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Abstract

We consider the initial-value problem for stochastic continuity equations of the form

∂tρ + divh

⎡⎣ρ
⎛⎝u(t, x) +

N∑
i=1

ai (x) ◦
dW i

dt

⎞⎠⎤⎦ = 0,

efined on a smooth closed Riemannian manifold M with metric h, where the Sobolev regular velocity
eld u is perturbed by Gaussian noise terms Ẇi (t) driven by smooth spatially dependent vector fields
i (x) on M . Our main result is that weak (L2) solutions are renormalized solutions, that is, if ρ is a
eak solution, then the nonlinear composition S(ρ) is a weak solution as well, for any “reasonable"

unction S : R → R. The proof consists of a systematic procedure for regularizing tensor fields on
manifold, a convenient choice of atlas to simplify technical computations linked to the Christoffel

ymbols, and several DiPerna–Lions type commutators Cε(ρ, D) between (first/second order) geometric
ifferential operators D and the regularization device (ε is the scaling parameter). This work, which is
elated to the “Euclidean" result in Punshon-Smith (0000), reveals some structural effects that noise and
onlinear domains have on the dynamics of weak solutions.
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http://creativecommons.org/licenses/by/4.0/).

SC: primary 60H15; 35F10; secondary 58J45; 35D30

eywords: Stochastic continuity equation; Riemannian manifold; Hyperbolic equation; Weak solution; Chain rule;
niqueness

✩ This work was supported by the Research Council of Norway through the project Stochastic Conservation
Laws (250674/F20).

∗ Corresponding author.
E-mail addresses: luca.galimberti@ntnu.no (L. Galimberti), kennethk@math.uio.no (K.H. Karlsen).
https://doi.org/10.1016/j.spa.2021.08.009
0304-4149/ c⃝ 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY
icense (http://creativecommons.org/licenses/by/4.0/).

http://www.elsevier.com/locate/spa
https://doi.org/10.1016/j.spa.2021.08.009
http://www.elsevier.com/locate/spa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.spa.2021.08.009&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:luca.galimberti@ntnu.no
mailto:kennethk@math.uio.no
https://doi.org/10.1016/j.spa.2021.08.009
http://creativecommons.org/licenses/by/4.0/


L. Galimberti and K.H. Karlsen Stochastic Processes and their Applications 142 (2021) 195–244

d
p
m
m
g
s
a
d
G
(
s
n
t
i
s

w
t

(
i
t
(
t

1. Introduction

For a number of years many researchers appended new effects and features to partial
ifferential equations (PDEs) in fluid mechanics in order to better account for various physical
henomena. An interesting example arises when a hyperbolic PDE is posed on a curved
anifold instead of a flat Euclidean domain, in which case the curvature of the domain
akes nontrivial alterations to the solution dynamics [2,7,35]. Relevant applications include

eophysical flows and general relativity. Another example is the rapid rise in the use of
tochastic processes to extend the scope of hyperbolic PDEs (on Euclidean domains) in an
ttempt to achieve better understanding of turbulence. Randomness can enter the PDEs in
ifferent ways, such as through stochastic forcing or in uncertain system parameters (fluxes).
enerally speaking, the mathematical literature for stochastic partial differential equations

SPDEs) on manifolds is at the moment in short supply [13,18,21,22]. In this paper we consider
tochastic continuity equations with a non-regular velocity field that is perturbed by Gaussian
oise terms powered by spatially dependent vector fields. In contrast to the existing literature,
he main novelty is indeed that we pose these equations on a curved manifold, being specifically
nterested in the combined effect of noise and nonlinear domains on the dynamics of weak
olutions.

Fix a d-dimensional (d ≥ 1) smooth Riemannian manifold M , endowed with a metric h.
We assume M to be compact, connected, oriented, and without boundary. We are interested in
the initial-value problem for the stochastic continuity equation

dρ + divh(ρ u) dt +

N∑
i=1

divh(ρ ai ) ◦ dW i (t) = 0 on [0, T ] × M, (1.1)

where W 1, . . . ,W N are independent Wiener processes, a1, . . . , aN are smooth vector fields
on M (i.e., first order differential operators on M), the symbol ◦ refers to the Stratonovich
interpretation of stochastic integrals, u : [0, T ] × M → T M is a time-dependent W 1,2 vector
field on M (a rough velocity field), divh is the divergence operator linked to the manifold
(M, h), and ρ = ρ(ω, t, x) is the unknown (density of a mass distribution) that is sought up
to a fixed final time T > 0. Eq. (1.1) is supplemented with initial data ρ(0) = ρ0 ∈ L2 on M .

In the deterministic case (ai ≡ 0, M = Rd ), the well-posedness of weak solutions follows
from the theory of renormalized solutions due to DiPerna and Lions [10]. A key step in
this theory relies on showing that weak solutions are renormalized solutions, i.e., if ρ is a
weak solution, then S(ρ) is a weak solution as well, for any “reasonable” nonlinear function
S : R → R. The validity of this chain rule property depends on the regularity of the velocity
field u. DiPerna and Lions proved it in the case that u is W 1,p-regular in the spatial variable,

hile Ambrosio [1] proved it for BV velocity fields. An extension of the DiPerna–Lions theory
o a class of Riemannian manifolds can be found in [14] (we will return to this paper below).

The well-posedness of stochastic transport/continuity equations with “Lipschitz” coefficients
defined on Euclidean domains) is classical in the literature and has been deeply analyzed
n Kunita’s works [9,23]. In [3] the renormalization property is established for stochastic
ransport equations with irregular (BV ) velocity field u and “constant” noise coefficients
ai ≡ 1). Moreover, they proved that the renormalization property implies uniqueness without
he usual L∞ assumption on the divergence of u, thereby providing an example of the so-called

“regularization by noise” phenomenon. In recent years “regularization by noise“ has been a
recurring theme in many papers on the analysis of stochastic transport/continuity equations, a

significant part of it motivated by [16], see e.g. [6,11,15,17,27,29,30,36].
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Recently [33,35] the renormalization property was established for stochastic continuity
quations with spatially dependent noise coefficients, written in Itô form and defined on an
uclidean domain. In the one-dimensional case and without a “deterministic” drift term, the
quations analyzed in [33] take the form

∂tρ + ∂x (σρ)
dW (t)

dt
= ∂2

xx

(
σ 2

2
ρ

)
, (t, x) ∈ [0, T ] × R, (1.2)

where σ = σ (x) is an irregular coefficient that belongs to W
1, 2p

p−2
loc , while ρ is an L p weak

solution (p ≥ 2). The derivation of the (renormalized) equation satisfied by F(ρ), for any
sufficiently smooth F : R → R, is based on regularizing (in x) the weak solution ρ by
onvolution with a standard mollifier sequence {Jε(x)}ε>0, ρε := Jε ⋆ρ, using the Itô (temporal)
nd classical (spatial) chain rules to compute F(ρε), and deriving commutator estimates to
ontrol the regularization error. A key insight in [33], also needed in one of the steps in our
enormalization proof for (1.1), is the identification of a “second order” commutator, which is
rucial to conclude that the regularization error converges to zero, without having to assume
ome kind of “parabolic” regularity like σ∂xρ ∈ L2 — the nature of the SPDE (1.2) is
yperbolic not parabolic, so this regularity is not available (at variance with [24]). To be a
it more precise, the “second order” commutator in [33] takes the form

C2(ε; ϱ, σ ) :=
σ 2

2
∂2

xxϱε − σ∂2
xx (σϱ)ε + ∂2

xx

(
σ 2

2
ϱ

)
ε

=
1
2

∫
R
∂2

xx Jε(x − y) (σ (x) − σ (y))2 ϱ(y) dy,

here ϱ ∈ L p
loc(R) and σ = σ (x) ∈ W 1,q

loc (R), p, q ∈ [1,∞]. It is proved in [33] that, as ε → 0,
2(ε; ϱ, σ ) → (∂xσ )2ϱ in Lr

loc(R) with 1
r =

1
p +

2
q .

Modulo a deterministic drift term (which we do not include), Eq. (1.2) can also be written
n the form

∂tρ + ∂x (σρ)
dW (t)

dt
= ∂x

(
σ 2

2
∂xρ

)
. (1.3)

This particular equation is similar to the equation studied in [18], which arises in the
kinetic formulation of stochastically forced hyperbolic conservation laws (on manifolds). The
uniqueness proof in [18] relies on writing the equation satisfied by F(ρ) = ρ2. In the Euclidean
etting, one is lead to control the following error term, linked to the second order differential
perator in (1.3) and the “Itô correction”:

R(ε) :=

⏐⏐⏐⏐ ∫ ∂xϱε
(
σ 2∂xϱ

)
ε
−

((
σ∂ξϱ

)
ε

)2
dx
⏐⏐⏐⏐ ,

gain without imposing a condition like σ∂xϱ ∈ L2. Nevertheless, in the kinetic formulation
f conservation laws one has access to additional structural information, namely that ∂xρ is a
ounded measure. In [18] we use this, and the observation

R(ε) =
1
2

∫
(σ (y) − σ (ȳ))2 (∂xϱ)(y)(∂xϱ)(ȳ)Jε(x − y)Jε(x − ȳ) dy d ȳ dx,

o establish that R(ε) → 0 as ε → 0. The detailed handling of error terms like R(ε) becomes
ignificantly more complicated on a curved manifold, cf. [18] for details.

Let us return to Eq. (1.1). Our main result is the renormalization property for weak L2

olutions, roughly speaking under the assumption that u(t, ·) is a W 1,2 vector field on M ,
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whereas a1, . . . , aN are smooth vector fields on M . As corollaries, we deduce the uniqueness
f weak solutions and an a priori estimate, under the additional (usual) condition that divh u ∈

L1
t L∞.

The complete renormalization proof is long and technical, with the “Euclidean” discussion
bove shedding some light on one part of the argument in a simplified situation. A key technical
art of the proof concerns the regularization of functions via convolution using a mollifier. In
he Euclidean case mollification commutes with differential operators and the regularization
rror (linked to a commutator between the derivative and the convolution operator) converges
s the mollification radius tends to zero. These properties are not easy to engineer if the
unction in question is defined on a manifold. On a Riemannian manifold there exist different
pproaches for smoothing functions, including (i) the use of partition of unity combined with
uclidean convolution in local charts (see e.g. [12]), (ii) the so-called “Riemannian convolution
moothing” [20] that is better at preserving geometric properties, and (iii) the heat semigroup
ethod (see e.g. [14]). In [14], the authors employ the heat semigroup to regularize functions

s well as vector fields on manifolds. As an application, they extend the DiPerna–Lions theory
deterministic equations) to a class of Riemannian manifolds. One of the results in [14] says
hat the DiPerna–Lions commutator converges in L1. It is not clear to us how to improve this to
L2 convergence, which is required by our argument to handle the regularization error coming
rom the second order differential operators (arising when passing from Stratonovich to Itô
ntegrals), cf. the discussion above.

In the present work we need to regularize functions as well as tensor fields. We will
ake use of an approach based on “pullback, Euclidean smoothing, and then extension”, in

he spirit of [18]. When applied to functions our approach reduces to (i). Our regularizing
rocedure consists of three main steps: (I) a localization step based on a partition of unity; (II)
ransportation of tensor fields from M to Rd and vice versa via pushforwards and pullbacks to

produce “intrinsic” geometric objects; (III) a convenient choice of atlas that allows us to work
(locally) with the standard d-dimensional volume element dx instead of the Riemannian volume
element dVh , which in local coordinates equals |h|

1
2 dx1

· · · dxd (presumably not essential, but
it dramatically simplifies some computations). Although our approach shares some similarities
with the mollifier smoothing method found in Nash’s celebrated work [28] on embeddings of
manifolds into Euclidean spaces, there are essential differences. The most important one is
that Nash regularizes tensor fields on Riemannian manifolds by embedding the manifold into
an Euclidean space and then convolve the tensor field with a mollifier defined on the ambient
space. Since the mollifier lives in the larger Euclidean space, we cannot easily use it as a test
function in the weak formulation of (1.1) to derive a similar SPDE for ρε, the regularized
version of the weak solution ρ.

Roughly speaking, our proof starts off from the following Itô form of (1.1) (cf. Section 3
for details):

dρ + divh(ρu) dt +

N∑
i=1

divh(ρai ) dW i (t) =
1
2

N∑
i=1

Λi (ρ). (1.4)

ecall that for a vector field X (locally given by X j∂ j ), the divergence of X is given by
ivh X = ∂ j X j

+Γ
j

i j X i , where Γ k
i j are the Christoffel symbols associated with the Levi-Civita

onnection ∇ of the metric h (the Einstein summation convention over repeated indices is used
hroughout the paper). For a smooth function f : M → R, we have X ( f ) = (X, gradh f )h

j
( )

2
which locally becomes X ∂ j f ). Moreover, X X ( f ) = (∇ f )(X, X ) + (∇X X )( f ), where
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2 f is the covariant Hessian of f and ∇X X is the covariant derivative of X in the direction

X . In the Itô SPDE (1.4) we denote by Λi (·) := divh (divh(ρai )ai ) the formal adjoint of
i
(
ai (·)

)
. Later we prove that the second order differential operator Λi ( f ) may be recast into the

form div2
h

(
f âi
)
− divh

(
f ∇ai ai

)
, where div2

h(S) is defined by divh
(
divh(S)

)
for any symmetric

0, 2)-tensor field S. Further, âi is the symmetric (0, 2)-tensor field whose components are
ocally given by âkl

i = ak
i al

i . We refer to an upcoming section for relevant background material
n differential geometry.

Fixing a smooth partition of the unity {Uκ}κ∈A subordinate to a conveniently chosen atlas
, cf. (III) above, we utilize our regularization device to derive a rather involved equation for

ach piece
(
ρ(t)Uκ

)
ε
. A global SPDE for ρε :=

∑
κ

(
ρ(t)Uκ

)
ε

is then obtained by summing
p the local equations. We subsequently use the Itô and classical chain rules to arrive at an
quation for F(ρε), F ∈ C2 with F, F ′, F ′′ bounded, which contains numerous remainder terms
oming from the regularization procedure, some of which can be analyzed in terms of first
rder commutators related to the differential operators divh(·u), divh

(
·∇ai ai

)
and second order

commutators related to div2
h

(
·âi
)
. In addition, we must exploit specific cancellations coming

from some quadratic terms linked to the covariation of the martingale part of Eq. (1.4) and
the second order operators Λi . The localization part of the regularization procedure generates
a number of error terms as well, some of which are easy to control whereas others rely on the
identification of specific cancellations. At long last, after sending the regularization parameter
ε to zero, we arrive at the renormalized equation

∂t F(ρ) + divh
(
F(ρ)u

)
−

N∑
i=1

divh
(
G F (ρ)āi

)
+ G F (ρ) divh u

+

N∑
i=1

divh
(
F(ρ)ai

)
Ẇ i

+

N∑
i=1

G F (ρ) divh ai Ẇ i (t)

=
1
2

N∑
i=1

Λi (F(ρ)) −
1
2

N∑
i=1

Λi (1)G F (ρ) +
1
2

N∑
i=1

F ′′(ρ)
(
ρ divh ai

)2
,

where G F (ρ) = ρF ′(ρ) − F(ρ), āi = (divh ai ) ai , Λi (1) = div2
h

(
âi
)
− divh

(
∇ai ai

)
.

The remaining part of this paper is organized as follows: In Section 2 we collect the
assumptions that are imposed on the “data” of the problem, and present background material
from differential geometry and stochastic analysis. The definitions of solution and the main
results are stated in Section 3. Section 4 is dedicated to an informal outline of the proof of the
renormalization property, while a rigorous proof is developed in Section 5. Corollaries of the
main result (uniqueness and a priori estimate) are proved in Section 6. Finally, in the Appendix
we bring together a few basic results used throughout the paper.

2. Background material and hypotheses

In an attempt to make this paper more self-contained and to fix relevant notation, we briefly
review some basic aspects of differential geometry and stochastic analysis. Furthermore, we
collect the precise assumptions imposed on the coefficients u, ai appearing in the stochastic
continuity equation (1.1).
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2.1. Geometric framework

We refer to [4,25] for basic definitions and facts concerning manifolds. Consider a
-dimensional smooth Riemannian manifold M , which is closed, connected, and oriented (for

nstance, the d-dimensional sphere). Moreover, M is endowed with a smooth (Riemannian)
etric h. By this we mean that h is a positive-definite 2-covariant tensor field, which thus

determines for every x ∈ M an inner product hx on Tx M . Here, Tx M denotes the tangent
pace at x , whereas T M =

∐
x∈M Tx M denotes the tangent bundle. For two arbitrary vectors

X1, X2 ∈ Tx M , we will henceforth write hx (X1, X2) =: (X1, X2)hx or even (X1, X2)h if the
ontext is clear. We set |X |h := (X, X)1/2h . Recall that in local coordinates x = (x i ), the partial
erivatives ∂i :=

∂

∂x i form a basis for Tx M , while the differential forms dx i determine a basis
or the cotangent space T ∗

x M . Therefore, in local coordinates, h reads

h = hi j dx i dx j , hi j =
(
∂i , ∂ j

)
h .

e will denote by (hi j ) the inverse of the matrix (hi j ).
We denote by dVh the Riemannian density associated to h, which in local coordinates takes

he form

dVh = |h|
1/2 dx1

· · · dxd ,

here |h| is the determinant of h. Integration with respect to dVh is done in the following way:
f f ∈ C0(M) has support contained in the domain of a single chart Φ : U ⊂ M → Φ(U ) ⊂

d , then∫
M

f (x) dVh(x) =

∫
Φ(U )

(
|h|

1/2 f
)
◦ Φ−1 dx1

· · · dxd ,

here (x i ) are the coordinates associated to Φ. If supp f is not contained in a single chart
omain, then the integral is defined as∫

M
f (x) dVh(x) =

∑
i∈I

∫
M
(αi f ) (x) dVh(x),

where (αi )i∈I is a partition of unity subordinate to some atlas A. Throughout the paper, we
ill assume for convenience that

Vol(M, h) :=

∫
M

dVh = 1.

or p ∈ [1,∞], we denote by L p(M) the usual Lebesgue spaces on (M, h). Always in local
oordinates, the gradient of a function f : M → R is the vector field given by the following
xpression

gradh f := hi j∂i f ∂ j .

A smooth k-dimensional real vector bundle is a pair of smooth manifolds E (the total space)
nd V (the base), together with a surjective map π : E → V (the projection), satisfying the
ollowing three conditions: (i) each set Ex := π−1(x) (called the fiber of E over x) is endowed
ith the structure of a real vector space; (ii) for each x ∈ V , there exists a neighborhood U
f x and a diffeomorphism φ : π−1(U ) → U ×Rk , called a local trivialization of E , such that
1 ◦ φ = π on π−1(U ), where π1 is the projection onto the first factor; (iii) the restriction of
to each fiber, φ : E → {x} × Rk , is a linear isomorphism.
x
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Given a smooth vector bundle π : E → V over a smooth manifold V , a section of E is a
ection of the map π , i.e., a map σ : V → E satisfying π ◦ σ = IdV .

For an arbitrary finite-dimensional real vector space H , we use T m(H ), Tl(H ), and T m
l (H )

o denote the spaces of covariant m-tensors, contravariant l-tensors, and mixed tensors of
ype (m, l) on H , respectively. For an arbitrary smooth manifold V , we define the bundles of
ovariant m-tensors, contravariant l-tensors, and mixed tensors of type (m, l) on V respectively
y

T m(V ) =

∐
x∈V

T m(Tx V ), Tl(V ) =

∐
x∈V

Tl(Tx V ), T m
l (V ) =

∐
x∈V

T m
l (Tx V ).

ote the natural identifications T 1(V ) = T ∗V and T1(V ) = T V .
Let F : V → V̄ be a diffeomorphism between two smooth manifolds V , V̄ . The symbols

F∗, F∗ denote the smooth bundle isomorphisms F∗ : T m
l (V ) → T m

l

(
V̄
)

and F∗
: T m

l

(
V̄
)

→

T m
l (V ) satisfying

F∗S
(
X1, . . . , Xm, ω

1, . . . , ωl)
= S

(
F−1

∗
X1, . . . , F−1

∗
Xm, F∗ω1, . . . , F∗ωl) ,

or S ∈ T m
l (V ), X i ∈ T V̄ , ω j

∈ T ∗V̄ , and

F∗S
(
X1, . . . , Xm, ω

1, . . . , ωl)
= S

(
F∗ X1, . . . , F∗ Xm, F−1∗ω1, . . . , F−1∗ωl) ,

or S ∈ T m
l

(
V̄
)
, X i ∈ T V , ω j

∈ T ∗V (for further details see [25, Chapter 11]).
The symbol ∇ refers to the Levi-Civita connection of h, namely the unique linear connection

n M that is compatible with h and is symmetric. The Christoffel symbols associated to ∇ are
iven by

Γ k
i j =

1
2

hkl (∂i h jl + ∂ j hil − ∂lhi j
)
.

n particular, the covariant derivative of a vector field X = Xα∂α is the (1, 1)-tensor field which
n local coordinates reads

(∇ X )αj := ∂ j Xα
+ Γ α

k j X k .

The divergence of a vector field X = X j∂ j is the function defined by

divh X := ∂ j X j
+ Γ

j
k j X k .

For any vector field X and f ∈ C1(M), we have X ( f ) = (X, gradh f )h , which locally takes
he form X j∂ j f . We recall that for a (smooth) vector field X , the following integration by
arts formula holds:∫

M
X ( f ) dVh =

∫
M

(
gradh f, X

)
h dVh = −

∫
M

f divh X dVh,

ecalling that M is closed (all functions are compactly supported).
Given a smooth vector field X on M , we consider the norms

∥X∥
p
−−−−→
L p(M)

:=

∫
M

|X |
p
h dVh, p ∈ [1,∞), ∥X∥−−−−→

L∞(M)
:= ∥|X |h∥L∞(M) .

he closure of the space of the smooth vector fields on M with respect to the norm ∥·∥−−−−→
L p(M)

s denoted by
−−−−→
L p(M). We define the Sobolev space

−−−−−→
W 1,p(M) in a similar fashion. Indeed,

onsider the norm

∥X∥
p
−−−−−−→ :=

∫
|X |

p
h + |∇ X |

p
h dVh, p ∈ [1,∞),
W 1,p(M) M
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∥X∥−−−−−−→

W 1,∞(M)
:= ∥|X |h + |∇ X |h∥L∞(M) ,

here locally |∇ X |
2
h = (∇ X )i

j hikh jm (∇ X )k
m . The closure of the space of the smooth vector

elds with respect to this norm is
−−−−−→
W 1,p(M). For more operative definitions,

−−−−→
L p(M) and

−−−−→
W 1,p(M) can be seen as the spaces of vector fields whose components in any arbitrary chart
elong to the corresponding Euclidean space.

Given a smooth vector field X , consider the second order differential operator X (X (·)). We
ave

emma 2.1 (Geometric Identity). For any smooth vector field X and ψ ∈ C2(M),

X (X (ψ)) = (∇2ψ)(X, X ) + (∇X X )(ψ),

here ∇
2ψ denotes the covariant Hessian of ψ and ∇X X denotes the covariant derivative of

X in the direction X.

roof. In any coordinate system, we have

(∇2ψ)(X, X ) = ∂lmψX l Xm
− Γ

j
lm∂ jψX l Xm,

(∇X X )(ψ) = Xm∂m X l∂lψ + Γ
j

lm∂ jψX l Xm .

On the other hand, X (X (ψ)) = ∂lmψX l Xm
+ Xm∂m X l∂lψ . □

In the following, we will consistently write (∇2
·)(ai , ai ) + (∇ai ai )(·) instead of ai (ai (·)),

thereby highlighting the presence of the Hessian.
Let us introduce the following second order differential operators associated to the vector

fields {ai }
N
i=1:

Λi (ψ) := divh(divh(ψai )ai ), ψ ∈ C2(M), i = 1, . . . , N . (2.1)

We will need to write these operators in a more appropriate form. To this end, we will first
make a short digression into some concepts from differential geometry.

Given a smooth symmetric (0, 2)-tensor field S on M , we can compute divh S, which is the
smooth vector field whose local expression is given by

divh S := ∇ j Si j ∂i =

{
∂ j Si j

+ Γ i
l j Sl j

+ Γ
j

l j Sil
}
∂i , (2.2)

where, obviously, S = Si j ∂i⊗∂ j (since S is symmetric, it is irrelevant which index we contract).
Because divh S is a vector field, it can operate on functions by differentiation. Moreover, we
can compute its divergence. Henceforth, we set

div2
h(S) := divh

(
divh(S)

)
. (2.3)

Given any vector field X on M , we can canonically construct a symmetric (0, 2)-tensor field
on M in the following fashion: we consider the endomorphism induced by X on the tangent
bundle T M ,

Yp ↦→
(
X p, Yp

)
h X p, p ∈ M, Y = vector field.

This endomorphism can be canonically identified with a (1, 1)-tensor field. Besides, rising
an index via the metric h produces a symmetric (0, 2)-tensor field X̂ , whose components are
locally given by

X̂ jk
= X j X k .
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Remark 2.1. In what follows, we use the symbols â1, . . . , âN to denote the smooth symmetric
0, 2)-tensor fields obtained by applying the procedure defined above to the vector fields
1, . . . , aN .

We may now state

emma 2.2 (Alternative Expression for Λi ). For ψ ∈ C2(M),

Λi (ψ) = div2
h

(
ψ âi

)
− divh

(
ψ∇ai ai

)
, i = 1, . . . , N . (2.4)

roof. In any coordinates, from the definition of the divergence of a vector field,(
divh(ψai )a

β

i

)
∂β =

[
∂ℓ
(
ψaℓi

)
aβi + Γ k

ℓk aℓi aβi ψ
]
∂β

=

[
∂ℓ

(
ψ âℓβi

)
+ Γ k

ℓk âℓβi ψ − ψaℓi ∂ℓa
β

i

]
∂β

=

[
∂ℓ

(
ψ âℓβi

)
+ Γ k

ℓk âℓβi ψ − ψaℓi ∂ℓa
β

i − ψΓ
β

jk â jk
i + ψΓ

β

jk â jk
i

]
∂β .

Therefore, recalling that locally (2.2) and ∇ai ai =

[
aℓi ∂ℓa

β

i + Γ
β

jk â jk
i

]
∂β hold, we obtain the

following identity between vector fields:

divh(ψai ) ai = divh
(
ψ âi

)
− ψ∇ai ai .

We apply div to this equation to obtain (2.4). □

Remark 2.2 (Adjoint of Λi ). The adjoint of Λi (·) is ai (ai (·)), i.e. ∀ψ, φ ∈ C2(M),∫
M
Λi (ψ)φ dVh =

∫
M
ψ ai (ai (φ)) dVh =

∫
M
ψ
(

(∇2φ)(ai , ai ) + (∇ai ai )(ψ)
)

dVh .

The following lemma turns out to be an extremely useful instrument in the proof of
Theorem 3.2. It allows us to introduce a special atlas on M , in whose charts the determinant
of the metric h will be constant. It turns out that this atlas significantly simplifies several
terms in some already long computations; in broad strokes, the underlying reason is we can
work locally with the standard d-dimensional Lebesgue measure dz instead of the Riemannian
volume element dVh .

Lemma 2.3 (Convenient Choice of Atlas). On the manifold M there exists a finite atlas
A = {κ : Xκ ⊂ M → X̃κ ⊂ Rd

} such that, for any κ ∈ A, the determinant of the metric
written in that chart is equal to one: |hκ | ≡ 1. In particular, we have

Γm
mj = 0 on Xκ , for any j = 1, . . . , d. (2.5)

Proof. Fix x ∈ M and consider a chart Φ around x , whose induced coordinates are named (ui )
and whose range is the open unit cube in Rd , (0, 1)d . Then, (Φ−1)∗ dVh = f du1

∧ · · · ∧ dud ,
where f = |hΦ |

1/2, where (Φ−1)∗ is defined in Section 2.1, and ∧ denotes the wedge
product between forms. Without loss of generality, we can assume from the beginning that
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f ∈ C∞([0, 1]d ). Consider the following map from (0, 1)d to Rd :

Ψ :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
z1

=
∫ u1

0 f (ζ, u2, . . . , ud ) dζ
z2

= u2

...

zd
= ud .

One can check that Ψ is smooth and invertible onto its image (recall f > 0). Moreover,⏐⏐Ψ ′
⏐⏐ = f (u1, . . . , ud ) > 0. By the inverse function theorem and the fact that Ψ admits a

global inverse, we infer that Ψ is a diffeomorphism of (0, 1)d onto its image, and(
(Ψ ◦ Φ)−1)∗ dVh =

(
Ψ−1)∗(Φ−1)∗ dVh = dz1

∧ · · · ∧ dzd .

We set κx := Ψ ◦ Φ. We repeat this procedure for any x ∈ M , and by compactness of M
we end up with a finite atlas A = {κ : Xκ ⊂ M → X̃κ ⊂ Rd

} with the desired property. In
eneral, Γm

mj = ∂ j log |hκ |
1
2 [4, page 106]. Hence, (2.5) follows. □

emark 2.3. A different proof of Lemma 2.3, which requires much more baggage, can be
found in [5].

Finally, we discuss the conditions imposed on the vector field u. Firstly,

u ∈ L1
(

[0, T ];
−−−−−→
W 1,2(M)

)
. (2.6)

In particular, we have u ∈ L1
(

[0, T ];
−−−→
L2(M)

)
, which is sufficient to conclude that for

ρ ∈ L∞
t L2

ω,x and ψ ∈ C∞(M), t ↦→
∫ t

0

∫
M ρ(s)u(s)(ψ) dVh ds is absolutely continuous,

-a.s., and hence is not contributing to cross-variations against W i . These cross-variations
appear when passing from Stratonovich to Itô integrals in the SPDE (1.1), consult the upcoming
Lemma 3.1.

For the uniqueness result (cf. Corollary 3.3), we must also assume

divh u ∈ L1 ([0, T ]; L∞(M)
)
. (2.7)

Remark 2.4. In the following, for a function f : M → R and a vector field X , we will freely
jump between the different notations

f (x)X (x), f (x)X, ( f X )(x), x ∈ M,

for the vector field obtained by pointwise scalar multiplication of f and X .

2.2. Stochastic framework

We refer to [31,34] for relevant notation, concepts, and basic results in stochastic analysis.
From beginning to end, we fix a complete probability space (Ω ,F ,P) and a complete right-
continuous filtration {Ft }t∈[0,T ]. Without loss of generality, we assume that the σ -algebra F is
countably generated. Let W = {Wi }

N
i=1 be a finite sequence of independent one-dimensional

Brownian motions adapted to the filtration {Ft }t∈[0,T ]. We refer to
(
Ω ,F , {Ft }t∈[0,T ] ,P,W

)
as

(Brownian) stochastic basis.
Consider two real-valued stochastic processes Y, Ỹ . We call Ỹ a modification of Y if, for each({

˜
})
∈ [0, T ], P ω ∈ Ω : Y (ω, t) = Y (ω, t) = 1. It is important to pick good modifications of
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stochastic processes. Right (or left) continuous modifications are often used (they are known
to exist for rather general processes), since any two such modifications of the same process
are indistinguishable (with probability one they have the same sample paths). Besides, they
necessarily have left-limits everywhere. Right-continuous processes with left-limits are referred
to as càdlàg.

An {Ft }t∈[0,T ]-adapted, càdlàg process Y is an {Ft }t∈[0,T ]-semimartingale if there exist
rocesses F,M with F0 = M0 = 0 such that

Yt = Y0 + Ft + Mt ,

here F is a finite variation process and M is a local martingale. In this paper we will only
e concerned with continuous semimartingales. The quantifier “local” refers to the existence
f a sequence {τn}n≥1 of stopping times increasing to infinity such that the stopped processes
{τn>0}Mt∧τn are martingales.

Given two continuous semimartingales Y and Z , we can define the Fisk–Stratonovich
ntegral of Y with respect to Z by∫ t

0
Y (s) ◦ d Z (s) =

∫ t

0
Y (s) d Z (s) +

1
2

⟨Y, Z⟩t ,

where
∫ t

0 Y (s)d Z (s) is the Itô integral of Y with respect to Z and ⟨Y, Z⟩ denotes the quadratic
cross-variation process of Y and Z . Let us recall Itô’s formula for a continuous semimartingale
Y . Let F ∈ C2(R). Then F(Y ) is again a continuous semimartingale and the following chain
rule formula holds:

F(Y (t)) − F(Y (0)) =

∫ t

0
F ′(Y (s))dY (s) +

1
2

∫ t

0
F ′′(Y (s)) d ⟨Y, Y ⟩s .

Martingale inequalities are generally important for several reasons. For us they will be used
o bound Itô stochastic integrals in terms of their quadratic variation (which is easy to compute).
ne of the most important martingale inequalities is the Burkholder–Davis–Gundy inequality.
et Y = {Yt }t∈[0,T ] be a continuous local martingale with Y0 = 0. Then, for any stopping time
≤ T ,

E

(
sup

t∈[0,τ ]
|Yt |

)p

≤ C p E p
√

⟨Y, Y ⟩τ , p ∈ (0,∞), (2.8)

here C p is a universal constant. We use (2.8) with p = 1, in which case C p = 3.
Finally, the vector fields driving the noise in (1.1) satisfy

a1, . . . , aN ∈ C∞(M). (2.9)

. Weak solutions and main results

Inspired by [16], we work with the following concept of solution for (1.1).

efinition 3.1 (Weak L2 Solution). Given ρ0 ∈ L2(M), a weak L2 solution of (1.1) with initial
atum ρ|t=0 = ρ0 is a function ρ ∈ L∞([0, T ]; L2(Ω × M)) such that for all ψ ∈ C∞(M)
he stochastic process (ω, t) ↦→

∫
ρ(t)ψ dV has a continuous modification which is an
M h
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{Ft }t∈[0,T ]-semimartingale and P-a.s., for all t ∈ [0, T ],∫
M
ρ(t)ψ dVh =

∫
M
ρ0ψ dVh +

∫ t

0

∫
M
ρ(s) u(ψ) dVh ds

+

N∑
i=1

∫ t

0

∫
M
ρ(s) ai (ψ) dVh ◦ dW i (s).

(3.1)

emark 3.1. Since each vector field ai is smooth, cf. (2.9), the corresponding stochastic
rocess (ω, t) ↦→

∫
M ρ(s) ai (ψ) dVh has a continuous modification that is an {Ft }t∈[0,T ]-

emimartingale.

The first result brings (1.1) into its equivalent Itô form. The result is analogous to Lemma
3 in [16].

emma 3.1 (Stratonovich–Itô Conversion). Let ρ be a weak L2 solution of (1.1), according to
Definition 3.1. Then Eq. (3.1) is equivalent to∫

M
ρ(t)ψ dVh =

∫
M
ρ0ψ dVh +

∫ t

0

∫
M
ρ(s) u(ψ) dVh ds

+

N∑
i=1

∫ t

0

∫
M
ρ(s) ai (ψ) dVh dW i (s) +

1
2

N∑
i=1

∫ t

0

∫
M
ρ(s) ai (ai (ψ)) dVh ds.

(3.2)

Proof. Let us commence from (3.1). The Stratonovich integrals can be written as
N∑

i=1

∫ t

0

∫
M
ρ(s) ai (ψ) dVh ◦ dW i (s)

=

N∑
i=1

∫ t

0

∫
M
ρ(s) ai (ψ) dVh dW i (s) +

1
2

N∑
i=1

⟨∫
M
ρ(s) ai (ψ) dVh,W i

⟩
t
.

here ⟨·, ·⟩ denotes the cross-variation between stochastic processes. Using (3.1) with ai (ψ) ∈
∞(M) as test function, we infer⟨∫

M
ρ ai (ψ) dVh,W i

⟩
t
=

N∑
j=1

⟨∫
·

0

∫
M
ρ a j (ai (ψ)) dVh ◦ dW j ,W i

⟩
t

=

N∑
j=1

⟨∫
·

0

∫
M
ρ a j (ai (ψ)) dVh dW j ,W i

⟩
t

+
1
2

N∑
j=1

⟨⟨∫
M
ρ a j (ai (ψ)) dVh,W j

⟩
,W i

⟩
t
,

where we have exploited that the time-integral is absolutely continuous and thus not contribut-
ing to the cross-variation against W i , which follows from (2.6) and the fact that ρ belongs

-a.s. to L2([0, T ] × M).
Since a j (ai (ψ)) ∈ C∞(M), the stochastic process (ω, t) ↦→

∫
M ρ a j (ai (ψ)) dVh is a

ontinuous semimartingale by assumption. It follows from [23, Theorem 2.2.14] that the
ariation process

⟨∫
ρ a (a (ψ)) dV ,W j

⟩
is continuous and of bounded variation. Hence,
M j i h
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⟨
⟨·, ·⟩ , ·

⟩
= 0. Therefore,⟨∫
M
ρ ai (ψ) dVh,W i

⟩
t
=

N∑
j=1

⟨∫
·

0

∫
M
ρ a j (ai (ψ)) dVh dW j ,W i

⟩
t
.

Since ρ ∈ L∞([0, T ]; L2(Ω × M)), we clearly have
∫

M ρ a j (ai (ψ)) dVh ∈ L2([0, T ]), P-a.s.,
and so by [23, Theorem 2.3.2] we obtain⟨∫

M
ρ ai (ψ) dVh,W i

⟩
t
=

N∑
j=1

∫ t

0

∫
M
ρ a j (ai (ψ)) dVh d⟨W j ,W i

⟩s

=

N∑
j=1

∫ t

0

∫
M
ρ a j (ai (ψ)) dVh δ

j i ds =

∫ t

0

∫
M
ρ ai (ai (ψ)) dVh ds,

and the sought equation (3.2) follows. Finally, we can repeat this argument, starting with (3.2)
and working our way back to (3.1). This concludes the proof. □

In view of Lemma 3.1, we have an equivalent concept of solution.

Definition 3.2 (Weak L2 Solution, Itô Formulation). A weak L2-solution of (1.1) with initial
datum ρ|t=0 = ρ0 ∈ L2(M) is a function ρ ∈ L∞([0, T ]; L2(Ω × M)) such that for any
ψ ∈ C∞(M) the stochastic process (ω, t) ↦→

∫
M ρ(t)ψ dVh has a continuous modification

which is {Ft }t∈[0,T ]-adapted and satisfies the following equation P-a.s., for all t ∈ [0, T ]:∫
M
ρ(t)ψ dVh =

∫
M
ρ0ψ dVh +

∫ t

0

∫
M
ρ(s) u(ψ) dVh ds

+

N∑
i=1

∫ t

0

∫
M
ρ(s) ai (ψ) dVh dW i (s) +

1
2

N∑
i=1

∫ t

0

∫
M
ρ(s) ai (ai (ψ)) dVh ds.

Definition 3.3 (Renormalization Property). Let ρ be a weak L2 solution of (1.1) with initial
datum ρ|t=0 = ρ0 ∈ L2(M). We say that ρ is renormalizable if, for any F ∈ C2(R) with
F, F ′, F ′′ bounded, and for any ψ ∈ C∞(M), the stochastic process (ω, t) ↦→

∫
M F(ρ(t))ψ dVh

has a continuous modification that is {Ft }t∈[0,T ]-adapted and satisfies the following SPDE
weakly (in x) P-a.s.:

d F(ρ) + divh
(
F(ρ)u

)
dt + G F (ρ) divh u dt

+

N∑
i=1

divh
(
F(ρ)ai

)
dW i (t) +

N∑
i=1

G F (ρ) divh ai dW i (t)

=
1
2

N∑
i=1

Λi (F(ρ)) dt −
1
2

N∑
i=1

Λi (1)G F (ρ) dt

+
1
2

N∑
i=1

F ′′(ρ)
(
ρ divh ai

)2 dt +

N∑
i=1

divh
(
G F (ρ)āi

)
dt,

(3.3)
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where the second order differential operator Λi is defined in (2.4),

āi := (divh ai ) ai , Λi (1) = div2
h

(
âi
)
− divh

(
∇ai ai

)
, (3.4)

and

G F (ξ ) = ξF ′(ξ ) − F(ξ ), ξ ∈ R. (3.5)

Eq. (3.3) is understood in the space-weak sense, that is, for all test functions ψ ∈ C∞(M)
nd for all t ∈ [0, T ], P-a.s.,∫

M
F(ρ(t))ψ dVh =

∫
M

F(ρ0)ψ dVh +

∫ t

0

∫
M

F(ρ(s)) u(ψ) dVh ds

+

N∑
i=1

∫ t

0

∫
M

F(ρ(s)) ai (ψ) dVh dW i (s) +
1
2

N∑
i=1

∫ t

0

∫
M

F(ρ(s)) ai (ai (ψ)) dVh ds

−

∫ t

0

∫
M

G F (ρ(s)) divh u ψ dVh ds −

N∑
i=1

∫ t

0

∫
M

G F (ρ(s)) divh ai ψ dVh dW i (s)

−
1
2

N∑
i=1

∫ t

0

∫
M
Λi (1) G F (ρ(s))ψ dVh ds

+
1
2

N∑
i=1

∫ t

0

∫
M

F ′′(ρ(s))
(
ρ(s) divh ai

)2
ψ dVh ds

−

N∑
i=1

∫ t

0

∫
M

G F (ρ(s))āi (ψ) dVh ds.

(3.6)

emark 3.2. The quantity J := −
1
2

∑
i Λi (1)G F (ρ) dt +

∑
i divh

(
G F (ρ)āi

)
dt in (3.3) takes

the equivalent form

J =
1
2

N∑
i=1

Λi (1)G F (ρ) dt +

N∑
i=1

āi
(
G F (ρ)

)
dt,

f we apply the product rule to the divergence of the scalar G F (ρ) times the vector field āi ,
emembering that Λi (1) = divh āi , cf. (2.1) and (3.4). We will make use of this expression for

in the upcoming computations.

We can now state the main result of this paper.

heorem 3.2 (Renormalization Property). Suppose conditions (2.6) and (2.9) hold. Consider a
weak L2 solution ρ of (1.1) with initial datum ρ0 ∈ L2(M), according to Definition 3.2. Then
ρ is renormalizable in the sense of Definition 3.3.

As an application of this result, we obtain a uniqueness result for (1.1), if we further assume
that divh u ∈ L1

t L∞
x , cf. (2.7). More precisely, we have

Corollary 3.3 (Uniqueness). Suppose conditions (2.6), (2.7), and (2.9) hold. Then the initial-
2
value problem for (1.1) possesses at most one weak L solution ρ in the sense of Definition 3.2.
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According to Definition 3.2, a weak solution ρ belongs to the space L∞
t L2

ω,x . Combining
he proof of Corollary 3.3 and a standard martingale argument, we can strengthen this through
shifting” esssupt inside the expectation operator E[·], so that ρ ∈ L2

ωL∞
t L2

x and consequently,
-a.s., ρ ∈ L∞

t L2
x .

orollary 3.4 (A Priori Estimate). Suppose the assumptions of Corollary 3.3 are satisfied.
onsider a weak L2 solution ρ of (1.1) with initial datum ρ0 ∈ L2(M). Then ρ ∈

L2
(
Ω; L∞([0, T ]; L2(M))

)
and

E esssup
t∈[0,T ]

∥ρ(t)∥2
L2(M) ≤ exp(Ct) ∥ρ0∥

2
L2(M) , (3.7)

here the constant C depends on ∥divh u∥L1
t L∞

x
and maxi ∥ai∥C2 .

emark 3.3. Throughout the paper, we assume that the vector fields driving the noise are
mooth, ai ∈ C∞. In the Euclidean setting [32], the renormalization property holds under
ppropriate Sobolev smoothness, say ai ∈ W 1,p with p ≥ 4. A conceivable but quite technical
xtension of our work would allow for ai ∈

−−−−−→
W 1,p(M). We leave this extension for future work.

e refer to [19] for proof of the existence of weak solutions. Beyond the existence result, in
hat paper, we identify a delicate “regularization by noise” effect for carefully chosen noise
ector fields (these vector fields must be linked to the geometry of the underlying domain).
onsequently, we obtain existence without an L∞ assumption on the divergence of the velocity
.

. Informal proof of Theorem 3.2

In this section, we give a motivational account of the proof of our main result, assuming
imply that all considered functions have the necessary smoothness for the operations we
erform on them. To this end, consider a solution ρ of (1.1), which in Itô form reads (1.4),
f. Lemma 3.1. An application of Itô’s formula with F ∈ C2(R) gives

d F(ρ) + F ′(ρ) divh(ρu) dt +

N∑
i=1

F ′(ρ) divh(ρai ) dW i (t)

=
1
2

N∑
i=1

F ′(ρ)Λi (ρ) dt +
1
2

N∑
i=1

F ′′(ρ)
(
divh(ρai )

)2dt.

(4.1)

By the product and chain rules,

F ′(ρ) divh(ρV ) = divh (F(ρ)V )+ G F (ρ) divh V, V = u, ai .

To take care of the term F ′(ρ)Λi (ρ), we need

emma 4.1. Let S be a smooth symmetric (0, 2)-tensor field on M, f ∈ C1(M), and
F ∈ C1(R). Then, as vector fields,

divh (F( f )S) = F( f ) divh(S) + F ′( f ) S(d f, ·).

roof. In any coordinates, by the product and chain rules,

divh(F( f )S)
(2.2)
=

[
∂ j
(
F( f )Si j)

+ Γ i
l j F( f )Sl j

+ Γ
j

l j F( f )Sil
]
∂i

= F( f ) divh(S) + Si j F ′( f )∂ j f ∂i = F( f ) divh(S) + F ′( f ) S(d f, ·). □
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In view of Lemmas 2.2 and 4.1,

Λi (F(ρ)) = div2
h

(
F(ρ)âi

)
− divh

(
F(ρ)∇ai ai

)
= divh

(
F(ρ) divh(âi ) + F ′(ρ) âi (dρ, ·)

)
− divh

(
F(ρ)∇ai ai

)
= F ′(ρ) divh(âi )(ρ) + F(ρ) div2

h(âi ) + F ′′(ρ) âi (dρ, ·)(ρ)

+ F ′(ρ) divh
(
âi (dρ, ·)

)
− F ′(ρ)∇ai ai (ρ) − F(ρ) divh(∇ai ai ).

(4.2)

where, cf. Remark 2.1, âi (dρ, ·)(ρ) = âi (dρ, dρ) =
(
ai (ρ)

)2. On the other hand,

F ′(ρ)Λi (ρ) = F ′(ρ) div2
h

(
ρâi

)
− F ′(ρ) divh

(
ρ∇ai ai

)
= F ′(ρ) divh

(
ρ divh(âi ) + âi (dρ, ·)

)
− F ′(ρ) divh

(
ρ∇ai ai

)
= F ′(ρ) divh(âi )(ρ) + F ′(ρ)ρ div2

h(âi ) + F ′(ρ) divh
(
âi (dρ, ·)

)
− F ′(ρ)ρ divh(∇ai ai ) − F ′(ρ)∇ai ai (ρ).

(4.3)

Therefore, subtracting (4.2) from (4.3),

F ′(ρ)Λi (ρ) − Λi (F(ρ))

= G F (ρ) div2
h(âi ) − G F (ρ) divh(∇ai ai ) − F ′′(ρ)

(
ai (ρ)

)2

= G F (ρ)Λi (1) − F ′′(ρ)
(
ai (ρ)

)2
,

where G F is defined in (3.5) and Λi (1) is defined in (3.4).
In view of the above computations, we can write (4.1) as

d F(ρ) + divh
(
F(ρ)u

)
dt + G F (ρ) divh u dt

+

N∑
i=1

divh
(
F(ρ)ai

)
dW i (t) +

N∑
i=1

G F (ρ) divh ai dW i (t)

=
1
2

N∑
i=1

Λi (F(ρ)) dt +
1
2

N∑
i=1

Λi (1)G F (ρ) dt

+
1
2

N∑
i=1

F ′′(ρ)
(
divh(ρai )

)2 dt −
1
2

N∑
i=1

F ′′(ρ)
(
ai (ρ)

)2 dt  
=:Q

,

here we need to take a closer look at the (potentially) problematic term Q, which contains
he difference between some quadratic terms linked to the covariation of the martingale part
f Eq. (1.4) and the second order operators Λi .

We apply the product rule to write divh(ρai ) = ρ divh ai +ai (ρ), and then expand the square(
divh(ρai )

)2, yielding(
divh(ρ ai )

)2
−
(
ai (ρ)

)2

=
(
ρ divh ai

)2
+ 2ρ ai (ρ) divh ai =

(
ρ divh ai

)2
+ 2ρ āi (ρ),

here ā is defined in (3.4). As a result of this and the chain/product rules for āi ,

F ′′(ρ)
((

divh(ρ ai )
)2

−
(
ai (ρ)

)2
)

= F ′′(ρ)
(
ρ div a

)2
+ 2ρ ā

(
F ′(ρ)

)

h i i
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= F ′′(ρ)
(
ρ divh ai

)2
+ 2 āi

(
ρ F ′(ρ)

)
− 2F ′(ρ)āi (ρ)

= F ′′(ρ)
(
ρ divh ai

)2
+ 2āi

(
G F (ρ)

)
,

and so Q becomes

Q =
1
2

N∑
i=1

F ′′(ρ)
(
ρ divh ai

)2 dt +

N∑
i=1

ai
(
G F (ρ)

)
dt.

e note here that the problematic term
(
a(ρ)

)2 has cancelled out in the final expression for Q.
his is similar to what happens in the Euclidean setting [32]. On a curved manifold we must in
ddition exploit “cancellations” to control some error terms coming from the localization part
f our regularization procedure, i.e., terms related to the geometry of the underlying domain
cf. Section 5 for details).

This concludes the informal argument for (3.3).

. Rigorous proof of Theorem 3.2

The aim of this section is to develop a rigorous proof of Theorem 3.2. The proof will involve
series of long computations, which will be scattered over seven subsections. We begin with the
rocedure for regularizing tensor fields on a manifold, along with several commutator estimates
or controlling the regularization error.

.1. Pullback and extension of tensor fields

We first recall and extend some concepts from Section 2.1. Let V be an arbitrary (boundary-
ess) smooth manifold of dimension d. Consider an arbitrary chart κ : Xκ → X̃κ for V , where
Xκ and X̃κ are open subsets of V and Rd respectively. Let RS(T m

l (X̃κ )) denote the space of
m covariant and l contravariant tensor fields on X̃κ ⊂ Rd , and define similarly RS(T m

l (Xκ ))
nd RS(T m

l (V )). Observe that we do not impose any assumptions on the regularity of the
oefficients of the tensor fields; RS is an acronym for Rough Sections. Let SS(T m

l (X̃κ )) be the
subspace of smooth sections, and define similarly SS(T m

l (Xκ )), SS(T m
l (V )).

We are going to define a procedure for pulling an element of RS(T m
l (X̃κ )) back to V .

Indeed, given σ ∈ RS(T m
l (X̃κ )), we may transport it on Xκ ⊂ V via the diffeomorphism

κ , and we call the result κ∗σ , which will belong to RS(T m
l (Xκ )). We refer to [25, Exercise

11-6] and Section 2.1 for details (the fact that κ is a diffeomorphism is crucial). Moreover, we
may trivially extend it to the whole of V , by simply declaring that it is the null (m, l)-tensor
field outside Xκ . Let us name the resulting object (κ∗σ )ext. Let us give a name to the entire
procedure:

Lκ : RS(T m
l (X̃κ )) ∋ σ ↦→ (κ∗σ )ext

∈ RS(T m
l (V )), (5.1)

here Lκ will be referred to as a “pullback-extension” operator.
Assuming in addition that

supp σ ⊂ X̃κ , σ ∈ SS(T m
l (X̃κ )),

t is trivial to see that Lκσ ∈ SS(T m
l (V )) and suppLκσ ⊂ Xκ .

In the following, starting from objects defined on open Euclidean subsets, we are going to
se this procedure repeatedly to build global objects on M .
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5.2. Regularization & commutator estimates

From now on we are going to use the atlas A provided by Lemma 2.3. For fixed κ ∈ A,
he induced coordinates will be typically denoted by z or z̄. We need a smooth partition of the
nity {Uκ}κ∈A subordinate to A, i.e.,

(1) Uκ ≥ 0,
∑

κ∈A Uκ = 1,
(2) Uκ ∈ C∞(M), and
(3) supp Uκ ⊂ Xκ (and compact).

Let ρ be a weak L2-solution of (1.1) with initial datum ρ0 ∈ L2(M). In what follows, we
ntroduce a series of local objects that appear later in a localized version of (1.1), and establish
heir main properties. For κ ∈ A, fix a standard mollifier φ on Rd with support in B1(0), and
efine the rescaled mollifier

φε(z) := ε−dφ
( z
ε

)
, z ∈ Rd , (5.2)

hose support is contained in Bε(0), z = κ(x).

.2.1. Localization & smoothing of ρ, ρ0
Set

ρκ (ω, t, z) := Uκ (z) ρ(ω, t, z), ρ0,κ (ω, z) := Uκ (z) ρ0(ω, z), (5.3)

or ω ∈ Ω , t ∈ [0, T ], z ∈ X̃κ ⊂ Rd .

emark 5.1. As is customary in differential geometry, we will use the convention of not
xplicitly writing the chart, in order to alleviate the notation. For example, if f : M → R, then
e write f (z) instead of f (κ−1(z)).

We observe that for fixed ω ∈ Ω , t ∈ [0, T ],

supp ρκ (ω, t, ·) ⊂ κ (suppUκ) ⊂⊂ X̃κ ⊂ Rd ,

supp ρ0,κ (ω, ·) ⊂ κ (suppUκ) ⊂⊂ X̃κ ⊂ Rd ,

nd thus ρκ (ω, t, ·) and ρ0,κ (ω, ·) may be viewed as global functions on Rd . Next we define
patial regularizations of ρκ and ρ0,κ . For ω ∈ Ω , t ∈ [0, T ], z ∈ Rd ,

(ρκ )ε(ω, t, z)

:=

∫
Rd
ρκ (ω, t, z̄)φε (z − z̄) dz̄ =

∫
Rd

Uκ (z̄)ρ(ω, t, z̄)φε (z − z̄) dz̄,

(ρ0,κ )ε(ω, z)

:=

∫
Rd
ρ0,κ (ω, z̄)φε (z − z̄) dz̄ =

∫
Rd

Uκ (z̄)ρ0(ω, z̄)φε (z − z̄) dz̄.

or later use, set

εκ := dist
(
κ (suppUκ) , ∂ X̃κ

)
> 0, ε0 :=

1
4

min
κ

{εκ} > 0. (5.4)

he main properties of (ρκ )ε and (ρ0,κ )ε are collected in

emma 5.1. Fix κ ∈ A, cf. Lemma 2.3. Then
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(1) (ρκ )ε(ω, t, ·) ∈ C∞(Rd ), for all (ω, t) ∈ Ω × [0, T ].
(2) For ε < εκ and for any ω ∈ Ω , t ∈ [0, T ],

supp(ρκ )ε(ω, t, ·) ⊂ κ (suppUκ)+ Bε(0) ⊂⊂ X̃κ .

This implies in particular that for any (ω, t) ∈ Ω × [0, T ], the function (ρκ )ε(ω, t, ·) can
be seen as an element of C∞(M), provided that we set it equal to zero outside of Xκ .

(3) For any p ∈ [1, 2] and (ω, t) ∈ Ω × [0, T ],

(ρκ )ε(ω, t, ·)
ε↓0
−→ Uκ (·)ρ(ω, t, ·) in L p(M).

Therefore, for any q ∈ [1,∞), (ρκ )ε
ε↓0
−→ Uκρ in Lq

(
[0, T ]; L2(Ω × M)

)
.

The listed properties hold true for (ρ0,κ )ε as well.

roof. Claims (1) and (2) follow from standard properties of convolution. To prove claim (3),
ecall Lemma 2.3. Indeed, on Xκ we use the coordinates given by κ , for which |hκ (z)|1/2 = 1,
o compute as follows:∫

M
|(ρκ )ε(t, x) − Uκ (x)ρ(t, x)|p dVh(x)

=

∫
Xκ

|(ρκ )ε(t, x) − Uκ (x)ρ(t, x)|p dVh(x)

=

∫
X̃κ

|(ρκ )ε(t, z) − Uκ (z)ρ(t, z)|p dz

=

∫
X̃κ

|(ρκ )ε(t, z) − ρκ (t, z)|p dz.

he last integral converges to zero as ε goes to zero by standard properties of mollifiers, since
κ (ω, t, ·) is in L2(Rd ) and has compact support. This follows easily from our assumption
∈ L∞([0, T ]; L2(Ω × M))).
Claims (1), (2), and (3) can be proved in a similar way for (ρ0,κ )ε. □

We define the global counterparts of (ρκ )ε and (ρ0,κ )ε as follows:

ρε(ω, t, x) :=

∑
κ

(ρκ )ε(ω, t, x), ρ0,ε(x) :=

∑
κ

(ρ0,κ )ε(x),

or ω ∈ Ω , t ∈ [0, T ], x ∈ M , and ε < ε0.

.2.2. Localization & smoothing of ρai
Consider for ω ∈ Ω , t ∈ [0, T ], and z ∈ X̃κ , the object

{
ρκ (ω, t, z)al

i (z)
}

l , which belongs

o RS
(
T 0

1 (X̃κ )
)

and is compactly supported in κ (suppUκ) ⊂ X̃κ , uniformly in ω, t .

emark 5.2. By writing ai (z) we mean the vector field evaluated at the point z, not
ifferentiation. It is a minor abuse of notation that should not provoke too much confusion.
e will use this convention in the following also for other objects.

We regularize
{
ρκ (ω, t, z)al

i (z)
}

l componentwise via the mollifier φε (as above). The result is
n object in SS(T 0

1 (X̃κ )) that is compactly supported, uniformly in ε. We denote this regularized
bject by

(ρ (t)a ) = (ρ (t)a ) (x) = (ρ (ω, t)a ) (x).
κ i ε κ i ε κ i ε
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We apply the pullback-extension operator Lκ defined in (5.1), yielding

Lκ (ρκ (t)ai )ε ∈ SS
(
T 0

1 (M)
)
.

Finally, we define the companion vector field (ρκ )ε(t)ai ∈ SS
(
T 0

1 (M)
)
.

We need the following version of a well-known result found in [10].

Lemma 5.2 (DiPerna–Lions Commutator; “divh(ρai )”). Fix κ ∈ A, cf. Lemma 2.3, and define
for (ω, t, x) ∈ Ω × [0, T ] × M the smooth (in x) functions

rκ,ε,i (ω, t, x) := divh Lκ
(
ρκ (t)ai

)
ε
(x) − divh

(
(ρκ )ε(t)ai

)
(x), (5.5)

for i = 1, . . . , N. Then rκ,ε,i
ε↓0
−→ 0 in Lq ([0, T ]; L2(Ω × M)), for any q ∈ [1,∞).

Furthermore, for x ∈ Xκ (the only relevant case), in the coordinates induced by κ , we have
the representations

ai
(
rκ,ε,i

)
= am

i ∂ml
(
ρκal

i

)
ε
− am

i al
i∂ml(ρκ )ε − am

i ∂mal
i ∂l(ρκ )ε

− am
i ∂lal

i ∂m(ρκ )ε − (ρκ )ε am
i ∂mlal

i ,

and

divh Lκ (ρκ (t)ai )ε = ∂l
(
ρκ (t)al

i

)
ε
.

Proof. Let x ∈ Xκ . Then, in the coordinates induced by κ , we have by definition that(
(ρκai )ε

)l
=
(
ρκal

i

)
ε

(l = 1, . . . , d) and Γ a
ab = 0; therefore, divh coincides with the Euclidean

divergence and thus

divh Lκ (ρκ (s)ai )ε = ∂l
(
ρκ (s)al

i

)
ε
.

Moreover,

rκ,ε,i = ∂l
(
ρκal

i

)
ε
− ∂l(ρκ )εal

i − (ρκ )ε∂lal
i .

Differentiating this expression according to ai leads to the claimed representation for ai
(
rκ,ε,i

)
.

The convergence claim is also clear. Indeed, with “ρai ∈ L∞
t L2

x ”, repeated applications of
Lemma A.1 lead to rκ,ε,i → 0 in Lq ([0, T ]; L2(Ω × X̃κ )), for any q ∈ [1,∞). Because the
support of rκ,ε,i is compactly contained in Xκ and |hκ |

1
2 = 1 therein, we immediately deduce

he result. □

For (ω, t, x) ∈ Ω × [0, T ] × M , we define the function

rε,i (ω, t, x) :=

∑
κ∈A

rκ,ε,i (ω, t, x) (5.6)

nd the vector field

(ρ(t)ai )ε(x) :=

∑
κ

Lκ (ρκ (t)ai )ε(x),

hich both are smooth in x , i = 1, . . . , N . Clearly, as ε → 0, the global remainder function
ε,i converges to zero in Lq ([0, T ]; L2(Ω × M)), for any q ∈ [1,∞).

.2.3. Localization & smoothing of ρ∇ai ai .
Consider for ω ∈ Ω , t ∈ [0, T ], and z ∈ X̃κ , the vector field{

ρ (ω, t, z)(∇ a )l(z)
}
,
κ ai i l
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which is an object in RS
(
T 0

1 (X̃κ )
)

that is compactly supported in κ (suppUκ) ⊂ X̃κ , uniformly
in ω, t . Observe that

ρκ (∇ai ai )l
= ρκam

i ∂mal
i + ρκΓ

l
mbam

i ab
i , l = 1, . . . , d.

We regularize ρκ∇ai ai componentwise using the mollifier φε, denoting the result by (ρκ (t)
∇ai ai

)
ε
. By definition,

((
ρκ (t)∇ai ai

)
ε

)l
=

((
ρκ (t)∇ai ai

)l)
ε
. We apply the pullback-extension

perator Lκ , arriving at the compactly supported vector field

Lκ
(
ρκ (s)∇ai ai

)
ε
∈ SS

(
T 0

1 (M)
)
.

Also in this case, we define the companion vector field (ρκ )ε(t)∇ai ai ∈ SS
(
T 0

1 (M)
)
.

Lemma 5.3 (DiPerna–Lions Commutator; “divh(ρ∇ai ai )”). Fix κ ∈ A, cf. Lemma 2.3, and
define for (ω, t, x) ∈ Ω × [0, T ] × M the smooth (in x) functions

r̃κ,ε,i (ω, t, x) := divh Lκ
(
ρκ (t)∇ai ai

)
ε
(x) − divh

(
(ρκ )ε(t)∇ai ai

)
(x),

for i = 1, . . . , N. Then r̃κ,ε,i
ε↓0
−→ 0 in Lq ([0, T ]; L2(Ω × M)), for any q ∈ [1,∞).

Furthermore, for x ∈ Xκ (the only relevant case), in the coordinates induced by κ , we have
he representation

divh Lκ
(
ρκ (t)∇ai ai

)
ε
= ∂l

(
am

i ∂mal
iρκ (t)

)
ε

(z) + ∂l
(
am

i ar
i Γ

l
mrρκ (t)

)
ε

(z).

roof. The proof is identical to the one of Lemma 5.2, since the vector fields ∇a1a1, . . . ,∇aN aN

re smooth. □

We also introduce the global function

r̃ε,i (ω, t, x) :=

∑
κ∈A

r̃κ,ε,i (ω, t, x) (5.7)

nd the global vector field(
ρ(t)∇ai ai

)
ε

(x) :=

∑
κ∈A

Lκ
(
ρκ (t)∇ai ai

)
ε

(x),

hich both are smooth in x and defined for (ω, t, x) ∈ Ω × [0, T ]× M , i = 1, . . . , N . Clearly,
s ε → 0, we have r̃ε,i → 0 in Lq ([0, T ]; L2(Ω × M)), for any q ∈ [1,∞).

.2.4. Localization & smoothing of ρâi

Recalling Remark 2.1 (âml
i = am

i al
i ), let us consider

{
ρκ (ω, t, z)âml

i (z)
}

m,l , for ω ∈ Ω ,

∈ [0, T ], and z ∈ X̃κ , which defines a symmetric object in RS
(
T 0

2 (X̃κ )
)

that is compactly

upported in κ (suppUκ) ⊂ X̃κ , uniformly in ω, t . We regularize this object componentwise
sing the mollifier φε, thereby obtaining a symmetric element in SS

(
T 0

2 (X̃κ )
)

, whose support

s contained in X̃κ , uniformly in ε. We denote this smooth (0, 2)-tensor field by
(
ρκ (t)âi

)
ε
;

learly, by definition,
((
ρκ (t)âi

)
ε

)ml
=
(
ρκ (s)âml

i

)
ε
. Applying the pullback-extension operator

κ , we obtain(( ) ) ( 0 )

Lκ ρκ (t)âi ε

∈ SS T2 (M) ,
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f{
with support in Xκ , uniformly in ε, and symmetric. We also need the globally defined object(
ρ(t)âi

)
ε

(x) :=

∑
κ

Lκ
(
ρκ (t)âi

)
ε

(x),

or (ω, t, x) ∈ Ω × [0, T ] × M and, cf. (5.4), ε < ε0.
Let us compute div2

h Lκ
((
ρκ (t)âi

)
ε

)
in the local coordinates given by Lemma 2.3. The only

relevant case is x ∈ Xκ , where we use the coordinates induced by κ . Recall that in these
coordinates we have Γ α

jα = 0 for all j . Hence,

div2
h Lκ

((
ρκ (t)âi

)
ε

)
= ∂ml

((
ρκ (t)âi

)
ε

)ml (z) + ∂l

[
Γ l

m j

((
ρκ (s)âi

)
ε

)mj
]

(z)

= ∂ml
(
ρκ (t)âml

i

)
ε
+ ∂l

[
Γ l

m j

(
ρκ (t)âmj

i

)
ε

]
(z).

(5.8)

To be able to control the regularization error linked to div2
h(ρâi ), we need first to consider

some additional terms appearing in the definition of div2
h that is related to the Christoffel

symbols Γ of the Levi Civita connection. To this end, consider

Vκ,i :=

{
ρκ (ω, t, z)Γ l

m j (z)âmj
i (z)

}
l
, (5.9)

which belongs to RS
(
T 0

1 (X̃κ )
)

and is compactly supported in κ (suppUκ) ⊂ X̃κ , uni-

formly in ω, t . The regularized counterpart of Vκ,i is denoted by Vκ,i,ε. Clearly,
(
Vκ,i,ε

)l
=(

ρκ (t)Γ l
m j â

mj
i

)
ε
. Applying the pullback-extension operator Lκ yields

LκVκ,i,ε ∈ SS
(
T 0

1 (M)
)
.

We multiply the components of
(
ρκ (t)âi

)
ε

by the Christoffel symbols Γ (written in the
coordinates induced by κ) and then add them together. The result is

V̄κ,i,ε :=

{
Γ l

m j

(
ρκ (t)âmj

i

)
ε

}
l
, (5.10)

an object in SS(T 0
1 (X̃κ )) that is compactly supported, uniformly in ε. Pushing forward V̄κ,i,ε

to M via Lκ , we obtain

Lκ V̄κ,i,ε ∈ SS
(
T 0

1 (M)
)
.

For x ∈ Xκ , in the coordinates given by κ (z = κ(x)), we have

divh LκVκ,i,ε − divh Lκ V̄κ,i,ε

= ∂l

[(
ρκ (t)Γ l

m j â
mj
i

)
ε

(z) − Γ l
m j

(
ρκ (t)âmj

i

)
ε

(z)
]
.

(5.11)

We also need the globally defined objects

Vi,ε(ω, t, x) :=

∑
κ∈A

LκVκ,i,ε(ω, t, x), V̄i,ε(ω, t, x) :=

∑
κ∈A

Lκ V̄κ,i,ε(ω, t, x),

or (ω, t, x) ∈ Ω × [0, T ] × M and ε < ε0.
Finally, consider the smooth (in x) and compactly supported (in X̃κ ) vector field

(ρκ )ε(t)Γ l
m j â

mj
i

}
l
, denoted by (ρκ )εγi . Applying Lκ , we obtain

Lκ [(ρκ )εγi ] ∈ SS
(
T 0

1 (M)
)
,

which is compactly supported in Xκ , uniformly in ε.
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Lemma 5.4 (DiPerna–Lions Commutator; “divh(ρΓ â)”). Fix κ ∈ A, cf. Lemma 2.3, and define
or (ω, t, x) ∈ Ω × [0, T ] × M the smooth (in x) functions

r̄κ,ε,i (ω, t, x) := divh LκVκ,i,ε(x) − divh Lκ [(ρκ (t))εγi ] (x) (5.12)

or i = 1, . . . , N. Then, r̄κ,ε,i
ε↓0
−→ 0 in Lq ([0, T ]; L2(Ω × M)), for any q ∈ [1,∞). Moreover,

n Xκ (the only relevant case) in the coordinates induced by κ (z = κ(x)), r̄κ,ε,i takes the form

r̄κ,ε,i (ω, t, z) = ∂l

(
ρκ (t)Γ l

m j â
mj
i

)
ε

(z) − ∂l

(
(ρκ (t))εΓ l

m j â
mj
i

)
(z).

roof. See the proofs of Lemmas 5.2 and 5.3. □

As before, we introduce the global function

r̄ε,i (ω, t, x) :=

∑
κ∈A

r̄κ,ε,i (ω, t, x), (5.13)

ith (ω, t, x) ∈ Ω × [0, T ] × M and, cf. (5.4), ε < ε0, i = 1, . . . , N . Obviously, as ε → 0, we
ave r̄ε,i → 0 in Lq ([0, T ]; L2(Ω × M)), for any q ∈ [1,∞).

Now we are now going to analyze the key terms (i = 1, . . . , N )

Rε,i (ω, t, x) := div2
h

(
ρ(t)âi

)
ε

(x) − div2
h

(
ρε(t)âi

)
(x)

+ divh Vi,ε(t, x) − divh V̄i,ε(t, x),
(5.14)

here ρε(t)âi :=
∑

κ∈A(ρκ )ε(t)âi ∈ SS
(
T 0

2 (M)
)
. By definition,

Rε,i (ω, t, x) =

∑
κ∈A

{
div2

h Lκ
(
ρκ (t)âi

)
ε

(x) − div2
h

(
(ρκ )ε(t)âi

)
(x)

+ divh LκVκ,i,ε(t, x) − divh Lκ V̄κ,i,ε(t, x)
}

=:

∑
κ∈A

Rκ,ε,i (ω, t, x).

ix κ ∈ A, cf. Lemma 2.3. The quantity Rκ,ε,i (t, ·) is supported in Xκ ⊂ M , and there we are
oing to use the coordinates induced by κ , z = κ(x). From the definition of div2

h , cf. (2.3), and
y means of formulas (5.8) and (5.11), we deduce

Rκ,ε,i (t, z) = ∂ml
(
ρκ (t)âml

i

)
ε

(z) + ∂l

[
Γ l

m j

(
ρκ (t)âmj

i

)
ε

]
(z)

− ∂ml
(
(ρκ )ε(t)âml

i

)
(z) − ∂l

[
Γ l

m j (ρκ )ε(t)â
mj
i

]
(z)

+ ∂l

[(
ρκ (t)Γ l

m j â
mj
i

)
ε

]
(z) − ∂l

[
Γ l

m j

(
ρκ (t)âmj

i

)
ε

]
(z)

= ∂ml
(
ρκ (t)âml

i

)
ε

(z) − ∂ml
(
(ρκ )ε(t)âml

i

)
(z) + r̄κ,ε,i (t, z),

here the reminder r̄κ,ε,i is defined in (5.12)

emark 5.3. Be mindful of the fact that we have computed Rε,i in the (convenient) coordinates
rovided by Lemma 2.3. With a different choice of coordinates, we would need to handle some
dditional terms involving the Christoffel symbols Γ b

ab, further complicating the analysis.

By expanding −∂ml
(
(ρκ )ε(t)âml

i

)
(z),

∂ml
(
(ρκ )εâml

i

)
= ∂ml(ρκ )εâml

i + 2∂l(ρκ )ε∂mam
i al

i
l m ( m l)
+ 2∂l(ρκ )ε∂mai ai + (ρκ )ε∂ml ai ai ,

217



L. Galimberti and K.H. Karlsen Stochastic Processes and their Applications 142 (2021) 195–244

w

W
a

w
(
t
I

w

I
p
f

L
c

w

R
t
C

R

t
a

and making use of Lemma 5.2, we arrive at

Rκ,ε,i (t, z) = 2Cε [ρκ (t), ai ] (z) + 2ai (rκ,ε,i (t, z)) + 2(ρκ )ε(t)am
i ∂mlal

i (z)

− (ρκ )ε(t)∂ml
(
am

i al
i

)
(z) + r̄κ,ε,i (t, z),

here

Cε [ρκ (t), ai ] :=
1
2
∂ml

(
ρκ âml

i

)
ε
− am

i ∂ml
(
ρκal

i

)
ε
+

1
2
∂ml(ρκ )εâml

i . (5.15)

e recognize Cε [ρκ (t), ai ] as a “second order” commutator, first identified in [33] (cf. the
ppendix herein for more details). Using again the product rule,

Rκ,ε,i (t, z)

= 2
{
Cε [ρκ (t), ai ] (z) −

1
2

(ρκ )ε
(
∂mam

i

)2
−

1
2

(ρκ )ε∂lam
i ∂mal

i

}
+ 2ai

(
rκ,ε,i (t, z)

)
+ r̄κ,ε,i (t, z),

(5.16)

here rκ,ε,i is defined in (5.5). For convenience, let us set gκ,i := ∂lam
i ∂mal

i . In our coordinates
cf. Lemma 2.3), divh ai = ∂mam

i . By compactness of the supports of the involved functions,
he quantities (ρκ )ε∂lam

i ∂mal
i and Cε [ρκ (t), ai ] can be thought of as globally defined (on M).

n other words, (5.16) may be seen as a global identity on M , that is, for x ∈ M ,

Rκ,ε,i (t, x) = 2Gκ,ε,i (t, x) + 2ai
(
rκ,ε,i (t, x)

)
+ r̄κ,ε,i (t, x), (5.17)

here

Gκ,ε,i (ω, t, x) := Cε [ρκ (t), ai ] (x) −
1
2

(ρκ )ε (divh ai (x))2 −
1
2

(ρκ )εgκ,i (x). (5.18)

f x /∈ Xκ for some κ , then (5.17) reduces to the trivial statement “0 = 0”. Referring to the Ap-
endix, a simple application of Lemma A.3 shows that Gκ,ε,i

ε↓0
−→ 0 in Lq

(
[0, T ]; L2(Ω × M)

)
,

or any q ∈ [1,∞).
Let us summarize our findings.

emma 5.5 (Second Order Commutator; “div2
h(ρâ)”). For (ω, t, x) ∈ Ω × [0, T ] × M and,

f. (5.4), ε < ε0, the remainder Rε,i defined in (5.14) takes the form

Rε,i (ω, t, x) = 2ai
(
rε,i (ω, t, x)

)
+ r̄ε,i (ω, t, x) + 2Gε,i (ω, t, x), (5.19)

here r̄ε,i is defined in (5.12) and Gε,i :=
∑

κ∈A Gκ,ε,i with Gκ,ε,i defined in (5.18).
Furthermore,

r̄ε,i , Gε,i
ε↓0
−→ 0 in Lq ([0, T ]; L2(Ω × M)

)
, for any q ∈ [1,∞).

emark 5.4. Regarding the error term Gε,i , in general we cannot “sum away” κ due to
he nonlinearity of the domain M , which is manifested in the local nature of the commutator
ε [ρκ (t), ai ], cf. (5.15), and its dependence on different mollifiers!

emark 5.5. In view of (5.19), we do not expect the remainder term

Rε,i = div2
h

((
ρ(t)âi

)
ε
− ρε(t)âi

)
+ divh

(
Vi,ε(t) − V̄i,ε(t)

)
o converge to zero as ε → 0, although r̄ε,i and Gε,i do! Indeed, there is no reason to expect(

r
)

to have a limit as ε → 0. By good fortune, it turns out that this quantity is going to
i ε,i
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cancel out with a term that appears when applying the Itô formula, see the upcoming equation
(5.38). This cancellation is the reason why the renormalization property holds for weak L2

olutions without having to assume some kind of “parabolic” regularity (cf. the discussion in
ection 1).

.2.5. Localization & smoothing of the vector field u
For ω ∈ Ω , t ∈ [0, T ], and z ∈ X̃κ , consider the object

{
ρκ (ω, t, z)ul(t, z)

}
l ∈ RS

(
T 0

1 (X̃κ )
)

,

hat is compactly supported in κ (suppUκ) ⊂ X̃κ , uniformly in ω ∈ Ω , s ∈ [0, T ]. As before,
e regularize {ρκ (ω, t, z)ul(t, z)}l componentwise via the mollifier φε. The result is an object

n SS(T 0
1 (X̃κ )) that is compactly supported, uniformly in ε. We denote the regularized object

y (ρκ (t)u(t))ε. Applying the pullback-extension operator Lκ ,

Lκ (ρκ (t)u(t))ε ∈ SS
(
T 0

1 (M)
)
.

inally, we define the companion vector field (ρκ )ε(t)u(t), which for a.e. t belongs to
W 1,2

(
T 0

1 (M)
)

since by assumption u ∈ L1([0, T ]; W 1,2
(
T 0

1 (M)
)
).

emma 5.6 (DiPerna–Lions Commutator; “divh(ρu)”). Fix κ ∈ A, cf. Lemma 2.3, and define
or (ω, t, x) ∈ Ω × [0, T ] × M the smooth (in x) function

rκ,ε,u(ω, t, x) := divh Lκ
(
ρκ (t)u(t)

)
ε
(x) − divh

(
(ρκ )ε(t)u(t)

)
(x).

hen rκ,ε,u
ε↓0
−→ 0 in L1

(
[0, T ]; L2

(
Ω; L1(M)

))
.

Besides, in Xκ (the only relevant case) in the coordinates induced by κ ,

divh Lκ
(
ρκ (t)u(t)

)
ε
= ∂l

(
ρκ (t)ul(t)

)
ε
.

roof. At this point, only the convergence claim needs some explanation. Since u is
eterministic, cf. (2.6),

u ∈ L1 ([0, T ]; L∞
(
Ω; W 1,2 (T 0

1 (M)
)))
.

oreover, ρ ∈ L∞([0, T ]; L2(Ω × M)). Fixing t , we apply Lemma A.1 with Z = Ω , G = X̃κ ,
p1 = p2 = q1 = 2, q2 = ∞ to obtain rκ,ε,u(t)

ε↓0
−→ 0 in L2

(
Ω; L1(M)

)
. Utilizing the dominated

onvergence theorem in t and the bounds provided by Lemma A.1, we conclude rκ,ε,u
ε↓0
−→ 0

n L1
(
[0, T ]; L2

(
Ω; L1(M)

))
. □

For (ω, t, x) ∈ Ω × [0, T ] × M , we define the global remainder function

rε,u(ω, t, x) :=

∑
κ∈A

rκ,ε,u(ω, t, x), (5.20)

hich belongs to L1
(
[0, T ]; L2

(
Ω; L1(M)

))
and is smooth in x . Likewise, we define the global

mooth vector field(
ρ(t)u(t)

)
ε
(x) :=

∑
κ

Lκ
(
ρκ (t)u(t)

)
ε
(x).

learly, r
ε↓0
−→ 0 in L1

(
[0, T ]; L2

(
Ω; L1(M)

))
.
ε,u
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5.2.6. Localization & smoothing of partition of unity terms
For reasons that will become apparent later, we need to apply the machinery developed so

ar to some additional terms that are related to the partition of unity {Uκ}κ and its derivatives.
hese terms are linked to the nonlinear geometry of the manifold M .

For ω ∈ Ω , t ∈ [0, T ], and z ∈ X̃κ , we introduce the functions

A1
κ,i (ω, t, z) := ρ(ω, t, z)ai (Uκ )(z),

A2
κ,i (ω, t, z) := ρ(ω, t, z)∇2Uκ (ai , ai )(z),

A3
κ,i (ω, t, z) := ρ(ω, t, z)(∇ai ai )(Uκ )(z),

(5.21)

autioning the reader that the superscripts do not mean exponentiation. Observe that these
unctions have their supports contained in suppUκ , uniformly in ω, t . Besides, recalling the
ocal expressions for ∇

2Uκ and (∇ai ai ),

A2
κ,i (t, z) = ρ(t, z)

[
∂mlUκ (z)am

i (z)al
i (z) − Γ

j
ml(z)∂ jUκ (z)am

i (z)al
i (z)

]
,

A3
κ,i (t, z) = ρ(t, z)

[
∂lUκ (z)∂mal

i (z)am
i (z) + Γ

j
ml(z)∂ jUκ (z)am

i (z)al
i (z)

]
.

e regularize these functions using the mollifier φε and then apply the pullback-extension
perator (5.1). The next lemma is analogous to Lemma 5.1, with the proof being evident at
his stage.

emma 5.7. Fix κ ∈ A, cf. Lemma 2.3. Then

(1)
(

A1
κ,i

)
ε

(ω, t, ·),
(

A2
κ,i

)
ε

(ω, t, ·), and
(

A3
κ,i

)
ε

(ω, t, ·) belong to C∞(Rd ), for each fixed
(ω, t) ∈ Ω × [0, T ].

(2) For ε < εκ , cf. (5.4), and for any (ω, t) ∈ Ω × [0, T ], the supports of the functions in
(1) are contained in

κ (suppUκ)+ Bε(0) ⊂⊂ X̃κ .

This implies in particular that the functions
(

A1
κ,i

)
ε

(ω, t, ·),
(

A2
κ,i

)
ε

(ω, t, ·), and
(

A3
κ,i

)
ε

(ω, t, ·) can be seen as elements of C∞(M), provided that we set them equal to zero
outside of Xκ , for each fixed (ω, t) ∈ Ω × [0, T ].

(3) For any p ∈ [1, 2] and (ω, t) ∈ Ω × [0, T ],(
A1
κ,i

)
ε

(ω, t, ·)
ε↓0
−→ ρ(ω, t, ·)ai (Uκ )(·),(

A2
κ,i

)
ε

(ω, t, ·)
ε↓0
−→ ρ(ω, t, ·)∇2Uκ (ai , ai )(·),(

A3
κ,i

)
ε

(ω, t, ·)
ε↓0
−→ ρ(ω, t, ·)(∇ai ai )(Uκ )(·),

where the convergences taking place in L p(M), and(
A1
κ,i

)
ε

ε↓0
−→ ρ ai (Uκ ),

(
A2
κ,i

)
ε

ε↓0
−→ ρ ∇

2Uκ (ai , ai ),(
A3
κ,i

)
ε

ε↓0
−→ ρ (∇ai ai )(Uκ ),

in Lq
(
[0, T ]; L2(Ω × M)

)
, for any q ∈ [1,∞).
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Define for (ω, t, x) ∈ Ω × [0, T ] × M , the global functions

A j
i,ε(ω, t, x) :=

∑
κ

Lκ
(

A j
κ,i

)
ε

(ω, t, x), j = 1, . . . , 3, (5.22)

here the pullback-extension operator Lκ is defined in (5.1).
Finally, for ω ∈ Ω , t ∈ [0, T ], and z ∈ X̃κ , consider the vector field

A4
κ,i (ω, t, z) :=

{
ρ(ω, t, z)ai (Uκ )ai (z)l}

l , (5.23)

hich belongs to RS
(
T 0

1 (X̃κ )
)

and is compactly supported in κ (suppUκ) ⊂ X̃κ , uniformly
n ω, t . Following our (by now) standard procedure, we regularize A4

κ,i componentwise via
he mollifier φε, cf. (5.2). We denote the resulting object by

(
A4
κ,i

)
ε
, and observe that, by

efinition,
((

A4
κ,i

)
ε

)l
=
(
ρ ai (Uκ )al

i

)
ε
. We apply the pullback-extension operator Lκ to obtain

he compactly supported vector field

Lκ
(

A4
κ,i

)
ε
∈ SS

(
T 0

1 (M)
)
.

umming over κ ∈ A, we obtain the global object

A4
i,ε(ω, t, x) :=

∑
κ∈A

Lκ
(

A4
κ,i

)
ε

(ω, t, x).

From the very definitions of A1
i,ε and Lκ (A4

κ,i )ε, we have, for x ∈ M ,

A1
i,ε(t, x) ai (x) =

∑
κ∈A

(
A1
κ,i

)
ε

(t, x) ai (x) =

∑
κ∈A

(ρ(t) ai (Uκ ))ε (x) ai (x),

nd

Lκ
(

A4
κ,i

)
ε

(t, x) = Lκ
(

A1
κ,i (t) ai

)
ε

(x).

We define for (ω, t, x) ∈ Ω × [0, T ] × M the smooth (in x) remainder function

r∗

κ,ε,i (ω, t, x) := divh Lκ
(

A4
κ,i

)
ε

(t, x) − divh
(
(ρ(t) ai (Uκ ))ε ai

)
(x)

= divh Lκ
(

A1
κ,i (t) ai

)
ε

(x) − divh
((

A1
κ,i

)
ε

(t, x) ai (x)
)
.

bserve that for x ∈ Xκ in the coordinates given by κ , z = κ(x), we have the representation

r∗

κ,ε,i (t, z) = ∂l
(
ρ(t)ai (Uκ ) al

i

)
ε

(z) − ∂l
(
(ρ(t)ai (Uκ ))ε al

i

)
(z).

By now the following lemma should be easy to prove.

emma 5.8 (DiPerna–Lions Commutator; “divh((ρai (Uκ )) ai )”). For any q ∈ [1,∞), r∗

κ,ε,i
ε↓0
−→

in Lq ([0, T ]; L2(Ω × M)).

We define a global remainder function by summing over κ:

r∗

ε,i (ω, t, x) :=

∑
κ∈A

r∗

κ,ε,i (ω, t, x), (ω, t, x) ∈ Ω × [0, T ] × M. (5.24)

learly, r∗

ε,i
ε↓0
−→ 0 in Lq ([0, T ]; L2(Ω × M)), for all q ∈ [1,∞).

Finally, we introduce the function

A (ω, t, z) := ρ(ω, t, z)u(t, z)(U ), (ω, t, z) ∈ Ω × [0, T ] × X̃ , (5.25)
κ,u κ κ
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which has support contained in suppUκ , uniformly in ω, t . We regularize Aκ,u in z using the
ollifier φε, and then apply the pullback-extension operator (5.1) to produce a function defined

on M . We state the following lemma (without proof), noting that it is related to Lemmas 5.1
and 5.7.

Lemma 5.9. Fix κ ∈ A, cf. Lemma 2.3. Then

(1)
(

Aκ,u
)
ε

(ω, t, ·) ∈ C∞(Rd ), for (ω, t) ∈ Ω × [0, T ].
(2) For ε < εκ , cf. (5.4), and (ω, t) ∈ Ω×[0, T ], the support of

(
Aκ,u

)
ε

(ω, t, ·) is contained
in

κ (suppUκ)+ Bε(0) ⊂⊂ X̃κ .

This implies in particular that (Aκ,u)ε(ω, t, ·) can be seen as a function in C∞(M),
provided that we set it equal to zero outside of Xκ .

(3)
(

Aκ,u
)
ε

ε↓0
−→ ρ u(Uκ ) in L1

(
[0, T ]; L1(Ω × M)

)
.

We also introduce the globally defined function

Au,ε(ω, t, x) :=

∑
κ

(Aκ,u)ε(ω, t, x), (ω, t, x) ∈ Ω × [0, T ] × M.

Clearly, Au,ε
ε↓0
−→ ρ u(1) = 0 in L1

(
[0, T ]; L1(Ω × M)

)
.

5.3. Localized SPDEs and regularization

Fix κ ∈ A, κ : Xκ ⊂ M → X̃ , z = κ(x), cf. Lemma 2.3, and recall that {Uκ}κ∈A denotes
he partition of the unity introduced at the beginning of Section 5.2. By inserting into (3.2) the
est function ψ Uκ , ψ ∈ C∞(M), we obtain, P-a.s., for any t ∈ [0, T ],∫

M
ρ(t)Uκψ dVh =

∫
M
ρ0 Uκψ dVh +

N∑
i=1

∫ t

0

∫
M
ρ(s)Uκai (ψ) dVh dW i (s)

+
1
2

N∑
i=1

∫ t

0

∫
M
ρ(s)Uκ

[
(∇2ψ)(ai , ai ) + (∇ai ai )(ψ)

]
dVh ds

+

N∑
i=1

∫ t

0

∫
M
ρ(s)ψ ai (Uκ ) dVh dW i (s)

+
1
2

N∑
i=1

∫ t

0

∫
M
ρ(s)

[
ψ(∇2Uκ )(ai , ai )

+ ψ(∇ai ai )(Uκ ) + 2dψ ⊗ dUκ (ai , ai )
]

dVh ds

+

∫ t

0

∫
M

[
ρ(s)Uκ u(s)(ψ) + ρ(s)ψ u(s)(Uκ )

]
dVh ds,

(5.26)

here we have used the tensorial identity

2 2 2 2

∇ ( f g) = g(∇ f ) + f (∇ g) + d f ⊗ dg + dg ⊗ d f, f, g ∈ C (M).
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By making use of the coordinates induced by κ , and some of quantities introduced previ-
usly, Eq. (5.26) amounts to writing∫

X̃κ
ρκ (t)ψ dz̄ =

∫
X̃κ
ρ0,κψ dz̄ +

N∑
i=1

∫ t

0

∫
X̃κ
ρκ (s)ai (ψ) dz̄ dW i (s)

+
1
2

N∑
i=1

∫ t

0

∫
X̃κ
ρκ (s)

[
(∇2ψ)(ai , ai ) + (∇ai ai )(ψ)

]
dz̄ ds

+

N∑
i=1

∫ t

0

∫
X̃κ

A1
κ,i (s)ψ dz̄ dW i (s)

+
1
2

N∑
i=1

∫ t

0

∫
X̃κ

[
ψ A2

κ,i (s) + ψ A3
κ,i (s) + 2A4

κ,i (s)(ψ)
]

dz̄ ds

+

∫ t

0

∫
X̃κ

[
ρκ (s) u(s)(ψ) + Aκ,u(s)ψ

]
dz̄ ds,

(5.27)

here ρκ , ρ0,κ , A1
κ,i , A2

κ,i , A3
κ,i , A4

κ,i , Aκ,u are defined in (5.3), (5.21), (5.23), (5.25).
For convenience, set B̃κ := κ(suppUκ )+Bεκ/2(0). From now on, we consider only ε < εκ/4,

cf. (5.4). Let us introduce the following family of test functions ψz,ε (parametrized by z ∈ X̃κ

and ε < εκ/4):

ψz,ε(·) :=

{
φε(z − ·), if Bε(z) ∩ ∂ X̃κ = ∅

0, otherwise.

We observe that these functions may be seen as elements of C∞
c (Xκ ) and that, for fixed

ω, t) ∈ Ω × [0, T ], supp ((. . .)ε(ω, t, ·)) ⊂ κ(suppUκ ) + Bε(0) ⊂⊂ B̃κ , where (· · · ) denotes
ny one of the objects defined previously. Moreover, for ω ∈ Ω , t ∈ [0, T ], and z ∈ X̃κ \ B̃κ ,
e have that (· · · )ε(ω, t, z) = 0 and (· · · )ε(ω, t, z) coincides with the action of (· · · )(ω, t) on

he function ψz,ε.
We make use of ψz,ε as test function in (5.27), which results in

(ρκ )ε(t)(z) − (ρ0,κ )ε(z) = −

N∑
i=1

∫ t

0

∫
X̃κ
ρκ (s)al

i (z̄) (∂lφε) (z − z̄) dz̄ dW i (s)

+
1
2

N∑
i=1

∫ t

0

∫
X̃κ
ρκ (s) (∂lmφε) (z − z̄)am

i (z̄)al
i (z̄) dz̄ ds

−
1
2

N∑
i=1

∫ t

0

∫
X̃κ
ρκ (s)am

i (z̄)∂mal
i (z̄) (∂lφε) (z − z̄) dz̄ ds

+

N∑
i=1

∫ t

0

∫
X̃κ
ρ(s)φε(z − z̄) al

i (z̄)∂lUκ (z̄) dz̄ dW i (s)

+
1
2

N∑
i=1

∫ t

0

∫
X̃κ
ρ(s)φε(z − z̄)∂mlUκ (z̄)am

i (z̄)al
i (z̄) dz̄ ds

+
1
2

N∑∫ t ∫
˜

ρ(s)φε(z − z̄)al
i (z̄)∂lam

i (z̄)∂mUκ (z̄) dz̄ ds

i=1 0 Xκ
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−

N∑
i=1

∫ t

0

∫
X̃κ
ρ(s) (∂lφε) (z − z̄)∂mUκ (z̄)al

i (z̄)am
i (z̄) dz̄ ds

−

∫ t

0

∫
X̃κ
ρκ (s) ul(s, z̄) (∂lφε) (z − z̄) dz̄ ds

+

∫ t

0

∫
X̃κ
ρ(s)φε(z − z̄) ul(s, z̄)∂lUκ (z̄) dz̄ ds,

(5.28)

alid for z ∈ X̃κ and ε < εκ/4. Note that for the terms involving the covariant Hessian we have
sed the geometric identities appearing in Lemma 2.1. We can rewrite (5.28) in the following
pointwise) form:

(ρκ )ε(t, z) − (ρ0,κ )ε(z) = −

N∑
i=1

∫ t

0
divh Lκ

(
ρκ (s)ai

)
ε
(z) dW i (s)

+
1
2

N∑
i=1

∫ t

0

[
div2

h Lκ
(
ρκ (s)âi

)
ε
(z) − divh Lκ

(
ρκ (s)∇ai ai

)
ε
(z)
]

ds

+
1
2

N∑
i=1

∫ t

0

[
divh LκVκ,i,ε(s, z) − divh Lκ V̄κ,i,ε(s, z)

]
ds

+

N∑
i=1

∫ t

0

(
A1
κ,i

)
ε

(s, z) dW i (s) +
1
2

N∑
i=1

∫ t

0

[(
A2
κ,i

)
ε

(s, z) +
(

A3
κ,i

)
ε

(s, z)
]

ds

−

N∑
i=1

∫ t

0
divh Lκ

(
A4
κ,i

)
ε

(s, z) ds −

∫ t

0
divh Lκ (ρκ (s)u(s))ε (z) ds

+

∫ t

0
(Aκ,u)ε(s, z) ds,

(5.29)

here Vκ,i,ε, V̄κ,i,ε are respectively the regularized versions of Vκ,i , cf. (5.9), and V̄κ,i , cf. (5.10).
ext, we turn these regularized local SPDEs, one equation for each chart κ ∈ A, into a globally
efined SPDE.

.4. Global SPDE for ρε

Summing the local equation (5.29) over κ ∈ A, we arrive at the global equation

ρε(t, x) − ρ0,ε(x) = −

N∑
i=1

∫ t

0
divh (ρ(s)ai )ε (x) dW i (s)

+
1
2

N∑
i=1

∫ t

0

[
div2

h

(
ρ(s)âi

)
ε

(x) − divh
(
ρ(s)∇ai ai

)
ε

(x)
]

ds

+
1
2

N∑
i=1

∫ t

0

[
divh Vi,ε(s, x) − divh V̄i,ε(s, x)

]
ds (5.30)
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+

N∑
i=1

∫ t

0
A1

i,ε(s, x) dW i (s) +
1
2

N∑
i=1

∫ t

0

[
A2

i,ε(s, x) + A3
i,ε(s, x)

]
ds

−

N∑
i=1

∫ t

0
divh A4

i,ε(s, x) ds −

∫ t

0
divh (ρ(s)u(s))ε (x) ds +

∫ t

0
Au,ε(s, x) ds,

hich holds P-a.s., for all (t, x) ∈ [0, T ] × M , and any ε < ε0, cf. (5.4).
.5. Global SPDE for F(ρε); u ≡ 0

For simplicity of presentation, let us assume that the vector field u(t, ·) is the zero section
or all t ∈ [0, T ], and then derive the equation satisfied by the stochastic process (ω, t) ↦→

F(ρε(·, ·, x)), x ∈ M fixed. The general case (u ̸≡ 0) will be handled later.
Let us apply Itò’s formula to F(ρε(·, x)), where F ∈ C2(R) with F, F ′, F ′′ bounded on R.

n view of (5.30), we obtain

F(ρε(t, x)) − F(ρ0,ε(x)) = −

N∑
i=1

∫ t

0
F ′(ρε(s, x)) divh (ρ(s)ai )ε (x) dW i (s)

+
1
2

N∑
i=1

∫ t

0
F ′(ρε(s, x))

[
div2

h

(
ρ(s)âi

)
ε

(x) − divh
(
ρ(s)∇ai ai

)
ε

(x)
]

ds

+
1
2

N∑
i=1

∫ t

0
F ′(ρε(s, x))

[
divh Vi,ε(s, x) − divh V̄i,ε(s, x)

]
ds

+

N∑
i=1

∫ t

0
F ′(ρε(s, x))A1

i,ε(s, x) dW i (s)

+
1
2

N∑
i=1

∫ t

0
F ′(ρε(s, x))

[
A2

i,ε(s, x) + A3
i,ε(s, x)

]
ds

−

N∑
i=1

∫ t

0
F ′(ρε(s, x)) divh A4

i,ε(s, x) ds

+
1
2

N∑
i=1

∫ t

0
F ′′(ρε(s, x))

(
divh(ρ(s)ai )ε(x)

)2 ds

+
1
2

N∑
i=1

∫ t

0
F ′′(ρε(s, x))

(
A1

i,ε(s, x)
)2

ds

−

N∑
i=1

∫ t

0
F ′′(ρε(s, x)) divh (ρ(s)ai )ε (x) A1

i,ε(s, x) ds,

(5.31)

alid P-a.s., for (t, x) ∈ [0, T ] × M , and any ε < ε0.
In a nutshell, to prove Theorem 3.2, i.e., the renormalized equation (3.6), we need to send
→ 0 (after integrating in x). The task is rather nontrivial, and, before we can accomplish

hat, we need several intermediate results, which will involve crucial cancellations among some
f the terms in (5.31).

First of all, to bring (5.31) into the form of a stochastic continuity equation for F(ρε(·, x)),
1 ∑ ∫ t

Λ F(ρ ) ds and
∑ ∫ t div F(ρ ) a dW i (s).
e “add and subtract” the two terms 2 i 0 i ( ε ) i 0 h ( ε i )
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The resulting equation is

F(ρε(t, x)) − F(ρ0,ε(x)) =

13∑
ℓ=1

Iℓ(ω, t, x; ε), (5.32)

here Iℓ = Iℓ(ω, t, x; ε), ℓ = 1, . . . , 13, are defined by

I1 = −

N∑
i=1

∫ t

0
divh (F(ρε(s, x)) ai ) dW i (s),

I2 =
1
2

N∑
i=1

∫ t

0
Λi (F(ρε(s, x))) ds,

I3 = −

N∑
i=1

∫ t

0
F ′(ρε(s, x)) divh (ρ(s)ai )ε (x) dW i (s),

I4 =

N∑
i=1

∫ t

0
divh (F(ρε(s, x)) ai ) dW i (s),

I5 =
1
2

N∑
i=1

∫ t

0
F ′(ρε(s, x))

[
div2

h

(
ρ(s)âi

)
ε

(x) − divh
(
ρ(s)∇ai ai

)
ε

(x)
]

ds,

I6 = −
1
2

N∑
i=1

∫ t

0
Λi (F(ρε(s, x))) ds,

I7 =
1
2

N∑
i=1

∫ t

0
F ′(ρε(s, x))

[
divh Vi ε(s, x) − divh V̄i ε(s, x)

]
ds,

I8 =

N∑
i=1

∫ t

0
F ′(ρε(s, x)) A1

i,ε(s, x) dW i (s),

I9 =
1
2

N∑
i=1

∫ t

0
F ′(ρε(s, x))

[
A2

i,ε(s, x) + A3
i,ε(s, x)

]
ds,

I10 = −

N∑
i=1

∫ t

0
F ′(ρε(s, x)) divh A4

i,ε(s, x) ds,

I11 =
1
2

N∑
i=1

∫ t

0
F ′′(ρε(s, x))

(
divh (ρ(s)ai )ε (x)

)2 ds,

I12 =
1
2

N∑
i=1

∫ t

0
F ′′(ρε(s, x))

(
A1

i,ε(s, x)
)2

ds,

I13 = −

N∑
i=1

∫ t

0
F ′′(ρε(s, x)) divh (ρ(s)ai )ε (x) A1

i,ε(s, x) ds.

(5.33)

emma 5.10 (“I3 + I4”). With I3 and I4 defined in (5.33),
I3 + I4 = I3+4,1 + I3+4,2,
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I3+4,1 := −

N∑
i=1

∫ t

0
G F (ρε(s, x)) divh ai (x) dW i (s),

I3+4,2 := −

N∑
i=1

∫ t

0
F ′(ρε(s, x)) rε,i (s, x) dW i (s),

here G F is defined in (3.5) and rε,i is defined in (5.6).

roof. By definition, in a coordinate-free notation,

divh (ρ(s)ai )ε (x) =

∑
κ∈A

divh Lκ (ρκ (s)ai )ε (x)

=

∑
κ∈A

{
divh

(
(ρκ )ε(s)ai

)
(x) + rκ,ε,i (s, x)

}
= divh(ρε(s)ai )(x) + rε,i (s, x).

herefore, by the product and chain rules, recalling (3.5), the lemma follows. □

emma 5.11 (“I5 + I6”). With I5, I6 defined in (5.33), I5 + I6 =
∑4

ℓ=1 I5+6,ℓ,

I5+6,1 :=
1
2

N∑
i=1

∫ t

0
F ′(ρε(s, x))

[
div2

h

(
ρ(s)âi

)
ε

(x) − r̃ε,i
]

ds,

I5+6,2 := −
1
2

N∑
i=1

∫ t

0
F ′′(ρε(s, x))

(
ai (ρε(s, x))

)2 ds,

I5+6,3 :=
1
2

N∑
i=1

∫ t

0
G F (ρε(s, x))Λi (1) ds,

I5+6,4 := −
1
2

N∑
i=1

∫ t

0
F ′(ρε(s, x)) div2

h

(
ρε(s)âi

)
(x) ds,

here r̃ε,i , G F , Λi (1) are defined respectively in (5.7), (3.5), (3.4).

Proof. By (4.2) and arguing exactly as we have done several times before (i.e., expanding the
sum over κ that defines the global objects, working locally relative to a chart κ , and in the end
reaggregate), we arrive at I5 + I6 =

∑8
ℓ=1 Jℓ, where Jℓ = Jℓ(ω, t, x, ε), ℓ = 1, . . . , 8, are

defined by

J1 = I5+6,1, J2 = −
1
2

N∑
i=1

∫ t

0
F ′(ρε(s, x)) divh

(
ρε(s)∇ai ai

)
(x) ds,

J3 = −
1
2

N∑
i=1

∫ t

0
F ′(ρε(s, x))

(
divh(âi )

)
(ρε(s, x)) ds,

J4 = −
1
2

N∑
i=1

∫ t

0
F(ρε(s, x)) div2

h

(
âi
)

(x) ds,

J5 = −
1
2

N∑∫ t

F ′(ρε(s, x)) divh
(
âi (dρε(s), ·)

)
(x) ds,
i=1 0
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J6 = I5+6,2, J7 =
1
2

N∑
i=1

∫ t

0
F ′(ρε(s, x))(∇ai ai )(ρε(s, x)) ds,

J8 =
1
2

N∑
i=1

∫ t

0
F(ρε(s, x)) divh(∇ai ai )(x) ds.

y expanding divh
(
ρε(s)∇ai ai

)
= ρε(s) divh(∇ai ai )+(∇ai ai )(ρε(s)) and recalling the definition

f G F , we obtain

I5 + I6 = J1 + J3 + J4 + J5 + J6 −
1
2

N∑
i=1

∫ t

0
G F (ρε(s, x)) divh(∇ai ai )(x) ds.

onsidering (4.2) with F(u) = u and u ∈ C2(M),

div2
h

(
uâi
)

= divh
(
âi
)

(u) + u div2
h

(
âi
)
+ divh

(
âi (du, ·)

)
.

Using this identity and recalling once more (3.5),

I5 + I6 = J1 + J6 +
1
2

N∑
i=1

∫ t

0
G F (ρε(s, x))

[
div2

h(âi ) − divh(∇ai ai )
]

ds + I5+6,4.

Recalling (3.4), the third term on the right-hand side of the equality sign is I5+6,3. Since
1 = I5+6,1 and J6 = I5+6,2, this concludes the proof. □

Lemma 5.12 (“I11”). With I11 defined in (5.33), I11 =
∑4

ℓ=1 I11,ℓ,

I11,1 :=
1
2

N∑
i=1

∫ t

0
F ′′(ρε(s, x))

(
ai (ρε(s, x))

)2 ds,

I11,2 :=
1
2

N∑
i=1

∫ t

0
F ′′(ρε(s, x))

(
ρε(s, x) divh ai

)2 ds,

I11,3 :=
1
2

N∑
i=1

∫ t

0
F ′′(ρε(s, x))

(
rε,i (s, x)

)2 ds,

I11,4 :=

N∑
i=1

∫ t

0
F ′′(ρε(s, x)) divh (ρε(s, x)ai ) rε,i (s, x) ds,

I11,5 :=

N∑
i=1

∫ t

0
āi (G F (ρε(s, x))) ds,

here rε,i is defined in (5.6), āi = (divh ai ) ai , and G F is defined in (3.5).

roof. Writing

divh (ρ(s)ai )ε (x) = divh (ρε(s)ai ) (x) + rε,i (s, x) (5.34)

nd expanding
(
divh (ρε(s)ai ) (x) + rε,i (s, x)

)2, we obtain I11 = J1 + J2 + J3, where

J1 =
1
2

N∑∫ t

F ′′(ρε(s, x))
(
divh (ρε(s)ai ) (x)

)2 ds, J2 = I11,2, J3 = I11,3.
i=1 0
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By applying the product and chain rules to divh (ρεai ) and then expanding the square
divh (ρε(s)ai )

)2 into
(
ai (ρε(s))

)2
+ (ρε(s) divh ai )2

+ 2ρε(s)āi (ρε(s)),

J1 = I11,1 + I11,2 +

N∑
i=1

∫ t

0
ρε(s, x) F ′′(ρε(s, x)) āi (ρε(s, x)) ds.

ecause G ′

F (ξ ) = ξ F ′′(ξ ) and G ′

F (ρε)āi (ρε) = āi (G F (ρε)), the last term becomes I11,4. This
oncludes the proof of the lemma. □

In view of Lemmas 5.10, 5.11, 5.12 and noting the cancellation I5+6,2+I11,1 = 0, Eq. (5.32)
ecomes

F(ρε(t, x)) − F(ρ0,ε(x))
= I1 + I2 + I3+4,1 + I3+4,2 + I5+6,1 + I5+6,3 + I5+6,4

+ I11,2 + I11,3 + I11,4 + I11,5 + I7 + I8 + I9 + I10 + I12 + I13.

(5.35)

eeping an eye on the end result (3.3) (u ≡ 0) while inspecting (5.35) as well as reorganizing
nd relabeling some of the terms, we rewrite (5.35) in the form

F(ρε(t, x)) − F(ρ0,ε(x)) +

N∑
i=1

∫ t

0
divh (F(ρε(s, x)) ai ) dW i (s)

+

N∑
i=1

∫ t

0
G F (ρε(s, x)) divh ai dW i (s) =

1
2

N∑
i=1

∫ t

0
Λi (F(ρε(s, x))) ds

+
1
2

N∑
i=1

∫ t

0
G F (ρε(s, x))Λi (1) ds +

1
2

N∑
i=1

∫ t

0
F ′′(ρε(s, x))

(
ρε(s, x) divh ai

)2 ds

+

N∑
i=1

∫ t

0
āi (G F (ρε(s, x))) ds + Rε(ω, t, x),

(5.36)

here the third, fourth, fifth, sixth, seventh, and eighth terms correspond to I1, I2, I3+4,1,
5+6,3, I11,2, I11,5, respectively. The remaining terms from (5.35) have been transferred to the
emainder Rε. Modulo the “ε-subscripts” and the remainder term, we recognize (5.36) as the
ought-after renormalized equation (3.3), cf. also Remark 3.2. One of the remaining tasks is to
emonstrate that Rε → 0 as ε → 0, weakly in x and strongly in (ω, t). The remainder term
ε = Rε(ω, t, x) is

Rε =

11∑
ℓ=1

Hℓ, where H1 := I3+4,2,

H2 :=
1
2

N∑
i=1

∫ t

0
F ′(ρε(s, x))

[
div2

h

(
ρ(s)âi

)
ε

(x) − div2
h

(
ρε(s)âi

)
(x)
]

ds,

H3 := −
1
2

N∑
i=1

∫ t

0
F ′(ρε(s, x)) r̃ε,i (s, x) ds,

H4 := I11,3, H5 := I11,4, H6 := I7, H7 := I8,

(5.37)
H8 := I9, H9 := I10, H10 := I12, H11 := I13.
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Some crucial cancellations will occur also in the remainder term Rε. This is the subject
atter of the remaining lemmas in this subsection, involving the terms H2, H5, H6, and H9.

emma 5.13 (“H5”). With H5 = I11,4 defined in Lemma 5.12,

H5 = H5,1 + H5,2, where

H5,1 :=

N∑
i=1

∫ t

0
G ′

F (ρε(s, x)) divh ai rε,i (s, x) ds,

H5,2 := −

N∑
i=1

∫ t

0
F ′(ρε(s, x)) ai

(
rε,i (s, x)

)
ds,

H5,3 :=

N∑
i=1

∫ t

0
ai
(
F ′(ρε(s)) rε,i (s)

)
(x) ds,

where rε,i is defined in (5.6) and G F is defined in (3.5).

Proof. In I11,4, expand divh (ρε(s)ai ) and then use the product rule for ai , finally noting that
ξF ′′(ξ ) = G ′

F (ξ ). □

Lemma 5.14 (“H2 + H6”). Consider H2 defined in (5.37) and H6 = I7 with I7 defined in
(5.33). Then

H2 + H6 =

3∑
ℓ=1

H2+6,ℓ, where

H2+6,1 :=

N∑
i=1

∫ t

0
F ′(ρε(s, x))ai

(
rε,i (s, x)

)
ds,

H2+6,2 :=
1
2

N∑
i=1

∫ t

0
F ′(ρε(s, x))r̄ε,i (s, x) ds,

H2+6,3 :=

N∑
i=1

∫ t

0
F ′(ρε(s, x))

∑
κ∈A

Gκ,ε,i (s, x) ds,

here rε,i , r̄ε,i , Gκ,ε,i are defined respectively in (5.6), (5.13), (5.18).

Proof. By inspecting the integrands of H2 and H6, we recognize that the claim follows from
the “second order” commutator Lemma 5.5. □

Lemma 5.15 (“H9”). With H9 = I10 defined in (5.33),

H9 = H9,1 + H9,2, where

H9,1 := −

N∑
i=1

∫ t

0
F ′(ρε(s, x)) r∗

ε,i (s, x) ds,

H9,2 := −

N∑
i=1

∫ t

0
F ′(ρε(s, x)) divh

(
A1

i,ε(s, x) ai
)

ds,

∗ 1
where rε,i , Ai,ε are defined respectively in (5.24), (5.22).
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Proof. This follows from the very definition of r∗

ε,i . □

emma 5.16 (“H11”). With H9 = I13 defined in (5.33)

H11 = H11,1 + H11,2, where

H11,1 := −

N∑
i=1

∫ t

0
A1

i,ε(s, x) ai
(
F ′(ρε(s, x))

)
ds,

H11,2 := −

N∑
i=1

∫ t

0
F ′′(ρε(s, x))A1

i,ε(s, x)
(

rε,i (s, x) + ρε(s, x) divh ai

)
ds,

here rε,i , A1
i,ε are defined respectively in (5.6), (5.22).

roof. Making use of (5.34) and the product rule,

divh (ρ(s)ai )ε = rε,i (s) + ρε(s) divh ai + ai (ρε(s)) .

hus the claim follows by noting that F ′′(ρε(s)) ai (ρε(s)) = ai
(
F ′(ρε(s))

)
. □

Lemma 5.17 (“H9 + H11”). Consider H9 = I10 and H11 = I13 with I10 and I13 defined in
(5.33). Then

H9 + H11 =

4∑
ℓ=1

H9+11,ℓ, where

H9+11,1 := −

N∑
i=1

∫ t

0
F ′(ρε(s, x)) r∗

ε,i (s, x) ds,

H9+11,2 := −

N∑
i=1

∫ t

0
F ′(ρε(s, x)) A1

i,ε(s, x) divh ai ds,

H9+11,3 := −

N∑
i=1

∫ t

0
ai
(
F ′(ρε(s, x))A1

i,ε(s, x)
)

ds,

H9+11,4 := −

N∑
i=1

∫ t

0
F ′′(ρε(s, x))A1

i,ε(s, x)
(
rε,i (s, x) + ρε(s, x) divh ai

)
ds,

here r∗

ε,i , A1
i,ε, rε,i are defined respectively in (5.24), (5.22), (5.6).

roof. Note that H9+11,1 = H9,1, cf. Lemma 5.15, and H9+11,4 = H11,2, cf. Lemma 5.16.
oreover, applying the product rule to divh

(
A1

i,ε(s, x) ai
)
, we find that H9+11,2 + H9+11,3 =

9,2 + H11,1. □

Combining (5.37) and Lemmas 5.13, 5.14, and 5.17, we arrive at the following expression
or the remainder term Rε, which is a function of (ω, t, x) ∈ Ω × [0, T ] × M :

Rε = H1 + H3 + H4 + H7 + H8 + H10 + H5,1 + H5,3

+ H2+6,2 + H2+6,3 + H9+11,1 + H9+11,2 + H9+11,3 + H9+11,4,
(5.38)( )
here the difficult terms involving ai rε,i cancel out: H2+6,1 + H5,2 = 0.
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5.6. Passing to the limit in SPDE for F(ρε); u ≡ 0

We wish to send ε → 0 in the x-weak form of (5.36), analyzing the limiting behavior
f the remainder Rε, which is going to vanish, separately from the other terms in (5.36),
hich are going to converge to their respective terms in (3.6). Denote by ⟨·, ·⟩ the canonical
airing between functions on M . In the following, we will make repeated (unannounced) use
f Lemma A.6 and the (stochastic) Fubini theorem.

We begin with the convergence analysis of the remainder term.

roposition 5.18 (Convergence of the Remainder Rε). For any ψ ∈ C∞(M),
⟨
Rε, ψ

⟩
→ 0 in

L1(Ω × [0, T ]) as ε → 0.

Proof. We recall the following convergences, which are consequences of Lemmas 5.1, 5.2,
5.3, 5.4, 5.5, 5.7, and 5.8:

ρε
ε↓0
−→ ρ, ρ0,ε

ε↓0
−→ ρ0, rε,i

ε↓0
−→ 0, r̃ε,i

ε↓0
−→ 0,

r̄ε,i
ε↓0
−→ 0, r∗

ε,i
ε↓0
−→ 0, Gκ,ε,i

ε↓0
−→ 0, A1

i,ε
ε↓0
−→ ρ ai (1) = 0,

A2
i,ε

ε↓0
−→ ρ ∇

21(ai , ai ) = 0, A3
i,ε

ε↓0
−→ ρ (∇ai ai )(1) = 0,

(5.39)

hich take place in Lq
(
[0, T ]; L2(Ω × M)

)
, for any q ∈ [1,∞).

We multiply the remainder identity (5.38) by ψ and integrate over M , and then analyze the
onvergence (in ω, t) of the resulting terms separately. Consider first the term ⟨H1(ω, t), ψ⟩,

1 = −
∑

i

∫ t
0 F ′(ρε) rε,i dW i (s). Since F ′ is bounded,⏐⏐⟨F ′(ρε(ω, s)) rε,i (ω, s), ψ

⟩⏐⏐ ≤ ∥ψ∥L2(M)

F ′


∞

rε,i (ω, s)


L2(M) .

herefore, in view of (5.39) with q = 2,
⟨
F ′(ρε) rε,i , ψ

⟩ ε↓0
−→ 0 in L2(Ω×[0, T ]). Consequently,

y the Itô isometry, supt∈[0,T ]

(
E ⟨H1, ψ⟩

2
)1/2 ε↓0

−→ 0; whence

⟨H1, ψ⟩
ε↓0
−→ 0 in L2(Ω × [0, T ]).

he term ⟨H7(ω, t), ψ⟩, where H7 =
∑

i

∫ t
0 F ′(ρε) A1

i,ε dW i (s), is treated in the same way,
ielding the convergence

⟨H7, ψ⟩
ε↓0
−→ 0 in L2(Ω × [0, T ]).

Again thanks to (5.39),
⟨
F ′(ρε) r̃ε,i , ψ

⟩ ε↓0
−→ 0 in L2(Ω × [0, T ]). It is therefore straightfor-

ard to deduce

⟨H3, ψ⟩
ε↓0
−→ 0 in L2(Ω × [0, T ]),

ecalling that H3 := −
1
2

∑
i

∫ t
0 F ′(ρε) r̃ε,i ds.

The two terms
⟨
H2+6,2(ω, t), ψ

⟩
, and

⟨
H9+11,1(ω, t), ψ

⟩
, where we recall that H2+6,2 =

1
2

∑
i

∫ t
0 F ′(ρε) r̄ε,i ds and H9+11,1 = −

∑
i

∫ t
0 F ′(ρε) r∗

ε,i ds, are dealt with exactly in the same
ay, supplying⟨

H2+6,2, ψ
⟩
,
⟨
H9+11,1, ψ

⟩ ε↓0
−→ 0 in L2(Ω × [0, T ]),

We continue with ⟨H4(ω, t), ψ⟩, H4 =
1
2

∑
i

∫ t
0 F ′′(ρε) r2

ε,i ds. Since F ′′ is bounded,⏐⏐⏐⟨F ′′(ρε(ω, s))
(
rε,i (ω, s)

)2
, ψ
⟩⏐⏐⏐ ≤ ∥ψ∥ ∞

F ′′
 rε,i (ω, s)

2
,
L (M) ∞ L2(M)
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and so, once again using (5.39),
⟨
F ′′(ρε) r2

ε,i , ψ
⟩ ε↓0
−→ 0 in L1(Ω × [0, T ]). As a result

⟨H4, ψ⟩
ε↓0
−→ 0 in L1(Ω × [0, T ]).

imilarly, with H10 =
1
2

∑
i

∫ t
0 F ′′(ρε)

(
A1

i,ε

)2 ds and (5.39),

⟨H10, ψ⟩
ε↓0
−→ 0 in L1(Ω × [0, T ]).

Let us analyze
⟨
H5,1(ω, t), ψ

⟩
, H5,1 =

∑
i

∫ t
0 ρεF ′′(ρε) divh ai rε,i ds. We have⏐⏐⟨ρε(ω, s)F ′′(ρε(ω, s)) divh ai rε,i (ω, s), ψ
⟩⏐⏐

≤ ∥ψ∥L∞(M)

F ′′


∞
∥div ai∥L∞(M) ∥ρε(ω, s)∥L2(M)

rε,i (ω, s)


L2(M) .

herefore, by the Cauchy–Schwarz inequality,∫∫
Ω×[0,T ]

⏐⏐⟨ρεF ′′(ρε) divh ai rε,i , ψ
⟩⏐⏐ ds dP

≲ψ ∥ρε∥L2(Ω×[0,T ]×M)

rε,i


L2(Ω×[0,T ]×M) .

ccordingly, again making use of (5.39) with q = 2,⟨
H5,1, ψ

⟩ ε↓0
−→ 0 in L1(Ω × [0, T ]).

ikewise, for H9+11,4 = −
∑

i

∫ t
0 F ′′(ρε)A1

i,ε

(
rε,i + ρε divh ai

)
ds, we find that⟨

H9+11,4, ψ
⟩ ε↓0
−→ 0 in L1(Ω × [0, T ]).

Next we deal with the term
⟨
H5,3(ω, t), ψ

⟩
, where H5,3 =

∑
i

∫ t
0 ai

(
F ′(ρε) rε,i

)
ds. Integra-

ion by parts yields

⟨
H5,3(ω, t), ψ

⟩
= −

N∑
i=1

∫ t

0

∫
M

F ′(ρε(s, x)) rε,i (s, x) div (ψ ai ) dVh(x) ds.

ince div (ψ ai ) ∈ L∞(M), we conclude as before that⟨
H5,3, ψ

⟩ ε↓0
−→ 0 in L2(Ω × [0, T ]).

e treat
⟨
H9+11,3(ω, t), ψ

⟩
, where H9+11,3 = −

∑
i

∫ t
0 ai

(
F ′(ρε)A1

i,ε

)
ds, in a similar way,

riting

⟨
H9+11,3(ω, t), ψ

⟩
=

N∑
i=1

∫ t

0

∫
M

F ′(ρε(s, x))A1
i,ε(s, x) div(ψ ai ) dVh(x) ds

nd also in this case hammering out the convergence⟨
H9+11,3, ψ

⟩ ε↓0
−→ 0 in L2(Ω × [0, T ]).

Putting into service once more the boundedness of F ′ and the convergences (5.39), we infer

⟨H8, ψ⟩ ,
⟨
H9+11,2, ψ

⟩ ε↓0
−→ 0 in L2(Ω × [0, T ]),

here H =
1 ∑ ∫ t F ′(ρ )

[
A2

+ A3
]

ds, H = −
∑ ∫ t F ′(ρ ) A1 div a ds.
8 2 i 0 ε i,ε i,ε 9+11,2 i 0 ε i,ε h i
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Finally, we deal with
⟨
H9+11,3(ω, t), ψ

⟩
, where H9+11,3 =

∑
i

∫ t
0 F ′(ρε)

∑
κ Gκ,ε,i ds. We

learly have

⟨
H9+11,3(ω, t), ψ

⟩
=

N∑
i=1

∑
κ∈A

∫ t

0

⟨
F ′(ρε(s)) Gκ,ε,i (s), ψ

⟩
ds,

long with the following bounds on the integrands:⏐⏐⟨F ′(ρε(ω, s)) Gκ,ε,i (ω, s), ψ
⟩⏐⏐ ≤

F ′


∞
∥ψ∥L2(M)

Gκ,ε,i (ω, s)


L2(M) .

ecalling that Gκ,ε,i → 0 in L2, cf. (5.39), we obtain⟨
H9+11,3, ψ

⟩ ε↓0
−→ 0 in L2(Ω × [0, T ]).

Summarizing our findings,
⟨
Rε, ψ

⟩ ε↓0
−→ 0 in L1(Ω × [0, T ]). □

roposition 5.19 (Limit SPDE, u ≡ 0). The function F(ρ) satisfies the weak (in x) formulation
3.6), P-a.s., for all t ∈ [0, T ], for each ψ ∈ C∞(M).

roof. We multiply (5.36) by ψ ∈ C∞(M) and integrate over M . Let us write the resulting
dentity symbolically as

J1,ε − J2,ε + J3,ε + J4,ε = J5,ε + J6,ε + J7,ε + J8,ε +
⟨
Rε, ψ

⟩
.

n what follows, we analyze separately the terms Jℓ,ε = Jℓ,ε(ω, t), for ℓ = 1, . . . , 7, referring
o Proposition 5.18 for

⟨
Rε, ψ

⟩
.

The term J1,ε(ω, t) =
⟨
F(ρε(t)), ψ

⟩
is easily handled. Indeed, we have⏐⏐⟨F(ρε(ω, t)) − F(ρ(ω, t)), ψ

⟩⏐⏐ ≤ ∥ψ∥L∞(M)

F ′


∞
∥ρε(ω, t) − ρ(ω, t)∥L2(M) ,

nd hence, by (5.39), J1,ε
ε↓0
−→ ⟨F(ρ), ψ⟩ in L2(Ω × [0, T ]). Similarly, we have J2,ε(ω) =

F(ρ0,ε), ψ
⟩ ε↓0
−→

⟨
F(ρ0), ψ

⟩
in L2(Ω × [0, T ]).

Integration by parts yields

J5,ε(ω, t) =

⟨
1
2

N∑
i=1

∫ t

0
Λi (F(ρε(s))) ds, ψ

⟩
=

1
2

N∑
i=1

∫ t

0

⟨
F(ρε(s)), ai (ai (ψ))

⟩
ds.

oting that⏐⏐⟨F(ρε(ω, s)) − F(ρ(ω, s)), ai (ai (ψ))
⟩⏐⏐

≤ ∥ai (ai (ψ))∥L2(M)

F ′


∞
∥ρε(ω, s) − ρ(ω, s)∥L2(M) ,

e use again (5.39) to infer

J5,ε
ε↓0
−→

1
2

N∑
i=1

∫
·

0

⟨
F(ρ(s)), ai (ai (ψ))

⟩
ds in L2(Ω × [0, T ]).

Let us analyze the stochastic integral

J3,ε(ω, t) = −

N∑∫ t ⟨
F(ρε(s)), ai (ψ)

⟩
dW i (s),
i=1 0
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where integration by parts was used to obtain the right-hand side. Making use of the estimates
(I = 1, . . . , N )⏐⏐⟨F(ρε(ω, s)) − F(ρ(ω, s)), ai (ψ)

⟩⏐⏐
≤ ∥ai (ψ)∥L2(M)

F ′


∞
∥ρε(ω, s) − ρ(ω, s)∥L2(M) ,

he Itô isometry, and (5.39), we obtain

J3,ε
ε↓0
−→

N∑
i=1

∫
·

0

⟨
F(ρ(s)), ai (ψ)

⟩
dW i (s) in L2(Ω × [0, T ]).

he other term involving a stochastic integral is dealt with in a similar fashion. Indeed, recalling
3.5), J4,ε = J41,ε + J42,ε, where

J41,ε(ω, t) :=

N∑
i=1

∫ t

0

⟨
ρε(s)F ′(ρε(s)) divh ai , ψ

⟩
dW i (s),

J42,ε(ω, t) := −

N∑
i=1

∫ t

0
⟨F(ρε(s)) divh ai , ψ⟩ dW i (s).

s before,

J64,ε
ε↓0
−→

N∑
i=1

∫
·

0

⟨
F(ρ(s)) divh ai , ψ

⟩
dW i (s) in L2(Ω × [0, T ]).

egarding J41,ε, note that⏐⏐⟨ρε(ω, s)F ′(ρε(ω, s)) − ρ(ω, s)F ′(ρ(ω, s)), divh ai ψ
⟩⏐⏐

≤ ∥ψ div ai∥L2(M)

ρε(ω, s)F ′(ρε(ω, s)) − ρ(ω, s)F ′(ρ(ω, s))


L2(M)

nd, invoking Lemma A.4 (Appendix),ρεF ′(ρε) − ρF ′(ρ)


L2(M)
ε↓0
−→ in L2(Ω × [0, T ]).

ence, appealing once more to the Itô isometry,

J41,ε
ε↓0
−→

N∑
i=1

∫
·

0

⟨
ρ(s)F ′(ρ(s)) divh ai , ψ

⟩
dW i (s) in L2(Ω × [0, T ]).

By a similar reasoning process, we compute easily the limits

J6,ε(ω, t) =

⟨
1
2

N∑
i=1

∫
·

0
G F (ρε(s))Λi (1) ds, ψ

⟩
ε↓0
−→

1
2

N∑
i=1

∫
·

0
⟨G F (ρ(s))Λi (1), ψ⟩ ds in L2(Ω × [0, T ]),

nd, after an integration by parts,

J8,ε(ω, t) =

⟨
N∑

i=1

∫ t

0
āi
(
G F (ρε(s))

)
ds, ψ

⟩
ε↓0
−→ −

N∑∫
·⟨

G F (ρ(s)), divh (ψ āi )
⟩
ds in L2(Ω × [0, T ]).
i=1 0
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It remains to deal with J7,ε(ω, t) =

⟨
1
2

∑
i

∫ t
0 F ′′(ρε)

(
ρε divh ai

)2 ds, ψ
⟩
. Paying attention

o the estimates (i = 1, . . . , N )⏐⏐⟨(ρ(ω, s))2 F ′′(ρε(ω, s)) − (ρ(ω, s))2 F ′′(ρ(ω, s)), (divh ai )
2 ψ

⟩⏐⏐
≤
ψ(divh ai )2


L∞(M)

(ρε(ω, s))2 F ′′(ρε(ω, s)) −
(
ρ2(ω, s)

)2
F ′′(ρ(ω, s))


L1(M)

.

ince ρ2
ε

ε↓0
−→ ρ2 in L1(Ω × [0, T ] × M), cf. (5.39), and F ′′

∈ Cb(R), we can again invoke
emma A.4 to arrive at

J7,ε
ε↓0
−→

1
2

N∑
i=1

∫
·

0

⟨
F ′′(ρ(s))

(
ρ(s) divh ai

)2
, ψ
⟩

ds in L1(Ω × [0, T ]).

In view of the established convergences, it is clear that F(ρ) satisfies the weak formulation
3.6) (with u ≡ 0), P-a.s., for a.e. t ∈ [0, T ]. To improve this to all times t ∈ [0, T ]
ote that the right-hand side of (3.6) defines a continuous stochastic process. Therefore,
ω, t) ↦→

∫
M F(ρ(t))ψ dVh admits a continuous modification. This concludes the proof of the

roposition. □

As of now, we have proved our main result (Theorem 3.2) under the additional assumption
hat u ≡ 0.

.7. The general case u ̸≡ 0

Let us adapt the prior proof to the general case. First, (5.31) continues to hold provided we
dd to the right-hand side the terms

−

∫ t

0
F ′(ρε(s, x)) divh

(
ρ(s)u(s)

)
ε
(x) ds, J̃A :=

∫ t

0
F ′(ρε(s, x)) Au,ε(s, x) ds,

here the first term is (by now) easily seen to be equal to

J̃u := −

∫ t

0
divh

(
F(ρε(s, x)) u(s)

)
ds −

∫ t

0
G F (ρε(s, x)) divh u(s) ds

−

∫ t

0
F ′(ρε(s, x)) rε,u(s, x) ds,

here G F is defined in (3.5) and the remainder rε,u is defined in (5.20). In other words,
q. (5.36) for F(ρε) continues to hold with −J̃u and −J̃A added to the left-hand side of

he equality sign.
To conclude proof of Theorem 3.2 (in the general case, u ̸≡ 0), we need strong convergence

esults for the following terms related to J̃u and J̃A:

J1,ε(ω, t) :=

⟨∫ t

0
divh

(
F(ρε(s)) u(s)

)
ds, ψ

⟩
,

J2,ε(ω, t) :=

⟨∫ t

0
G F (ρε(s)) divh u(s) ds, ψ

⟩
,

J3,ε(ω, t) :=

⟨∫ t

0
F ′(ρε(s)) Au,ε(s) ds, ψ

⟩
,

J4,ε(ω, t) :=

⟨∫ t

0
F ′(ρε(s)) rε,u(s) ds, ψ

⟩
,

or any ψ ∈ C∞(M) and (ω, t) ∈ Ω × [0, T ].
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Lemma 5.20 (Convergence of Terms Related to u). Fix ψ ∈ C∞(M). Then

J1,ε
ε↓0
−→ −

∫
·

0

⟨
F(ρ(s)), u(s)(ψ)

⟩
ds in L1(Ω × [0, T ]), (5.40)

J2,ε
ε↓0
−→

∫
·

0

⟨
G F (ρ(s)) divh u(s), ψ

⟩
ds in L1(Ω × [0, T ]), (5.41)

J3,ε
ε↓0
−→ 0 in L1(Ω × [0, T ]), J4,ε

ε↓0
−→ 0 in L1(Ω × [0, T ]). (5.42)

roof. Clearly, J1,ε = −
∫ t

0

⟨
F(ρε(s)), u(s)(ψ)

⟩
ds and⏐⏐⟨F(ρε(ω, s)) − F(ρ(ω, s)), u(s)(ψ)

⟩⏐⏐
≲ψ

F ′


∞
∥u(s)∥

L2
(
T 0

1 (M)
) ∥ρε(ω, s) − ρ(ω, s)∥L2(M) .

ecalling (5.39), the latter estimate implies that
⏐⏐⟨F(ρε) − F(ρ), u(ψ)

⟩⏐⏐ ε↓0
−→ 0 in L1(Ω ×

0, T ]). Thus, invoking Lemma A.6, the claim (5.40) follows.
Similarly, looking back on (3.5),

I1(ω, s) :=
⏐⏐⟨ρε(ω, s)F ′(ρε(ω, s)) − ρ(ω, s)F ′(ρ(ω, s)), ψ divh u(s)

⟩⏐⏐
≲ψ ∥divh u(s)∥L2(M)

ρε(ω, s)F ′(ρε(ω, s)) − ρ(ω, s)F(ρ(ω, s))


L2(M) ,

I2(ω, s) :=
⏐⏐⟨F(ρε(ω, s)) − F(ρ(ω, s)), ψ divh u(s)

⟩⏐⏐
≲ψ ∥divh u(s)∥L2(M) ∥ρε(ω, s) − ρ(ω, s)∥L2(M) .

ecalling that ρε ∈ L∞
t L2

ω,x and divh u ∈ L1
t L2

x , cf. (2.6), we thus obtain∫∫
Ω×[0,T ]

I1(ω, s) ds dP ≲ψ

∫ T

0
Ĩ1(s) ds,

Ĩ1(s) :=
ρε(s)F ′(ρε(s)) − ρ(s)F ′(ρ(s))


L2(Ω×M) ∥divh u(s)∥L2(M) ,

nd ∫∫
Ω×[0,T ]

I2(ω, s) ds dP ≲ψ

∫ T

0
Ĩ2(s) ds,

Ĩ2(s) := ∥F(ρε(s)) − F(ρ(s))∥L2(Ω×M) ∥divh u(s)∥L2(M) .

he functions
ρεF ′(ρε) − ρF ′(ρ)


L2(Ω×M) and ∥F(ρε) − F(ρ)∥L2(Ω×M) converge to zero in

Lq ([0, T ]) for any q ∈ [1,∞), by Lemma A.5, and also a.e. on [0, T ] (up to subsequences).
oreover, for a.e. s ∈ [0, T ],

Ĩ1(s), Ĩ2(s) ≲ ∥ρ∥L2(Ω×M) ∥divh u∥L2(M) ∈ L1([0, T ]).

ence, by the dominated convergence theorem,
∫ T

0

∫
Ω I1(ω, s) ds dP ε↓0

−→ 0 and
∫ T

0

∫
Ω I2(ω, s)

s dP ε↓0
−→ 0. In combination with Lemma A.6, this gives (5.41).

Finally, since Au,ε
ε↓0
−→ 0 in L1(Ω × [0, T ] × M), cf. Lemma 5.9, and rε,u

ε↓0
−→ 0 in

L1
(
[0, T ]; L2(Ω; L1(M))

)
, cf. Lemma 5.6, we easily arrive at (5.42). □
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6. Uniqueness and a priori estimate

6.1. Uniqueness, proof of Corollary 3.3

The aim is to prove Corollary 3.3, relying on the renormalization property of L2 weak
olutions (Theorem 3.2). The renormalization property holds for bounded nonlinearities F :

→ R. To handle F(ξ ) = ξ 2 we employ an approximation (truncation) procedure.
To this end, pick any increasing function χ ∈ C∞

(
[0,∞)

)
such that χ (ξ ) = ξ for ξ ∈ [0, 1],

(ξ ) = 2 for ξ ≥ 2, χ (ξ ) ∈ (1, 2) for ξ ∈ (1, 2), and A0 := supξ≥0 χ
′(ξ ) > 1. Set

A1 := supξ≥0

⏐⏐χ ′′(ξ )
⏐⏐. We need the rescaled function χµ(ξ ) = µχ(ξ/µ), for µ > 0. The

elevant approximation of F(ξ ) = ξ 2 is

Fµ(ξ ) := χµ
(
ξ 2) , ξ ∈ R, µ > 0.

ome tedious computations will reveal that

Fµ ∈ C∞(R), lim
µ→∞

Fµ(ξ ) = ξ 2, sup
ξ∈R

Fµ(ξ ) ≤ 2µ, sup
µ>0

Fµ(ξ ) ≤ 2ξ 2,

sup
ξ∈R

⏐⏐F ′

µ(ξ )
⏐⏐ ≤ 2

√
2A0

√
µ, sup

µ>0

⏐⏐F ′

µ(ξ )
⏐⏐ ≤ 2

√
2A0 |ξ | , lim

µ→∞
F ′

µ(ξ ) = 2ξ,

lim
µ→∞

F ′′

µ(ξ ) = 2,
⏐⏐F ′′

µ(ξ )
⏐⏐ ≤ 8A1 + 2A0, for ξ ∈ R, µ > 0.

(6.1)

urthermore, the function G Fµ (ξ ) = ξF ′
µ(ξ ) − Fµ(ξ ), cf. (3.5), satisfies

sup
ξ∈R

⏐⏐G Fµ (ξ )
⏐⏐ ≤ (4A0 + 2)µ, sup

µ>0

⏐⏐G Fµ (ξ )
⏐⏐ ≤ 2(

√
2A0 + 1)ξ 2,

and lim
µ→∞

G Fµ (ξ ) = ξ 2, for ξ ∈ R, µ > 0.
(6.2)

inally, to prove Corollary 3.4, we will also make use of the bounds

⏐⏐G Fµ (ξ )
⏐⏐ ≤ Cχ Fµ(ξ ),

⏐⏐ξ 2 F ′′

µ(ξ )
⏐⏐ ≤ Cχ

⎧⎪⎨⎪⎩
Fµ(ξ ), |ξ | ≤ µ

ξ 2, |ξ | ∈
[√
µ,

√
2µ
]

0, |ξ | >
√

2µ,
(6.3)

or some constant Cχ that does not depend on µ.
Consider weak L2-solution ρ of (1.1) with initial datum ρ0 ∈ L2(M). Referring to

heorem 3.2, taking F = Fµ and ψ ≡ 1 in (3.6) supplies the equation∫
M

Fµ(ρ(t)) dVh =

∫
M

Fµ(ρ0) dVh −

∫ t

0

∫
M

G Fµ (ρ(s)) divh u(s) dVh ds

−

N∑
i=1

∫ t

0

∫
M

G Fµ (ρ(s)) divh ai dVh dW i (s)

−
1
2

N∑
i=1

∫ t

0

∫
M
Λi (1) G Fµ (ρ(s)) dVh ds

+
1
2

N∑
i=1

∫ t

0

∫
M

F ′′

µ(ρ(s))
(
ρ(s) divh ai

)2 dVh ds,

(6.4)

which holds P-a.s., for all t ∈ [0, T ], and for any finite µ > 0. Recall that Λi (1) equals divh āi

and ā = (div a ) a .
i h i i
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S

w

In view of the bounds on G Fµ , cf. (6.2), it is clear that the stochastic integral in (6.4) is a
zero-mean martingale, and taking the expectation leads then to

E
∫

M
Fµ(ρ(t)) dVh = E

∫
M

Fµ(ρ0) dVh − E
∫ t

0

∫
M

G Fµ (ρ(s)) divh u(s) dVh ds

−
1
2

N∑
i=1

E
∫ t

0

∫
M
Λi (1) G Fµ (ρ(s)) dVh ds

+
1
2

N∑
i=1

E
∫ t

0

∫
M

F ′′

µ(ρ(s))
(
ρ(s) divh ai

)2 dVh ds,

(6.5)

for all t ∈ [0, T ] and any µ > 0. In view of the properties of Fµ and G Fµ , cf. (6.1) and (6.2),
the assumption divh u ∈ L1([0, T ]; L∞(M)), cf. (2.7), and ρ ∈ L∞

(
[0, T ]; L2(Ω × M)

)
, it is

straightforward to use the dominated convergence theorem to send µ → ∞ in (6.5), eventually
concluding that

E ∥ρ(t)∥2
L2(M) = E ∥ρ0∥

2
L2(M) −

∫ t

0
E
∫

M
(ρ(s))2 divh u(s) dVh ds

−
1
2

N∑
i=1

∫ t

0
E
∫

M
Λi (1) (ρ(s))2 dVh ds +

N∑
i=1

∫ t

0
E
∫

M
(ρ(s))2

(
divh ai

)2 dVh ds.

etting f (t) := E ∥ρ(t)∥2
L2(M) for t > 0 and f (0) := ∥ρ0∥

2
L2(M), this identity implies

f (t) ≤ f (0) +

∫ t

0
∥divh u(s)∥L∞(M) f (s) ds + C̄

∫ t

0
f (s) ds, t ∈ [0, T ],

here C̄ =
∑N

i=1

(
1
2 ∥Λi (1)∥L∞(M) +

(divh ai
)2


L∞(M)

)
. By Grönwall’s inequality, there is a

constant C depending on C̄ , T , and ∥divh u∥L1
t L∞

x
such that

E ∥ρ(t)∥2
L2(M) ≤ C E ∥ρ0∥

2
L2(M) , t ∈ [0, T ].

This, in combination with the linearity of the SPDE (1.1), implies Corollary 3.3.

6.2. A priori estimate, proof of Corollary 3.4

Define fµ : [0, T ] → R by

fµ(t) = E esssup
r∈[0,t]

∫
M

Fµ(ρ(r )) dVh, for t > 0,

and fµ(0) =
∫

M Fµ(ρ0) dVh . By the boundedness of Fµ, note that fµ ∈ L∞ (for a forthcoming
application of Gr’́onwall’s inequality, we simply need fµ ∈ L1). Set

Mµ(t) :=

N∑∫ t

0

∫
M

G Fµ (ρ(s)) divh ai dVh dW i (s), t ∈ [0, T ].

i=1
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Kicking off from (6.4) and utilizing (6.3), it is not difficult to deduce

fµ(t) ≲ fµ(0) +

∫ t

0
∥divh u(s)∥L∞(M) E

∫
M

Fµ(ρ(s)) dVh, ds

+ E sup
r∈[0,t]

⏐⏐Mµ(r )
⏐⏐+ ∫ t

0
E
∫

M
Fµ(ρ(τ )) dVh, ds + o(1/µ), t ∈ [0, T ],

here we have taken advantage of the assumption ρ ∈ L∞
t L2

ω,x to conclude that ρ2
∈

L1(Ω × [0, T ] × M) and thus∫∫∫
{ρ2>µ}

ρ2 dVh ds dP = o(1/µ)
µ↑∞

−→ 0.

he constant hidden in “≲” depends on maxi ∥ai∥C2 and χ .
By the Burkholder–Davis–Gundy inequality (2.8),

E sup
r∈[0,t]

⏐⏐Mµ(r )
⏐⏐ ≤ 3E

(
N∑

i=1

∫ t

0

(∫
M

G Fµ (ρ(s)) divh ai dVh

)2

ds

) 1
2

(6.3)
≤ C1E

(∫ t

0

(∫
M

Fµ(ρ(s)) dVh

)2

ds

) 1
2

≤ C1E

(
esssup
τ∈[0,t]

∫
M

Fµ(ρ(τ )) dVh

∫ t

0

∫
M

Fµ(ρ(s)) dVh ds

) 1
2

≤
1
2
E esssup

r∈[0,t]

∫
M

Fµ(ρ(r )) dVh +
C1

2

∫ t

0
E
∫

M
Fµ(ρ(s)) dVh ds,

where the constant C1 is independent of µ, t (but it depends on maxi ∥ai∥C1 ). On that account,
we obtain

fµ(t) ≲ fµ(0) +

∫ t

0

(
1 + ∥divh u(s)∥L∞(M)

)
fµ(s) ds + o(1/µ), t ∈ [0, T ],

hich, in combination with the Grönwall inequality, implies

fµ(t) ≤ exp(Ct) fµ(0) + o(1/µ)
(6.3)
≤ 2 exp(Ct) ∥ρ0∥

2
L2(M) + o(1/µ),

or some µ-independent constant C . Relying on the Fatou lemma, the a priori estimate (3.7)
merges after sending µ → ∞.
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ppendix. Some technical results

We collect here several results that have been used throughout the paper (often unan-
ounced), starting with a minor generalization of a well-known commutator estimate, see

10, Lemma II.1] or [26, Lemma 2.3].
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We fix a standard Friedrichs mollifier φε (= ε−dφ(x/ε)) on Rd . In what follows, we will
onsider functions and vector fields defined on an open (bounded or unbounded) subset of the
uclidean space Rd .

We say that a triple (α1, α2, β) is (1)-admissible if α1, α2 ∈ [1,∞], 1
α1

+
1
α2

≤ 1, 1
β

=
1
α1

+
1
α2

f α1 < ∞ or α2 < ∞, and β ∈ [1,∞) is arbitrary if α1 = α2 = ∞.

emma A.1 (DiPerna–Lions). Let (Z , µ) be a finite measure space. Suppose

g ∈ Lq1
(
Z; L p1

loc(G)
)
, V ∈ Lq2

(
Z; W 1,p2

loc (G;Rd )
)
,

or some (1)-admissible triples (p1, p2, p), (q1, q2, q). Then, for any compact K ⊂ G,div (gV )ε − div (gεV )


Lq (Z;L p(K ))

≤ C ∥g∥Lq1(Z;L p1 (K )) ∥V ∥
Lq2

(
Z;W 1,p2 (K ;Rd )

) , (A.1)

or some constant C that does not depend on ε, p, g, V . Furthermore,div (gV )ε − div (gεV )


Lq (Z;L p(K ))
ε↓0
−→ 0. (A.2)

roof. For brevity, let us write cε(z, x) := div (gV )ε (z, x) − div (gεV ) (z, x), for z ∈ Z and
x ∈ G. By the classical DiPerna–Lions theory (cf. [10, Lemma II.1] or [26, Lemma 2.3]),
cε(z, ·)

ε↓0
−→ 0 in L p(K ) for µ-a.e. z ∈ Z . Besides,

∥cε(z, ·)∥L p(K ) ≲ ∥g(z, ·)∥L p1 (K ) ∥V (z, ·)∥W 1,p2 (K ;Rd ) ,

for µ-a.e. z ∈ Z. Suppose q1 < ∞ or q2 < ∞. We raise to the power q this inequality
and apply the generalized Hölder inequality to demonstrate that the resulting right-hand side
is an integrable function (i.e., a µ-dominant integrable function). Therefore, by the dominated
convergence theorem, we obtain the desired convergence result (A.2) as well the bound (A.1).
The case q1 = q2 = ∞ is treated analogously. Indeed, for any q ∈ [1,∞),

∥cε(z, ·)∥
q
L p(K ) ≲ ∥g∥

q
L∞(Z;L p1 (K ))

∥V ∥
q

L∞

(
Z;W 1,p2 (K ;Rd )

) ,
for µ-a.e. z ∈ Z, and once again we have obtained a µ-dominant integrable function and
conclude by dominated convergence. □

Remark A.1. In this paper, we apply Lemma A.1 with the finite measure space (Z , µ) equal
to (Ω ,P), ([0, T ], dt), or (Ω × [0, T ],P ⊗ dt).

Our next lemma is about the convergence of a “second order” commutator. The lemma is
taken from Punshon-Smith’s preprint [32].

We say that a triple (α1, α2, β) is (2)-admissible if α1, α2 ∈ [1,∞], 1
α1

+
2
α2

≤ 1, 1
β

=
1
α1

+
2
α2

f α1 < ∞ or α2 < ∞, and β ∈ [1,∞) is arbitrary if α1 = α2 = ∞.

emma A.2 (Punshon-Smith). Suppose

g ∈ L p1
loc(G), V ∈ W 1,p2

loc (G;Rd ),

or some (2)-admissible triple (p1, p2, p), and define

Cε [g, V ] :=
1
∂i j
(
V i V j g

)
− V i∂i j

(
V j g

)
+

1
V i V j∂i j gε.
2 ε ε 2
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For any compact subset K ⊂ G,

Cε [g, V ] −
1
2

(
(div V )2 + ∂i V j∂ j V i

)
gε

ε↓0
−→ 0 in L p(K ).

urthermore, there is a constant C independent of ε, p, g, V such thatCε [g, V ] −
1
2

(
(div V )2 + ∂i V j∂ j V i

)
gε


L p(K )

≤ C ∥V ∥
2
W 1,p2 (K ;Rd )

∥g∥L p1 (K ) .

roof. By [32, Lemma 3.2],

Cε [g, V ] −
1
2

(
(div V )2 + ∂i V j∂ j V i

)
g

ε↓0
−→ 0 in L p(K ),

nd Cε [g, V ] −
1
2

(
(div V )2 + ∂i V j∂ j V i

)
g


L p(K )

≤ C ∥V ∥
2
W 1,p2 (K ;Rd )

∥g∥L p1 (K ) ,

or some constant C independent of ε, p, g, V . The lemma follows from this, the triangle
nequality, and the bound ( 1

p =
1
p1

+
1

p2/2
)((div V )2 + ∂i V j∂ j V i

)(
g − gε

)
L p(K )

≤
(div V )2 + ∂i V j∂ j V i


L p2/2(K ) ∥g − gε∥L p1 (K ) ≲ ∥V ∥

2
W 1,p2 (K )

∥g∥L p1 (K ) . □

Let us also state the following generalization of Lemma A.2, which is analogous to
emma A.1 (the proof is also the same).

emma A.3. Let (Z , µ) be a finite measure space. Suppose

g ∈ Lq1
(
Z; L p1

loc(G)
)
, V ∈ Lq2

(
Z; W 1,p2

loc (G;Rd )
)
,

or some (2)-admissible triples (p1, p2, p), (q1, q2, q). Then, for any compact K ⊂ G,2Cε [g, V ] − gε (div V )2 − gε∂i V j∂ j V i


Lq (Z;L p(K ))

≤ C ∥g∥Lq1(Z;L p1 (K )) ∥V ∥
2
Lq2

(
Z;W 1,p2 (K ;Rd )

) ,
or some constant C that does not depend on ε, p, g, V . Furthermore,2Cε [g, V ] − gε (div V )2 − gε∂i V j∂ j V i


Lq (Z;L p(K ))

ε↓0
−→ 0.

On several occasions we use the following basic convergence lemma:

emma A.4. Fix r ∈ [1,∞] and H ∈ Cb(R). Let
{

f j
}

j≥1 be a sequence in Lr (Ω×[0, T ]×M)
onverging to f in Lr (Ω × [0, T ] × M). Then, as j → ∞,

H ( f j ) f j → H ( f ) f in Lr (Ω × [0, T ] × M).

roof. We can assume r < ∞, as the result is trivial for r = ∞. Fix an arbitrary subsequence
f
}

⊂
{

f
}

. Then, by the “inverse dominated convergence” theorem, there exists a
jn n≥1 j j≥1
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T
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sub-subsequence
{

f jnk

}
k≥1

⊂
{

f jn

}
n≥1 which converges a.e. to f , and there exists a function

g ∈ Lr that dominates
{

f jnk

}
k≥1

, see [8, Theorem 4.9]. Clearly, H ( f jnk
) → H ( f ) a.e. as

→ ∞, and

sup
k

H
(

f jnk

)
L∞

< ∞, H ( f ) ∈ L∞(Ω × [0, T ] × M).

herefore, by the dominated convergence theorem,

H
(

f jnk

)
f jnk

k↑∞

−→ H ( f ) f in Lr (Ω × [0, T ] × M).

y the arbitrariness of the fixed subsequence and the uniqueness of the limit, the original
equence must converge as well. □

We will also need an easy variant of the previous lemma.

emma A.5. Fix q ∈ [1,∞). Lemma A.4 continues to hold with Lr (Ω×[0, T ]× M) replaced
y Lq

(
[0, T ]; L2(Ω × M)

)
.

Finally, we recall (without proof) a simple result that has been utilized several times when
assing to the limit in the space-weak formulation of the SPDE.

emma A.6. Fix r ∈ [1,∞]. Let
{

f j
}

j≥1 be a sequence in Lr (Ω × [0, T ]) converging to f
n Lr (Ω × [0, T ]). Consider the functions

F j (ω, t) :=

∫ t

0
f j (ω, s) ds, F(ω, t) :=

∫ t

0
f (ω, s) ds.

hen F j → F in Lr (Ω × [0, T ]) as j → ∞.
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