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Abstract— In this paper, we develop an online learning-based
visual tracking framework that can optimize the target model
and estimate the scale variation for object tracking. We propose
a recommender-based tracker, which is capable of selecting
the representative convolutional neural network (CNN) layers
and feature maps autonomously. In addition, the proposed
recommender computes the weights of these layers and feature
maps. A discriminative target percept of each recommended
layer is reconstructed by the weighted sum of the recommended
feature maps. Then the target model of the correlation filter is
updated by the weighted sum of the target percepts. Thus, a
sub-network is extracted from the pre-trained CNN backbone
for the tracking process of a specific target. To deal with
scale changes, we propose a spatiotemporal-based min-channel
method to estimate the target size variation directly from CNN
features. Experimental results on 50 benchmark datasets and
video data from a rescue drone demonstrate that the proposed
tracker is quite competitive with the state-of-the-art CNN-based
trackers in terms of accuracy, scale adaptation, and robustness
for UAV-related applications.

SUPPLEMENTARY MATERIAL

Open-source code with demo video:
https://github.com/arclab-hku/
ICRA2021tracking.git

I. INTRODUCTION

Visual tracking, one of the fundamental problems in
computer vision, has been widely used in numerous vision-
based UAV applications [1], [2], [3], [4]. It is also one of the
fundamental tasks in computer vision. Although being inves-
tigated for decades and much progress in terms of tracking
accuracy and robustness has been made [5], [6], [7], [8], [9],
[10], [11], [12], object tracking still remains a challenging
problem due to many uncertainty factors, such as appearance
variation, occlusion, background clutter. On the other hand,
deep learning methods are good options to address this
kind of uncertainty problem. Recently, convolutional neural
networks (CNNs) have shown better performance in terms
of accuracy and robustness for visual tracking task compared
to state-of-the-art approaches [13], [14], [15], [7], [16], [17],
[18], [9], [10], [6].
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Fig. 1: Tracking task for the rescue drone.

Two-dimensional CNNs have exhibited outstanding per-
formance in object recognition problems, for instance,
YOLO [19], SSD [20], Faster RCNN [21], and Mask-
RCNN [22]. In the backbone layers of those CNNs, an
object can be represented by different levels of percepts, e.g.,
different complexity of the feature semantic combinations.
Thus, a featureless object may have a better representation
using low-level percepts while a complex object requires
high-level percepts that contain highly discriminative infor-
mation. This phenomenon is commonly referred to as the
semantic gap. However, existing CNNs-based visual trackers
use only one or several pre-selected layers [23], [13], [14],
[15]. Furthermore, each feature map from hierarchical layers
indicates the level of similarity of a specific type of feature
throughout the whole image using image convolution. There-
fore, taking all feature maps from a hierarchical layer is not
a reasonable way to use CNN for object tracking since some
of the features do not belong to the object. Another main
challenge for CNN-based approaches is the scale variation.
Since CNNs treat each frame as an independent image,
continuity of object scale change is ignored. As the results,
the CNN-based methods still have to use traditional methods
for scale estimation of an untrained target. For instance, [13]
solve the scale factor estimation in its updated version by
extracting HoG feature in addition to CNN features.

In this work, the semantic gap issue mentioned above is
addressed using a recommender for layer selection and up-
dating appearance model using recommended feature maps.
Hence the proposed method does not need the entire network
in most small or featureless target tracking cases. Those
efforts aim to reduce the work load for UAV onboard
computer. The scale variation problem is solved by learning
object scale directly from CNN features via a spatiotemporal-
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based approach. In addition, the proposed scale learning
framework also measures the certainty of tracking. Thus,
the searching region grows together with the increasing of
tracking uncertainty in the presence of target lost due to
fast or abrupt motion of the drone platform. There are two
fundamental novelties in our investigation:
• Automatic recommendation and weighting of the convo-

lutional features that have appropriate feature semantic
level and appearance representation of the target. Which
allows the tracker to rebuild the appearance model of
any untrained target and to simply the network.

• Scale estimation with searching region growing strategy
that learns spatiotemporal variation of the target size
directly from CNN feature maps and relocates the target
to handle the blur or abrupt motion from drone view.

II. RELATED WORK

In this section, three main tracking approaches, which are
closely related to this work, are presented, i.e., tracking by
correlation filters, tracking by CNNs, as well as their hybrid
approaches.

Tracking by correlation filters: Correlation filters have
gained considerable attention because they convert the prob-
lem into the Fourier domain. The trackers, which em-
ploy correlation filters, compute the regression between the
circular-shifted input features, and a Gaussian function model
refers to the target. A notable work [12], popularly known
as kernelized correlation filters (KCF) demonstrated excel-
lent tracking performance by combining multi-dimensional
features and kernels and finding the best filter taps that
maximize the correlation response of over-sampled target.

Tracking by CNNs: The research on CNN-based visual
tracking has achieved remarkable performance. For instance,
the DeepTrack [24] learns effective feature representations of
the target object in a purely online manner. Hong et al. [23]
take outputs from the first fully-connected layer to learn
the target and background features. These approaches learn
the positive and negative samples from a pre-trained CNNs.
However, such models are designed to recognize numerous
objects discard temporal information while the goal of visual
tracking is to locate single or few objects’ positions over
time. Wang et al. [25] use a domain adaptation module for
online adapt the pre-learned features according to the partic-
ular target object. This module has been integrated into other
tracking methods and achieved significant improvement.

Tracking by KCF-CNN: Recently presented work, e.g.
hierarchical convolutional features (HCF) [13] uses a KCF
CNN-based hybrid approach. HCF uses 3 pre-selected layers,
i.e., the max-pooling layers of conv3, conv4, and conv5,
with fixed weights. The highest layer is able to discriminate
the target while lower layers are used for precise localization.
However, this method suffers from a complex background
since most of the features that the CNN learned are back-
ground feature. In this paper, instead of using fixed layers,
we propose a novel recommender to automatically select the
best perceptive layers and the feature maps in each selected
layer for the tracked object. To handle the scale variation,

we present spatiotemporal-based min-channel feature maps.
As a result, the target percept reconstructed from the recom-
mended feature maps is robust to both appearance and scale
changes of target objects.

III. PROPOSED ALGORITHM

In this section, we first give an overview of the proposed
method, of which the framework is shown in Fig. 2. The
target appearance is given in the first frame. Initially, the
proposed recommender optimizes the VGGNet [26] network
by finding the highest layer we actually need and build the
optimized target model for the correlation filter training,
which is discussed in Section III-A and Section III-B,
respectively. In each new frame, we take a sample patch that
is an extended region of the target region in the last frame and
feed it to the optimized network - to extract the convolutional
features. Then we use the proposed recommender to build the
candidate model. The correlation filter works together with
the proposed scale learning method to relocate the target
and update the new model(Section III-C and Section III-
D). Finally, we summarize the tracking framework using
pseudocode.

A. Recommender

Denote F̄ and B̄ as the mean response value of foreground
region F (given by bounding box) and background region B
(the extended searching region) of a convolutional response
X(x1, x2, ..., xN ), respectively. The recommendation score
of X is given by:

f(X,F,B) = DT ·GT, (1)

where the DT and GT are distinctive term and gain term,
respectively. They are defined as:

DT =
1

N

N∑
i=1

xi(e
1−( 2di

(1+β)r
)2 − 1), (2)

GT = (F̄ − B̄)2, (3)

where di is the pixel distance between i-th pixel to the
target center and r is the diagonal length of region F . β
is the tolerance parameter. xi is the convolution response
value of i-th pixel. As Fig. 3 shows, DT scores the feature
quality, while GT measures the statistical difference between
foreground and background. Fig. 4 shows the recommender
output.

The high response of the convolution, i.e., i ∈ {i|xi ≥ δ},
means the local appearance is highly correlated to the image
filter (or kernel) that learned by CNNs. In this work, we are
interested in the peak responses (δ = max(X)) because our
goal is single object tracking. For multiple objects tracking,
the peak responses will be constrained by regions.
Remark 1: The typical value for tolerance parameter β is
0.25, which means we assume that the location shift or scale
growing of the target is within 25% target size in general. It
is introduced because the target may have a position shift or
scale variance.
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Fig. 2: Tracking framework overview
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Fig. 3: Diagram of DT and GT. DT aims to select the discriminative features learned by CNN. As the new figure shows,
for the convolution results, the peak values with a large distribution is designed to result in a low score. DT provides a
convergent non-linear weight distribution refer to the 2di/(1 + β)r ratio as well as labels foreground/background by the
positive/negative score. GT, on the other hand, amplify the discriminative score by comparing the power of foreground and
background.

(a) Input

F

B
(b) Conv4-4: 

DT = 0.9

GT = 0.5

(c) Conv5-4: 

DT = 1.5

GT = 0.8

(d) Feature map: 

DT = -0.5

GT = 0.7

Fig. 4: Recommender output. The input in (a) shows the fore-
ground (F) and background (B) regions. In (b), layer Conv4-4
has multiple dispersed peak convolutional responses, while
in (c), the peak responses gather to the center. Therefore,
compare to (b), the kernel learned in (c) is more likely to be
the discriminative detector of the target. A sample of feature
maps is shown in (d), of which the discriminative term DT
is a negative value because it only represents background
features. The gain term GT, on the other hand, measures the
difference level between F and B.

B. Target Appearance Modeling

Figure 5 shows an example of target appearance modeling.
We extract target percept Cj from the j-th convolutional
layer by taking the average of its Gaussian weighted feature
maps hji :

Cj =
∑
i

G ◦ hji , (4)

where the G is a cosine window that weight the feature by
Hadamard product (notated as ◦). This is used to avoid the
discontinuity of image bounder. The hji is the i-th feature
map of j-th convolutional layer. Due to max-pooling, the
image size of Cj varies. Therefore, each Cj is re-sampled
with a fixed size. To be noted that a normalized C (values
in the range [0,1]) is used for further computing.

In the first frame, we extracted C from all layers and
compute their recommendation scores:

f c = {f cj |f cj = f(Cj , F,B),∀j}, (5)

by equation (1). The index set φ of recommended layers is
given by:

φ = {j|f cj ∈ TopN(fc)}, (6)
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Fig. 5: Recommendation framework: The proposed recommender selects layer C20 weights and all feature maps in layer
C20. Only the feature maps with the positive weights are used to rebuild the target model. To be noted that the ReLU layers
are taken into account, therefore there are 37 layers in VGG-19. Hence, we extract the sub-CNN with only 20 layers for
this tracking task, which optimized the convolutional feature extraction process.

where function TopN() returns the set of top N highest
values of an input set.

Once φ is determined, we build the target model using
recommended feature maps for each recommended layer.
The recommendation scores of all feature maps in the
j-th layer are computed as weights wj = {wji |w

j
i =

max(0, f(hji , F,B),∀i)} (a recommended feature map h
satisfy f(h, F,B) > 0). Then our reconstructed model x
is define as:

x = {xj |xj =
∑
i

wjiG ◦ h
j
i ,∀j ∈ φ}. (7)

Remark 2: In the CNN-based state-of-the-art trackers, such
as our closest competitor HCF, the target percept is the
weighted sum of the percepts obtained from pre-selected
CNN layers by taking the sum of all feature maps in each
layer. Since the input image patch could contain the back-
ground scene, the background features may also be updated
to the target model. In our method, most of the background
features are rejected by the proposed recommender and the
features that represent the whole or critical parts of target
dominate the result by giving higher weights. One example
in the benchmark test is given in Fig. 6, which illustrates the
importance of feature map recommendation by comparing
the proposed method (without scale adaptation function) with
HCF.

C. Correlation Filters
Correlation filters are trained by the linear regression

method. Denote the vectorized samples of target xn and a
vectorized 2D Gaussian window y ∼ N (µ, σ2), where µ is
the center of target sample and σ is the kernel width. To be
noted that y can also be the data labels because the weights
in window y indicate the distances to the target center. Then
the linear regression problem is formed by:

arg min
ω
‖xω − y‖2 + λ‖ω‖2, (8)

HCF Our HCF Our

Fig. 6: With (our: red bounding box) or without (HCF:
green bounding box) feature selection by the proposed rec-
ommender. In order to do a fair comparison, we disabled the
scale adaptation of our method. In this example, the back-
ground scene contains more features than the tracked object.
As the CNNs simply detect any learned features, without
the recommendation of the feature maps, the background
features may dominate the target appearance model, resulting
in the drifting of tracking.

where ω is the coefficients to be trained, x = {x1, x2, ...}, I
is an identity matrix and λ is the regularization coefficient.
The closed-form solution of 8 is given by:

ω = (xTx + λI)−1xT y. (9)

To speed up the process, we train ω in Fourier domain. In
the first frame, the target model X is built by taking Fourier
transforms of reconstructed feature X = F(x) and Y =
F(y). The initial trained correlation filter W is define as:

W = {W j |W j =
Y ◦ X̄j

Xj ◦ X̄j + λ
,∀j ∈ φ}, (10)

where the X̄ denote the complex conjugate of X .
From the second frame, our correlation filter estimates tar-

get location by computing the weighted correlation response
R:

R = F−1(
∑
j

f ′jW
j ◦Xj),∀j ∈ φ, (11)

where f ′j is the normalized score over recommendation
score f c from equation (5) with range [0,1]. Therefore, the
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Fig. 7: Spatiotemporal-based min-channel scale: the first
block on the left describes the main idea of min-channel.
The highest responses of all recommended feature maps are
projecting into the min-channel map, in which we only take
the pessimistic of target region into consideration. Since
the highest response of feature maps are the location of
target features, the variation of power distribution of the min-
channel maps are used for target scale change estimation.

local location u∗ with maximum correlation response is the
estimated new location of the target:

u∗ = arg max
u

R(u). (12)

After the target is relocated, we extract the CNN feature
again in order to learn the target appearance online. Let t
be the index of frame sequence and α be the learning rate,
the updating process of numerator A and denominator B of
filter W can be written as:

At = (1− α)At−1 + αY ◦ X̄t, (13)

Bt = (1− α)Bt−1 + αXt ◦ X̄t, (14)

Wt =
At

Bt + λ
. (15)

D. Min-channel Scale Learning

In general, we assume the target size changes continuously
in visual tracking task. Therefore, for scale estimation, tem-
poral information should be able to increase the accuracy of
scale estimation. In this work, we propose a spatiotemporal-
based min-channel scale learning scheme. The min-channel
is a binary mask that crops the minimum target region
(bounding box region) from the searching region.

The min-channel approach aims to reject the noise as much
as possible. To obtain the min-channel map of the target,
we project the max values at each location u throughout all
recommended feature maps, i.e., find the maximum value on
the third dimension of feature map set x. Then corp it by
the min-channel mask MC.

xmin(u) = MC(u) ·max(x(u)),∀u. (16)

Then the new scale s at frame t refer to the first frame is
updated as:

st = γ
s̄
∑
u x

min
t (u)∑

u x
min
1 (u)

+ (1− γ)
σwt
σw1

, (17)

where σw is a weighted standard deviation of xmin. The
average scale of a short term memory s̄ is computed after
applying median filter to {st−1, st−2, ..., st−M−1}, where M
is the memory size. A typical value for γ is 0.9.

Remark 3: Because the feature maps extracted from CNN
are re-sampled with a fixed size, s̄ is used to recover the
true statistical characteristics of xmint . For the same reason,
term σwt

σw1
does not affect the result when the previous scale

estimation is correct. Wrong updating of target percepts tend
to expand the distribution of significant response of xmin

since they are mainly background features. Therefore, the
purpose of introducing this term to extend the searching
region when the uncertainty (the distribution of high con-
volutional response) of estimation increased.

E. Tracking Framework

We denote input t-th frame It, target region Ft and its
extended searching region Bt. Function CNNs() extracts
the feature maps of input image. The tracking framework of
proposed tracker is shown in algorithm 1.

Algorithm 1: Tracking framework of proposed
tracker

Data: {It|t = 1, 2, ...}, F1

Result: {Ft|t = 2, 3, ...}
initialization: B1, t← 1, s1 ← 1 ;
h← CNNs(It(Bt)) // Extract CNN features
φ← Eq. (6)(h) // Index set of recommended layers
xt ← Eq. (7)(h, φ, Ft, Bt) // Target percept
Wt ← Eq. (10)(xt) // Correlation Filter
xmint ← Eq. (16)(xt) // Min-channel map
while t < frame length do

t← t+ 1
h← CNNs(It(Bt−1))
x← Eq. (7)(h, φ, Ft−1, Bt−1)
[Ft, Bt]← Eq. (11)& (12)(Wt−1,x)
xmint ← Eq. (16)(x)
st ← Eq. (17)(xmint , xmin1 , {st−1, ..., st−M−1})
[Ft, Bt]← ScaleUpdate(Ft, Bt, st)
h← CNNs(It(Bt))
xt ← Eq. (7)(h, φ, Ft, Bt)
Wt ← Eq. (15)(Wt−1,xt)

end

IV. EXPERIMENTS

In this section, we demonstrate the performance of the
proposed tracker by Visual Tracker Benchmark v1.0 test.
The benchmark protocol is proposed by Y. Wu, et al [27].
We tested our tracker on 50 datasets and evaluated with the
following three evaluation methods: Center location error
(CLE) measures the tracking accuracy by computing the
distance between the centers of the ground truth and the
estimated bounding box. Success rate (SR) measures the
overlap between the ground truth and bounding box, which
is related to scale adaptation. CLE and SR are also denoted
as mean average precision (mAP) and intersection over union
(IoU) in object detection research.
Remark 4: We run our tracker as well as other 10 state-
of-the-art trackers on each dataset from the first frame to



Fig. 8: Location precision plot (CLE: pixel-based distance)
of OPE using AUC and the merged plot of mean CLE and
SR. This figure shows the overall performance of trackers
in terms of tracking accuracy and robustness. The proposed
tracker achieves the highest precision and the best average
CLE (10.3).

the end, referred to a one-pass evaluation (OPE). Then the
final tracking results for each dataset is obtained by taking
the average of 10 times running. The final mean results are
calculated from all frames over the 50 tested datasets.

Our test results are compared with other 10 high per-
formance state-of-the-art trackers: HCF [13], SiamFC [14],
CFNet [15], Struck [7], DCFNet [16], HDT [17], UDT [18],
CSK [9], LSK [10], and MIL [6].

A. Overall Performance

We choose top 2 best layers and use the typical values
for correlation filter parameters: α = 0.01, λ = 10−4. The
overall performance is shown in Fig. 8 using the area under
curve (AUC) and merged plot of mean CLE and mean SR,
respectively.

The benchmark evaluation results illustrate that the pro-
posed tracker performs competitively good tracking results
in both tracking accuracy and scale adaptation compare to
other 10 top-ranked state-of-the-art trackers. To be noticed
that accurate tracking may also generate large CLE when the
target is big. Furthermore, the tracker may generate random
CLE when it gets lost. The second best CLE is given by
tracker HDT. In our experiments, we simply use the top 2
recommended layers for target percept reconstruction. Al-
though high layer carries very poor location information, our
optimized target searching region and percept reconstruction
significantly improved the tracking precision and tiny discon-
tinuity of position shifting is observed in some datasets. In
addition, we performed the proposed tracker on video data
recorded by a rescue drone. The drone was flying inside
the building or cave. The tracking targets include survivors
and their belonging such as a bag. The video data contains
blurred, fast motion, and discontinuous frames due to UAV
platform. In Fig.9, we illustrate the tracking performance
under blur and abrupt motion, illuminance change and large
scale variation. Demo video is available on Github page.

B. Results Analysis

The results indicate that the proposed method outperforms
other 10 state-of-the-art trackers by average tracking accu-
racy while SR is the second echelon ranked by overall eval-
uation. In Fig. 8 we can find that the proposed method is not
top ranked when the threshold is less than 20. This indicates

#1 #37 

#5 #6 

#1 #36 

Fig. 9: During the flight, image blur and abrupt motion
happens occasionally. The illuminance and target scale also
variate over time.

a drawback of the proposed tracker: the poor feature location
information when only high-level CNN layers are used. The
low layer features have more precise location information but
less discriminate to background features. Unlike HCF which
uses fixed hierarchical features to guarantee the location
information, the proposed algorithm sometimes may only
use high layers of CNN, which is a tradeoff between tracking
accuracy and robustness. In conclusion, the proposed method
achieves competitive overall performance against other 10
top-ranked state-of-the-art trackers. The major time con-
sumption comes from the CNN feature extraction because
the complexity of the correlation filter and the proposed
recommender are Θ(n2) and Θ(n), respectively. While the
CNN goes to Θ(

∑D
l=1M

2
l K

2
l Cl−1Cl), where the M is the

length of the feature map, K is the length of the Kernel, C
is the number of channels in each layer, l is the current
layer and D is the number of the layers. The proposed
recommender computes the highest D that is needed for
a target in the first frame, which means we could have a
smaller D for some tasks, resulting in a speedup of CNN
feature extraction. Using VGG19 Matlab model, it achieves
around 15FPS on the laptop with 1050Ti GPU. In future
work, we will replace VGG19 net with other backbone, such
as VGG16 (SSD), darknet (YOLO), or mobileNet, for UAV
onboard tracking.

V. CONCLUSION

In this paper, we proposed a novel CNN-based tracker
that simplifies the network and learns a quality appearance
model with scale estimation using a recommender for the
untrained target. Experimental results on 50 challenging
benchmark datasets and drone recorded data demonstrated
that the proposed method achieves competitive performance
against 10 top-ranked state-of-the-art trackers in terms of
tracking accuracy, scale adaptation, and tracking robustness.
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