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Abstract— In this work, we present an adaptive behavior path
planning method for autonomous exploration and visual search
of unknown environments. As volumetric exploration and visual
coverage of unknown environments, with possibly different
sensors, are non-identical objectives, a principled combination
of the two is proposed. In particular, the method involves three
distinct planning policies, namely exploration, and sparse or
dense visual coverage. A hypergame formulation is proposed
which allows the robot to select for the next-best planning
behavior in response to the currently encountered environment
challenges in terms of geometry and visual conditions, alongside
a self-assessment of its performance. The proposed planner is
evaluated in a collection of experimental and simulation studies
in diverse environments, while comparative results against a
state-of-the-art exploration method are also presented.

I. INTRODUCTION
Robotic systems are being deployed in an ever-widening

set of applications. Among others, autonomous robots, be it
flying, ground, or underwater, are tasked to explore, map,
search and characterize diverse environments of increasing
size and complexity. In response to the needs of such
applications, the research community has contributed a set
of methods for exploration path planning, visual search, and
broadly, information sampling [1–16]. Despite the progress,
a limiting factor of the majority of such works relates to the
fact that they are optimizing a single objective - for example
relating to volumetric exploration [10] or mutual information
maximization [14]. However, the fact that possible diverse
challenges relating to a) the size of the environment, b) its
geometric complexity, c) degradation of sensor data quality
(e.g., due to darkness), and d) the lack of prior information
with respect to where entities of interest may lie, can render
such monolithic strategies inefficient. Although the planning
method may continue to locally maximize its objective, the
decisions taken may not best reflect the specific challenges
encountered. Essentially, there is a lack of adaptive behavior-
based path planning that would modify the information
sampling policy in response to challenges of topology, size,
visual conditions, and how the robot may self-evaluate its
performance in its task as it explores a new environment.

In response to the above, this work contributes a
hypergame-based adaptive behavior path planner that ex-
ploits a library of possible planning behaviors to best adjust
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Fig. 1. Instance of an autonomous exploration and visual search mission.

how the robot explores and searches its environment with no
prior knowledge. The method proposes the modeling of the
diverse - and at any time - unknown future challenges the
environment may pose to the robot (e.g., different topologies
requiring different planning behaviors or darker zones requir-
ing close-up search) through the concept of hypergames [17].
In this context, the environment and the robot participate in
a game in which the robot is equipped with a set of possible
path planning strategies yet it is not aware which of them
best suits the future challenges the environment it explores
will present to it. To best explore volumetrically, and visually
search environments of arbitrary size, the robot makes local
decisions for when to engage three types of policies, namely
a) volumetric exploration, b) visual coverage for good visual
conditions, and c) dense visual coverage for dark settings.
It selects the best policy given an imperfect understanding
of the environment challenges, and relies on a) an online
uncertain topological representation encoding zones of dis-
tinct geometries, b) evaluation of the visual conditions, and
c) self-assessment of the performance of its recently engaged
planning modes. The result of this self-assessment-aware
evaluation is probabilistic in nature and returns the next-best-
behavior and the associated path for the robot to execute.

To evaluate this new path planning strategy, we present
experimental studies using an aerial robot equipped with a
3D LiDAR and a visual camera, performing an autonomous
exploration and search mission, alongside a set of simulation
studies inside complex buildings and cave networks. To
demonstrate the benefits of this hypergame-based adaptive
behavior planning, we further present comparisons against a
state-of-the-art exploration planner.

The remainder of this paper is organized as follows.
Section II outlines related work, followed by the problem
statement in Section III. The proposed approach is detailed
in Section IV. Evaluation studies are detailed in Section V,
followed by conclusions drawn in Section VI.



II. RELATED WORK

A rich body of work has focused on the problems
of exploration, mapping and visual search [1–16, 18, 19].
Early work includes the sampling of “next–best–views” [8],
and frontiers–based exploration [9]. More recent efforts
have proposed receding horizon multi-objective planning [5,
6, 20, 21], graph-based and motion primitives-based meth-
ods [10, 11], visual search [15, 16], information-theoretic
schemes [14], and multi-robot strategies [22, 23]. Existing
planning methods have performed well in simple missions
yet cannot provide resilient performance in environments
of very large scale, diverse and challenging geometries,
and with visually-degraded conditions. Although general
planning solutions can - in principle - be modeled with
the use of Partially Observable Markov Decision Process
(POMDP) formulations, it is well known that the associated
large state/action spaces, data complexity in the acquired ob-
servations, and the complexity of the transition, observation
and reward functions render this problem extremely hard and
often intractable in its full form. Motivated by the above and
considering the limited endurance of Micro Aerial Vehicles,
this work contributes a new hypergame-based path planner to
explore and visually search unknown environments by adapt-
ing to the specific environmental challenges encountered as
the robot proceeds in its mission. It delivers a strategy to
sample information that transitions from pure volumetric
exploration to sparse or dense visual coverage depending on
the complexities the environment presents and the robot’s
self-assessment for its performance.

III. PROBLEM FORMULATION

The overall problem considered in this work is that of
sampling information over a bounded 3D volume V ⊂ R3

given a robot with two frustum-constrained sensors, namely
a depth sensor SD and a visual search sensor SV with
the latter having dynamic range in response to possible
degradation in its observations. This information sampling
problem may be cast globally as that of starting from an
initial collision-free configuration and deriving viewpoints
that lead to determine which parts of the initially unexplored
volume Vune

init.
= V are free Vfree ⊆ V or occupied Vocc ⊆

V , alongside covering the associated viewable surfaces of
Vocc, Socc, with each of the SV observations remaining
informative. A visual camera observation is informative if
it facilitates inference for scene understanding and in this
work relates to the effective range given bright or dark
conditions. From an environment representation standpoint,
the volume is discretized in an occupancy map M consisting
of cubical voxels m ∈M with edge length rV , paired with an
associated surface model that is being reconstructed MS . The
operation is subject to the dynamic constraints of the vehicle.
As for most sensors the perception stops at surfaces, hollow
spaces or narrow pockets cannot be fully explored leading to
residual volume and surface we have the following definition
and problem definition cast globally.

Definition 1 (Residual Volume and Surface) Let Ξ be the

simply connected set of collision free configurations and
V̄m ⊆ Ξ the set of all configurations from which the voxel
m can be perceived by both SD and SV . Then the residual
volume is given as Vres =

⋃
m∈M(m| V̄m = ∅). A residual

surface is also denoted as Sres considering SV .

Problem 1 (Volumetric Exploration and Visual Search Prob-
lem) Given a bounded volume V , find a collision free path
σ starting at an initial configuration ξinit ∈ Ξ that a)
leads to identifying the free and occupied parts Vfree and
Vocc based on SD and b) performs complete visual search
(coverage) with SV when being executed, such that there
does not exist any collision free configuration from which
any piece of V \{Vfree, Vocc}, or any subset of the associated
surface Socc related to the outer observable surfaces of Vocc,
could be perceived. Thus, Vfree ∪ Vocc = V \ Vres and
Sfree ∪ Socc = V \ Sres.

IV. PROPOSED APPROACH
This section details the proposed Hypergame-based Adap-

tive Behavior path Planner (HABPlanner) for combined
exploration and visual search. The description focuses on
robots with true 3D navigation capabilities (e.g., aerial
systems) although the method is generalizable to different
configurations. The proposed approach is motivated by the
need to decide in real-time the best information sampling
behavior, and associated paths, the robot has to employ to
achieve both exploration of the initially unknown environ-
ment and visual coverage over its surface. The first core
behavior is driven by a depth sensor SD, while the latter by a
visual camera SV . As the environment is initially unknown -
including its complexity and visual conditions - and the robot
is subject to endurance limitations, the proposed method is
focused on delivering efficient mapping and search behaviors
simultaneously as the system iteratively executes its mission.
Given that any decision at an instance of the mission is
only informed for the map explored and searched up to this
moment, the decisions of the robot are subject to uncertainty
with respect to the challenges it will face subsequently.

A. Hypergame Modeling

A hypergame occurs when one of the players does not
know - or fully understand - all the game strategies. Hy-
pergame theory extends game theory concepts by allowing
a player to outdo an opponent and obtain a preferable
outcome. The ability to outdo an opponent occurs in the
hypergame because the different views (perception or decep-
tion) of opponents are captured in the model by incorporating
information unknown to other players (misperception or
intentional deception). In the context of this work, the robot
and the environment are thought of as two “players” in a
game in which the robot tries to best explore and visually
search the environment but the latter presents a set of possible
challenges (relating to geometric complexity, size or visual
conditions) to the robot that are not known beforehand and
for which the robot can only perform uncertain inference. To
best perform in this game, HABPlanner equips the robot with
two sets of planning behaviors, namely for a) exploration and



b) sparse or dense visual search (Figure 2). The decision for
the next-best-behavior to employ at any given time is based
on the robot’s imperfect perception of the environment en-
coded through a utility function that involves a) the geometric
classification of a local subset of the map identifying if it
is room- or corridor-like, b) the percentage of the explored
map seen by SV , c) detecting if the local environment is
dark, and d) a self-assessment for the recent performance
of the planner behaviors. As the inference of the robot
for the environment is subject to uncertainty, hypergames
correspond to the appropriate modeling language.

Fig. 2. Illustration of the behavior modes of the proposed hypergame-based
planner for exploration and visual search. First, the best planning mode,
exploration (bE ) or visual coverage (bC ), is decided based on the scores γm.
When coverage is selected, the scores γv are used to decide for sparse (bSC )
or dense (bDC ) search. As the decisions depend on uncertain inference for the
map topology encountered and self-assessment of the robot’s performance, a
hypergame formulation is most suitable for modeling the adaptive planning.

B. Mapping and Topology Identification

The planner relies on a dual representation of the environ-
ment, namely a volumetric map and a lightweight topological
graph. The volumetric map facilitates autonomous collision-
free navigation, volumetric calculations, and evaluations of
areas covered. Specifically, we use Voxblox [24], a volumet-
ric mapping pipeline based on Truncated Signed Distance
Fields (TSDFs). Voxblox uses voxel hashing resulting in
a constant time lookup in the volumetric map. The map
is generated using the pointcloud data obtained from the
onboard depth sensor SD. The mesh representation of the
occupied part of the map generated by voxblox is used as the
reconstructed surface model. In this map, we further annotate
the occupied voxels within the visual camera SV frustum as
voxels seen by SV . The camera range r used to annotate the
map is dynamically adjusted based on the light conditions as:

r = rmin + (1− id)(rmax − rmin) (1)

where id is the fraction of camera image pixels having
intensity below a threshold value λth.

Alongside this volumetric map, a higher-level represen-
tation of the environment topology is needed to select
the optimal planning behavior. Hence a topological map
is also maintained and represented as a lightweight graph
the vertices of which correspond to points in space and
store the beliefs of the robot about the geometry of the
local environment. In this work, we consider two topologies,
namely tunnel/corridor-like sections and room-like areas.

To identify which of the modeled topologies best describes
a local subset of the environment geometry, the instantaneous
pointcloud data from SD is utilized in a two-step detection.
First, we evaluate the distribution of the pointcloud around
the robot. The pointcloud is divided into eight parts along

the eight octants in the x-y plane centered around the robot’s
current location. A value v is assigned to every octant and
is equal to the eigenvalue along the direction of that octant
obtained through Principal Component Analysis (PCA) on
that part of the pointcloud, normalized by the mean value
of all octants. In an ideal room-like topology, all the octants
will have a similar distribution of pointcloud resulting in the
values being closer to 1.0 whereas an unequal distribution
will be observed in a tunnel. Let n1 be the number of octants
with v ∈ [v1, v2], v1 < 1.0 < v2. Then, the belief of the
current topology being a room is proportional to n1 and that
of the tunnel is proportional to 8 − n1. Second, the central
three rows of the depth image of the sensor scan are used
to identify sections of points having sudden change in depth
called frontiers. A constant weight wf is added to the tunnel
belief if exactly two frontiers are detected. Finally, the beliefs
are normalised to range in [0, 1]. As the sensor measurements
can be noisy, we apply a low pass filter over the beliefs
calculated from the last m readings to get the final beliefs
for each topology.

C. Behavior Selection Methodology

The proposed planner operates iteratively and at each
step optimizes its behavior to perform efficient exploration
and visual search within a local window around the current
robot location. In each iteration, the method first utilizes
the hypergame formulation to decide which main planning
mode, Exploration (bE) or Visual Coverage (bC) should be
employed. A score is calculated for each of these modes
and depends on a) the planner’s uncertain belief about the
environment topology encountered (corridor- or room-like),
b) the percentage of the mapped surface seen by the camera
SV , and c) a self-assessment about the performance of each
of the planning modes in the previous iterations. The score
γm for each mode bj , j → E,C is calculated as follows:

γm(bE) = (%Sseen)(1 + P (e = ec))(1 + P(bE , n)) (2)
γm(bC) = (1−%Sseen)(1 + P (e = er))(1 + P(bC , n))

where %Sseen is the percentage of mapped surface seen
by the camera within the local window around the robot
location. P (e = ec) and P (e = er) are the probabilities of
the current environment being a corridor (ec) or a room (er)
respectively. The term P(bj , n) accounts for the cumulative
performance of the planning mode bj , j → E,C at steps
when it was selected in the last n planning iterations. The
performance in an iteration is calculated using the change in
the percentage of volume mapped, ∆%Vseen, by SD and the
change in the percentage of surface covered, ∆%Sseen, by
SV . Volumetric exploration and visual search being the main
objectives of the exploration and coverage modes respec-
tively, the other objective is discounted in the performance
term. For the iteration i the performance ρi is formulated as:

ρi(bE) = ∆%Vseen + η∆%Sseen (3)
ρi(bC) = ∆%Sseen + η∆%Vseen (4)

where η > 0 is the discount factor. Combining the perfor-
mance of the last n planning iterations we get the cumulative



performance term P(bj , n) for behavior bj , j → E,C in the
iteration k as defined in Eq. (6). Let:

ρirel(bj) =

{
ρi(bj)− ρth , if behavior bi = bj

0 , otherwise (5)

where bi is the behavior selected in iteration i and ρth is a
tunable threshold below which the performance is considered
to be non satisfactory. Then, we derive P(bj , n) as:

P(bj , n) =

k−1∑
i=k−n

(
i+ n− k + 1

n
)ρirel(bj) (6)

Finally, using the calculated scores, the behaviour having
the highest score is selected as the next-best-planning mode.
If the selected mode is Exploration (γm(bE) ≥ γm(bC))
then the path is computed as described in Section IV-D.
If Coverage mode is selected (γm(bC) > γm(bE)), we
further evaluate the optimal sub-behavior, namely Sparse
(bSC) or Dense (bDC ). The decision happens based on a)
the environment light conditions perceived by the camera,
and b) the performance of the sub-behaviors in the previous
planning iterations. Another score is calculated for each sub-
behavior and the highest scoring sub-behavior is selected. For
sub-behavior b`C , `→ S,D the score γv is calculated as:

γv(b`C) = wiUi(b
`
C) + wpUp(b

`
C) + kp(b

`
C), `→ S,D (7)

where kp > 0 is the preference weight for the sub-behavior
b`C giving a default preference to a particular sub-behavior.
The functions Ui(b

`
C) and Up(b`C), with tunable parameters

wi, wp > 0, are the expected scores of the robot for executing
b`C given the current light conditions and the performance of
that sub-behavior in the previous iterations respectively. The
term Up(b`C) is equal to the performance P(b`C , n) as defined
in Eq. (6), whereas we define Ui(b

`
C) as:

Ui(b
`
C) =

{
1− id , if b`C = bSC
id , if b`C = bDC

(8)

where id is the fraction of camera image pixels having
intensity below a threshold value λth.

The sub-behavior having the highest score is selected and
the path to follow is calculated as described in Section IV-E.
The robot’s beliefs about the environmental challenges are
subject to uncertainty. Formulating a hypergame allows the
planner to incorporate this uncertainty in the decision process
and through performance monitoring, it is able to overcome
the incorrect decisions caused by inaccurate environment
inference.

D. Exploration Planner

The exploration mode of HABPlanner is based on our
previous work on graph-based exploration planning (GB-
Planner) [10]. First, an undirected graph GL is incrementally
built inside a local map space ML around the current robot
configuration ξ0 involving the robot position and heading
(ξ = [x, y, z, ψ]T ). Given the updated occupancy map M, a
bounded “local” volume VDL

with dimensions DL centered
around ξ0 and the respective map subset ML, and a bounding
box DR representing the robot physical size (alongside the

respective map subset MR(ξ∗) for a robot state ξ∗), the
planner samples a set of random configurations ξrand inside
VDL

and after checking which local connections (within a
defined radius δ) are collision-free, builds the graph GL

and its vertex and edge sets V,E respectively. Subsequently,
using the Dijkstra’s algorithm [25] it derives paths ΣL in
the graph starting from the root vertex at ξ0 (root to all
destinations). Then the best path in terms of maximizing an
information gain relating to the new volume explored, called
VolumeGain, is identified and provided to the robot for
execution. More specifically, given a path σi ∈ ΣL, i = 1...µ
with a set of vertices νij ∈ σi, j = 1...mi along the
path (corresponding to a set of robot ξ configurations), the
exploration gain ΓE(σi) is calculated as follows:

ΓE(σi) = e−ζZ(σi,σe)
mi∑
j=1

VolumeGain(νij)e
−δD(νi1,ν

i
j) (9)

where ζ, δ > 0 are tunable factors, D(νi1, ν
i
j) is the cumula-

tive Euclidean distance from vertex νij to the root νi1 along
the path σi, and Z(σi, σe) is a similarity distance metric
between the planned path as compared to a pseudo straight
path σe with the same length along the currently estimated
exploration direction. Details are provided in [10].

E. Coverage Planner

HABPlanner utilizes an efficient coverage planner enabled
in the visual search mode in order to maximise the mapped
surface seen by the camera sensor SV . The planner builds
an undirected graph GL and its vertex and edge sets V,E
respectively as described in Section IV-D. Subsequently for
each vertex ν ∈ V, an information gain, called VisualGain,
is evaluated and corresponds to the number of unseen occu-
pied voxels perceived by the onboard visual camera sensor
SV from vertex ν. Then, we sample a set C containing
p sets of q vertices each from GL as candidate vertices
for our final path. The cumulative visual search gain ΓC ,
for all the vertices in set ci ∈ C is calculated as shown
in Eq. (10). It is noted that in order to avoid counting a
voxel perceived by multiple viewpoints more than once, we
store the hash keys generated by Voxblox for each voxel
and remove the duplicate keys while counting the voxels for
ΓC . The gain ΓC for the set ci ∈ C, i = 1...p having vertices
νij ∈ ci, j = 1...q is calculated as follows:

ΓC(ci) =

q∑
j=1

VisualGain(νij) (10)

Finally, the set c∗i having the highest ΓC is selected and
the order in which the vertices are to be visited is found
by solving the Traveling Salesman Problem (TSP) [26] on
the set c∗i . The consecutive vertices in the tour are then
connected by the shortest path in the graph GL between the
two vertices using Dijkstra’s algorithm [25]. This final path
is then provided to the robot controller for execution.

We further define the two sub-behaviors of the Coverage
Planner, namely Sparse and Dense Coverage. Both sub-
behaviors work on the same core principle as described above
but the Sparse Coverage is tailored towards faster search



Fig. 3. Performance comparison of the proposed HABPlanner versus GBPlanner in a cave network. Both planners are given the same amount of mission
time. Areas in the map that are red are both explored and seen with the camera sensor, whereas black regions are only explored volumetrically but not
seen by the camera sensor. The planner’s beliefs about the environment topology at certain locations are also shown in the left figure. As demonstrated
HABPlanner by far outperforms GBPlanner in terms of visual search coverage ratio. The dark yet spacious and large scale cave network necessitates the
use of discrete behaviors optimised for specific settings. It is noted that the effective range of the camera changes in relation to the light conditions.

and for well-lit environments, whereas Dense Coverage is
tuned for dark settings. The two sub-behaviors differ in a)
the number of vertices q in the candidate sets with Dense
Coverage having more vertices, and b) the camera frustum
range used for calculating the VisualGain with Dense
Coverage using a smaller range. Furthermore, to speed-up
Sparse coverage, we remove vertices having VisualGain
smaller than a threshold wth from the best set.

V. EVALUATION STUDIES

A set of experimental and simulation studies were con-
ducted to evaluate the ability of HABPlanner to achieve
simultaneous exploration and visual search. The simulation
studies involve a cave network and an urban structure. The
experiment took place inside a university building.

Fig. 4. Percentage of the explored surface seen and total surface seen
using HABPlanner and GBPlanner inside the cave. The large scale of
the cave environment demonstrates the benefits of the co-optimization of
exploration and visual search from HABPlanner. GBPlanner naturally fails
to search visually a large subset of the surface as this is not considered in
the optimization.

A. Simulation Studies

In order to evaluate and fine-tune the proposed HABPlan-
ner prior to its experimental deployment, two simulation
studies were conducted inside a) a cave network and b)
an underground urban environment. The cave environment
is dark consisting of large open spaces whereas the urban

environment has better lighting conditions and is made of
several large rooms connected by subway tunnels. The sim-
ulations utilized the RotorS Simulator [27] and a quadrotor
MAV model integrating a LiDAR sensor with [FD

H , F
D
V ] =

[360, 30]◦, dmax = 50m as the depth sensor SD and a color
camera with [FV

H , F
V
V ] = [120, 60]◦, rmin = 3m, rmax = 7m

as the camera sensor SV . The robot bounding box DR was
set to length×width×height = 1.1× 1.1× 0.6m.

Fig. 5. Results of the proposed HABPlanner in an urban environment in-
volving corridors and very large rooms and its comparison with GBPlanner.
Red areas in the map are both explored and seen with the camera, whereas
black regions are only explored volumetrically but not seen by the camera
sensor. As shown HABPlanner individually focuses to visually search each
room it encounters due to its hypergame formulation.

Fig. 6. Performance metric comparison in urban environment. The smaller
scale of this environment allows GBPlanner to perform well in terms of
visual coverage too in the corridors, however, HABPlanner soon outperforms
it especially because of its local coverage of the encountered rooms which
the GBPlanner fails to visually cover.

The performance of the proposed HABPlanner was com-
pared against our previous Graph-based exploration planner



Fig. 7. Results of the experiment conducted in the Arts Building of the University of Nevada, Reno. The sub-figures (1), (2) and (3) show the exploration
and coverage paths at various instances of the mission. Red areas in the map are both explored and seen with the camera sensor, whereas black regions are
only explored volumetrically but not seen by the camera sensor. Motivated by our participation in the DARPA Subterranean Challenge [28], two artifacts of
interest, a backpack and a rope, were placed in the environment for the robot to find. The artifact locations A1 and A2 are shown in the top left sub-figure.
The robot was able to detect both as shown in the onboard camera images on the right. The central sub-figure shows the reconstructed pointcloud map of
the environment along with the topological map. In spite of certain incorrect inferences, the robot was able to perform efficient exploration and coverage
of the environment given the complete hypergame formulation.

(GBPlanner) [10] to further verify the importance of the
adaptive methodology. Both planners succeed in the volumet-
ric exploration task but perform differently in terms of visual
coverage. The metrics used to evaluate the performance of
both the planners are a) the total amount of surface seen by
the visual camera SV and b) the percentage of total mapped
surface seen by SV . Five finite time missions were conducted
for each planner in both the environments starting from the
same location. Figures 3 and 5 present the results for the cave
and urban setting respectively while Figures 4 and 6 present
the comparison of respective performance metrics. Especially
in the large-scale and dark cave environment but also in the
smaller and more well-lit urban setting, HABPlanner out-
performs GBPlanner. For the first environment, HABPlanner
outperforms for the entire mission. In the latter, the more
focused search of each individual room of HABPlanner slows
it down initially but pays-out halfway through the mission.

B. Experimental Evaluation
Alongside the simulation studies, an experimental evalu-

ation was conducted. In particular, a quadrotor aerial robot
as in [10] integrating both a depth sensor SD using a 3D
LiDAR and a camera sensor SV was utilized. The param-
eters for these sensors are SD : [FD

H , F
D
V ] = [360, 30]◦,

dmax = 50m and SV : [FV
H , F

V
V ] = [85, 64]◦, rmin = 3m,

rmax = 7m. The robot bounding box DR is considered
equal to length×width×height = 1.4 × 1.4 × 0.8m. The
test was conducted in a subset of the Arts Building of the
University of Nevada, Reno and involved the exploration
and visual search of a topology involving sequentially a) a
long corridor, b) a room, and c) a smaller corridor before a
dead-end. The light conditions for most of the mission were
dim and especially in the room were dark, thus requiring
the robot to utilize its onboard illumination and necessi-
tating dynamic adaptation of the useful camera frustum
range for VisualGain calculation and map annotation. The
experimental results are presented in Figure 7. A test with
GBPlanner was also conducted in the same environment and

the performance comparison is shown in Figure 8. Due to
the very small size of the environment GBPlanner has good
visual coverage as well. However, due to the ability to adapt
to the varying topology and light conditions, HABPlanner is
able to outperform GBPlanner throughout mission.

Fig. 8. Performance metric comparison in the Arts Building. The very
small scale of this environment allows GBPlanner to perform good enough,
however HABPlanner still outperforms it in all the instances of the mission
and especially when entering the larger room (80s).

VI. CONCLUSIONS

In this work, a hypergame-based adaptive behavior path
planner for simultaneous exploration and visual search of
unknown environments was proposed. The method utilizes
a hypergame formulation to select the next-best planning
behavior from the available discrete behaviors optimised for
either exploration or visual search. The ability of the planner
to infer current environmental challenges and incorporate its
own performance in the decision process to correct itself
are its key features which allow it to efficiently explore
and visually search environments with diverse geometric
complexities and light conditions. The method was verified
through a set of simulation and experimental studies and
a comparative analysis was shown against a state-of-the-art
exploration path planner.
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