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Transient nonlinear convection in a finite Prandtl number fluid heated uniformly from below is studied analytically and

numerically. We consider the simple geometry of a square cavity with normal-mode compatible boundary conditions.

By design, only the marginal state of convection onset contributes to the initial condition for the two-dimensional su-

percritical convection. The thermal amplitude and the flow amplitude are taken as two independent initial conditions.

There are two ways of initiation: (i) Soft start with very small initial amplitude, leading to early exponential growth. (ii)

Kick-started transient convection with relatively large initial amplitudes, by which we perform a small-time expansion

for benchmarking. Seemingly complicated transient flow occurs with a kick-start where the initial spin and the initial

buoyancy torque are in conflict. However, the intricate spiraling flow decays after a couple of reversals of flow direc-

tions, and a steady convection settles. This is due to the strict antisymmetry of the temperature perturbation around the

mid-point of the cavity, in combination with the symmetry of the flow field.

I. INTRODUCTION

Fluid mechanics belongs to deterministic continuum

physics. A broad access to first-principle nonlinear phenom-

ena gives fluid mechanics a lasting scientific impact. Basic

nonlinearities of fluid flows are studied with good conceptual

clarity and relatively precise computational and experimen-

tal tools. Nonlinear Rayleigh-Bénard convection has earned

a central place in nonlinear fluid mechanics, encompassing a

diversity of phenomena with gradual routes to chaos.

The concept of self-organization by hierarchies of instabili-

ties may be traced back to Turing1. A much broader approach

based on nonlinear theory was popularized by Prigogine and

Stengers2. Rayleigh-Bénard convection is a key phenomenon

in this cross-disciplinary research. Supercritical Rayleigh-

Bénard convection may be caused either by designed initi-

ation or by noise. The linear theory of selection of a pre-

ferred marginally unstable flow from arbitrary disturbances

has proven to be a fruitful approach. Its stability criterion is

supported by experiments.

Our idea is to let transient supercritical Rayleigh-Bénard

convection evolve from initial states that are as elementary as

possible. The problem of convection onset by selection from

arbitrary disturbances remains important, while the notion of

successive supercritical instabilities will be put aside in the

present paper. We will focus on nonlinear convection as ini-

tial value problems, taking the preferred thermomechanical

Fourier mode from the linearized onset problem as the sin-

gle initial pair of modes. Higher Fourier modes will evolve

naturally in time by nonlinear self-interactions.

The stability theory for a fluid layer heated uniformly

from below was developed by Rayleigh3. The theory of

finite-amplitude supercritical convection was pioneered by

Malkus and Veronis4, calculating the flow amplitude and heat

transfer as functions of the supercritical Rayleigh number.

Chandrasekhar5 gave the Rayleigh-Bénard problem a cen-

tral role in his treatise on linear stability theory for hydrody-

namics and hydromagnetic flows. Moore and Weiss6 studied

two-dimensional nonlinear convection for very high Rayleigh

numbers and identified transitions between steady and oscilla-

tory convection. Among many review articles of the classical

theory of nonlinear Rayleigh-Bénard convection we refer to

Palm7 and Busse and Clever8. The monograph by Drazin and

Reid9 placed this established theory of nonlinear thermal con-

vection into the broad perspective of hydrodynamic stability

theory.

The Rayleigh-Bénard problem stands out with mathemat-

ical simplicity in the theory of hydrodynamic stability. Its

mathematical simplicity comes from the fact that its basic

unperturbed state is a trivial finite-amplitude solution with a

uniform temperature gradient. Other basic states of hydrody-

namic stability are more complicated solutions to nonlinear

problems. Nonlinearities in the full mathematical problem are

needed to link the basic state to its perturbations, since a fully

linearized problem could not support any stability analysis.

The present work is devoted to the role of initial condi-

tions in the supercritical Rayleigh-Bénard problem. It will

be studied by linear theory, weakly nonlinear theory as well

as strongly nonlinear theory. Since the pioneering work by

Schlüter, Lortz and Busse10, the focus of the analytical re-

search of supercritical Rayleigh-Bénard convection has been

on stability theory11. Initial value problems have played a sec-

ondary role in this context.

Nonlinear initial value problems for convection came in

focus with the seminal work by Newell and Whitehead12.

Normand et al.13 followed up these ideas, carried further by

Pomeau and Manneville14. Analogies with crystal structures

inspired experimental work on pattern formations in supercrit-

ical convection, see e.g. Bodenschatz et al.15, Cerisier et al.16

and the book by Koschmieder17. Bestehorn and Haken18 per-

formed numerical simulations of supercritical convection pat-

terns, based on dimension-reduced equations.

Finite Prandtl number is crucial for considering supercrit-
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ical convection as an initial value problem since it offers

two time-derivatives in the nonlinear mathematical problem.

Thereby one also gets two independent initial conditions to

play with, choosing different weighting of initial temperature

perturbation versus initial flow. As a contrast, the limit of in-

finite Prandtl number includes only one time-derivative and is

not rich enough for interesting transient nonlinear convection

to be triggered by a single-mode initiation.

Nonlinear flow phenomena can be studied from three dis-

tinct perspectives.

(i) The causal perspective of identifying physical causes

and classifying their qualitative and quantitative effects. The

oscillations for small and moderate Prandtl numbers is a good

example from Rayleigh-Bénard convection. Since the lin-

earized stability problem does not allow any oscillatory be-

havior, these oscillations are exclusively nonlinear phenom-

ena. The basic causality behind these oscillations remains a

challenge, comprising the frequency spectra of these oscil-

lations, and their dependencies on the Prandtl number and

Rayleigh number. Moore and Weiss6 addressed these ques-

tions, with the limitations of a finite-difference numerical

scheme at an early stage of computational fluid mechanics.

Their work is complemented by more recent papers19,20 where

two-dimensional nonlinear convection is studied with greater

numerical accuracy.

(ii) The initiation perspective of considering nonlinear

flows as mathematical initial value problems. This is the ap-

proach of weather forecast, where observations continuously

update the initial conditions. A scientific approach of initi-

ation is to specify the flow fully at the initial instant t = 0

and study its nonlinear evolution without interventions. The

mathematical advantage with this approach is that the chal-

lenges of causality are circumvented, since one does not need

to know anything about the flow before t = 0. We will present

two distinct alternatives for initiating convection at a given su-

percritical Rayleigh number. The standard soft start is where

small perturbations grow exponentially during an early stage.

Our second alternative is the kick-started convection, where at

least one amplitude starts with the same order of magnitude as

the steady-state solution for the given supercritical Rayleigh

number.

(iii) A third perspective is the selection mechanisms by

instabilities, which has a lasting influence on the field of

Rayleigh-Bénard convection. This perspective was first estab-

lished by Lord Rayleigh3, with his linearized stability analysis

for the onset of convection. At the critical Rayleigh number,

the single marginal state is naturally selected as the only mode

of disturbance which does not decay but remains steady. The

onset selection is understood by linear theory. It is not ob-

vious how to settle selection principles for nonlinear theory,

as they tend to be presented in an implicit manner8. Palm21

presented an early selection theory for nonlinear hexagonal

convection in a fluid with viscosity dependent on tempera-

ture. The gradually emerging selection principle of two suc-

cessive instabilities to be established for nonlinear convec-

tion patterns. Busse22 started this research, which grew from

the seminal work of small-amplitude nonlinear convection by

Schlüter, Lortz and Busse10. The idea of selecting hierarchies
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FIG. 1. Formulation of the spatially sixth-order time-dependent non-

linear Rayleigh-Bénard problem in a square cavity, in terms of three

coupled Poisson equations for θ(x,y, t), ψ(x,y, t) and ω(x,y, t). The

homogeneous boundary conditions for two-dimensional convection

in the unit square are of the Dirichlet type, with two exceptions: The

thermal conditions along the insulating walls x = 0 and x = 1 are

Neumann conditions.

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
6
7
5
4
6



3

of nonlinear flow modes from noise reached a state of matu-

rity already three decades ago8. These authors pointed to the

alternative of studying nonlinear convection as initial value

problems, but they did not address the dilemma of designed

initiation versus initial noise.

The stability domain ("Busse balloon") for steady convec-

tion is small when the Prandtl number is below one8,9. A

notable limitation for this selection by successive instabili-

ties is that one linearizes the time-dependent vortex interac-

tions. One may circumvent these limitations by fully non-

linear simulations based on generic initiation modes. In this

context, we launch the concept of kick-starting transient non-

linear convection from a minimalist set of initiation modes,

which are generic by being hand-picked from linear theory. A

small-time expansion will make it possible to trace the early

evolution of this strongly nonlinear process. Our intention

is to leave challenges for improved analytical understanding

of transient nonlinear convection evolving from initial states

with step-wise increments of complexity. The evolution to-

wards chaos will be blocked and reversed by strict spatial

symmetries in the present model. A natural next step will be

to consider initial states without such symmetry constraints,

which will increase the complexities of transient convection23.

II. MATHEMATICAL FORMULATION

The standard dimensionless Boussinesq equations for

buoyancy-driven convection in a Newtonian fluid are

∇ ·~v = 0, (1)

Pr−1

(

∂~v
∂ t

+~v ·∇~v
)

+∇p = Rθ~j+∇2~v, (2)

∂θ

∂ t
− v+~v ·∇θ = ∇2θ , (3)

see Drazin and Reid9. The two dimensionless parameters are

the Prandtl number Pr and the Rayleigh number R. These are

defined by

Pr =
ν

κ
, R =

gαd3∆T
νκ

. (4)

The velocity field is ~v, while p and θ denotes the perturba-

tions of pressure and temperature. Pr and R depend on the

kinematic viscosity ν , the diffusivity κ , the thermal expan-

sion coefficient α . ∆T is the temperature difference between

the lower and upper boundary, and is taken as unit for dimen-

sionless temperature difference. The Newtonian fluid layer

with depth d is taken as unit for dimensionless length. d2/κ
is the unit of dimensionless time, while κ/d is the dimension-

less velocity unit.

We consider only two-dimensional flow in the vertical x,y
plane. The unit vectors are denoted by~i, ~j for the horizon-

tal x direction and the vertical y direction, respectively. The

corresponding Cartesian velocity components are denoted by

(u,v). We will apply the classical conditions of impermeable,

stress-free and perfectly conducting boundaries

v =
∂ 2v
∂y2

= θ = 0, at y = 0 and y = 1. (5)

A. Formulation in terms of the streamfunction

We express the velocity vector~v by the streamfunction ψ

(u,v) =

(

∂ψ

∂y
,−∂ψ

∂x

)

, (6)

so that the continuity equation (1) is satisfied. The vorticity

field ω is

ω =
∂v
∂x

− ∂u
∂y

=−∇2ψ. (7)

We take the curl of the momentum equation (2) to get the non-

linear vorticity equation

Pr−1

(

∂ω

∂ t
+

∂ψ

∂y
∂ω

∂x
− ∂ψ

∂x
∂ω

∂y

)

= R
∂θ

∂x
+∇2ω. (8)

The nonlinear heat equation (3) can be written

∂θ

∂ t
+

∂ψ

∂x
+

∂ψ

∂y
∂θ

∂x
− ∂ψ

∂x
∂θ

∂y
= ∇2θ . (9)

These are the full nonlinear equations.

The boundary conditions (5) are preferably rewritten as fol-

lows

ψ = ω = θ = 0, at y = 0 and y = 1. (10)

In Figure 1 we sketch a square cavity filled with fluid. The

three coupled sets of nonlinear governing equations in two

dimensions are displayed, together with the respective bound-

ary conditions. The square cavity is to be introduced later in

the text, together with its sidewall conditions compatible with

normal modes.

III. STANDARD LINEAR THEORY

We will first give the general normal mode theory of on-

set in terms of Cartesian coordinates. An eigenvalue problem

with full degeneracy due to its normal mode type of eigen-

functions is convenient when we study slightly supercritical

convection. The eigenvalue problem for the onset of con-

vection is independent of the Prandtl number5, with a non-

oscillatory marginal state.

The full linearized version of the governing equations (8) -

(9) is

Pr−1 ∂ω

∂ t
= R

∂θ

∂x
+∇2ω, (11)
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∂θ

∂ t
+

∂ψ

∂x
= ∇2θ , (12)

recalling the relationship ω = −∇2ψ . The stationary eigen-

value problem may be represented by two equivalent equa-

tions

R−1∇6θ − ∂ 2θ

∂x2
= 0, R−1∇6v− ∂ 2v

∂x2
= 0, (13)

with the boundary conditions

θ =
∂ 2θ

∂y2
=

∂ 4θ

∂y4
= v =

∂ 2v
∂y2

=
∂ 4v
∂y4

= 0, at y = 0 and y = 1.

(14)

The eigenfunctions for the temperature and the vertical veloc-

ity can be written,

θ = Asin(πy)cos(kx), v = Bsin(πy)cos(kx) =−∂ψ

∂x
,

(15)

where the general normal-mode dependency sin(Nπy) is rep-

resented only by its most unstable vertical mode N = 1. The

temperature amplitude is A, while the corresponding velocity

amplitude is denoted by B. The wave number k has a crit-

ical value given by k = π/
√

2 where the marginal Rayleigh

number given by the general formula

Rmarginal(k) =
(π2 + k2)3

k2
, (16)

takes the critical value Rmarginal(π/
√

2) = 27π4/4 = 657.511,

first derived by Rayleigh3. We note the general formula for the

ratio between the amplitudes of the eigenfunctions

B
A
= k2 +π2, (17)

with the special value B/A = (3/2)π2 for the preferred mode.

It is obvious that the dimensionless temperature is scaled

appropriately with ∆T as a unit. The fact that the ratio B/A is

of order 10 indicates that the chosen unit of dimensionless ve-

locity is one order of magnitude smaller than the appropriate

physical scaling for velocity. We note this apparent imbalance

in thermomechanical scaling, which applies to the onset and

to slightly supercritical convection. The situation may change

when we consider supercritical convection for small Prandtl

numbers since a finite Prandtl number influences any transient

evolution of a supercritical flow. This influence is expected to

be stronger the smaller the Prandtl number.

The role of the Rayleigh number is transparent according

to linear theory. Once the critical Rayleigh number Rc has

been identified for the preferred legal mode of disturbance,

we can introduce ∆R = R−Rc as the difference between the

actual Rayleigh number and its critical value. Then the rate

of exponential growth (for ∆R > 0) or exponential decay (for

∆R < 0) increases with the value of |∆R|.
We have now recapitulated the elementary linear theory.

From now on we work exclusively with the square geome-

try for a single cell. Thereby we fix the preferred wave num-

ber to k = π . The amplitude ratio for the eigenfunctions is

B/A = 2π2 at marginal stability, according to eq. (17). The

critical Rayleigh number for a square fluid-filled cavity is

Rc = Rmarginal(π) = 8π4 = 779.273, (18)

according to eq. (16). the marginal Rayleigh number for the

second horizontal onset mode with wave number k = 2π

Rmarginal(2π) =
125

4
π4 = 3044.034. (19)

This is the second most unstable mode, which needs a

Rayleigh number almost four times the critical value Rc in

order to grow.

This paper distinguishes between two different routes for

initiating transient nonlinear convection, with a fixed super-

critical Rayleigh number. One route is the kickstart of the

thermomechanical flow with a finite initial amplitude, to be

considered below.

The other route is the more conventional soft start of nonlin-

ear convection. This is the gradual evolution of the nonlinear

flow from unstable perturbations. Then we consider an initial

state with very small amplitude so that linear theory is valid

during an early stage.

A. Unstable flow in a square according to linearized theory

We will now investigate the route of gradual evolution, by

solving the general initial value problem according to lin-

earized theory, with a given supercritical Rayleigh number

R> Rc for the square cavity filled with Newtonian fluid. From

eq. (17) we find the relationship between the amplitude A of

vertical velocity and the temperature amplitude B at marginal

stability

B
A
= 2π2, (20)

valid for a square cavity filled with fluid, where k = 1 for the

lowest mode. So far, we have not introduced lateral boundary

conditions, as we have only used the normal modes valid for

an infinite horizontal domain. The only boundary conditions

for cell walls that are compatible with normal modes are

ψ = ω =
∂θ

∂x
= 0, at x = 0 and x = 1. (21)

These conditions represent impermeable, stress-free walls that

are thermally insulating. They apply to our general nonlinear

initial value problem, illustrated in Figure 1 above.

It is essential for our further analysis that the strict coupling

ratio B/A according to eq. (20) between the amplitudes of

velocity and temperature exists only at the critical Rayleigh

number Rc = 8π4, linked to the preferred onset mode for the

square. With a supercritical Rayleigh number (R > Rc), no

such coupling constraint B/A can be allowed. The transient

problem is to be started with independent initial amplitudes

A(0) and B(0) for temperature and vertical velocity, respec-

tively. This is true both for the fully nonlinear transient prob-

lem and its linearized version, which we will completely solve

before we attack the nonlinear evolution of convection.
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5

In the general linearized analysis of the unstable (supercrit-

ical) flow, the amplitudes A for the temperature and B for the

vertical velocity are initially independent. This means that

the linearized transient problem consists of determining the

functions A(t) and B(t) for the single Fourier mode for the

temperature perturbation

θ(x,y, t) = A(t)cos(πx)sin(πy), (22)

and the associated vertical velocity

v(x,y, t) = B(t)cos(πx)sin(πy). (23)

The exposition of the linearized normal-mode instability prob-

lem has led to the impression that the temperature perturba-

tion θ(x,y, t) and the vertical velocity v(x,y, t) are completely

analogous and mathematically equivalent functions for solv-

ing the problem, differing only by a constant of proportional-

ity in their respective amplitudes A(t) and B(t).
For solving the transient linearized problem we need the

associated formulas for the streamfunction

ψ(x,y, t) =− 1

π
B(t)sin(πx)sin(πy), (24)

and the vorticity

ω(x,y, t) =−2πB(t)sin(πx)sin(πy). (25)

From the linearized equations we derive the two coupled first-

order differential equations for A(t) and B(t)
(

d
dt

+2π2

)

A = B, (26)

(

Pr−1 d
dt

+2π2

)

B =
R
2

A. (27)

The functions A(t) and B(t) thus satisfy the same second-

order equation,

(

Pr−1 d2

dt2
+2π2(Pr−1 +1)

d
dt

+
Rc −R

2

)

A = 0, (28)

(

Pr−1 d2

dt2
+2π2(Pr−1 +1)

d
dt

+
Rc −R

2

)

B = 0, (29)

where we have introduced Rc = 8π4. The solutions can be

written as

A(t) = A1eσ1t +A2eσ2t , B(t) = B1eσ1t +B2eσ2t . (30)

There are two exponential rates σ given by the quadratic char-

acteristic equation

σ2 +2π2(1+Pr)σ − Pr∆R
2

= 0. (31)

These two rates of growth or decay are

σ1 = π2(1+Pr)

(
√

1+
Pr∆R

2π4(1+Pr)2
−1

)

. (32)

σ2 =−π2(1+Pr)

(
√

1+
Pr∆R

2π4(1+Pr)2
+1

)

. (33)

We have introduced ∆R = R− Rc = R− 8π4 for the differ-

ence between the given (supercritical) Rayleigh number and

its critical value. Below will check whether oscillatory damp-

ing may happen for subcritical Rayleigh numbers, but there

are no oscillations according to linearized supercritical the-

ory, with ∆R > 0. The single exponential growth rate σ1 > 0

takes care of the instability, and there is an accompanying ex-

ponential decay rate σ2 < 0. The solutions for the amplitudes

are rewritten as

A(t) = A1eσ1t +A2eσ2t , (34)

B(t) = (σ1 +2π2)A1eσ1t +(σ2 +2π2)A2eσ2t . (35)

There are two independent initial conditions, represented in-

directly by the two constants A1 and A2. We want to take as

independent initial values the temperature amplitude A0 and

the vertical velocity amplitude B0, defined as

A0 = A(0), B0 = B(0). (36)

Then the parameters A1 and A2 are expressed in terms of A0

and B0. Insertion of t = 0 in the functions A(t) and B(t) gives

A0 = A1 +A2 and B0 = σ1A1 +σ2A2 +2π2A0. The solutions

of these equations are

A1 =
−(σ2 +2π2)A0 +B0

σ1 −σ2
, (37)

A2 =
(σ1 +2π2)A0 −B0

σ1 −σ2
, (38)

to be inserted in the solutions (34) - (35), giving

A(t) =
σ1eσ2t −σ2eσ1t

σ1 −σ2
A0 +

eσ2t − eσ1t

σ1 −σ2
(2π2A0 −B0), (39)

B(t) =
(σ1 +2π2)(σ2 +2π2)

σ1 −σ2
(eσ2t − eσ1t)A0

+
(σ1 +2π2)eσ1t − (σ2 +2π2)eσ2t

σ1 −σ2
B0. (40)

We have now established the general time evolution of the

amplitudes A(t) and B(t) according to linearized theory. We

have expressed the functions θ(x,y, t) and v(x,y, t) in terms of

their initial values A(0) = A0 and B(0) = B0.

A nonlinear initial value problem will face the broad chal-

lenge of systematics: How to choose generic initial condi-

tions without too much bias. A background for handling these

dilemmas is a good overview of the linearized evolution.

We will therefore consider four special cases where the lin-

earized thermomechanical flow has some kind of synchroniza-

tion. Firstly, the case where there is no initial flow, which

means that the thermal mode triggers the entire convective
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6

flow. Secondly, the case where there is no initial tempera-

ture perturbation, with the emerging temperature field owing

its existence to the initial flow mode. The third case is the

case of strict synchronization, where there is a pure exponen-

tial growth of the entire thermomechanical field. The fourth

special case that we find important is the strict coupling of

the amplitudes that exist at marginal stability. We want to see

how this coupling is being loosened for a transient supercriti-

cal flow.

B. On subcritical damping and possible oscillations

The exponential decay when R < Rc will take place only if

the square root in the formulas (32) - (33) has a non-negative

argument. Introducing ∆R = R−Rc = R− 8π4, we see that

the necessary condition for oscillatory behavior of the pertur-

bations is

R
8π4

<− (1−Pr)2

4Pr
, (41)

showing that oscillations for the linearized problem require a

negative Rayleigh number. These oscillations are expected to

represent Brunt-Väisälä frequencies of stable stratification6,

but such wave phenomena are not covered by the present the-

ory. Yet eq. (41) shows that the special value Pr = 1 is the

only case where all negative Rayleigh numbers give oscilla-

tions. For any Prandtl number different from one, there will

be a domain of negative Rayleigh numbers where the distur-

bances will decay exponentially without oscillations. There-

fore, one may suspect that Pr = 1 is the value where the

strongest nonlinear transient oscillations may be triggered,

which seems plausible according to our numerical simulations

below.

The special case of Pr = 1 and R = 0 has only one damp-

ing rate of the lowest thermomechanical modes (22) - (23),

which is σ1 = σ2 =−2π2. The innocent-looking thermal dis-

turbances sin(nπy), with no x dependence and without any

associated flow field, will then include a mode n = 1 with the

slowest possible damping. These modes decay in time as fol-

lows

θ = θ0 e−n2π2t sin(nπy), (42)

with θ0 denoting the initial amplitude. This decay does not

depend on R or Pr, so it is always the same, governed by the

heat diffusion equation without a convection term. This type

of initial disturbance does not influence the linearized onset

problem, but it may become significant for the kick-started

convection that we will study by a small-time expansion be-

low. We disregard such purely thermal modes (with no influ-

ence on the linear stability problem) in the present work, not-

ing their possible significance through their ability to disturb

the delicate symmetries, as discussed in the Appendix.

C. Initiating the linearized convection from rest

We consider the special case where the flow starts from rest,

so that B0 = B(0) = 0. Then the initial temperature amplitude

A(0) remains as the only nonzero amplitude, leading to the

solutions

A(t) =
(σ1 +2π2)eσ2t − (σ2 +2π2)eσ1t

σ1 −σ2
A0, (43)

B(t) =
(σ1 +2π2)(σ2 +2π2)

σ1 −σ2
(eσ2t − eσ1t)A0, (44)

reduced from the general formulas (39) and (40).

D. Linearized flow initiation without an initial thermal field

We will consider the case where there is an initial flow

field with zero temperature perturbation. This means that

A0 = A(0) = 0, with the initial amplitude B(0) of the verti-

cal velocity as the only nonzero amplitude. The solutions are

A(t) =
eσ1t − eσ2t

σ1 −σ2
B0, (45)

B(t) =
(σ1 +2π2)eσ1t − (σ2 +2π2)eσ2t

σ1 −σ2
B0. (46)

It is interesting to compare the structure of these solutions for

A(t) and B(t) with the corresponding formulas (43) - (44). We

thus compare cases where only one instability mechanism is

active initially since the other perturbation needed for insta-

bility is initially inactive with zero amplitude. Nevertheless,

the supercritical growth of instabilities is able to revive the

other mode starting from zero. This is not possible at marginal

stability, again confirming that the amplitudes A(0) and B(0)
cannot be independent at marginal stability. Eq. (45) shows

how the thermal mode is started from zero aided by the flow

mode of instability. It can be directly compared with eq. (44),

which shows how the flow mode is started from zero aided by

the thermal mode of instability.

The differences in these solutions reveal asymmetries in the

roles of buoyancy and convective transport for the linear sta-

bility theory of convection. These asymmetries will escalate

once nonlinearity gains importance.

E. The initiation that gives exponential growth according to
linear theory

One may prefer to start the nonlinear process as a purely

exponential growth during the early stage when linear theory

is valid. This type of evolution takes place when A2 = 0, to be

combined with the induced relationship B0 = (σ1 + 2π2)A0.

The initial temperature amplitude A(0) = A0 is arbitrary in

linear theory, while the initial velocity amplitude B(0) = B0

must be chosen according to the rewritten relationship

B0

A0
=σ1+2π2 = π2(1−Pr)+π2(1+Pr)

√

1+
Pr∆R

2π4(1+Pr)2
.

(47)
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7

after inserting the formula (32) for the growth rate σ1. Making

this choice of linking B0 to the initial temperature amplitude

A0, so that A2 = 0, eliminates the decay rate σ2 from the entire

time evolution. Linear theory prescribes a very simple growth

process

A(t) = A0eσ1t , B(t) = B0eσ1t , (48)

which implies that the ratio B(t)/A(t) = B0/A0 = σ1 + 2π2

remains constant as long as linear theory is valid. A more

complicated behavior will gradually emerge as the nonlinear

terms in the governing equations accumulate large-amplitude

dominance over the linearized terms responsible for the early

exponential growth. In Figure 5 below, we will extract the ra-

tio A(t)/B(t) for initial value problems with very small ampli-

tudes with fully nonlinear simulations. Linear theory is valid

as long as the ratio B(t)/A(t) remains constant.

F. Maintaining initially the coupling at marginal stability

We will now study the transient evolution under the strict

coupling (20). It exists only at marginal stability since the ini-

tial value problem of finite-amplitude convection allows the

initial amplitudes A(0) = A0 and B(0) = B0 to be chosen in-

dependently. We will now study the special case

B0

A0
= 2π2, (49)

where we maintain the amplitude coupling at marginal stabil-

ity. This situation can be mimicked experimentally by a grad-

ually increased Rayleigh number beyond the critical value,

with random perturbations from which the unstable ones will

be naturally selected to start with this given amplitude ratio

(20).

The general solution (39)-(40) with the constraint (20) will

reduce to

A(t) = A0
(σ1 +2π2)eσ2t −σ2eσ1t

σ1 −σ2
, (50)

B(t) = A0
(σ1 +2π2)σ2eσ2t − (σ2 +2π2)σ1eσ1t

σ1 −σ2
. (51)

After an initial stage where the decay rate σ2 plays a role, the

later process is totally dominated by the exponential growth

rate σ1, where the evolution of the amplitudes have the ap-

proximate evolution

A(t) =−A0σ2
eσ1t

σ1 −σ2
, (52)

B(t) =−A0σ1
(σ2 +2π2)eσ1t

σ1 −σ2
, (53)

whereby the ratio B(t)/A(t) again approaches a constant value

for large values of t

B(t)
A(t)

→ σ1

(

1− 2π2

|σ2|

)

, (54)

where the absolute value sign serves as a reminder that σ2 is

negative. However, this asymptotic version of the linearized

growth process is not representative once the nonlinear terms

gain importance. We include it to demonstrate that the ra-

tio B(t)/A(t) evolves away from its initial value B0/A0. The

role of the Prandtl number indicates why the initial value of

the ratio (20) is efficiently wiped out and does not reappear in

the later transient process, according to linear theory. While

the marginal state is independent of the Prandtl number, any

unstable supercritical state depends on the Prandtl number

through the growth rate σ1.

G. On slowly initiated transient nonlinear convection

We have now investigated the linearized first stage of a

gradual route to transient nonlinear convection. This gives a

natural approach to supercritical convection, which can be fol-

lowed up experimentally by heating a fluid layer slowly from

below. With a controlled experiment allowing only small dis-

turbances, the heating of the fluid layer can be stopped at a

finite supercritical Rayleigh number before the unstable flow

has reached an amplitude where nonlinear effects become im-

portant. The preferred modes of disturbance for the tempera-

ture and vertical velocity can then gradually grow into finite

amplitude thermomechanical flow, as prescribed in the above

analytical theory as far as the early linearized stage is con-

cerned. However, the set of preferred modes at marginal sta-

bility do not have independent initial amplitudes, as they may

emerge only with a fixed amplitude ratio.

The relative magnitude of a pair of small-amplitude modes

will usually change during their initial stage of exponential

growth before nonlinearity becomes important. It is therefore

of limited interest to select two independent small initial am-

plitudes for a supercritical flow.

In the next section, we will pursue analytically a physically

richer and complementary route of kick-starting the nonlinear

transient flow. Here we initiate the flow at t = 0 with two in-

dependent normal modes for the temperature perturbation and

the flow field. The respective initial amplitudes A0 and B0 for

temperature and flow will be chosen to be large, in contrast to

the small initial amplitudes we have been considering in the

linearized theory. These large-amplitude modes will imme-

diately perform strong nonlinear interactions, evolving with

time.

The disadvantage with kick-starting the nonlinear process

is that it is difficult to represent experimentally. The obvious

advantage of kick-starting nonlinearity is that it can be mod-

eled analytically and used for benchmarking our numerical

methods and tools.

IV. ON KICK-STARTED TRANSIENT NONLINEAR
CONVECTION

We will now investigate the initial value problem with large

initial amplitude. As a general initial condition, we take the

combination of one single normal mode for the temperature
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perturbation and one single normal mode for the vertical ve-

locity. Albeit only initially, these modes will have indepen-

dent finite amplitudes, thereby kick-starting the strongly cou-

pled nonlinear process already at small dimensionless times.

A. An asymptotic small-time expansion

As initial condition we take the pair of normal modes

θ(x,y,0) = Acos(πx)sin(πy), v(x,y,0) = Bcos(πx)sin(πy),
(55)

representing the preferred onset modes at marginal stability,

but the Rayleigh number R is now assumed to have a supercrit-

ical value R > Rc = 8π4 for the square geometry. A kick-start

of nonlinear convection with amplitudes A and B requires that

A ≫ A0 or B ≫ B0. Here A0 and B0 are the legal amplitudes

(36) according to linearized theory.

The reason that we choose the initial distribution of the ver-

tical velocity as the flow variable associated with an initial

amplitude B, is that it has the same mathematical form as the

temperature perturbation, which takes care of the other ini-

tial amplitude A. These interesting parallels in flow and tem-

perature initiations would be lost if we had chosen the ini-

tial amplitude of the streamfunction (or the vorticity) as the

second independent initial condition. In the linear theory of

marginal stability, we already found that the velocity ampli-

tude B is much greater than the temperature amplitude, see

eq. (20). This amplitude difference in favor of the flow will

prevail in nonlinear theory, and the underlying reason is that

the standard dimensionless equations (2) - (3) does not scale

the velocity with respect to buoyancy, which would be a cor-

rect physical scaling. The temperature is scaled correctly, but

the lack of dimensionless parameters in the heat equation (3)

scales the velocity with the thermal variables alone. Mathe-

matically, this standard description is formally correct. How-

ever, the physical comparison of flow amplitude and thermal

amplitude is blurred when a balanced physical scaling is lack-

ing.

The early evolution of a kick-started initial state can be ex-

pressed by the small-time expansion

ψ(x,y, t) = ψ0(x,y)+ tψ1(x,y))+ t2ψ2(x,y)+ .., (56)

ω(x,y, t) = ω0(x,y)+ tω1(x,y)+ t2ω2(x,y)+ .., (57)

θ(x,y, t) = θ0(x,y)+ tθ1(x.y)+ t2θ2(x,y)+ ... (58)

We recall that at each order n we have the identity ωn =
−∇2ψn. Inserting these series into the nonlinear equations

(8) and (9) and take the limit t → 0 gives the equations for the

first-order vorticity

ω1 =−∂ψ0

∂y
∂ω0

∂x
+

∂ψ0

∂x
∂ω0

∂y
+PrR

∂θ0

∂x
+Pr∇2ω0, (59)

and the first-order temperature

θ1 =−∂ψ0

∂x
− ∂ψ0

∂y
∂θ0

∂x
+

∂ψ0

∂x
∂θ0

∂y
+∇2θ0. (60)

The second-order vorticity ω2 and the second-order tem-

perature θ2 are found in a similar way. We first differentiate

the full nonlinear equations in time, leading to the equations

2ω2 =− ∂ψ1

∂y
∂ω0

∂x
− ∂ψ0

∂y
∂ω1

∂x
+

∂ψ1

∂x
∂ω0

∂y
+

∂ψ0

∂x
∂ω1

∂y

+PrR
∂θ1

∂x
+Pr∇2ω1, (61)

2θ2 =− ∂ψ1

∂x
− ∂ψ1

∂y
∂θ0

∂x
− ∂ψ0

∂y
∂θ1

∂x
+

∂ψ1

∂x
∂θ0

∂y
+

∂ψ0

∂x
∂θ1

∂y

+∇2θ1. (62)

Below we will also include nonlinear elements of the third

and fourth-order solutions, which are terms with amplitudes

AmBn where the sum m+n ≥ 2. Terms with amplitudes A1B0

and A0B1 are not in themselves interesting for describing the

kick-start since they are already included in the general linear

theory given above. Yet, we need to include all these terms of

first power in the amplitude to the first two orders in time in

order to include all higher-order nonlinear terms.

B. Solutions to zeroth and first order for the kick-start

We have chosen the zeroth-order solution (55) for the kick-

start, to be reformulated as

θ0 = Acos(πx)sin(πy), ψ0 =−B
π

sin(πx)sin(πy),

ω0 =−2πBsin(πx)sin(πy). (63)

It is now used to calculate the exact first-order solution, which

is found to be

θ1 = (B−2π2A)cos(πx)sin(πy)− π

2
ABsin(2πy), (64)

ψ1 = Pr

(

2πB− R
2π

A

)

sin(πx)sin(πy), (65)

ω1 = πPr
(

4π2B−RA
)

sin(πx)sin(πy). (66)

The first term in the formula (64) for θ1 is given by linear

theory. We note the sign of its amplitude (B− 2π2A), as it

is known from eq. (20) to be zero at marginal stability. This

initial temperature mode cos(πx)sin(πy) will therefore start

increasing for small times when B > 2π2A, while it starts de-

creasing when B < 2π2A. Below we will study how different

choices of A and B provide a variation in the behavior during

the early stages of supercritical convection.

The only nonlinear term (with the amplitude product AB)

is the second harmonic vertical temperature field independent

of x, accounting for the early convective heat transfer. Its am-

plitude is proportional to the products of the initial flow am-

plitude and the initial temperature amplitude. This shows that
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9

even if these amplitudes are independent in the nonlinear ini-

tial value problem, both of them need to be given finite values

for the process to become nonlinear during a dimensionless

time unit.

The thermal field sin(2πy) with the quadratic amplitude AB
could have been included already in the zeroth-order solution

for the kick-start. It is a member n = 2 of the family of ther-

mal eigenfunctions (42), which will always decay and do not

affect the linearized stability criterion. In the kick-start ap-

proach to nonlinear convection, they may, in principle, be-

come important. These zero wave number thermal modes are

neglected, in order to maintain the strict single mode initia-

tion of the present model. If such solutions had been added,

they would have enhanced the vortex interactions by allowing

them to emerge at lower orders in the small-time expansion.

Moreover, the odd numbers n for the thermal modes sin(nπy)
would abolish the present strict symmetry/antisymmetry re-

strictions, which we elaborate on in Appendix A.

C. The full second-order solution for the kick-start

The second-order temperature field is composed of three

Fourier components

θ2 = a11 cos(πx)sin(πy)+a13 cos(πx)sin(3πy)+a02 sin(2πy).
(67)

Each of the three coefficients contains nonlinear terms in the

initial amplitudes A and B.

a11 =

(

2π4 +
PrR

4

)

A−π2(1+Pr)B− π2

4
AB2, (68)

a13 =
π2

4
AB2, (69)

a02 =−π

8
PrRA2 − π

4
B2 +

π3

2
(3+Pr)AB. (70)

The second-order solution for the vorticity still contains only

linearized terms

ω2 = πPr

(

π2R(1+Pr)A− R
2

B−4π4PrB

)

sin(πx)sin(πy),

(71)

with the underlying streamfunction

ψ2 =
Pr
2π

(

π2R(1+Pr)A− R
2

B−4π4PrB

)

sin(πx)sin(πy).

(72)

D. Nonlinear flow effects in the third-order solution

We will now only include nonlinear velocity contributions

in the third-order solution. Already the second-order tempera-

ture includes the triple amplitude products AB2, in contrast to

the lacking nonlinear terms for the flow. It is important to see

how nonlinearity for the flow is triggered when there is only

one mode of instability represented in the early nonlinear flow.

The third-order vorticity contains one notable term originat-

ing from the buoyancy term, which we introduce by writing

the second derivative of the vorticity equation as

∂ 3ω

∂ t3
= PrR

∂ 3θ

∂x∂ 2t
+O(A1,B1), (73)

where we insert the small-time expansion to get the third-

order vorticity

ω3 =
1

3
PrR

∂θ2

∂x
+O(A1,B1). (74)

Even though this third-order buoyancy term is a formally lin-

ear term in the vorticity equation, its origin is from the lower-

order (second) nonlinear convection term contributing to the

second-order temperature, which we see by inserting from eq.

(67), giving

ω3 = PrR
π3

12
AB2 sin(πx)(sin(πy)− sin(3πy))+O(A1,B1),

(75)

with the underlying streamfunction

ψ3 =PrR
π

24
AB2 sin(πx)

(

sin(πy)− 1

5
sin(3πy)

)

+O(A1,B1).

(76)

Here the first higher Fourier mode sin(3πy) emerges for the

flow, to third order in time. Its amplitude is proportional to

A1, the first power of the initial temperature amplitude. and

to the second order of the initial flow amplitude. Still there

are no vortex interactions, since this nonlinear effect was im-

ported to the vorticity equation through the linear buoyancy

term. We must go to fourth order in time in order to find the

first nonlinear vortex interaction.

We note the role of the Prandtl number for this third-order

nonlinear flow effects. A low Prandtl number does not stimu-

late but rather impede the slowly emerging nonlinearity. This

is because there are no vortex interactions early stages of evo-

lution from a single-mode initial thermomechanical state. The

unit Prandtl number will be chosen in our simulations below,

since Pr = 1 represents a compromise in overcoming obsta-

cles for the initiating vortex interactions as well as obstacles

for their escalations after they have been started.

E. Nonlinear vortex interactions in the fourth-order solution

It is only the Fourier term sin(πx)sin(3πy) in the third-

order flow that contributes to the vorticity generation to fourth

order, which is actually the leading-order vorticity interaction

according to the small-time expansion. From an analytical

point of view, it is an open question whether this fourth-order

interaction will be significant at all. This is because the small-

time expansion is an asymptotic series that breaks down quite

suddenly when four terms are included, and there is at best

a very short time interval available for fourth-order effects to
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FIG. 2. The evolution of the leading Fourier amplitude for the

streamfunction, with two examples of kick-start for a moderately

supercritical Rayleigh number. Both the flow and the temperature

start with nonzero amplitudes. The solid curves show numerical

simulations for the evolution of ψ(0.5,0.5, t) with R = 4Rc = 32π4

and Pr = 1.

Lower curve: θ(x,y,0) = cos(πx)sin(πy, ψ(x,y,0) =
−8sin(πx)sin(πy), ω(x,y,0) = 16π2 sin(πx)sin(πy).
Upper curve: θ(x,y,0) = cos(πx)sin(πy, ψ(x,y,0) =
8sin(πx)sin(πy), ω(x,y,0) = 16π2 sin(πx)sin(πy).
Two dotted graphs are added, representing the approximate evolution

according to our Lorenz-type set of equations (82) - (86).

have influence before the series diverges and no longer repre-

sents the finite-amplitude interactions.

The fourth-order vorticity is derived from the third deriva-

tive of the vorticity equation, and can be expressed as

4ω4 =−∂ψ3

∂y
∂ω0

∂x
− ∂ψ0

∂y
∂ω3

∂x
+

∂ψ3

∂x
∂ω0

∂y
+

∂ψ0

∂x
∂ω3

∂y
+O(B2)

(77)

where we omit terms that do not represent vortex interactions.

Formally this is done by excluding terms that do not contain

the third power of the initial flow amplitude B. The formula

for the fourth-order vorticity is

ω4 =
π4

120
AB3PrRsin(2πx)(sin(4πy)−2sin(2πy))+O(B2).

(78)

The corresponding streamfunction is

ψ4 =
π2

4800
AB3PrRsin(2πx)(2sin(4πy)−5sin(2πy))+O(B2).

(79)

This fourth-order flow has a fourth-power dependency of

the two initial amplitudes A and B. It is more strongly depen-

dent on the flow amplitude (by the third-power term B3) than

the temperature amplitude (by the term A1). Yet we see that

both initial amplitudes A and B need to be nonzero in order to

obtain vortex interactions.

The role of the Prandtl number is the same in this selected

fourth-order vortex interaction term as we saw in the third-

order terms (75) that we commented above. We note the sec-

ond harmonic term sin(2πx) emerging from these leading-

order vortex interactions in the horizontal direction. It con-

trasts all lower order solutions for the flow, which contain only

the basic term sin(πx) introduced in the initial condition.

V. A LORENZ-TYPE SET OF COUPLED EQUATIONS

The small-time expansion is consistent for the early stages

of kick-started nonlinear convection, but its small radius

of convergence does not represent any oscillatory behav-

ior. In order to capture analytically the full nonlinear time-

dependence, we need to compromise somewhat on the exact-

ness. The richest analytical model that we find feasible is a

truncated set of five Fourier components

θ(x,y, t) = T0(t)sin(2πy)

+T1(t)cos(πx)sin(πy)+T2(t)cos(πx)sin(3πy),
(80)

ψ(x,y, t) = X1(t)sin(πx)sin(πy)+X2(t)sin(πx)sin(3πy).
(81)

This truncation is motivated from the small-time expansion,

and is based on the assumption that nonlinear vortex interac-

tions can be neglected. This means that buoyancy must have

an early domination over inertial forces, otherwise a reversal

of rotation cannot take place during the transient motion. In

the manner of the Lorenz equations24, we will therefore de-

rive five coupled equations for the time derivatives of the five

amplitudes derived above.

The inserting of truncated solutions into the nonlinear equa-

tions is perform in a manner where we neglect the interaction

terms that do not belong to these five Fourier terms. There

are no self-interactions from the two normal-mode vortices.

There are only linearized terms contributing to the vorticity

equation (8), with two evolution equations emerging

dX1

dt
=−2π2PrX1 −

Pr
2π

RT1, (82)

dX2

dt
=−10π2PrX2 −

Pr
10π

RT2. (83)

The three evolution equations resulting from inserting the

truncated solutions into the heat equation (9) are all nonlin-

ear, and are listed here

dT0

dt
=−4π2T0 +

π2

2
X1T1 −

π2

2
X2T1 −

π2

2
X1T2, (84)

dT1

dt
=−2π2T1 −πX1 −π2X1T0 +π2X2T0, (85)

dT2

dt
=−10π2T2 −πX2 +π2X1T0. (86)

The lowest thermal Fourier mode excluded from these

equations due to truncation is cos(2πx)sin(2πy). The

lowest excluded Fourier mode for the streamfunction is
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sin(2πx)sin(2πy). The same terms are the first ones to emerge

in the small-time expansion without being included in our

Lorenz-type equations.

This Lorenz-type set of equations is of fifth order in time,

and has in total six quadratic coupling terms, in addition to its

nine linear terms. It is natural to compare it with the original

Lorenz set of equations24. The Lorenz set is of third order in

time, and has only two quadratic coupling terms in addition to

its five linear terms. We will not attempt a thorough discussion

of our Lorenz-type system, but use it for one specific purpose.

Our aim is to describe flow reversals that we will encounter

in our numerical simulations of the full nonlinear system. For

maintaining consistency with our general model, three out of

the five initial values must be put equal to zero, for the Fourier

components that do not belong to the preferred onset modes.

For our Lorenz-type system (82) - (86) we must then put

T0(0) = T2(0) = X2(0) = 0. (87)

Only the two initial amplitudes T1(0) and X1(0) remain to

be chosen, as the appropriate independent parameters for our

second-order initial value problem.

Figure 2 above shows computations for the Lorenz-type of

five coupled equations (dotted graphs) together with numeri-

cal simulations of the full nonlinear initial value problem, for

a Rayleigh number that is four times the critical value for the

square. Only the leading streamfunction amplitude X1(t) is

plotted, since it represents the magnitude and direction of the

dominating spin inside the square. The compromised conver-

gence of the truncated Lorenz-type set is exposed, since the

solution starts to diverge after the first extremal value for the

streamfunction amplitude.

The lower set of curves represents the case where the initial

spin and the initial buoyancy torque has the same directions.

In this case the spin will naturally maintain its initial direction.

The upper set of curves represents the case where the initial

spin and the initial buoyancy torque are given opposite direc-

tions. This conflict will lead to one reversal of flow direction,

where the initial buoyancy is able to overrule the initial spin

and switch its direction. The case displayed in Figure 2 has

only one flow reversal. We realized that the truncated Lorenz-

type of equations do not have sufficient accuracy for capturing

the set of several spin reversals that may occur at higher super-

critical Rayleigh numbers. The Lorenz-type set of equation

gives satisfactory convergence until the single reversal of flow

direction is completed, for moderately supercritical Rayleigh

numbers represented by Figure 2 where R = 4Rc.

VI. NUMERICAL SIMULATIONS WITH KICK-START

After these preliminary computations for testing the accu-

racy of the Lorenz-type set of ordinary differential equations,

we will now present simulations of the full nonlinear problem

for higher Rayleigh numbers.

The small-time expansion that we have carried out has pro-

duced Fourier terms of the type cos(mπx)sin(nπy) for the

temperature and terms of the type sin(mπx)sin(nπy) for the

streamfunction. A striking fact is that the sum m+ n is an

even number for all these terms that we have calculated. In

the Appendix, we show that this constraint is valid for all fi-

nite amplitude solutions, with our choice of initial conditions.

We also show that it gives a temperature field that is antisym-

metric around the mid-point of the square, while the flow field

is symmetric.

Now we will show numerical simulations of the full nonlin-

ear process, where we bear in mind the symmetry constraints

demonstrated in the Appendix. We performed some prelimi-

nary numerical simulations with very small initial amplitudes,

giving early stages of exponential growth. Only Figure 5 will

display such results.

Some examples of kick-started moderately supercritical

convection are shown in Figure 3. It shows the evolution of

the streamfunction in the mid-point of the square (0.5,0.5) for

a Rayleigh number that is twice the critical value 8π4, with

Pr = 1. For this moderately supercritical Rayleigh number,

the flow field has one totally dominating Fourier mode, which

is the initial mode. This means that ψ(0.5,0.5, t) is practically

equal to −B11(t). In Figure 3 we show three different combi-

nations of initial values. The upper curve represents an initial

temperature field with zero initial flow. The middle curve rep-

resents an initial flow field with zero initial temperature per-

turbation. The lower curve takes the previously chosen condi-

tions and combines their nonzero initial values. The evolution

for the third case is not a superposition of the two first cases

because of the nonlinearity of the process. The dashed line is

included as a superposition of the two independently started

nonlinear solutions, just to illustrate how far this nonlinear

process is away from obeying the principle of superposition.

We note that the final steady state is the same for all three

cases of initiation, depending only on the Rayleigh number

and not on the initial amplitudes.

A. Spectral analysis for temperature and flow

For making a detailed comparison of the numerical sim-

ulations with the analytical formulas, we need to develop a

spectral analysis for the numerical results. The total solution

for the temperature perturbation is the double Fourier series

θ(x,y, t) =
∞

∑
m=0

∞

∑
n=1

Amn(t)cos(mπx)sin(nπy), (88)

which is coupled to the Fourier series for the vertical velocity

v(x,y, t) =
∞

∑
m=1

∞

∑
n=1

Bmn(t)cos(mπx)sin(nπy), (89)

These two Fourier series have the same form, with the sin-

gle exception that the temperature perturbation contains terms

independent of x. These terms are important, since they are

responsible for the heat flux through the fluid layer. Above

we have identified these Fourier terms independent of y as

legal eigenfunctions for the linearized stability for θ(x,y, t),
while they are illegal as eigenfunctions for the vertical veloc-

ity v(x,y, t).
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FIG. 3. The evolution of the leading Fourier amplitude for the

streamfunction, with three different types of kick-start for a mod-

erately supercritical Rayleigh number. A purely thermal initiation, a

purely hydrodynamic initation, and the full thermomechanical com-

bination of these two. We show the evolution of ψ(0.5,0.5, t) with

different initial conditions for R = 4Rc = 32π4 and Pr = 1.

Yellow (upper) curve: θ(x,y,0) = cos(πx)sin(πy), ψ(x,y,0) = 0,

ω(x,y,0) = 0.

Red (middle) curve: θ(x,y,0) = 0, ψ(x,y,0) =−8sin(πx)sin(πy),
ω(x,y,0) =−16π2 sin(πx)sin(πy).
Blue (lower) curve: θ(x,y,0) = cos(πx)sin(πy),
ψ(x,y,0) =−8sin(πx)sin(πy), ω(x,y,0) =−16π2 sin(πx)sin(πy).
Additional (dashed) black curve: This is a fictitious solution obtained

by superposing the solutions represented by yellow and blue curves.

From the definition v =−∂ψ/∂x we derive the Fourier se-

ries for the streamfunction

ψ(x,y, t) =
∞

∑
m=1

∞

∑
n=1

Cmn(t)sin(mπx)sin(nπy), (90)

where the new coefficients obey the relationship −mπCmn =
Bmn so they can be replaced by those for the vertical velocity

ψ(x,y, t) =− 1

π

∞

∑
m=1

∞

∑
n=1

Bmn(t)
m

sin(mπx)sin(nπy). (91)

The vorticity field is ω =−∇2ψ

ω(x,y, t) =−π
∞

∑
m=1

∞

∑
n=1

m2 +n2

m
Bmn(t)sin(mπx)sin(nπy).

(92)

The spectral decomposition of the numerical results for the

temperature field is based on the integral

∫ 1

0

∫ 1

0
θ(x,y, t)cos(iπx)sin( jπy)dxdy=

Ai j(t)
4

, when i> 0,

(93)

to be supplemented with the exceptional case i = 0 where this

integral has the value A0 j/2. Hereby the set of Fourier coeffi-

cients can be extracted from the numerical results. A spectral

analysis for the vertical velocity applies the similar formula

Bi j(t)= 4

∫ 1

0

∫ 1

0
v(x,y, t)cos(iπx)sin( jπy)dxdy, when i> 0,

(94)

FIG. 4. The evolution of the streamfunction amplitude in the

mid-point of the square is displayed for initiations similar to Figure

3, with twice as large Rayleigh number. We also show how the full

solution differs from the amplitude evolution of the leading Fourier

mode. The solid curves show the evolution of ψ(0.5,0.5, t) with

different initial conditions for R = 8Rc = 64π4 and Pr = 1. Dotted

lines are added, representing the spectral component −B11(t)/π .

The different graphs can be identified by their initial amplitudes.

Yellow curves (intermediate) show purely thermal initiation:

θ(x,y,0) = 5cos(πx)sin(πy), ψ(x,y,0) = 0, ω(x,y,0) = 0.

Blue (lower) curves show purely : θ(x,y,0) =
5cos(πx)sin(πy), ψ(x,y,0) = −40sin(πx)sin(πy), ω(x,y,0) =
−80π2 sin(πx)sin(πy).
Green (upper) curves: θ(x,y,0) = 5cos(πx)sin(πy),
ψ(x,y,0) = 40sin(πx)sin(πy), ω(x,y,0) = 80π2 sin(πx)sin(πy).
Red curves (with greatest variations): θ(x,y,0)= 10cos(πx)sin(πy),
ψ(x,y,0) = 40sin(πx)sin(πy), ω(x,y,0) = 80π2 sin(πx)sin(πy).

with the difference that there are no terms with i= 0. Since we

work with the streamfunction ψ , we can alternatively write

Ci j(t) = 4

∫ 1

0

∫ 1

0
ψ(x,y, t)sin(iπx)sin( jπy)dxdy, (95)

where the Fourier coefficients Ci j for the streamfunction are

given by v =−∂ψ/∂x. These coefficients are linked to those

for the vertical velocity as follows: Bi j =−iπCi j, where i and

j are positive integers.

1. Numerical results for spectral components

Figure 4 is analogous to Figure 3 , with similar initial con-

ditions for twice as high Rayleigh number R = 64π4. The

solid lines represent the evolution of the streamfunction eval-

uated in the mid-point, adding a dotted line representing the

amplitude of the leading mode. These two curves would be

identical if the onset mode of motion was alone, so the devia-

tion represent the importance of higher Fourier modes for the

motion. The next figures will therefore represent the evolution

of single Fourier modes.

Figure 5 represents the slow start of convection which was

described above by linear theory. This figure shows the ra-
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0.1

-0.035

-0.04

-0.045

-0.05

Ra
tio

-0.055-0.055

-0.06

-0.065

-0.07

-0.075

-0.08
0.2 0.3 0.4 0.50

FIG. 5. This figure shows how nonlinearity changes the purely expo-

nential growth of very small initial amplitudes, for the hand-picked

case where the initial amplitude ratio B0/A0 is fixed according to eq.

(47) The plots show the evolution of the ratio of A11(t)/C11(t) for

R = 32π4 and Pr = 1, utilizing the spectral analysis.

Blue curve: θ(x,y,0) = 0.01cos(πx)sin(πy),
ψ(x,y,0) =−0.01×4π sin(πx)sin(πy),
ω(x,y,0) =−0.01×8π3 sin(πx)sin(πy).
Red curve: θ(x,y,0) = 0.001cos(πx)sin(πy),
ψ(x,y,0) =−0.001×4π sin(πx)sin(πy),
ω(x,y,0) =−0.001×8π3 sin(πx)sin(πy).

tio A11(t)/C11(t) between the thermal mode and streamfunc-

tion mode, as they start from very small amplitudes. The ini-

tial amplitude ratio is chosen carefully according to eq. (47),

which specifies the case where the preferred thermal mode

and the associated flow mode will grow with identical growth

rates according to linear theory of instability. Thereby Fig-

ure 5 reveals how linear theory breaks down, which happens

when this ratio is no longer constant. Two cases of slow start

are shown, where the slowest case has amplitudes a factor 10

lower than the other less slow case.

Figures 6 and 7 show the evolution of a variety of spectral

components for the streamfunction, giving a qualitative con-

firmation of our small-time expansion for the kick-started su-

percritical convection. The Prandtl number Pr = 1 is chosen

since the above theory suggests that it is optimal for trigger-

ing higher Fourier modes of motion from a single-mode initial

state.

We display the spectral components Ci j for the stream-

function (or equivalently those for the vertical velocity Bi j =
−iπCi j). C11 is the unstable mode included in the initial con-

dition. From the above theory, we recall that the Fourier mode

C13 emerged in the third-order solution of the small-time ex-

pansion for the kick-start. The fourth-order solution made two

new Fourier modes C22 and C24 appear. Figures 6 and 7 show

the evolution of all Fourier modes with non-negligible ampli-

tudes that are three times or less superharmonics of the leading

mode in each direction. The only significant mode which was

not detected by our small-time expansion to order t4 is C33,

C /1011

C22C

C13C24

C33

FIG. 6. Evolution of individual Fourier components Ci j for the

streamfunction ψ(x,y, t) referring to eq. (95) for R = 8Rc = 64π4

and Pr = 1. The red dotted line are added representing the funda-

mental component C11(t) scaled by dividing it by 10. Initial con-

ditions are as follows: θ(x,y,0) = 10cos(πx)sin(πy), ψ(x,y,0) =
40π sin(πx)sin(πy), ω(x,y,0) = 80π3 sin(πx)sin(πy).

C /1011

C22

C13

C24

C33

FIG. 7. Evolution of individual Fourier components Ci j for the

streamfunction ψ(x,y, t) referring to eq. (95) for R = 16Rc = 128π4

and Pr = 1. The red dotted line are added representing the funda-

mental component C11(t) scaled by dividing it by 10. Initial con-

ditions are as follows: θ(x,y,0) = 10cos(πx)sin(πy), ψ(x,y,0) =
40π sin(πx)sin(πy), ω(x,y,0) = 80π3 sin(πx)sin(πy).

but we note that it starts very slowly, which it should.

The numerical experiments of kick-starting the convection

were carried out in accordance with our analytical findings,

where the intention was to trigger higher modes that could

interact with one another as a route to chaos. The initial flow

and initial temperature were chosen with contrasting values,

far from their joint steady state. Yet, the results show that

there is only a short transient stage of escalating complexity

before the process is reversed so that steady convection can be

established.

Figure 8 illustrates how our designed initial conditions can

develop early spiral patterns in the vertical plane for two-

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
6
7
5
4
6



14

dimensional convection. This is a visualization of the pro-

cess represented by its spectral components in Figure 7. It is

the kick-start with opposite directions of initial spin and ini-

tial buoyancy torque that results in the most complex transient

temperature field. The process shown in Figure 8 goes through

two flow reversals, which means that the final steady state re-

gains the initial direction of the net spin in the square cavity.

Kick-starting the supercritical convection leads to flow rever-

sals at Rayleigh numbers much lower than those reported for

similar phenomena (see Podvin and Sergent25).

Figure 8 starts with an early stage where the initial counter-

clockwise spin is rapidly being reversed. The next stage is

a gradual development of fine structured isotherms with in-

creasing clockwise spin until diffusion begins wiping out the

spiral patterns while the clockwise spin falls to zero. After

that, a final steady state with slow counter-clockwise spin es-

tablishes. There is no periodicity, shown by the irregular tran-

sient behavior of the higher Fourier modes for the streamfunc-

tion displayed in Figure 7.

The streamline pattern does not change significantly while

the isotherms exhibit transient spirals during flow rever-

sal. Spiraling convection patterns in the horizontal plane are

mentioned in the literature26, while transient spirals in spa-

tially diffusing and mutually reacting chemical substances are

known from the Belousov-Zhabotinsky reaction2.

VII. ON INTEGRATED PHYSICAL QUANTITIES

Improved physical understanding may be gained from

studying the evolution of certain macroscopic parameters.

The analytical theory has limited possibilities other than iden-

tifying some early trends. We will now consider physical

quantities involving vorticity and heat transport.

A. Generation and decay of integrated vorticity

Vorticity is not conserved in this transient thermomechani-

cal process. In linear theory, we have seen how vorticity can

be initiated from a motionless state of the purely thermal ini-

tial field when the Rayleigh number is supercritical. We have

also seen how an initial vorticity field can initiate a thermal

perturbation from an initially isothermal state. We have in-

vestigated the sensitivity of the early nonlinear process with

respect to different combinations of initial conditions.

Let us derive a basic theorem for the integrated vorticity.

The nonlinear vorticity equation (8) is first rewritten as

∂ω

∂ t
=−∇ · (ω~v)+PrR

∂θ

∂x
+Pr∇2ω, (96)

taking the Boussinesq approximation of incompressible flow

into account. We integrate this equation over the square area

and apply Green’s theorem

d
dt

∫ 1

0

∫ 1

0
ωdxdy = Pr

∫

Γ
(Rθ~i+∇ω) ·d~L (97)

This area integral of the vorticity may be called the net spin. Γ

denotes the contour for counterclockwise line integral around

the square, where d~L is the curve element. The contribution

from the convected vorticity is absent in eq. (97) because ~v ·
d~L = 0 along the impermeable contour of the cavity. This

integral is developed to the following theorem for evolution

of net spin in the square cavity

d
dt

∫ 1

0

∫ 1

0
ω(x,y, t)dxdy

= PrR
∫ 1

0
(θ(1,y, t)−θ(0,y, t))dy+Pr

∫

Γ
∇ω(x,y, t) ·d~L.

(98)

Here we see that the only mechanism that can increase the

net spin is the buoyancy torque along the vertical sidewalls,

expressed by the temperature perturbations there. This mech-

anism is strong for Prandtl numbers greater than one, whereby

buoyancy will suppress a fragmentation of the leading modes

by transient nonlinear vortex interactions. Even for mercury

with Pr = 0.025, the factor PrR will be quite large, around

20 for slightly supercritical convection. This means that

buoyancy will always be important. A supercritical thermo-

mechanical flow will never become completely dominated by

vortex interactions, as the vortices will remain in nonlinear

feedback with their temperature perturbations.

The last integral in eq. (98) will always reduce the net spin.

This integral along the entire contour Γ represents the viscous

dissipation prescribed by the Navier-Stokes equation.

The kinetic energy is not conserved in the transient flow.

It is likely that the kinetic energy will increase exponentially

as long as the preferred mode is essentially the only Fourier

component of motion. Once there is one more Fourier mode

present, we expect it to steal some of the net spin of the lead-

ing mode.

The sign of the first higher Fourier mode of motion

sin(πx)sin(3πy) gives an immediate qualitative check of

these arguments. The net spin of this mode may be consid-

ered as concentrated in the subdomain 0< x< 1, 0< y< 1/3,

since the remaining domain 0 < x < 1, 1/3 < y < 1 has zero

net spin as a full spatial period in the vertical direction. The

solution (74) reveals that the Fourier contribution to ω3 of the

type sin(πx)sin(3πy) has a negative sign, confirming that it

reduces the net spin. It has to behave in this manner in or-

der to avoid a rapid rise in kinetic energy when there is no

additional energy source available.

Figure 9 shows how the integrated vorticity varies with time

for kick-started convection. Two cases with the standard value

Pr = 1 are represented, but two additional plots complement

them with the same initial conditions and a lower Prandtl num-

ber Pr = 0.2. Thereby we illustrate that an efficient trigger-

ing of early flow reversals needs a Prandtl number of order

one, where buoyancy torque and initial spin are comparable

and can be in mutual conflict. A small Prandtl number pro-

vides the initial unicellular flow with an angular momentum

not overcome by buoyancy forces, because heat diffusion is

too strong.
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FIG. 8. Evolution of the temperature perturbation θ(x,y, t) for R = 16Rc = 128π4 and Pr = 1 with constant time steps, t = 0, 0.0025, 0.005,

0.0075, 0.01, 0.0125, 0.015, 0.0175, 0.02, 0.0225, 0.025, 0.0275, 0.03, 0.0325, 0.035, respectively, and then finally, 0.3 (stationary value).

Initial conditions are as follows: θ(x,y,0) = 10cos(πx)sin(πy), ψ(x,y,0) = 40π sin(πx)sin(πy), ω(x,y,0) = 80π3 sin(πx)sin(πy). The

same-sign initial amplitudes for kick-started streamfunction and temperature cause an apparent early evolution of complexity. Our designed

conflicting directions for the buoyancy torque versus initial spin will develop fine structures in temperature combined with a couple of non-

periodic flow reversals. Strict constraints of symmetry prevent chaos from evolving, where temporarily emerging fine structures are reversed

by dissipation so that a final steady state is settled.

B. On the heat transport

With the chosen boundary conditions, the entire heat trans-

port between the square cavity and its surroundings takes

place through the lower and upper boundaries y = 0 and y = 1

(in the dimensionless description). The heat transfer is repre-

sented by Nusselt numbers Nu0(t) and Nu1(t) for the lower
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FIG. 9. Evolution of the integrated vorticity over the square

(
∫ 1

0

∫ 1
0 ω(x,y, t)dxdy, referring to eq. (98)), given for different R

and Pr. We show four combinations, which also illustrate the ef-

fects of smaller Prandtl number: R = 64π4 or R = 128π4 com-

bined with Pr = 1 or Pr = 0.2. The same initial conditions are cho-

sen for all cases, given as follows: θ(x,y,0) = 10cos(πx)sin(πy),
ψ(x,y,0) = 40π sin(πx)sin(πy), ω(x,y,0) = 80π3 sin(πx)sin(πy).

and upper plane, respectively. The definitions are

Nu0(t) = 1−
∫ 1

0

∂θ

∂y

∣

∣

∣

∣

y=0

dx, (99)

Nu1(t) = 1−
∫ 1

0

∂θ

∂y

∣

∣

∣

∣

y=1

dx. (100)

These Nusselt numbers represent the total heat transport di-

vided with the transport due to thermal conduction alone.

Figure 10 shows the evolution of the Nusselt number for

some previous cases of computations with Pr = 1. We add

two cases where Pr = 0.2. We have calculated the two ver-

sions of the Nusselt number separately, but they are always

identical, which is a result of the flow symmetry, which we

investigate in the Appendix. This flow symmetry is a basic

constraint preventing that chaos is able to evolve. We note

the huge amplitudes in the transient heat transfer. In all the

displayed cases, the early heat flux will even go downward,

with negative Nusselt number. We recall that pure conduc-

tion has unit Nusselt number. It is the designed early spin

in the opposite direction of the buoyancy torque which forces

the Nusselt number to be temporarily negative until buoyancy

overcomes this kick-start and establishes a final steady state.

FIG. 10. Evolution of the heat transfer through the boundaries. This

is represented by the Nusselt numbers Nu0(t) and Nu1(t), referring

to eqs. (99) and (100) with different choices for R and Pr. The initial

conditions are the same for all cases, chosen as follows: θ(x,y,0) =
10cos(πx)sin(πy), ψ(x,y,0) = 40π sin(πx)sin(πy), ω(x,y,0) =
80π3 sin(πx)sin(πy).

Figure 10 shows that very large positive Nusselt numbers may

occur during the transient prosess before the steady state set-

tles. These dramatic nonlinear effects in the early heat trans-

port take place at moderate Rayleigh numbers. Similar phe-

nomena are mostly known from turbulent convection at much

higher Rayleigh numbers27.

Figure 10 shows the same initial values for the four different

choices of Rayleigh numbers and Prandtl numbers. In Figure

11, we fix these key parameters at R = 8Rc and Pr = 1 for

studying how different choices of initial amplitudes affect the

two leading spectral components for the temperature. These

are A11, which is the only one with a nonzero initial value,

and A02, which is the leading Fourier term that takes care of

the heat flux through the boundaries.

VIII. SUMMARY AND CONCLUSIONS

The present model picks the preferred modes of linear sta-

bility to compose the initial state of supercritical Rayleigh-

Bénard convection to evolve with full nonlinearity. We put

aside all stability considerations for the nonlinear convection

to focus entirely on the evolution from a given initial state.

Sensitivity with respect to the initial conditions may serve as

a substitute for stability. In our problem, we have two inde-

pendent initial values, allowing variety as well as complexity

in the early transient evolution. Our computations show that

the final state is always steady and independent of the initial

values, but this result is linked to our choice of a square cavity.

We have found that strict symmetry constraints set by the
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A11

A02

FIG. 11. Evolution of two thermal Fourier components with differ-

ent intial conditions for R = 64π4 and Pr = 1. The upper subfigure

represents A11(t), while the lower subfigure represents A02(t).
Yellow curve: θ(x,y,0) = 5cos(πx)sin(πy),
ψ(x,y,0) = 0,

ω(x,y,0) = 0.

Blue curve: θ(x,y,0) = 5cos(πx)sin(πy),
ψ(x,y,0) =−40sin(πx)sin(πy),
ω(x,y,0) =−80π2 sin(πx)sin(πy).
Green curve: θ(x,y,0) = 5cos(πx)sin(πy),
ψ(x,y,0) = 40sin(πx)sin(πy),
ω(x,y,0) = 80π2 sin(πx)sin(πy).
Red curve: θ(x,y,0) = 10cos(πx)sin(πy),
ψ(x,y,0) = 40sin(πx)sin(πy),
ω(x,y,0) = 80π2 sin(πx)sin(πy).

initial conditions block the process of successive vortex inter-

actions by stopping their fragmentation, while the initial spin

may be reversed a couple of times before the final steady flow

is established. The flow based on initially preferred modes

for a square cavity is always unicellular and shows very lit-

tle variation in its streamline patterns during the non-periodic

variation of the flow amplitude.

Vortex interactions can be triggered from an elementary ini-

tial state of preferred eigenfunctions for the onset problem.

The most efficient procedure is to kick-start the convection

with relatively large initial amplitudes for the flow and for

the temperature perturbation. We are able to design a con-

flict between the initial angular momentum of the unicellular

flow and the initial thermal buoyancy torque from the initial

temperature field. We have not found a simple physical expla-

nation of the couple of flow reversals that may occur before

the time-dependence fades and a steady-state nonlinear con-

vection establishes. The flow is never dominated by inertia,

otherwise the buoyancy torque could not overcome the ini-

tial spin for the first reversal to take place. It is fascinating

that a second flow reversal may occur, with inertia seemingly

striking back to restore the initial direction of rotation. This

phenomenon is related to the emergence and later decay of

spiralling isotherms.

There are severe constraints for the early vortex interac-

tions.

(i) The single-pair of thermomechanical modes for initia-

tion of the supercritical convection gives strict constraints of

symmetry which stops the early triggering of higher Fourier

modes and lets a steady supercritical flow establish. The

present model with single-mode initiation has a strict antisym-

metry for the perturbation temperature, and a strict symmetry

for the instantaneous streamline pattern.

(ii) The triggering of vortex interactions is indirect because

it is not exclusively mechanical. It needs nonlinear heat trans-

port to emerge, with feedback to the vorticity equation through

the buoyancy term.

(iii) The Prandtl number (Pr) cannot be too small for the

buoyancy term to be effectively feeding higher modes of mo-

tion in the vorticity equation. The Prandtl number cannot be

too large to avoid that the diffusion of vorticity stops the tran-

sient vortex interactions. We have given priority to the choice

Pr = 1 for demonstrating the transient phenomena of nonlin-

ear convection since this case represents a balance of inertia

versus buoyancy.

We have derived a theorem for the evolution of integrated

vorticity, from which we conclude that the transient process

becomes dominated by buoyancy at the expense of inertia.

The fact that the sign of the net spin may change at least

two times during the nonlinear transient process shows that

a sufficiently strong buoyancy torque will overcome the ini-

tial spin of the unicellular initial flow. Moreover, it also shows

that the initial spin may be able to strike back to reestablish

its initial direction. A well-known fact from linear theory is

that the eigenfunctions for vertical velocity and temperature

are identical. However, any nonlinear convection with super-

critical Rayleigh numbers will disturb a symmetry between

the vertical velocity and the temperature perturbation. With

nonlinearity, a distinct class of thermal Fourier modes with-

out horizontal dependency emerges. These thermal modes do

not have any counterpart for the vertical flow, forming a gen-

uinely nonlinear asymmetry between temperature and verti-

cal velocity. This asymmetry seems to underpin the aperiodic

thermomechanical bounce back of flow reversals.

Large-scale flow reversals are an important phenomenon

in two-dimensional chaotic convection at very high Rayleigh

numbers28. In these numerical simulations28, a soft start from

initial small-amplitude noise was applied. Our type of rever-

sal can only happen when the convection is kick-started with

large amplitudes where the initial buoyancy torque is oppos-

ing the initial spin. We have not been able to find more than
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two flow reversals in our model of laminar convection at mod-

erate Rayleigh numbers.

The present approach aims at an improved causal under-

standing of convection at small Prandtl numbers and moder-

ately supercritical Rayleigh numbers. The initial state must

be richer than the present one before we can link the present

model to the classical work by Busse29. The present model

does not allow any periodic oscillations to establish.

The present work is a well-ordered minimalist approach to

strongly nonlinear transient convection with small and moder-

ate Prandtl numbers. We have avoided arbitrary noise as a sub-

stitute for causation of flow structures. We found that vortex

interactions could only emerge by being aided by thermal per-

turbations. After that, they did not escalate but were strongly

impeded and faded by diffusion. Follow-up work should fo-

cus on richer initial states, where the strict symmetries that we

have demonstrated numerically (and shown analytically in the

Appendix) are dismantled in a gradual and controlled manner.

The present work aims at a simplistic yet first-principle

approach to the classical Rayleigh-Bénard problem with finite

amplitude. We have provided a link from our model to the

classical Lorenz model, which is discussed in the monograph

by Strogatz30. In comparison, our reduced Lorentz-type

model represents the physical processes of Rayleigh-Bénard

convection more closely than the classical model. Our

reduced model does not give a much-improved understanding

because too great complexities remain in our truncated set

of ordinary differential equations. Only our full model may

serve to exemplify phenomena of continuum physics to be

classified within the general theory of nonlinear dynamical

systems31. A full physical model with partial differential

equations is more specialized and restricted than the theory

of dynamical systems based on coupled sets of difference

equations and ordinary differential equations.

Appendix A: On symmetries posed by the initial conditions

In this appendix we will expose the mathematical symme-

tries in this initial condition, which give constraints for the

further evolution. We postulate that the temperature field dur-

ing its evolution has the form

θ(x,y, t) =
∞

∑
m=1

∞

∑
n=1

Amn(t)cos(mπx)sin(nπy),

where m+n is an even number. (A1)

For this postulate to be valid, it is necessary that it holds at

t = 0. Our choice of initial temperature field is

θ(x,y,0) = A11(0)sin(πx)sin(πy), (A2)

so that m+n = 2, which makes the postulate hold for the ini-

tial state.

Similarly, we postulate that the streamfunction during its

evolution has the form

ψ(x,y, t) =
∞

∑
p=1

∞

∑
q=1

Cpq(t)sin(pπx)sin(qπy),

where p+q is an even number. (A3)

Our choice of initial flow field is

ψ(x,y,0) =C11(0)sin(πx)sin(πy), (A4)

so that p+q= 2, which makes the postulate hold for the initial

state.

In order to verify the combined symmetry postulate for

the temperature and flow fields, these Fourier series solutions

are inserted into the nonlinear equations (8) - (9), to check

whether the formulas for ∂θ/∂ t and ∂ψ/∂ t have the same

form as the form postulated for θ and ψ , respectively. The

linear terms in the governing equations (8) - (9) will automat-

ically satisfy this requirement.

We only need to look at the nonlinear terms to check

whether the postulate holds. The heat equation (9) has the

convective heat transport term ~v ·∇θ which gives rise to the

following combinations of Fourier terms

cos((m± p)πx)sin((n±q)πy). (A5)

We have postulated that

m+n = 2M, p+q = 2N, (A6)

where we introduce the notation 2M and 2N for two even

numbers (where M and N may be arbitary integers).

As far as the heat equation (9) is concerned, the postulate

holds if all four combinations of the sums (m± p)+ (n± q)
are even numbers. Inserting the postulated relationships (A6)

for each of these four combinations leads to the formulas

m− p+n−q = 2(M−N),

m+ p+n−q = 2(M−N + p),

m− p+n+q = 2(M−N +q),

m+ p+n+q = 2(M−N + p+q). (A7)

Since M,N, p and q are integers, the right hand side of each

equation is an even number. Thereby we have confirmed that

∂θ/∂ t has the same form as that postulated by θ(x,y, t) ac-

cording to eq. (A1).

We omit the analogous argument to show that ∂ψ/∂ t has

the same form as that postulated by ψ(x,y, t) according to eq.

(A3).

When we start from the given initial states (A2) and (A4)

and integrate in time these two coupled functions θ(x,y, t)
and ψ(x,y, t), these two functions will by induction keep their

postulated forms (A1) and (A3). These two functions obey

strict but opposite symmetries with respect to the mid-point

(x,y) = (1/2,1/2) of the square cavity.

The above argumentation by induction is not a proof in the

strict mathematical sense since the successive induction ap-

plies infinitesimal time steps, while induction as a mathemati-

cal concept is established for finite steps only. Rigorous proof
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for the combined symmetry/antisymmetry can be developed

by group theory31. Support for the antisymmetry of the su-

percritical temperature field is given by our numerical simula-

tions.

The streamline pattern ψ(x,y, t) is symmetric with respect

to the mid-point at all times

ψ(x,y, t) = ψ(1/2− x,1/2− y, t), t > 0. (A8)

The simultaneous behavior of the temperature perturbation

θ(x,y, t) is that it is anti-symmetric with respect to the mid-

point

θ(x,y, t) =−θ(1/2− x,1/2− y, t), t > 0. (A9)

We have now established the two opposite and mutually de-

pendent symmetries for the flow field and temperature field.

These symmetries arose by being selected for the initial

modes, and they are maintained by being preserved by the

governing equations. The initial fields are equal to the pair

of preferred eigenfunctions for the square cavity. In the gen-

eral nonlinear initial value problem, these initial modes can

be given independent amplitudes, as demonstrated in the main

text.

DATA AVAILABILITY

The data that support the findings of this study are available

from the corresponding author upon reasonable request.
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