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Abstract— This paper contributes a method designed to
enable autonomous distributed 3D nuclear radiation field
mapping. The algorithm uses a single radiation sensor and
a sequence of spatially distributed and robotically acquired
radiation measurements across a discretized 3D grid to derive
a radiation gradient. The derived gradient is probabilistically
propagated to unknown components of the map to further guide
a curiosity-driven path planner by identifying the next most
radiologically informative point given available information.
To demonstrate the method, we develop a resilient micro
flying robot capable of autonomous GPS-denied navigation
that integrates a Thallium–doped Cesium Iodide (CsI(Tl))
scintillator and Silicon Photomultiplier (SiPm) combined with
custom–built pulse counting circuitry. A set of experimental
studies is presented inside an indoor facility within which actual
radioactive uranium ore sources have been distributed.

I. INTRODUCTION

Nuclear energy continues to maintain a major role in
society. Currently, about 11% of the world’s electricity is pro-
duced from approximately 450 active nuclear reactors, while
50 countries make further use of 225 reactors for research,
the production of medical and industrial isotopes, as well
as training [1]. At the same time, 27, 000 nuclear weapons
are documented in the world and thousands are deployed
on land, at sea, and in the air. The above is in addition
to a history of developments that have left behind tons of
nuclear waste, often in less than ideal containment condi-
tions. Therefore, radiological measurements and surveying
operations, source localization, distributed field mapping and
illicit source identification are tasks of paramount importance
and unparalleled value within a collection of scenarios rang-
ing from environmental contamination, monitoring of nuclear
waste sites, rapid response, security operations and more. It
is thus important that the technology of radiation mapping
and characterization further improves.

Motivated by the facts above, in this work we contribute
the full algorithm design and system realization to facili-
tate the autonomous estimation and mapping of distributed
3D radiation fields inside complex and possibly confined
facilities. Departing from traditional source localization or
estimation over strictly 2D fields, this work deals with the
problem of complex field distributions as they can appear
when radioactive materials are spatially distributed in the
three spatial dimensions. Exploiting the structure of the

This work was conducted while all the authors were with the University
of Nevada, Reno, 1664 N. Virginia, 89557, Reno, NV, USA.

1 University of Nevada, Reno, 1664 N. Virginia, 89557, Reno, NV, USA
fmascarich@nevada.unr.edu

2 NTNU, O. S. Bragstads Plass 2D, 7034, Trondheim, Norway.

Fig. 1. The Resilient Micro Flyer-γ nuclear distributed radiation field
characterization robot and an instance of a relevant mission.

problem, this first involves the modeling of 3D radiation
fields using a discretized grid and aggregating sequentially
acquired measurements both to update the best estimate of
the radiation intensity and to derive a radiation gradient.
The derived gradient is probabilistically propagated towards
unknown areas of the map in order to determine areas of
maximum uncertainty and thus guide a curiosity-driven path
planner such that an aerial robot integrating a scintillator can
navigate to acquire the next-most-informative-measurement
and thus best support the field estimation process. Given
that important radiation characterization missions frequently
have to take place in challenging indoor environments, our
work culminates with embedding this functionality in a
micro aerial vehicle with a resilient collision-tolerant design
and GPS-denied navigation capabilities. The system, named
the “Resilient Micro Flyer-γ” (RMF-γ) after the fact that
it detects gamma radiation, integrates a Thallium-doped
Cesium Iodide (CsI(Tl)) scintillator combined with a Silicon
Photomultiplier (SiPm) and exploits visual-inertial odometry,
alongside a 3D Time-of-Flight camera for dense mapping.

To evaluate the method, a set of experimental studies are
presented. More specifically, in two missions the RMF-γ is
deployed inside an indoor facility to estimate the distributed
nuclear radiation field emitted by buckets of radioactive
uranium ore. In the first experiment, the robot collects
radiation readings guided by the curiosity-driven informative
planning policy and achieves faster mapping, whereas in the
second study we compare against a fixed lawnmower path.
As shown, high-quality radiation maps are derived.

The remainder of this paper is organized as follows.
Section II outlines related work, followed by the problem
statement in Section III. The proposed method and robot
design are detailed in Section IV and V. Evaluations are de-
tailed in Section VI, followed by conclusions in Section VII.



II. RELATED WORK

The area of radiation field mapping and source localization
has been studied through a set of contributions such as [2–
6]. Among them, maximum likelihood estimation is utilized
in [4, 6], numerical adjoints in conjuction to a bayesian
formulation are used in [2], while a particle filter is employed
in [3]. These methods focus on the problem of estimating
discrete sources and tend to assume the availability of a large
number of spatially distributed measurements - typically
provided using an array of fixed sensors. Focusing on the
problem of distributed field estimation, existing work has
emphasized non-nuclear applications via networks of wire-
less sensors [7, 8], while relevant robotics research exists yet
remains less common [9]. Active source (e.g. radiological,
chemical) localization has been studied in [10–12]. In the
specific field of nuclearized robotics, a set of works [13–
20] have presented interesting results. The authors in [20]
propose a successive-elimination approach to adaptive source
seeking. The work in [13] details a distributed guidance
strategy to estimate the radiation distribution and test their
method using a “radiation analog” source. The contribu-
tions in [14, 17] handle multiple sources but only evaluate
their methods in simulation. Aerial robotic semantic scene
segmentation is used in [15] in order to better inform the
information gathering trajectories of a ground robot. The
contribution in [16] uses a helicopter UAV to map radiation
over large environments, while the work in [18] refers to
post–disaster radiation mapping and a grid–based bayesian
estimator for single source localization and contour analysis
for multiple sources. Our previous works in the domain [21,
22] have focused on either single source localization or 2D
only field estimation using either flying or ground systems.
In comparison, this work focuses on distributed 3D radiation
field estimation and simultaneous informative path planning
to identify the next-best-sampling point for scintillator read-
ings to be collected. At the same time, the work involves
a resilient micro flyer design such that nuclear radiation
missions can be conducted in GPS-denied and confined
environments exploiting the system’s collision-tolerance.

III. PROBLEM DESCRIPTION

This work considers the problem of autonomous esti-
mation of the underlying spatial distribution of a nuclear
radiation field within an initially unknown environment.
This is organized into the main problem of determining the
distribution and intensity of the field and the subproblem
of identifying a sequence of informative points over which
readings should be gathered to support the estimation task.

Problem 1 (Distributed 3D Radiation Field Mapping) Given
a bounded but initially unknown 3D volume V and a set
of measurements tλmu, each containing the position pm
at which the measurement took place and a radiation mea-
surement γm, the goal is to estimate the underlying spatial
distribution Mppmq which best fits all data in tλmu and
accurately predicts the true field distribution at every possible
test location pm within V .

Problem 2 (Informative Waypoint Selection) Given this
problem definition and the co-estimation of not only the
mean of the nuclear radiation field intensity but also a metric
of the underlying uncertainty, the second problem addressed
in this work relates to iteratively identifying waypoints over
which additional radiation measurements are to be acquired,
then an optimized reduction in the field uncertainty is
achieved and thus a best iterative map update takes place.

IV. 3D DISTRIBUTED RADIATION MAPPING

The proposed method addresses the problem of au-
tonomous distributed 3D radiation field estimation and
proposes both an algorithm to estimate the field given
a set of sequentially collected measurements, and an
information-sampling planner to iteratively decide the next-
most-informative point for a robotic system to go in order
to best support the field mapping process and thus acquire
high-quality results in a rapid manner. The underlying mo-
tivational scenario is that an aerial robot will have to enter
a large radioactive area and manage to derive an accurate
radiation map identifying distributed nuclear intensity values
across it in a fast manner and despite the hard endurance
constraints of Micro Aerial Vehicles (MAVs).

Let the robot configuration at time tk be the flat state
ξk “ rpk|ψks corresponding to a position pk “ rxk, yk, zks
and heading ψk. Then the system, as detailed for our robot
in Section V, is considered to integrate a scintillator provid-
ing an associated radiation count reading γk, measured in
Counts Per Second (CPS), as detailed in [21]. The proposed
method is tailored to distributed radiation fields and thus the
specific structure of the problem is exploited. In particular, a
distributed radiation field can be thought of as the aggregated
effect of a large number of point sources, each of them
following the inverse square law for their intensity and a
Poisson model for the noise of an associated measurement.
By the aggregation of the noise terms and assuming locally
smooth spatial variation of the intensity of the field, then
given sufficient sampling density, the problem can be ap-
proached with multiple local regressions.

In reference to the notations listed in Table I, the proposed
method discretizes a bounded volume into a 3D grid of cells
where the discretization resolution, DM is a tunable factor.
Measurements are pose-annotated by the system’s onboard
odometry solution, and the pose-annotated measurements
λk “ rξk|yks are added to a list of readings maintained
by the corresponding cell. This allows the algorithm’s most
critical functionality, namely gradient estimation and propa-
gation to run at a rate independent of data collection.

The algorithm consists of three independent stages,
namely a) estimation, b) propagation, and c) curiosity deriva-
tion. In the estimation stage, the set of spatially distributed
readings are utilized over the discretized 3D grid to co-
estimate a mean intensity and an estimated gradient, as well
as the corresponding confidence metrics for each grid cell.
In the propagation phase, the estimated gradient in each cell,
alongside a confidence metric based on the spatial entropy
of the cell’s neighborhood measurements, is propagated



TABLE I
NOTATIONS USED IN THE PAPER

M Discretized Grid Map
i, j, k P Z` Cell indexes along the x, y, z axes
Cijk Grid cell at index i, j, k
DM P R3 Grid cell size in meters along x, y, z axes
Nijk, N

nb
ijk P R Number of measurements γm within Cijk and

Cijk’s neighborhood respectively
Xijk P Rnˆ4 Matrix of measurement positions within Cijk’s

neighborhood, offset by the average measure-
ment position, and appended with the column
vector 1 at the end (the number of rows n “
Nnb
ijk)

Sijk P Rn Vector of measurements within Cijk’s neighbor-
hood (the number of rows n “ Nnb

ijk)
µmijk, σ

m
ijk P R Estimated mean, mean confidence at Cijk

δmijk,H
m
ijk P R3 Vectors of estimated gradient, gradient confi-

dence at Cijk
Oµ, Oδ Cell propagation ordering for mean and gradient

over M
µpijk, σ

p
ijk P R Propagated mean, mean confidence at Cijk

δpijk,H
p
ijk P R3 Vectors of propagated gradient, gradient confi-

dence at Cijk
Lµijk, L

δ
ijk P Z` Cijk’s Propagation Levels for the mean and

gradient vector
ρijk P R Cijk’s Radiation Curiosity
pax,ay ,azq x, y, z components of vector a P R3

to unknown neighboring cells using a weighted average.
The measured and propagated gradients are then used to
propagate an estimated mean radiation intensity for each
cell. In the final phase, a curiosity waypoint is found by
combining the estimated mean radiation intensity with the
spatial entropy of measurements in a cell’s neighborhood in
order to find the most radiation-informative point for the next
iteration of the method.

A. Gradient Estimation

For a cell Cijk P M, we define Cijk’s neighbors as
the cells which share edges or faces with Cijk. The gradi-
ent estimation phase only considers measurements obtained
locally within a neighborhood region (including Cijk and
Cijk’s neighbors) around the cell Cijk. Iterating over each
Cijk P M, the process first counts the number of readings
present in Cijk (Nijk) to determine if Cijk has sufficient
readings to estimate a mean and gradient. If Nijk is small (in
this work less than 5), it is considered to be an unmeasured
cell. If Cijk has sufficient readings, the algorithm gathers all
readings within Cijk’s neighborhood region and runs linear
regression as in Eq. (1) to find the best-fit spatial gradient
vector and mean:

«

δmijk

µmijk

ff

“ pXT
ijkXijkq

´1XT
ijkSijk (1)

These values are assigned as the cell’s measured gradient
vector, δmijk and measured mean µmijk. In the event the
columns of the cell’s measurement position matrix, Xijk

are not linearly independent, µmijk is calculated as a simple
average of the Nnb

ijk readings present in the neighborhood.

However, this is a rare occurrence given the noise associated
with onboard odometry estimation.

If the measured mean µmijk is less than a threshold defined
by a small scalar multiple of the background radiation level,
δmijk is assigned as r0, 0, 0sT to prevent gradients with a
low Signal-to-Noise Ratio (SNR) from being propagated
falsely. This threshold is chosen such as to minimize the
effect of poorly estimated gradients whose means are near
background, while at the same time not dismissing derived
gradients at the edge of a meaningful radiation field gener-
ated by actual sources.

Finally, the algorithm calculates confidence metrics for
δmijk and µmijk. The spatial entropy vector of the measure-
ments obtained in Cijk’s neighborhood, Hm

ijk, is found in
order to provide a confidence metric for δmijk. A histogram
of measurement positions projected onto each axis is con-
structed using bh bins (in this work bh “ 10) and is bounded
by the limits of the neighborhood along that axis. Shannon
Entropy is then calculated on this histogram by Eq. (2):

Hm,h
ijk “ ´

bh
ÿ

w“1

P phwq logP phwq (2)

Hm
ijk “ rHm,x

ijk ,H
m,y
ijk ,H

m,z
ijk s

T

where hw is the number of measurements projected along the
h-axis (hÑ x, y, x) found in bin w, and P phwq is found by
Eq. (3):

P phwq “
hw

řbh
i“1 hi

(3)

A metric of the estimated mean’s confidence is calculated
by a simple linear equation corresponding to the total number
of measurements used to estimate the mean as in Eq. (4):

σmijk “ 1´
3

Nnb
ijk

, σmijk P r0, 1s (4)

Algorithm 1 outlines the gradient estimation process.

Algorithm 1 Measured Gradient Estimation
1: for Cijk PM do
2: if Nijk ą 4 then
3: Find neighbors of Cijk
4: Construct Xijk and Sijk
5: if det(XT

ijkXijkq! “ 0 then
6: Calculate δmijk, µmijk by Eq. (1)
7: Calculate Hm

ijk by Eq. (2), (3)
8: else
9: µmijk Ð Average(Sijk)

10: end if
11: Calculate σmijk by Eq. (4)
12: if µmijk ă background threshold then
13: δmijk Ð 01ˆ3

14: end if
15: end if
16: end for



B. Gradient Propagation

The process of mean and gradient propagation takes place
over a carefully dictated cell ordering, starting with cells
whose means and gradients have been respectfully estimated
as in Algorithm 1 and continuing onto their neighbors. After
the gradient estimation step, a cell has a valid mean if the
condition in line 2 of Algorithm 1 is satisfied; whereas a
cell has a valid gradient vector if the conditions in lines 2, 5
of Algorithm 1 are satisfied. In order to generate the prop-
agation orders, for each cell, the method defines separate
propagation Levels for the mean (Lµijk) and gradient vector
(Lδijk) by a recursive method, for which the derivation of
Lµijk is detailed in Algorithm 2, while the derivation of
Lδijk follows a similar procedure. Distinct propagation orders,
Oµ, Oδ , are derived for the mean propagation and gradient
propagation processes based on an incremental ordering of
Lµijk and Lδijk.

Algorithm 2 Cell Mean Level Derivation Lµijk
1: NextLayer, CurrentLayer ÐH Ź (Empty Set)
2: for Cijk PM do
3: Lµijk Ð NaN
4: if Nijk ą 4 then
5: Add Cijk to CurrentLayer
6: end if
7: end for
8: i Ð 0
9: while CurrentLayer ! “ H do

10: for Cijk P CurrentLayer do
11: Lµijk = i
12: for Ci1j1k1 P NeighborspCijkq do
13: if Lµi1j1k1 “ NaN then
14: Add Ci1j1k1 to NextLayer
15: end if
16: end for
17: end for
18: CurrentLayer Ð NextLayer
19: NextLayer ÐH

20: iÐ i` 1
21: end while

Once the propagation orderings are derived, the gradients
are propagated first. For each cell, Cijk in the gradient
propagation ordering, Oδ , the method finds its neighbors. For
cells whose Lδijk “ 0, the cell’s propagated gradient vector
(δpijk) and gradient confidence vector (Hp

ijk) are assigned
to the corresponding estimated values δmijk and Hm

ijk of the
cell, respectively. Otherwise, the cell’s δpijk is calculated
as the weighted average of its neighbors’ δpijk, using only
neighbors with Lδijk less than that of the cell in question,
and weighted by the neighbor’s Hp

ijk. The cell’s Hp
ijk is

derived as the average of the utilized neighbors’ Hp
ijk. Once

gradient propagation is complete, mean propagation takes
place following a similar procedure to that detailed in our
previous work [22] and is presented in Algorithm 3. In
particular, we iterate over cells in the mean propagation

order, Oµ. For cells whose Lµijk “ 0, their propagated
mean (µpijk) and mean confidence (σpijk) are assigned to the
corresponding estimated values µmijk and σmijk of the cell,
respectively. For cells of all other levels, the method finds
neighbors (Ci1j1k1 ) of the cell whose Lµi1j1k1 is less than that of
the cell in question (Cijk), and calculates their corresponding
contribution following the equations:

µpi1j1k1Ñijk “ µpi1j1k1 `

»

—

–

pi´ i1qDx
M

pj ´ j1qDy
M

pk ´ k1qDz
M

fi

ffi

fl

T

δpi1j1k1 (5)

DM “ rDx
M ,D

y
M ,D

z
M s

T

where µpi1j1k1Ñijk is the contribution of the neighboring cell
Ci1j1k1 to the cell Cijk (Lµi1j1k1 ă Lµijk). The cell’s µpijk is
assigned as the average neighbor contribution (µpi1j1k1Ñijk)
weighted by the neighbor’s σpi1j1k1 . The cell’s σpijk is assigned
as the average of the neighbors’ σpi1j1k1 .

Algorithm 3 Mean Propagation
Given derived mean propagation ordering, Oµ

1: for Cijk P Oµ do
2: if Lµijk “ 0 then
3: µpijk, σ

p
ijk “ µmijk, σ

m
ijk

4: else
5: Contributions ÐH Ź (Empty Set)
6: Weights ÐH

7: for Ci1j1k1 P Neighbors(Cijk) do
8: if Lµi1j1k1 ă Lµijk then
9: Calculate µpi1j1k1Ñijk by Eq. (5)

10: Add µpi1j1k1Ñijk to Contributions
11: Add σpi1j1k1 to Weights
12: end if
13: end for
14: µpijk Ð WeightedAverage(Contributions, Weights)
15: σpijk Ð Average(Weights)
16: end if
17: end for

C. Curiosity Derivation and Path Planning
In order to support the field estimation process with

informative data and especially achieve rapid radiation field
mapping, a planning method is further proposed. Towards
determining the next-most-informative radiation waypoint,
the method calculates a curiosity metric for each cell in M.
This metric balances an exploration-exploitation behavior,
maintaining high curiosity in areas in which little information
has been obtained and for which a high radiation mean has
been propagated, while remaining curious about completely
unknown areas of M. An overall metric of each cell’s
curiosity, ρijk, is found by Eq. (6), where }Hp

ijk} denotes
the norm of the propagated gradient entropy, and Hf is
a parameterized entropy scale factor. As the norm of the
propagated entropy approaches the entropy scale factor, the
cell’s curiosity approaches 0, thus directing the robot away
from well sampled cells:



ρijk “

ˆ

1´
}Hp

ijk}

Hf

˙ˇ

ˇ

ˇ

ˇ

1

0

ˆ µp (6)

Given 3D bounds on M which are safe for robot traver-
sal, the method finds the grid cell with the largest ρijk
within those bounds. This next-best-informative waypoint is
selected and the method plans a path ending at this point. The
path is supplemented with intermediate waypoints between
the current position and the target position by discretizing the
path at a regular, parameterized interval. The intermediate
waypoints are displaced by random displacement vectors
sampled from a uniform distribution to provide greater
variance in the position of readings throughout the path, thus
improving the quality of the derived gradients along the path.

V. RMF-γ RADIATION MAPPING ROBOT

This section provides an overview of the design of the
Resilient Micro Flyer-γ (RMF-γ), alongside its navigation,
radiation sensing, and processing solution.

A. Resilient Micro Flyer Airframe

The design of RMF-γ focuses on collision-tolerance and
is depicted in Figure 2. The main component of the collision-
tolerant frame is fabricated using carbon-balsa sandwich
material (total width equal to 6.35mm with 1mm carbon on
each side) leading to a total airframe weight of 96g. The
frame design of RMF-γ is tailored to keeping the weight low,
and ensuring collision-tolerance especially against lateral
impacts. In terms of propulsion, RMF-γ integrates four T-
Motor F1507 3800KV DC brushless motors. Finally, the
robot integrates a PixRacer R15 as its low-level autopilot
unit offering attitude and thrust control. High-level position
control and autonomous navigation is facilitated through a
distinct ARM-based multi-core processing board as detailed
further in this section. The total weight of RMF-γ, including
all components and its battery is 540g.

Fig. 2. RMF-γ top, side, front, and oblique views.

B. Radiation Sensing

RMF-γ integrates an Scionix V10B10 Thallium-doped
Cesium Iodide (CsI(Tl)) scintillator combined with a Silicon
Photomultiplier (SiPm). The detector is interfaced using
custom–designed pulse counting and spectroscopy circuitry
weighing 18g. Calibration details of the sensor are presented
in [21]. The scintillator is interfaced by custom-built counting

electronics using an ARM microprocessor. The counting
circuitry counts voltage pulses from the SiPm, and reports
the readings at a rate of 10Hz to the high level processor,
which maintains a sliding window average, using a window
size of 10, in order to report measurements to the mapping
framework in CPS.

C. Navigation Sensing and Processing Payload

The navigation sensing payload of RMF-γ is tailored to
the goal of robust autonomy, while maintaining a lightweight
configuration. In particular, RMF-γ integrates a Realsense
T265 tracker delivering visual-inertial odometry. Simulta-
neously, in order to acquire more accurate reconstructed
maps, a PMD Picoflexx Time-Of-Flight 3D camera with
horizontal and vertical Field-of-View rFH , FV s “ r60, 45s

˝

and range up to 5m was integrated. The above are processed
by the integrated Main Processing Unit (MPU) relying on
the Khadas VIM3 offering 4 A311D Cortex-A73 cores at
2.2GHz paired with 2 Cortex-A53 cores at 1.8GHz and
4GB of LPDDR4X RAM. This board is responsible for all
computational tasks onboard.

VI. EVALUATION STUDIES

To evaluate the performance of the autonomous distributed
radiation mapping method, this section presents the results of
two experiments using the RMF-γ platform and three actual
gamma radiation sources. The gamma radiation sources used
consist of mine tailings contained in buckets collected from
an abandoned uranium mine located near Reno, Nevada. In
both of the presented experiments, two of the sources are
placed in a stacked configuration just outside the safe flight
bounds for RMF γ, while the third source is placed 4.37m
away within the safe flight bounds.

In the first experiment, the robot executes the radiation
curiosity path given by the distributed radiation mapping
algorithm. The plots on the left of Figure 3 show four
instances of the experiment, depicting RMF-γ’s path in pink,
the derived propagated gradients with red arrows, and the
propagated mean intensity field in the background of the
plot. The 3D plot on the right of Figure 3 shows the final
propagated field with the gradient arrows colored by their
respective cell’s propagated mean, the robot trajectory in
pink, and the propagated mean at 0.25m as a height-map.
All plots depict the true location of the radiation sources as
green cylinders within the height-map.

Figure 4 shows four instances of the second experiment,
in which the robot is guided by a fixed-grid lawnmower
trajectory, whose waypoints are separated by 1m, 0.65m,
1m on the x, y, z axes respectively. In both experiments, the
radiation field estimation method reconstructs a faithful rep-
resentation of the nuclear radiation field as per first-principle
modeling would allow us to predict. Certain differences
however exist between the two experiments.

The most important distinction highlighted by the two
studies shows how the derived curiosity waypoints quickly
find the radiation source and iteratively refine the radiation
intensity estimate, while also covering the entire space. In



Fig. 3. Curiosity-Driven 3D Radiation Field Mapping with RMF-γ. The 4 plots on the left depict iterations of the mapping experiment showing the
progression of the propagated radiation field throughout the experiment. The robot trajectory is shown in pink, the propagated radiation field gradients are
shown by red arrows, and the background is colored by the propagated mean, measured in Counts Per Second (CPS), found at a height of 0.25m. The
plot on the right shows the final estimated radiation field, highlighting the 3D nature of the field estimation method, depicting the robot trajectory in pink,
the propagated radiation gradients colored by their cell’s propagated mean, as well as a height-map depicting the propagated mean intensity at a height of
0.25m. The true positions of the radiation sources are depicted by green cylinders and the path and gradients are translated up the z axis for visualization
purposes.

Fig. 4. Fixed Waypoint Grid 3D Radiation Field Mapping with RMF-γ. The 4 plots on the left depict iterations of the mapping experiment showing the
progression of the propagated radiation field. The robot trajectory is shown in pink, the propagated radiation field gradients are shown by red arrows, and
the background is colored by the propagated mean, measured in Counts Per Second (CPS), found at a height of 0.25m. The plot on the right shows the
final estimated radiation field, depicting the robot trajectory in pink, the propagated radiation gradients colored by their cell’s propagated mean, as well
as a height-map depicting the propagated mean intensity at a height of 0.25m. The true positions of the radiation sources are depicted by green cylinders
and the path and gradients are translated up the z axis for visualization purposes.

the curiosity experiment, iteration 47 is reached after 114
seconds, while in the lawnmower experiment, iteration 61
is reached after 159 seconds, showing that the curiosity
planner provides a rapid estimate of the field in a shorter
amount of time. This difference is further exaggerated in
larger environments where the endurance necessary to map
the radiation fields with a fixed-grid trajectory would be
significantly greater than the platform’s endurance. At the
same time, if a mission only has to address the mapping of
a small enough environment, then a dense and carefully se-
lected fixed pattern provides high-quality spatial distribution
of the measurements and thus predicted field accuracy.

Finally, this experiment highlights the importance of 3D
distributed radiation field estimation. Visible from both Fig-
ures 3 and 4 is the intensity value of the field, alongside
the predicted gradients. Given an aerial robot capable of
measuring the field at a range of z-heights above the dis-

tributed field and subject to the inverse-square law property
of radiation propagation, it would be challenging for a 2D
or 2.5D method to correctly estimate mean intensities given
measurements close to, as well as far above the source.

VII. CONCLUSIONS

In this work, a new method for autonomous distributed
3D nuclear radiation field mapping was proposed and exper-
imentally verified based on a custom-designed resilient mi-
cro flyer. The algorithm uses sequentially-acquired radiation
readings to reconstruct an accurate estimate of the radiation
field. To achieve this goal it estimates the field mean and
gradient, while it further allows automatic guidance of a
robot in order to iteratively acquire informative scintillator
readings. A set of experiments is presented and serves to
verify the quality of the estimated map and the benefits of
curiosity-driven path planning in time-constrained missions.
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