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Abstract— A gait model capable of generating human-like
walking behavior at both the kinematic and the muscular level
can be a very useful framework for developing control schemes
for humanoids and wearable robots such as exoskeletons and
prostheses. In this work we demonstrated the feasibility of using
deep reinforcement learning based approach for neuromuscular
gait modelling. A lower limb gait model consists of seven
segments, fourteen degrees of freedom, and twenty two Hill-
type muscles was built to capture human leg dynamics and
the characteristics of muscle properties. We implemented the
proximal policy optimization algorithm to learn the sensory-
motor mappings (control policy) and generate human-like
walking behavior for the model. Human motion capture data,
muscle activation patterns and metabolic cost estimation were
included in the reward function for training. The results show
that the model can closely reproduce the human kinematics
and ground reaction forces during walking. It is capable of
generating human walking behavior in a speed range from
0.6m/s to 1.2m/s. It is also able to withstand unexpected
hip torque perturbations during walking. We further explored
the advantages of using the neuromuscular based model over
the ideal joint torque based model. We observed that the
neuromuscular model is more sample efficient compared to the
torque model.

I. INTRODUCTION

The gait model capable of reproducing human-like loco-
motion can help us further understand the human locomotion
control scheme which can be used for developing bipedal
robots and wearable robots (e.g. exoskeletons, prostheses,
etc.). For instance, with a simple inverted pendulum model,
it has been shown that the human-like bipedal walking gait
can be achieved passively (without active control) because
of the natural dynamics of the human body [1]. It has also
been found that both human walking and running gait can
be described by a simple spring loaded inverted pendu-
lum model [2], [3]. Several legged robots were developed
and successfully demonstrated the control benefits of these
models [1], [4], [5]. Besides, the bio-inspired conceptual
model also shows benefits for the exoskeleton control [6].
However, although these simplified template models can
generate human-like gait (in terms of e.g. the centre of
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mass movement, step length/frequency, etc.), their capability
of reproducing human-like rich locomotion behaviors (e.g.
stair/slope climbing, acceleration/deceleration, etc.) is very
limited.

Recently, Song and Geyer [7] demonstrated that the di-
verse behaviours of human locomotion can be generated with
a complex neuromuscular gait model using a neural circuitry
which emphasizes the muscle reflexes. They also demon-
strated that the model can produce human-like immediate
changes in the muscle activation of some muscle groups [8].
However, the architecture of the neural circuitry used in the
model was hand-crafted. The model performance could be
further improved if we explore the circuitry (connections of
reflex pathways) with a systematic approach. In [9], authors
developed a lower-limb musculoskeletal model based on
contact invariant optimization primarily for animating human
activities driven by lower body.

[10]–[12] presented different approaches to muscle based
locomotion controllers, while [13], [14] presented a similar
approach as our work using deep reinforcement learning by
learning muscle activation pattern and joint torque pattern
respectively. Peng et al. [15], [16] and Merel et al. [10]
showed that deep reinforcement learning (deep-RL) is very
useful approach in developing robust controllers for complex
locomotive systems. They also demonstrated the capability of
deep-RL in learning a broad range of challenging locomotion
skills using kinematic data. Another closely matching work
from Peng et al. [17], demonstrated learning 2D muscle
actuated bipedal locomotion using deep-RL. They identified
that the local feedback provided by high-level action parame-
terizations can significantly impact the learning, robustness,
and motion quality of the resulting policies. Our work is
focused on learning the individual specific walking behaviour
at various walking speeds by directly learning the muscle
activation pattern.

RL had its major successes in the discrete domain prob-
lems such as computer games [18], but human locomotion
needs to be solved as a continuous control problem. RL is of
advantage in solving continuous domain problems ever since
the latest developments in policy gradient based methods
[19]–[22]. Policy gradients were a breakthrough in the con-
tinuous domain, but still limited by many factors such as the
learning rate, sample efficiency etc. Many approaches tried
to eliminate these flaws which resulted in the development
of algorithms such as TRPO [20], ACER [23], PPO [19]
etc. All these methods have their own trade-offs, ACER is
by far more complicated than PPO, requiring the addition of
code for off-policy corrections and a replay buffer with very
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marginal advantage in the results tested on Atari benchmark
by Open-AI [24]. Considering the above mentioned trade-
offs, we decided to use the Proximal Policy Optimization
(PPO) [19] algorithm to address our problem regarding
human locomotion.

The aim of this paper is to investigate the feasibility
of using deep-RL for generating human walking with a
neuromuscular gait model. Here, we present a deep-RL based
approach towards the development of a human gait model
capable of producing individual-specific 3D walking gait at
the kinematic, the kinetic and the muscular levels. Although
the major focus of our work is on developing deep-RL
based human walking gait, we also explore the advantage of
learning a muscle-based control over torque-based control in
terms of sample efficiency.

The approach followed in this paper is, (i) conducting
human experiments to collect the individual kinematic and
kinetic data and providing a dataset for deep-RL, (ii) setting
up a musculoskeletal gait model to perform deep-RL, (iii)
conducting deep-RL to generate human-like kinematics and
to optimize energetics, (iv) testing model against robustness,
and (v) comparing the sample efficiency of muscle-based and
torque-based control.

II. METHODS

A. Human experiments

Human treadmill walking experiments were conducted
with one subject (male, 27 years, height 1.75 m, weight
66 kg) to acquire the data of lower-limb joint kinematics and
ground reaction forces (GRFs) in a walking speed range from
0.6 m/s to 1.2 m/s. The subject provided their informed
consent for the experiment. The study design and protocol
were approved by the ethical committee of TU Darmstadt.
The experimental data was processed to prepare the dataset
for reinforcement learning. In total, the dataset contains 1200
walking steps each sampled at a frequency of 200 Hz . One
step in the dataset contains all the individual lower body joint
kinematics from one foot touch-down to the contra-lateral
foot touch-down.

B. Modelling

The musculoskeletal model used in this study is a lower
limb human model with seven segments and twenty two
muscles. The model was adopted from [7] and implemented
in MuJoCo [25] to achieve high simulation speed. Then the
model was integrated with Open-AI Gym to facilitate easy
implementation of deep-RL. The model is 1.8 m tall, has a
weight of 66 kg and fourteen degrees of freedom (six global
DOFs for the trunk and eight internal joint DOFs). The model
is 5 cm taller than the subject, but we believe the effect
of such a small height difference on the joint kinematics
is negligible. The physical properties, muscle-tendon-units
(MTU) and the muscle properties are similar to the model
from [7] except for the foot. The foot is modelled as a
cuboid (width 10 cm, length 25 cm and height 6 cm) with
four ground contact points. The eleven muscle groups of
each leg are shown in Fig. 1(a). The torque controlled model
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Fig. 1. Schematics of the musculoskeletal model and the torque model. (a)
Lower-limb musculoskeletal model with eleven muscle groups per leg. The
muscle groups are hip abductors (HAB), hip adductors (HAD), hip flexors
(HFL), glutei (GLU), hamstrings (HAM), rectus femoris (REF), vastii
(VAS), biceps femoris short head (BFSH), gastrocnemius (GAS), soleus
(SOL), and tibialis (TIA). The HAM, REF and GAS are biarticular muscles.
The HAB, HAD, HFL, GLU, VAS, BFSH and TIA are monoarticular
muscles. (b) Lower-limb torque controlled bipedal model with 8 torque
actuators. There are 4 joint torque actuators for each leg which are (i)
hip flexion/extension τHF , (ii) hip adduction/abductionτHA, (iii) knee
flexion/extension τK and (iv) ankle dorsiflexion/plantar flexion τA. The
torque values could be both positive and negative.

also posses same weight, segment dimensions and degrees
of freedoms. The model is actuated with eight ideal torque
actuators (four for each leg) as depicted in Fig. 1(b).

C. Deep-RL implementation

In the final implementation with PPO algorithm, separate
network architectures and hyper-parameters are chosen for
both muscle-based and torque-based model as they differ
in the state-action space dimension and characteristics. The
input state space for the torque model contains the joint
positions θ, joint angular velocities θ̇, GRFs grf and target
walking velocity v. The muscle-based model has additional
input state, which are muscle force f , muscle length l,
muscle velocity vm and muscle activations a. The input to
the muscle model is the muscle stimulation u. In the case of
the torque model the inputs are the joint torques τ to the 8
joints.

Both the policy and value function architecture are defined
using neural networks shown in Fig. 2. All the hyperpa-
rameters for the learning process are shown in the Table I.
The algorithm is implemented with 40 threads (workers),
collecting data by acting on the environment and training
the neural network on a single GPU. The pseudo-code of
the implementation is shown in Algorithm 1. The input state
vector and the scalar reward values are normalized using its
running mean. And The standard deviation of the states are
clipped to the range [-10, 10].

In Algorithm 1, θ and φ are the policy and value function
(baseline) parameters. N is the total number of time-steps,
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Fig. 2. The network consists of two fully connected hidden layers of size
512 and 256 respectively. The actor (policy) and the critic have the same
network structure. The activation function for actor and critic networks are
ReLU and tanh respectively for both muscle and torque models. The input
set A is the input for torque model and A,B together is the input for the
muscle model. u and τ denotes the muscle activations and joint torques for
muscle and torque models respectively. V denotes the state value from the
critic

TABLE I
HYPERPARAMETERS USED FOR MUSCLE AND TORQUE MODELS

Hyperparameter Muscle model Torque model

No. of actors N 40 40
Samples per actor/episode n 128 128
No. of minibatches 32 32
No. of epochs 7 7
Clip factor β 0.2 0.2
GAE Parameter λ 0.95 0.95
Discount factor γ 0.99 0.99
Value function coefficient c1 0.5 0.5
Entropy coefficient c2 0 0.005 0 0.005
Learning rate lr 3e-5 1e-7 5e-4 1e-6

I and J are the number of sub-iterations with policy and
baseline (value function here) updates over a batch of data
points. T denotes the number of data points collected per
worker. λ and α are the KL regularization coefficient and
the scaling term, respectively.

D. Muscle dynamics and perturbation protocols

In order to generate human-like muscle activation patterns,
the model is trained with the guidance of the human exper-
imental data from [26]. The guidance is implemented by
clipping the stimulations at appropriate phases in the gait
cycle. For example, in the second half of stance phase HAD
and HAM muscles are completely inactive. This evidence
is implemented by clipping the HAD and HAM activations
to 0 during this phase. The muscle control frequency is
5 kHz and all the sensory feedback signals (kinematics,
muscle dynamics and ground reaction forces) and the input
stimulation signals for the muscle model are delayed by
15 ms to mimic the human sensory feedback delay [7].

The model is trained with joint torque perturbations on
hip flexion/extension movements. In the training phase, ran-
dom joint torque perturbations are applied on the model
continuously for 50 ms (starting at a randomly chosen time
step in the gait cycle) with a magnitude in the range from
−5 N m to 5 N m. A maximum of only one perturbation is

Algorithm 1 Pseudo-code for PPO implementation
θ ← random weights
φ← random weights
for n ∈ {1, . . . , N} do

πw ← πθ
Run W workers in parallel
πold ← πθ
for i ∈ {1, . . . , I} do

JPPO(θ) =
∑T
t=1

πθ(at|st)
πold(at|st) Ât − λKL [πold|πθ]

Update θ by stochastic gradient method w.r.t.
JPPO(θ)

end for
for j ∈ {1, . . . , J} do

LV (φ) = −
∑T
t=1

(∑
t′>t γ

t′−trt′ − Vφ (st)
)2

Update φ by a gradient method w.r.t. LV (φ)
end for
if KL [πold|πθ] > βhighKLtarget then

λ← αλ
else if KL [πold|πθ] < βlowKLtarget then

λ← λ/α
end if

end for

Worker
for t ∈ {1, . . . , T} do

Run policy πθ , collecting {st, at, rt}
Estimate return Rt =

∑
t′=t γ

t′−tr (st′ , at′)
Estimate advantages Ât = R̂t − Vφ (st)
Store the trajectory information

end for

applied per gait cycle in any one of the hip joints. The
probability of applying perturbation in any gait cycle is
50%. For testing the robustness, much larger joint torque
perturbations in the range of [-200, 200] Nm are applied
on the hip continuously for for 50 ms. The joint torque
perturbations are chosen to emulate the situation of using
exosuits for assisting/perturbing walking.

Random State Initialisation (RSI) and Early Termination
(ET) are very useful methods for reinforcement learning
[15]. We divided each trajectory in the training dataset into
10 equal time intervals. RSI is implemented by randomly
selecting trajectories during training from the reference kine-
matic dataset and defining the initial condition by randomly
choosing from 10 equal intervals of the trajectory. The idea
of ET is implemented by terminating the episode if the
kinematic error exceeds a given limit. More specifically,
the ET is terminated if the pelvis vertical position is lower
than 0.8 m or higher than 1.4 m, which corresponds to the
undesired falling and jumping motion respectively.

E. Reward shaping

The reward function for the muscle and torque model
contain terms which encourage imitating the kinematic tra-
jectory, continuous stable walking, attaining a target velocity.
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An additional metabolic cost reward term is included for the
muscle model, but the torque model is learned without using
any torque minimization term.

r = wlrl + wkrk + wmrm + wvrv (1)

where r is the reward, rl is the life bonus, rk is the
kinematic behavior bonus, rm is the metabolic bonus and
rv is the target velocity bonus. wl=1, wk=4, wm=4, wv=1
are the weights of rl, rk, rm and rv , respectively. All these
individual bonus is between 0 and 1. The total reward, r
is in the range from 0 to 10. The life bonous rl denotes
the reward for walking without falling. The falling condition
occur when the pelvis vertical position is out of the range
[0.8, 1.4] m. The rk term defines the reward for imitating
the desired trajectory. Individual position and velocity errors
between the model and the experimental data are calculated
for each sampling step. These errors are:
• Foot position vector error efp which denotes the squared

difference between the foot position vector of the model
and the reference human trajectory data.

efp = [c(sfp(t)− s̄fp(t))]2 (2)

Here, sfp(t) and s̄fp(t) are the foot position vector of
the model and the reference data respectively at time t
and the scaling coefficient, c=30.

• Pelvis COM position error epp which denotes the
squared difference between the pelvis COM position
vector of the model and the reference data.

epp = [c(spp(t)− s̄pp(t))]2 (3)

Here, spp(t) and s̄pp(t) are the pelvis COM position
vector of the model and the reference data respectively
at time t and c=20.

• Pelvis COM velocity error epv which denotes the
squared difference between the pelvis COM velocity
vector of the model and the reference data.

epv = c[spv(t)− s̄pv(t)]2 (4)

Here, spv(t) and s̄pv(t) are the pelvis COM velocity
vector of the model and the reference data respectively
at time t and c=2.

• Joint angular position error eap which denotes the
squared difference between all the joint angles of the
model and the reference data.

eap = [c(θap(t)− θ̄ap(t))]2 (5)

Here, θap(t) and θ̄ap(t) are the array of all the joint
angles of the model and the reference data respectively
at time t and c=12.

• Joint angular velocity error eav which denotes the
squared difference between all the joint angular veloc-
ities of the model and the reference data.

eav = [c(θav(t)− θ̄av(t))]2 (6)

Here, θav(t) and θ̄av(t) are the array of all the joint
angular velocities of the model and the reference data
respectively at time t and c=0.1.

All these individual errors are concatenated to form a single
error vector, E as follows:

E = [efp, epp, epv, eap, eav] (7)

E is converted to its negative exponential and the resulting
terms are summed up to get a scalar value T :

T =
∑

e−E (8)

The rk term denotes how large is the T value compared to
the limiting value of 28. It is computed as follows

rk =
T − Tlimit

Tmax − Tlimit
where Tlimit = 28 , Tmax = 35

(9)
The value of rk is between 0 to 1, where 1 denotes an
exact imitation of the joint trajectory and 0 corresponds a
maximum allowed deviation defined by Tlimit. The Tlimit is
also used as the Early Termination (ET) criterion. In other
words, the ET will be triggered if T < Tlimit.

The metabolic rate p for the musculoskeletal model is
estimated based on the muscle states according to Alexanders
work [27]. The metabolic energy over a sampling step is
converted to a value between 0 to 1 by taking the negative
exponential with a coefficient of 1/30. The value of 1/30 is
chosen by monitoring the range of p during training. The
calculation of rm as follows:

rm = e−p/30 (10)

The rv term is a function of the difference between the
running mean of the experimental walking speed v̄p and the
running mean of the model walking speed vp.

rv =

∑
(eev )

3
where ev = c[v̄p − vp]2 (11)

The coefficient c = 50.
The implemented algorithm can be found at here 1.

III. RESULTS
A. Reproducing human gait

The learned musculoskeletal gait model is capable of
generating human-like joint kinematics, muscle activation
and GRF in a speed range from 0.6 m/s to 1.2 m/s. It
could maintain a predefined target walking speed with an
error bound of 0.1 m/s when it is initialized with the
desired speed. The kinematic behavior generated by the
muscle model at 1.2 m/s walking speed in comparison to
the experimental data is shown in the Fig. 3. The comparison
shows a close correlation (correlation values R between 0.82
to 0.98) between the model and the experimental data for all
the lower limb joint angles. Compared to the joint angles,
the joint angular velocity patterns of the model are less
similar to the experimental data (R values are between 0.46
and 0.92). The model is able to reproduce the asymmetric
characteristics in the human data (e.g. hip frontal joint angle).
The kinematic results can be visualized in the video 1.

1http://lauflabor.ifs-tud.de/doku.php?id=
projects:projects_learnwalk
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Fig. 3. Joint angle and angular velocity of the musculoskeletal gait model
(in solid lines) and the human experimental data (in dashed lines) at the
walking speed of 1.2m/s. The data are the mean of 100 steps of steady
state walking during a gait cycle (touch-down to touch-down). The red and
blue color denote the right and left leg joint data, respectively. The Rright

and Rleft denote the cross correlation values (R) for right and left leg joints
respectively.
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Fig. 4. Vertical GRF of the musculoskeletal gait model (the solid line) and
the human experimental data (the dashed line) during walking. The mean
(over 100 walking steps) GRF for a walking speed of 1.2m/s is shown
for the musculoskeletal gait model. The error band denotes ±1 standard
deviation.

The GRFs generated by the gait model are not as smooth
as in the human experimental data. The mean (over 100 steps
of walking) of the vertical GRF from the gait model (muscle
based model) has a high correlation with the experimental
data with a R value of 0.98 at a walking speed of 1.2 m/s
(shown in Fig. 4). The gait model is trained to generate
human-like muscle activations through stimulation clipping
and optimizing for minimum metabolic cost. The muscle
activation patterns generated by the gait model are shown
in Fig. 5. The overall muscle activation patterns are similar
to the experimental data found in the literature [26].

The musculoskeletal gait model produces robust walking.
It can recover from the perturbation up to 200 N m on the
hip. The perturbation response exhibited by the gait model
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Fig. 5. The muscle mean activation of the musculoskeletal gait model
at a walking speed of 1.2m/s. The stance phase and the swing phase are
denoted as black and grey area.

is highly dependent on the timing of the perturbation. For
touch-down and take-off conditions the perturbation response
is random as it is not exhibiting the expected behaviour
of model becoming increasingly unstable with increasing
perturbation magnitude. For instance, the performance drops
when high extension torques are applied to the swing leg.

B. Muscle control vs torque control

After training, the torque based gait model is also able to
imitate the human joint kinematics (sample result is shown
in Fig. 6). Compared with the torque based model, the
muscle based model shows slightly better performance in
reproducing human kinematic data. For example the mean (of
left and right) R values of the muscle based model are higher
than the torque based model for hip adduction/abduction, hip
flexion, knee flexion and ankle angle at a walking speed of
1.2 m/s.

The learning progress is depicted in the learning curves
in Fig. 7. The muscle model achieves a mean return of
1688 after 10 million time-steps. But the torque model could
achieve only a mean return of 1497 after 27.65 million time-
steps. Although the same mean return values for both models
do not correspond to exactly same behaviour, the returns are
comparable as the single step rewards for both the models
are scaled between 0 to 10.

IV. DISCUSSIONS

We derived a sensory motor mapping of human walking
behavior at the spinal cord level using an artificial neural
network. The learned muscle and torque model is able to
closely follow the joint angles from experimental data. When
comparing the results of our model at 1.2 m/s with the
model from Song and Geyer [7], our model has a R values
of 0.832 and 0.946 for the left and right leg, respectively,
compared to 0.54 in their model on reproducing the hip ad-
duction/abduction movement. Also for ankle (frontal plane)
movements, our model has a R value of 0.96 compared to
0.46 in their model at 1.2 m/s. Our model could also learn
the left-right asymmetries of the human subject very closely,
which is evident in the hip movement on the frontal plane.
These are considerable improvements over the existing gait
models.
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Fig. 6. Joint angle and angular velocity of the torque-based gait model
(in solid lines) and the human experimental data (in dashed lines) at the
walking speed of 1.2m/s. The red and blue color denote the right and left
leg joint data, respectively. R denotes the cross-correlation value.
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Fig. 7. Learning curve of the muscle model (in back) and the torque model
(in grey) training.

Humans tend to walk with a preferred step frequency at
a given speed to minimize the metabolic cost [28]. Thus by
optimizing the model for minimum metabolic cost, it enables
the model to mimic human-like energetics. The muscle
patterns were optimized using metabolic cost minimization
and also by clipping the stimulation inputs to the model
based general human muscle activation reference data [7].
The HAB, HAD, HFL, GLU, VAS, SOL and TIA muscles
have a good correlation to human muscle activation pattern.
In contrast, the activation patterns in HAM, REF, BFSH and
GAS muscle groups clearly deviate from human patterns.
The low activations in GAS is compensated by the high
activations of BFSH as these muscles together contribute to
knee flexion. Similarly, the higher activation levels of REF
muscle group in our model could correspond to the very low
activations of HAM muscle group as both contribute to hip
extension. The muscle dynamics are different from human
data as the metabolic cost did not attain global minimum.

This would demand further optimization.
The GRF profile is an important characteristic in human

locomotion [29]–[31]. This is visible in the learning proce-
dure as the GRF feedback has a large influence on the final
policy. The GRF profile generated by the model is not as
smooth as the human experimental data. This could be due
to the rigid ground contact model in the simulation. It could
be resolved by using a more realistic ground contact model.
The three-segmented foot model used in OpenSim models
could be adopted providing foot the flexibility of a smooth
touch-down, roll over and push-off compared to the single
rigid foot element with four contact points as in this work.

Compared to torque based model, the muscle based model
learned a policy which has higher sample efficiency during
training. This result is similar to the findings in other
studies, showing the advantages of muscle based control for
locomotion tasks over torque based control [15], [32]–[35].
No detailed comparison between the performances of torque
based and muscle based control for bipedal locomotion is
carried out in this study. But further aspects of muscle based
and torque based control will be addressed in the future
studies.

The perturbation response study for testing the model’s
robustness generated unexpected results. The response be-
haviour doesn’t show any correspondence with the model
stability and the perturbation torques, rather it is highly
random. For example model become unstable after 20 steps
when a perturbation torque of 40Nm is applied, but model
is able to walk up-to 100 steps after applying perturbation
torque of 150Nm. The reason for this random perturbation
response is not yet clear and needs to be addressed in the
future research. This could be a result of the nonlinear
policy learned and the passive dynamics of the muscles,
which is making the model capable of stabilizing even at
very high perturbation toques at the hip such as ±200 Nm.
The muscle model could withstand such high perturbations
although it is trained with very low perturbation torques of
±5 Nm. This is because the muscle based control is taking
advantage of its passive dynamics of the musculoskeletal
structure to learn a robust policy. But model could not
learn the acceleration/deceleration behaviour of the human
subject while walking. This is because of the lack of ac-
celeration/deceleration behaviour in the training data. This
could be improved by using training data acquired on an well
designed experiment where the subject is asked to accelerate
and decelerate between various speeds while walking.

OpenSim models were not used in this study because of
the computational complexity. Such models could be useful
for a future study with larger computational resources. In this
study we use a general purpose neuromuscular model (e.g.
muscle parameters, segment length and mass distributions
were obtained from literature) because it is difficult to
obtain subject specific parameters. The model can better
reproduce individualized gait if the model parameters are
individualized. The torque model was not optimized for
energy efficiency because including the energy efficiency
term would not lead to higher sample efficiency. A detailed
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analysis of torque based vs muscle based control could be
addressed in the future study.

V. CONCLUSIONS

In this study we explored the idea of learning a gait model
to perform human-like walking using deep-RL. For learning
the gait model, a reward function was designed based on
the kinematics, target walking speed, stability, and metabolic
cost. The learned gait model is capable of reproducing
human walking kinematics and kinetics robustly at a defined
target velocity. The results demonstrate the advantages of
modelling the human gait using deep-RL. The results also
show that the muscle-based control is superior to the torque-
based control in terms of learning sample efficiency. Our
future goal is to develop a deep-RL based individualized
walking gait model that is more robust and capable of
reproducing human response to unexpected perturbations.
And with the learned model we aim to identify optimal
control schemes for human assistive devices such as lower
limb exoskeletons and prostheses.
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