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Abstract. This paper presents a simple machine learning based framework for diagnosing the 
inline inspection data (ILI) of subsea pipelines. ILI data are obtained by intelligent pigging 
devices operating along subsea pipelines. The wall thickness (WT) and standoff distance (SO) 
are collected by the sensors installed on the pigging, which are normally in the format of 2D 
arrays. There are many uncertainties for the ILI data collected from the offshore survey. An 
attempt was made to apply the machine learning method to diagnose the uncertainties. A 
convolutional neural network (CNN) is used, the ILI data are discretized and processed in 64x64 
grid size. Fabricated training datasets were made for training the machine learning model since 
the ground truth information (actual corroded wall thickness) is hardly known in this case. The 
trained model was successfully. It is demonstrated that certain corrosion patterns have been 
recognized by the trained model. Comparisons were performed between the new method and 
traditional methods with case studies on real ILI data. The validity of the methodology was 
discussed. 

1.  Introduction 
According to the Norwegian petroleum directorate (2021)[1], the total length of the Norwegian pipeline 
network is over 15, 000 kilometers (oil and gas). The integrity management of these pipelines is 
becoming increasingly important because many of them are nearing the end of their designed lifetime. 
To have a control of the internal or external corrosions, the inline inspection data (ILI) data obtained by 
smart pigging are often used. The inspection tool travels along the pipeline, collecting the remaining 
wall thickness data (WT) and the standing-off data (SO).  
    Various non-destructive techniques could be used for the sensors, such as Magnetic Flux Leakage 
(MFL), Ultrasonics Testing (UT), electromagnetic acoustic technology (EMAT) and Eddy Current 
(EC), as discussed in details by Ma et al. (2021) [2] and Klann and Beuker (2006) [3]. For ultrasonics 
testing inspection tool (UT), the measuring principle is based on perpendicular incidence of ultrasound 
into the pipe wall. The ultrasonic pulse is reflected from the back wall and travels several times to and 
from, until the signal energy is dissipated. The time t between entry echo and first rear wall echo or 
between two rear wall echoes is measured. The wall thickness can then be determined by the time and 
sound velocity. In addition, the distance between probe and pipe wall is measured (stand-off), see Figure 
1 for an illustration of the inspection principle. The data for WT and SO are stored as .csv files, which 
are both 2-dimension arrays, corresponding to the axial and circumferential directions, see Figure 2 for 
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an example of ILI data. The resolutions could be 3.0 mm and 8.0 mm respectively. A large amount of 
data can be expected for subsea pipelines in several kilometers. 
    The collected ILI data are normally with certain variations, which could be due to the wall thickness 
variations, vibrations/radial movement of the sensor, residual debris and erroneous or missing data 
points. The contractor conducting the survey is expected to provide high quality ILI data, for example, 
following the principles set out in API 1163 (2013) [4]. However, the raw ILI data are still not suitable 
for the evaluation of the pipeline’s conditions, such as the remaining wall thickness (RWT), the 
corrosion rate and the remaining bursting capacities. Additional filtering of the raw WT and SO data is 
required prior to the generation of the so-called River Bottom Profile (RBP), see DNVGL-RP-F101 
(2019) [5]. The RBP maps minimum thickness values in the circumferential direction and is used to 
calculate the remaining pipeline capacity. Henning et al. (2007) [6] compared different methods of 
generating the RBP profile, such as the classic RBP, SO RBP, Classic and Depth, Median (RBP) and 
the generalized RBP approach. It was concluded that the maximum depth and the generalized RBP 
approaches yield more plausible results. Liu et al. (2018) [7] did a comparison between the filtering 
method provided by DNV GL-RP-F101 (2019) [5] and two other methods, namely the Median and 
Gaussian filters. The filtering method from DNV GL is similar as the generalized RBP approach from 
Henning et al. (2007) [6]. It was found that the DNV GL method is more reliable while the median and 
Gaussian filters provide upper and lower bound curves respectively in most cases. Once RBP file is 
generated, a moving average file (MAV) could be obtained directly by following the method described 
in DNV GL-RP-F101(2019) [5] (see discussion in Sect. 2.3 in this paper and Figure 9 for details). The 
MAV file is used for calculating the remaining pipeline capacities by empirical or advanced numerical 
FEM simulations. 

The methods mentioned above for generating the RBP file are all based on explicit algorithms with 
certain assumption on dealing with data uncertainties. The machine learning method has been improved 
significantly in recent years. It has been successfully applied to various scenarios, in which explicit rule-
based methods may have limited abilities, such as object recognition, language translation, medical 
diagnosis, stock market trading, email spam and malware filtering, self-driving cars et al. It is a natural 
application of machine learning on data processing. This paper presents a simple supervised machine 
learning model. It is applied to fabricated datasets and promising results have been obtained. The MAV 
file is used as a performance check for the ML method in this study since it is directly used to determine 
the remaining capacity of the pipeline, see DNV GL-RP-F101 (2019) [5]. Comparisons have been made 
with respect to other traditional algorithms. Conclusions and discussions on the validity of machine 
learning are made accordingly. 

2.  Methodology 
As the first step to obtain a machine learning model, sufficient training data shall be provided. The 
training set with data pairs should contain both inputs and outputs for a supervised machine learning 
model. The challenge to this study is that the true condition of the pipeline remains unknown even 
though a large amount inspection data is available. To cope with this, artificially fabricated datasets are 
used for training. The fabricated datasets are designed to capture various corrosion patterns, containing 
WT, SO and Y data. The Y data are target outputs for the machine learning model. Randomly generated 
noises are included for WT and SO data. The generated datasets are formatted according to real ILI data 
formats (see Figure 2) by Python scripts (version 3.7.4, Van Rossum and Drake, 2009 [9]). Keras 
(version 2.4.3, Chollet et al., 2015 [10]), running on a TensorFlow platform (version 2.3.0, Abadi et al., 
2016 [11]), is chosen as the main tool for training the machine learning model in this study. 
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Figure 1. Ultrasound principle for metal loss inspection and quantitative wall thickness measurement, 
Barbian et al. (2010) [8]. 

 
Figure 2. Example ILI data, a sample data with size of 256 x1000. 

2.1.  Training data 
In this study, 25 pairs of training samples are generated, in which 20 pairs are used for training while 5 
pairs are used for validation. One training sample consists of two files. The WT file simulates wall 
thickness data, while the Y file tells the corresponding ground truth of wall thickness. The neural 
network is then trained with the WT and Y file as input-output pairs. One pipeline section is simulated 
by creating a 2D matrix with a given dimension, 256 x 1000, which is corresponding to data resolutions 
on circumferential and axial directions of ILI data respectively (see Figure 2). 
 

• Channelling corrosion: Both the WT and Y-section start with the same wall thickness and are 
identical initially. The combination of uniform and channeling corrosion is simulated on the 
bottom half of the pipeline. The width of the corrosion area varies. Simulation of the uniform 
corrosion lowers the wall thickness in the relevant area with a random depth between 0 and 3 
mm, see Figure 3 for an example. 
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Figure 3. Example of simulated pipe section with noise and channelling corrosion. 

• Pitting corrosion: Pitting corrosion is simulated by stochastically creating pits with different 
shapes and depth within certain random boundaries, see Figure 4. 

 
Figure 4. Example of simulated pipe section with noise, channelling, and pitting corrosion. 

• Missing reading: Malfunctioning sensors can cause bad readings, resulting in rows or columns 
with the same WT or missing data reported throughout the section. A random number of zero 
readings are added to the generated WT data, as shown in Figure 5. 

 
Figure 5. Example of simulated pipe section with noise, channelling, pitting corrosion, and missing 
values. 

2.2.  ML implementation 
The neural network itself is designed to predict RWT values for a grid size of 64 x 64. Multiple iterations 
are needed to get satisfying results. The convolutional neural networks (CNN) have proven to be an 
efficient method after tests. The final architecture ended up being a CNN with a single skip connection.   

• Network architecture: A CNN that processes the original input image piece by piece. The 
architecture used is outlined in Table 1. The first layer of the network specifies the input 
dimensions to the network, which is a 64 x 64 grid. The first layer is implicit in the network and 
does not alter the input. The following layers are four convolutional layers (Conv2D in Keras 
for 2D input and output, see Chollet F. et al., 2015 [10]) with an increasing number of filters, 
starting from 64 to 256. The only difference between the convolutional layers is the number of 
filters. Apart from the number of filters, the Conv2D layers use ReLU as the activation function, 
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a kernel size, of 3 x 3, a 2 x 2 stride, and a padding of same. In Keras, a padding value of the 
same means that a zero padding of appropriate size is added around the input to ensure that the 
output is about the same size as input after convolution. It is found that the network performed 
much better with small kernel size (3 x 3) than larger ones (5 x 5 or 7 x 7).  The output is 
flattened and sent into a dense layer after the convolution layers, as seen in Figure 6. The initial 
input to the network and the output of this dense layer are the sent combined with a skip 
connection that calculates the average value. Adding this skip connection improved the 
performance significantly. The last layer is another dense layer that produces an output of shape 
(4096, 1). This output is then reshaped to the original shape, (64, 64, 1), in a way that correctly 
recreates the image. 

Table 1. Each layer of the architecture and its respective configuration. 

Layer Configuration 

Input_layer shape = (64,64,1) 

Conv2D_1 filters = 32 
Conv2D_2 filters = 64 
Conv2D_3 filters = 128 
Conv2D_4 filters = 256 

Flatten Input = (64,64,1), output= (4096,1) 
Dense_1 Input = (4096,1), output = (4096,1) 
Average Input = (Input_layer, Dense_1), output = (4096,1) 
Dense_2 Input = (4096,1), output = (4096,1) 

 
Figure 6. Illustration of the finalized network architecture. 

• Network configurations: According to Thakkar et al. (2018) [12], a batch normalization layer is 
added after every Conv2D layer to increase the learning performance. It is observed that the 
batch normalization and an increased number of epochs have improved the networks, even for 
some of the weaker ones. All layers in the network use the default initialization scheme for 
Keras layers, called the Glorot uniform initializer, see Chollet F. et al. (2015) [10]. This 
initializer randomly assigns a starting value, within certain limits, to the weights of the network.  
Consequently, some weights need more significant adjustments than others. The randomness 
involved is also responsible for slightly different results every time the same neural network 
architecture is trained. Some early developed networks were trained multiple times from scratch 
to test the effect of this randomness in this study. The network converged at the same values, 
with some minor irrelevant differences. 
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    The model is implemented with an initial learning rate of 0.01, which is a relatively high learning 
rate. The learning rate is gradually reduced during the training of the network to facilitate the fine-tuning 
of the network. An implemented learning rate scheduler decreases the model’s learning rate after every 
training epoch. The learning rate (LR) can be decreased until a threshold is reached. The loss function 
used to train the network is the mean squared error (MSE) and the Adam optimizer is used. 

• Training procedure: A flowchart of the training process is shown in Figure 7. The simulated 
training samples are fed into the network, the generated outputs are compared to the 
corresponding targets. If the specified stop criterion has not yet been reached, adjustments are 
made to the network, which is controlled by the chosen optimizer. The stop criterion used in 
this study is the number of epochs which is based on the measurement of the performance. 

 
Figure 7. Flowchart of the training process. 

• Training results: Figure 8 shows the training loss as well as the validation loss. After 80 epochs, 
both loss functions have reached convergence. 

2.3.  Performance check 
As mentioned earlier, the ground truth value of the remaining wall thickness (RWT) of pipeline 
inspected is unknown, it is then not possible to quantify the performance of the ML method. 
Nevertheless, comparisons have been made between the ML method and the traditional DNV GL 
method based on the MAV file generated, since it is the file that used for calculating the remaining 
capacity of the pipeline. It is believed that the true values (ground truth) shall be well within the two 
methods and engineering judgments may be needed to for the final assessment of the pipeline integrity. 
    The river bottom profile (RBP) files are generated from the remaining wall thickness (RWT) data 
after filter methods applied. The RBP is created by looping through each sensor around the 
circumference at each odometer point in the longitudinal direction. The minimum wall thickness is 
reported.  
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Figure 8. Statistics from the training of the ML model. 

    The RBP file is still not suitable for calculating the remaining capacity of the pipeline (the burst 
pressure). A further smoothing is done by using the moving average method. A moving average 
profile (MAV) file is then finally obtained. The smoothing is done using the average over a length of 
l=0.5*sqrt(D*t), where D is the nominal outer diameter and t is the original wall thickness as shown in 
Figure 9.  
Figure 10 shows an example of generated MAV file. The MAV file is chosen as a kind of performance 
measurement for the ML methods in this study. Note that negative values are shown in  
Figure 10, it is probably due to low quality of data. 
 

 
Figure 9. Illustration of the calculation of moving average from RBP, from DNV GL-RP-F101 (2019). 
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Figure 10. Example of MAV file obtained with two rule-based methods. 

3.  Results and discussions 

3.1.  Simulated data - noise 
A simulated data with highly stochastic and spread throughout the whole section. A pipeline section 
exclusively containing noise is used to isolate the filter’s ability to handle noise. The predefined wall 
thickness is 15 mm before the noise is added. The resulting MAV graphs from DNV GL and ML filter 
together with the raw WT data and the ground truth Y-data are plotted in Figure 11. It is seen that the 
ML filter gives an RWT close to 14.5 mm, with less variation over the length of the section. The 
simulated data are simulated by the same algorithm that the training data for the model used in the ML 
filter. It is seen that the DNV GL method is giving too conservative results in this case as it keeps only 
the minimum wall thickness along the circumferential direction at each odometer location. 
 

 
Figure 11. MAV generated by different methods. 
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3.2.  Simulated channelling corrosion 
The ML model is trained to filter out the whole noise spectrum, and not only noise outside a certain 
interval of variation. This means that the ML filter is expected to be less sensitive to minor irregularities 
than the DNV GL filter. The intention is that these irregularities should be filtered out due to their 
insignificance to the overall results. The MAV curve generated from RWT predictions from the ML and 
the DNV GL are plotted in Figure 12. The MAV plot shows that the ML filter has removed noise to a 
greater extent than the DNV GL filter. The MAV values for the ML filter is close to the Y values and 
mostly above the Y values. DNV GL has not removed much noise, therefore, estimating RWT values 
close to the original WT values, which is still on the conservative side. However, the results obtained 
by the current ML model may be quite optimized and shall be used with cautions. 

3.3.  Simulated pitting corrosion 
The wall thickness is set as zero in the pitting area, which is very idealistic and just for test purpose. It 
is seen from Figure 13 that the ML filter prediction is quite close to the simulated Y-value without losing 
conservatism in this case. However, the DNV GL filter stays close to the WT data. Negative values are 
both predicted from the two methods, which is mainly due to the low-quality data odometer between 
800 to 1100 mm (the Raw data value for this interval have zero readings as seen in Figure 13). In this 
case, the ML model provides better predictions, showing that the pitting corrosion patter is recognized. 

 
Figure 12. MAV for DNV GL and ML generated from the section with channelling corrosion. 
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Figure 13. MAV plot with DNV GL, ML and Y for the section containing pitting. 

4.  Conclusions 
Following conclusions are made: 
• A CNN based machine learning framework has been proposed and established. The simulated data 

shows that some corrosion patterns have been successfully recognized.  
• The performance seen in the case study shows that it is possible to use supervised learning with 

simulated data to train a model and predict the remaining wall thickness based on real ILI data. 
• The confidence in the model's ability to handle different cases could be improved by testing on 

additional datasets, for example with more fabricated corrosion patterns. 
It is expected that the method presented in this paper can be further applied to process real field 
collected ILI data in the future. It is seen that the machine learning based method may give ‘better’ 
results. However, the users must be cautious to use the ‘better’ results since they may give ‘non-
conservative’ estimation of the remaining wall thickness. Nevertheless, the machine learning-based 
method presented in this study can be further improved and may be finally used in real projects. 
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