M reacts to this disturbance by moving in the yaw-aligned y axis as shown in Fig. 8a,b to stabilize the link’s roll angle. Fig. 8c demonstrates that the system can be stabilizable for an initial link’s roll of 40deg which is outside of the range of the small-angle assumption used to design the controller in Section V-A. We attribute this fact to a) the effect of gravity which will bring the finger to the downward vertical position and b) the small unmodelled friction between each ARC-unit and the link with the 3 DoF joints. The z axis spike in Fig. 8b is explained by the support of the human for the masses of the link and the end-effector (Fig. 8a1).

Finally, we also demonstrate the ARC-M in the context of pick-and-release tasks - here for a trash collection application. The ARC-M is able to stabilize the roll angle of the link after the pickup as illustrated in Fig. 9b. The offset in z axis observed in Fig. 9c after the pickup can be explained by the uncompensated mass of the trash.

VII. CONCLUSIONS

This paper presented the Aerial Robotic Chain Manipulator, its modeling and control. A hybrid dynamics model is derived consisting of Free-flight and Aerial Manipulation modes. Respective controllers for each mode are developed with stability guarantees. ARC-M and its controller are verified.
Fig. 8. Slung-load oscillation suppression: a) sequence of ARC-M poses when reacting to disturbances, b) and c) link position and angular tracking performance plots, respectively.

Fig. 9. Pick-and-release experiment: a) sequence of ARC-M poses, b) and c) link position and angular tracking plots of the link, respectively. Orange line marks pickup time.

extensively in experimental studies including a forceful work-task of opening an industrial valve, evaluation of slung-load oscillation suppression and a pick-and-release scenario.

REFERENCES

