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Abstract
Objective Signal intensity normalization is necessary to reduce heterogeneity in T2-weighted (T2W) magnetic resonance 
imaging (MRI) for quantitative analysis of multicenter data. AutoRef is an automated dual-reference tissue normalization 
method that normalizes transversal prostate T2W MRI by creating a pseudo-T2 map. The aim of this study was to evaluate 
the accuracy of pseudo-T2s and multicenter standardization performance for AutoRef with three pairs of reference tissues: 
fat/muscle  (AutoRefF), femoral head/muscle  (AutoRefFH) and pelvic bone/muscle  (AutoRefPB).
Materials and methods T2s measured by multi-echo spin echo (MESE) were compared to AutoRef pseudo-T2s in the whole 
prostate (WP) and zones (PZ and TZ/CZ/AFS) for seven asymptomatic volunteers with a paired Wilcoxon signed-rank test. 
AutoRef normalization was assessed on T2W images from a multicenter evaluation set of 1186 prostate cancer patients. 
Performance was measured by inter-patient histogram intersections of voxel intensities in the WP before and after normali-
zation in a selected subset of 80 cases.
Results AutoRefFH pseudo-T2s best approached MESE T2s in the volunteer study, with no significant difference shown (WP: 
p = 0.30, TZ/CZ/AFS: p = 0.22, PZ: p = 0.69). All three AutoRef versions increased inter-patient histogram intersections in 
the multicenter dataset, with median histogram intersections of 0.505 (original data), 0.738  (AutoRefFH), 0.739  (AutoRefF) 
and 0.726  (AutoRefPB).
Discussion All AutoRef versions reduced variation in the multicenter data.  AutoRefFH pseudo-T2s were closest to experi-
mentally measured T2s.
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Introduction

Cancer is expected to rank as the leading cause of death in 
the twenty-first century, with the burden of cancer incidence 
and mortality rapidly growing worldwide [1]. Among men, 

prostate cancer is the second most frequently diagnosed can-
cer in the world, and the leading cause of cancer death in 
48 countries [1].

The diagnosis of prostate cancer is initiated by pros-
tate-specific antigen measurements and determination of 
clinical stage with digital rectal examinations [2]. The 
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final diagnosis is based on the microscopic evaluation of 
prostate tissue obtained via needle biopsy [3]. With recent 
technological advancements and growing availability, 
multiparametric magnetic resonance imaging (mpMRI) is 
increasingly being used in the detection, staging and treat-
ment planning of prostate cancer [2]. MpMRI combines 
conventional anatomical T2-weighted (T2W) MRI pulse 
sequences with functional MRI pulse sequences [4], pro-
viding a non-invasive assessment of multiple physiological 
parameters such as vascularization and cellularity [5, 6].

The Prostate Imaging-Reporting and Data System 
(PI-RADS) is designed to promote standardization and 
minimize variation in the acquisition, interpretation and 
reading of mpMRI [7], where the use of T2W images 
(T2WI) has mainly been limited to qualitative evaluation 
of prostate anomalies. Its utility for quantitative analysis 
is hindered by non-standard signal intensities attributed 
to MRI scanner parameters such as the field strength, coil 
type, signal amplification and acquisition protocols [8–10]. 
Thus, signal intensity normalization of T2WI is required 
for quantitative analysis, and to enable inter- and intra-
patient comparison. Signal intensity normalization is also 
paramount for the development of robust MRI-based com-
puter aided diagnosis of prostate cancer based on machine 
learning techniques [11].

While signal intensities may vary, the intrinsic tis-
sue T2 relaxation times are expected to be independent 
of the hardware, as they reflect the absolute relaxation of 
the nuclei regardless of their relative position to the coil 
[12]. T2s are also comparatively field independent from 
1.5 to 3T [13]. Quantitative T2 imaging of the prostate has 
shown high reproducibility [14, 15], and the T2s have been 
shown to vary significantly between prostate cancer and 
normal gland tissue [12, 15]. However, currently available 
T2 mapping techniques are primarily based on spin echo 
relaxometry strategies that suffer from lengthy acquisition 
times. Fast T2 mapping techniques such as those based 
on dictionary matching have been proposed, but are not 
yet widely available and/or validated for clinical pros-
tate imaging [16–19], and quantitative T2 imaging is not 
included in the standardized clinical pathway following 
PI-RADS [7].

AutoRef is a recently developed automated method for 
prostate T2WI normalization using a pair of reference tis-
sues (fat and muscle) [20]. During normalization, the T2WI 
are rescaled to resemble the tissue T2s, and are hence named 
pseudo-T2 maps. The aim of this study was to evaluate the 
accuracy of pseudo-T2s in the prostate produced by AutoRef 
with three pairs of reference tissues, and their normalization 
performance on multicenter data. The method was, there-
fore, applied on T2WI of asymptomatic volunteers with 
experimentally measured prostate T2s and prostate cancer 
patients from a large, multicenter dataset.

Materials and methods

Subjects

A study on volunteers was performed to measure reference 
tissue T2s and to validate the accuracy of AutoRef pseudo-
T2s on a cohort with measured prostate T2s. Eight asymp-
tomatic volunteers (median age 28.5, range 26–65 years) 
were recruited for this purpose. The Regional Commit-
tee for Medical and Health Research Ethics (REC Central 
Norway) approved the study, and all volunteers signed 
informed consents prior to recruitment (REC identifier 
2014/1289).

Multicenter data were used to train the AutoRef auto-
mated reference tissue detection and to evaluate the nor-
malization performance of AutoRef on a large, hetero-
geneous dataset. A summary of the origins and usage of 
the multicenter T2WI is found in Table 1. The institu-
tional review board at Chang Gung Memorial Hospital 
approved the protocol of this study (Chang Gung Medical 
Foundation IRB 201901295B0). Informed consent was 
waived because of the retrospective nature of the study 
and the analysis used anonymous clinical data. The use 
of the in-house data was approved by the institutional 
review board and The Regional Committee for Medical 
and Health Research Ethics (REC Central Norway, iden-
tifier 2017/576, 2013/1869). All in-house patients signed 
informed consents prior to the initiation of the study. The 
remaining data came from publicly available datasets [21, 
22].

Data acquisition for asymptomatic volunteers

MR images were acquired for the eight asymptomatic vol-
unteers on a Magnetom Skyra 3T MRI system (Siemens 
Healthineers, Erlangen, Germany) at St. Olavs hospital, 
Trondheim University Hospital, Norway. Transversal MR 
images, covering the whole prostate, were acquired with 
a combination of a 16-channel body matrix coil and 1–2 
coil elements from a table integrated 32-channel spine 
coil. A multi-echo spin echo (MESE) pulse sequence 
(repetition time (TR): 2120–2450 ms, number of slices: 
7–11, resolution matrix: 256 × 256, field of view (FoV): 
250 mm × 250 mm, slice thickness: 4 mm, slice gap: 50 
percent) was acquired to measure the T2s of the prostate 
and surrounding reference tissues: muscle, pelvic bone, 
femoral heads (only the yellow bone marrow) and fat. The 
variations in TR and number of slices had to be made 
due to inter-subject variations in specific absorption rate. 
The MESE sequence was applied with 17 echoes with 
TEs ranging from 10.6 to 180.2  ms. The Generalized 
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Autocalibrating Partial Parallel Acquisition (GRAPPA) 
technique [23] was applied with an acceleration factor 
of 2, giving the MESE sequence a total acquisition time 
of 07:33  min. A T2W turbo spin echo sequence (TR: 
5330 ms, TE: 104 ms, flip angle: 160°, number of slices: 
26, resolution matrix 384 × 384, FoV: 192 mm × 192 mm 
and slice thickness: 3  mm) was acquired for seven of 
the volunteers. This sequence had an acquisition time of 
05:43 min.

Regions of interest (ROIs) were manually drawn 
(K.I.S.) within the reference tissues on the MESE images, 
as shown in Fig. 1. ROIs were drawn on all image slices 
containing these tissues, but the most superior slice was 
excluded as it appeared to have higher relative signal 
intensity. Manual segmentations of the whole prostate 
gland (WP), peripheral zone (PZ) and remaining zones 
(transitional zone (TZ), central zone (CZ) and anterior 
fibromuscular stroma (AFS)) were delineated on the T2WI 
by a radiology resident (E.S.) under the supervision of a 
radiologist with more than 10 years′ experience in pros-
tate imaging (S.L.), using ITK-SNAP [24]. To obtain the 

prostate segmentations on the MESE images, the T2WI 
were registered to the MESE images using Elastix v 4.9.0 
[25], and the segmentations were transformed accordingly. 
Image registration parameters can be found in Online 
Resource 1.

A least-squares monoexponential fit of the change in 
mean ROI intensities (I) with TE, following the equation

provided estimates of the T2s in the reference tissues and 
phantom samples [26]. To get the prostate T2 values, a T2 
map was created by a robust fitting of Eq. 1 with bi-square 
weights in each voxel, with interval restrictions [0, 500] for 
both I0 and T2. Only fits of voxels with coefficient of deter-
mination R2 ≥ 0.85 were kept for further analysis. Because of 
signal contamination due to stimulated and indirect echoes 
generated in the MESE sequence [27], only data from the 
first five even numbered echoes (with TEs of 21.2, 42.4, 
63.6, 84.8 and 106.0 ms) were included in the fitting. The 
influence of non-monoexponential decays and noise were 

(1)I(TE) = I0e
−

TE

T2 ,

Table 1  Details about the datasets used for training reference tissue detectors and evaluate the AutoRef normalization method

The full set consisted of T2-weighted images from St. Olavs hospital (in-house), Chang Gung Memorial Hospital (CGMH) and the publicly 
available datasets Promise 12 [17] and Prostate X [18]

Cohort Origin Scanner (number of 
patients)

Total 
number of 
patients

Median age (range) Acquisition dates Usage in AutoRef

In-house St. Olavs hospital, 
Trondheim Uni-
versity Hospital, 
Norway

3T Magnetom Skyra 
(339) and 3T 
Magnetom Biograph 
mMR (28) from Sie-
mens Healthineers

367 66 (45–79) May 2014–Dec. 2018 Train (n = 20), evaluate 
(n = 347)

Prostate X Radboud University 
Medical Centre, the 
Netherlands

3T Magnetom Tri-
oTim (57) and 3T 
Skyra (286) from 
Siemens Health-
ineers

343 66 (48–83) 2012 Train (n = 20), evaluate 
(n = 323)

CGMH Linkou Chang Gung 
Memorial Hospital, 
Taiwan

3T Magnetom Bio-
graph mMR (8), Tri-
oTim (23) and Skyra 
(18) from Siemens 
Healthineers; 3T 
Discovery MR750 
(278) and 1.5T 
Optima MR450w 
(179) from GE 
Healthcare; 3T 
Ingenia (10) from 
Philips Healthcare

516 69 (45–95) Feb. 2014–Dec. 2017 Evaluate

Promise 12 University College 
London, United 
Kingdom and 
Radboud University 
Medical Centre, the 
Netherlands

Siemens Healthineers 
(1.5T and 3T, all 
endorectal coil cases 
excluded)

39 N/A N/A Train
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expected to increase with increasing TE, and hence only the 
early echoes were included.

The accuracy of the T2s measured by MESE was evalu-
ated on a phantom of ten samples with known T2s estimated 
by various concentrations of  MnCl2 in the samples. All 
details are provided in Online Resource 2.

Acquisition of multicenter data

A study on multicenter data was conducted to evaluate the 
normalization performance of AutoRef on T2WI of vari-
ous origins, and whole prostate segmentations were needed 
for this purpose. The in-house manual segmentations of 
the whole prostate were performed by a radiology resident 
(E.S.) under the supervision of a radiologist (S.L.) at St. 
Olavs hospital. The segmentations for the Prostate X dataset 
were performed by imaging experts with more than 25 years′ 
combined expertise in prostate imaging and reviewed by 
radiation oncologists at Miller School of Medicine, Miami, 
FL, USA.

Manual prostate segmentations were lacking from the 
CGMH set, and these images were therefore segmented 
automatically with a model based on 3D nnU-Net v 1.5 [28] 
trained on a combination of data from Prostate X (n = 200), 
Promise 12 (n = 50) and in-house cases from the 3T Mag-
netom Skyra (n = 220). The network training, validation and 

testing were performed on a single NVIDIA Tesla P100 
PCIe 16 GB GPU in Ubuntu 18.04.4 LTS system. The net-
work was implemented with PyTorch (version 1.4.0) using 
Python (version 3.6.9). Poor prostate segmentations were 
excluded based on an in-house developed segmentation 
quality control system [29], where only segmentations with 
a quality score above or equal to 85/100 were included.

The AutoRef training set differed from the automated 
segmentation training set, and is described in Table 1. It 
consisted of T2WI from 79 patients from various centres 
and scanners: 39 cases from Promise 12 [21], 10 cases from 
Prostate X [22] acquired on a 3T Magnetom Skyra scanner, 
10 cases from Prostate X [22] acquired on a 3T Magnetom 
TrioTim scanner and 20 cases from the in-house dataset 
acquired on a 3T Magnetom Skyra scanner. These cases 
were excluded from the evaluation dataset. The AutoRef 
evaluation dataset consisted initially of T2WI from 13 MRI 
scanners located at three different institutions. Only MRI 
acquired before prostate cancer treatment were included, and 
when a patient had pretreatment MRI acquired at multiple 
time points only the first scan was included. 200 cases (out 
of 721 eligible) were excluded from the CGMH cohort due 
to poor automated prostate segmentations. The remaining 
number of patients from each scanner ranged from 1 to 319. 
For practical purposes, only scanners with more than five 
patient scans were included—leading to the exclusion of 
three scanners (n = 6 patients in total). The final evaluation 
set thus consisted of 1186 pretreatment T2WI from 1186 
prostate cancer patients, providing variations in MRI scan-
ner models, manufacturers, field strengths and acquisition 
protocols (Table 2).

The normalization method

AutoRef has previously been described by Sunoqrot 
et al. [20], where the underlying assumption is that inher-
ent T2 relaxation times of reference tissues remain approxi-
mately constant across patients and MRI systems. The 
method utilizes a pair of automatically detected reference 
tissues, with one tissue of longer T2 than the prostate and 
one of shorter. In our current study, three pairs of reference 
tissues have been evaluated: the obturator internus muscle 
(referred to as muscle) was the only chosen reference tis-
sue of lower T2 and T2W intensity than the prostate, and 
therefore, used in all reference tissue pairs. It was paired 
with either ischioanal fossa (referred to as fat,  AutoRefF), 
ischial tuberosity (referred to as pelvic bone,  AutoRefPB) 
and the yellow bone marrow in the femoral heads (referred 
to as femoral head,  AutoRefFH). The reference tissues were 
chosen based on their expected T2s, their potential to be 
automatically detected and delineated, and whether they are 
within the field of view in standard prostate T2WI. Of note, 

Fig. 1  a, b Two slices of the transversal multi-echo spin echo 
(MESE) image (TE = 106  ms) of an asymptomatic volunteer, with 
manual delineations within the reference regions. Purple indicates the 
obturator internus muscle, yellow the ischial tuberosity (pelvic bone), 
blue the ischioanal fossa (fat) and green the yellow bone marrow in 
the femoral heads. c Transversal T2-weighted image registered to the 
MESE image space, with co-registered prostate segmentation. The 
peripheral zone is red, while the remaining zones (transitional zone, 
central zone and anterior fibromuscular stroma) are green. d Trans-
versal MESE image (TE = 106  ms) with registered manual prostate 
segmentations
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 AutoRefF has been investigated in previous work [20], while 
 AutoRefFH and  AutoRefPB are new methods.

An aggregate channel features object detector (acfObject-
Detector, Matlab R2019b, MathWorks, Natick, MA, USA) 
was trained to set rectangular ROIs surrounding each refer-
ence tissue on the 2D transverse T2WI slices. To train the 
reference tissue detectors, rectangular ROIs were manually 
drawn around reference tissues on the T2WI of the AutoRef 
training set, where each tissue was marked on three slices 
(when available) per acquired MRI. The procedure and 
parameters for training the tissue detectors were kept as 
reported in [20], besides the number of iterative training 
stages (changed from 3 to 5). Tissue detector focus regions 
for muscle and fat were kept as in [20], while focus regions 
for the new reference tissues were set based on where they 
were expected to be: the anterior 75% of image rows and 
middle (25–75%) of slices for the femoral heads, and the 
posterior 75% of rows and inferior 50% of slices for the 
pelvic bone.

To normalize the T2WI, the images were first pre-pro-
cessed with N4 bias field correction [30] and rescaled to 
the 99th percentile intensity value, and the transverse slices 
were resized to 384 × 384 pixels with 0.5 × 0.5 mm in-plane 
resolution, all according to [20]. Rectangular ROIs were 
then automatically detected around all reference tissues by 
the reference tissue object detectors, and ROIs were fur-
ther processed by extracting the largest connected structure 
within the region. This was achieved by Otsu thresholding 
[31], in accordance with [20], and morphological opening 
with a disk shape of three-pixel radius (in comparison to the 
one-pixel radius used in [20]). This resulted in automatically 
detected and delineated reference tissues.

The entire 3D T2WI were then normalized by line-
arly scaling the 10th percentile of muscle tissue intensity 
(marked low) and 90th percentile of the paired reference 

tissue intensity (fat, pelvic bone or femoral head; marked 
high) to their corresponding T2s. The percentiles were used 
instead of median or mean intensity due to potential inac-
curacies in the automatic delineation of the reference tissues, 
and the reference T2s used were the reference tissue T2s 
measured in the volunteers. The linear scaling of the T2WI 
followed the equation

where Ihigh and Ilow were the 90th and 10th percentile, 
respectively. Equation 2 is constructed so that inserting a 
pixel intensity I(x, y, z) equal to Ilow will give a pseudo-T2 
equal to T low

2
 , and inserting I(x, y, z) equal to Ihigh will give a 

pseudo-T2 equal to Thigh

2
 . Any pixel intensities between the 

low- and high-intensity reference tissue will thus be scaled 
to a pseudo-T2 between T low

2
 and Thigh

2
 , and the normalized 

images are therefore called pseudo-T2 maps.

Evaluation of the normalization method

AutoRef normalization with all three pairs of reference tis-
sues was applied to the seven T2WI of the asymptomatic 
volunteers. This enabled a comparison between generated 
pseudo-T2 and T2 calculated from the MESE images in the 
whole prostate gland and in the prostate zones. The paired 
Wilcoxon signed-rank test was used to test for differences 
between pseudo-T2s and MESE T2s, with p values less than 
0.05 considered statistically significant.

In [20],  AutoRefF was compared to three other automated 
histogram-based normalization methods commonly used in 
the literature. It was then proven to be the overall best per-
forming method, followed by Gaussian kernel normalization 
[32]. For further validation of AutoRef in the multicenter 

(2)
pseudo−T2(x, y, z) =

I(x, y, z) − Ilow

Ihigh − Ilow
×

(

T
high

2
− T low

2

)

+ T low
2

,

Table 2  Variation in acquisition parameters listed for each MRI scanner in the multicenter evaluation set

T2WI T2-weighted image, TSE turbo spin-echo, PROPELLER periodically rotated overlapping parallel lines with enhanced reconstruction

Scanner Field 
strength 
(T)

Repetition time (ms) Echo time (ms) Slice 
thickness 
(mm)

In-plane resolution Flip angle T2WI protocol

St. Olavs Skyra 3 4100–10,120 101–108 3–3.5 0.5 × 0.5–0.6 × 0.6 145–160 TSE
Prostate X Skyra 3 3880–8624 101–112 3–4.5 0.3 × 0.3–0.6 × 0.6 156–160 TSE
CGMH Discovery MR750 3 3892–12,753 54–144 3–4 0.35 × 0.35–0.43 × 0.43 142 PROPELLER
CGMH Optima MR450w 1.5 4499–7765 106–126 3–4 0.31 × 0.31–0.39 × 0.39 160 PROPELLER
Prostate X TrioTim 3 4000–5870 101–103 3–5 0.56 × 0.56–0.70 × 0.70 120–150 TSE
St. Olavs Biograph mMR 3 6840 104 3 0.5 × 0.5 147–160 TSE
CGMH TrioTim 3 3913–4240 92–102 3–4 0.40 × 0.40–0.56 × 0.56 140 TSE
CGMH Skyra 3 5800–7200 101 4 0.63 × 0.63–0.69 × 0.69 160 TSE
CGMH Ingenia 3 4279–4636 90 4 0.35 × 0.35–0.39 × 0.39 90 TSE
CGMH Biograph mMR 3 3600 78–89 4 0.35 × 0.35–0.47 × 0.47 150 TSE
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dataset, Gaussian kernel normalization was therefore evalu-
ated in comparison with AutoRef. All T2WI used in the 
multicenter evaluation were pre-processed with N4 bias field 
correction [30].

Gaussian kernel normalization and the three versions of 
AutoRef were applied on all T2WI of the multicenter evalu-
ation set (n = 1186), and the mean prostate intensity before 
and after normalization was calculated for each T2WI. His-
tograms of the mean prostate intensities in the multicenter 
dataset before and after normalization were assessed to 
evaluate the effect of normalization.

Histogram intersections of whole prostate voxel intensi-
ties were also used as a measure of multicenter normaliza-
tion performance: Due to the large sample size, eight cases 
were randomly chosen from each of the ten scanners in 
the multicenter dataset, giving an evaluation subset of 80 
cases. An equal number of cases from each scanner was 
selected to avoid bias, and the number eight was chosen as 
this was the lowest number of patients from one scanner. 
For each patient, histograms of the whole prostate voxel 
intensities were created for the original and each normal-
ized T2WI. The intersected histogram area between all pos-
sible combinations of two patients in the evaluation subset 
was calculated before and after normalization, as described 
in [20]. The intersected areas could be between 0 and 1, 
where 1 would indicate two fully overlapping histograms 
and hence identical prostate intensity distributions between 
two patients.

The Mann–Whitney U test was applied to test for a sig-
nificant difference between the prostate pseudo-T2s for each 
combination of AutoRef versions (i.e.,  AutoRefF‒AutoR-
efFH,  AutoRefF‒AutoRefPB and  AutoRefFH‒AutoRefPB). 
Mann–Whitney U test was also applied to test for signifi-
cant differences in prostate intensities in scanner pairs, for 
all normalization methods and the un-normalized images. 

With ten scanners, this test was applied on all the 45 possible 
scanner pairings.

Results

Asymptomatic volunteers

The reference tissue T2 relaxation times obtained 
from MESE, averaged over eight volunteers, were: 
137.0 ± 2.7 ms for femoral head, 37.4 ± 0.9 ms for muscle, 
98.7 ± 7.6 ms for pelvic bone and 129.7 ± 1.9 ms for fat.

Table  3 shows the mean MESE T2s and AutoRef 
pseudo-T2s in the prostate zones, with p values from the 
paired Wilcoxon signed-rank test and mean absolute dif-
ferences with standard deviations.  AutoRefFH was the 
only version where no significant differences were found 
between pseudo-T2s and MESE T2s in all zones, and was 
the method producing the highest pseudo-T2s. The simi-
larity between prostate intensities of an  AutoRefFH pseudo-
T2 map and a MESE T2 map can be seen in Fig. 2, with 
the original bias field corrected T2WI for comparison. 

Multicenter evaluation

An example of a set of detected reference tissues is shown 
in Fig. 3. Mean scanner prostate pseudo-T2s from all three 
AutoRef versions applied on the multicenter evaluation 
set are reported in Table 4, indicating a reference tissue 
dependency on the pseudo-T2 similar to what was seen 
for the volunteers:  AutoRefPB provided the lowest pseudo-
T2, and  AutoRefFH the highest. The Mann–Whitney U test 
showed a significant difference between the pseudo-T2s 
between all AutoRef versions (p < 0.001).

Table 3  The measured prostate T2 relaxation times with standard deviations from the multi-echo spin echo (MESE) imaging sequence and the 
prostate pseudo-T2s from AutoRef with different reference tissue pairs, averaged over seven volunteers

Mean absolute differences (MD) between respective pseudo-T2s and MESE T2s are reported with standard deviations. All AutoRef versions 
used muscle as low-intensity reference tissue, and high-intensity reference tissues were:  AutoRefFH: femoral head,  AutoRefF: fat and  AutoRefPB: 
pelvic bone
PZ peripheral zone, TZ transitional zone, CZ central zone, AFS anterior fibromuscular stroma, pT2 Pseudo-T2
p values reported are from the paired Wilcoxon signed-rank test, testing for difference between AutoRef pseudo-T2s and the MESE T2s

MESE AutoRefFH AutoRefF AutoRefPB

T2 (ms) pT2 (ms) p value MD (ms) pT2 (ms) p value MD (ms) pT2 (ms) p value MD (ms)

PZ 87.4 ± 6.9 85.2 ± 5.5 0.69 2.2 ± 8.2 81.8 ± 4.9 0.11 5.6 ± 8.0 79.4 ± 6.7  < .05 8.0 ± 8.3
TZ, CZ and AFS 71.5 ± 3.7 68.9 ± 3.4 0.22 2.6 ± 4.2 66.7 ± 2.7  < .05 4.8 ± 3.8 65.2 ± 5.1  < .05 6.3 ± 5.5
Whole prostate 78.7 ± 4.9 76.1 ± 4.3 0.30 2.5 ± 5.7 73.4 ± 3.4 0.08 5.3 ± 5.4 71.6 ± 6.2  < .05 7.1 ± 6.5
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Table 4 also lists the number of cases where the object 
detector failed, establishing pelvic bone as the most sta-
bly detected high-intensity reference tissue with no failed 
cases. Second to pelvic bone came the muscle detector, 
where all but one failed case came from a single scanner 
(Optima MR450w). Fat and femoral head both failed in 
18/1186 cases (1.5%), but the failed femoral head cases 
were to a larger degree overlapping with the failed muscle 
cases.

Optima MR450w was the only 1.5 T scanner of the evalu-
ation set, which could explain the abundance of failed tissue 
detector cases from this scanner. Although the tissue detec-
tors’ training set consisted of some 1.5 T cases, it mostly 
consisted of 3T cases—which also is the recommended 
choice for prostate cancer detection scans [7]. This could 
indicate that AutoRef performs best on cases from 3T MRI 

scanners, although a 91% success rate for the muscle detec-
tor and 92% for the femoral head detector on the 1.5 T evalu-
ation cases is still deemed acceptable. Alongside Discovery 
MR750, Optima MR450w was also the only scanner uti-
lizing a periodically rotated overlapping parallel lines with 
enhanced reconstruction (PROPELLER) T2W sequence, 
which is another possible explanation for the abundance of 
failed cases from these two scanners.

To enable direct comparisons between all the normali-
zation methods in the analyses presented below, all cases 
where the reference tissue detector had failed in any of 
the AutoRef versions were excluded. The total number of 
excluded cases was 41, meaning that the reported pseudo-
T2s are based on a set consisting of 1145 T2WI in total.

The scanner mean prostate pseudo-T2 differed between 
scanners. For example, the range in mean pseudo-T2 for 
 AutoRefFH was from 75.0 ± 4.7 ms (CGMH Biograph mMR) 
to 92.8 ± 7.3 ms (CGMH Discovery MR750). This differ-
ence could be caused by variations in acquisition protocols 
that the normalization procedure could not fully handle, 
or there could be biological differences between patient 
cohorts. Prostate cancer and benign abnormalities such as 
chronic prostatitis, atrophy, scars and hyperplasia are all 
shown to influence the T2W signal intensity [2], and thus 
some variation in mean prostate pseudo-T2 between patients 
is expected.

Figure 4 shows the histogram of mean prostate intensi-
ties in the multicenter dataset, with accumulative contribu-
tions from each scanner coloured. It can be observed that 
normalization reduced scanner dependencies and made the 
mean prostate intensities approach a normal distribution. In 
addition, Mann–Whitney U tests showed that 42 out of 45 
scanner pairs had significant different median whole prostate 
intensities for the original data, whereas this was reduced for 
Gaussian kernel normalization (27/45),  AutoRefF (26/45), 
 AutoRefFH (30/45), and  AutoRefPB (24/45).

The calculated histogram intersections in Fig. 5 for 
the 80 cases in the evaluation subset showed that all 

Fig. 2  a Original bias field corrected T2-weighted image (T2WI), 
b  AutoRefFH pseudo-T2 map and c multi-echo spin echo (MESE) 
T2 map for one volunteer. The original T2WI and the pseudo-T2 
map were window levelled from their minimum to maximum image 

intensity, while the MESE T2 map was kept on the same level as the 
pseudo-T2 map ([16 ms, 212 ms]). The T2WI was registered to the 
MESE image space before normalization

Fig. 3  Reference tissues automatically detected and delineated in 
AutoRef for one patient from the publicly available dataset Prostate 
X [22]. a is the pelvic bone, b is the fat, c is the muscle and d is the 
femoral head
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normalization methods reduced signal intensity varia-
tion to a similar extent, with median histogram inter-
sections 0.505 (original), 0.739  (AutoRefF), 0.738 
 (AutoRefFH), 0.726  (AutoRefPB) and 0.724 (Gaussian 

kernel normalization). All AutoRef methods had a median 
histogram intersection slightly higher than the Gaussian 
kernel normalization.  AutoRefF had the best median per-
formance, shortly followed by  AutoRefFH.

Table 4  Mean prostate pseudo-T2 with standard deviation after all three versions of AutoRef normalization

The number of patients where normalization failed due to lack of either reference tissue is reported in parenthesis

Scanner Pseudo-T2 (ms) Failed muscle Failed fat Failed 
femoral 
head

Failed 
pelvic 
bone

Num-
ber of 
patientsAutoRefF AutoRefFH AutoRefPB

St. Olavs Skyra 84.7 ± 7.7 (3) 88.0 ± 8.1 (0) 72.3 ± 7.2 (0) 0 3 0 0 319
Prostate X Skyra 81.6 ± 7.0 (1) 84.5 ± 7.5 (1) 70.7 ± 6.3 (0) 0 1 1 0 276
Prostate X TrioTim 84.1 ± 7.8 (1) 89.5 ± 7.3 (0) 73.2 ± 7.3 (0) 0 1 0 0 47
St. Olavs Biograph mMR 80.0 ± 7.4 (0) 81.2 ± 6.6 (0) 67.1 ± 5.3 (0) 0 0 0 0 28
CGMH Discovery MR750 87.3 ± 6.7 (10) 92.8 ± 7.3 (3) 72.1 ± 5.2 (1) 1 10 2 0 278
CGMH Ingenia 78.7 ± 7.3 (0) 84.5 ± 8.6 (0) 72.9 ± 8.2 (0) 0 0 0 0 10
CGMH Optima MR450w 75.0 ± 6.4 (16) 78.2 ± 7.0 (22) 66.4 ± 6.3 (16) 16 2 15 0 179
CGMH Biograph mMR 72.0 ± 5.0 (0) 75.0 ± 4.7 (0) 62.7 ± 5.1 (0) 0 0 0 0 8
CGMH TrioTim 83.0 ± 6.7 (1) 88.1 ± 7.7 (0) 71.8 ± 6.7 (0) 0 1 0 0 23
CGMH Skyra 82.5 ± 7.6 (0) 86.0 ± 7.5 (0) 71.5 ± 7.1 (0) 0 0 0 0 18
Entire dataset 82.8 ± 8.1 (32) 86.7 ± 8.9 (26) 70.9 ± 6.7 (17) 17 18 18 0 1186

Fig. 4  Histograms of mean prostate intensities in the multicenter cohort, with fitted normal distributions. The contributions from each MRI 
scanner are coloured and stacked. The histograms from the three AutoRef methods are on the same scale. T2WI T2-weighted image
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Discussion

Signal intensity normalization is necessary to reduce het-
erogeneity in T2WI to enable inter-patient comparison and 
quantitative analysis of the images, especially between 
images from different institutions and scanners. This is para-
mount for the development of computer aided diagnosis of 
prostate cancer based on mpMRI [11]. AutoRef is a fully 
automated normalization method recently developed, uti-
lizing fat and muscle as reference tissues  (AutoRefF) [20]. 
It is openly accessible1 and available to all MRI centres as 
it requires no additional MRI acquisitions. In the current 
study, AutoRef was evaluated with three pairs of reference 
tissues, where  AutoRefPB and  AutoRefFH were new methods. 
No significant differences were found between  AutoRefFH 
pseudo-T2s and MESE T2s in all prostate zones for seven 
volunteers, showing that AutoRef pseudo-T2s can accu-
rately represent measured T2s. Inter-patient variations in 
prostate intensities in the multicenter dataset decreased with 
all AutoRef versions, and all four reference tissues under 
investigation were stably detected in the multicenter cohort. 
Mann–Whitney U test showed that AutoRef reduces signifi-
cant differences in prostate intensities between scanner pairs.

Accuracy of reported T2 relaxation times

T2 mapping can be achieved with a range of MR sequences. 
A set of spin echo (SE) pulse sequences acquired with varied 
TEs is regarded as the most basic T2 mapping technique 

[33], but requires long acquisition times in the order of tens 
of minutes [27]. In addition to affecting patient comfort, this 
makes the scans prone to motion artifacts [27], diffusion 
effects [34], chemical exchange [35] and J-coupling [36]. 
MESE pulse sequences such as the CPMG sequence [37] are 
typically used to measure T2 for clinical applications with 
scan time constraints [38]. These sequences sample multiple 
TE points along the T2 decay for each k-space line during a 
single repetition time, leading to significantly shorter scan 
times [27] and a significant reduction of the diffusion effects 
[27, 34, 38]. They are, however, subject to perturbations 
from B1 + and B0 inhomogeneities causing strong signal 
contamination with stimulated and indirect echoes [27, 38], 
and have shown considerable inaccuracy in the estimation of 
T2 [39, 40]. The signal contamination yields asymmetry in 
signal amplitude between odd and even echoes in the echo 
train, and can to some extent be adjusted for by only includ-
ing the even echoes in analysis [27, 41, 42].

For the phantom experiments in Online Resource 2, the 
even-echo analysis of the MESE sequence resulted in meas-
ured T2 relaxation times close to the known T2s. However, 
MESE was observed to overestimate samples with T2 below 
148 ms (with root mean square error of 4.1 ms for samples 
with T2 ∈ [30 ms, 148 ms]), and increasingly underestimate 
samples with T2 above 148 ms. All tissue T2s measured in 
this study were below 148 ms, and the phantom results thus 
indicated that the MESE T2 might be slightly overestimated 
for these tissues.

The prostate T2s found in this study were similar to 
what others have reported at 3T [18, 39, 43]. For the refer-
ence tissues, Bojorquez et al. [40] found in their literature 
review large variations in reported tissue T2s at 3T. Fat 
was reported to be between 41 and 371 ms, bone marrow 
between 40 and 160 ms and muscle between 27 and 44 ms, 
suggesting that consensus on reference T2s is not yet estab-
lished [40]. The reference tissue T2s reported in this work 
were within the intervals reported in [40]. The low standard 
deviations observed between subjects in this work indicate 
that the large variation in T2s observed in the literature is 
mostly a result of measurement protocol.

Common denominators for the listed studies, including 
this work, are a limited number of asymptomatic volunteers 
and a relatively young study population, possibly leading 
to biased prostate and reference tissue T2s. Younger men 
have been shown to exhibit lower T2W signal intensity in 
normal prostatic peripheral zone [44], and the average T2 
of the whole prostate is expected to change with age due to 
extension of the transitional zone due to benign prostatic 
hyperplasia [2]. The T2 of various muscles has in particular 
been shown to increase with ageing [46–48], while the lit-
erature is scarce on age related changes in T2 for ischioanal 
fossa, ischial tuberosity and femoral head. Confirmation of 

Fig. 5  Boxplots of the intersected histogram areas for all patient pairs 
in the evaluation subset. Median histogram intersections were 0.505 
(original), 0.739  (AutoRefF), 0.738  (AutoRefFH), 0.726  (AutoRefPB) 
and 0.724 (Gaussian kernel normalization)

1 Publicly available on GitHub: https:// github. com/ ntnu- mr- cancer/ 
AutoR ef.

https://github.com/ntnu-mr-cancer/AutoRef
https://github.com/ntnu-mr-cancer/AutoRef
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the T2s in a multicenter, multivendor clinical cohort would 
consequently be the next necessary step.

Comparison of pseudo‑T2s to MESE T2

The AutoRef pseudo-T2 of the prostate was evidently 
dependent on choice of reference tissue. The AutoRef nor-
malization equation (Eq. 2) is expected to overestimate the 
real T2, as shown in the phantom experiments in Online 
Resource 2, where overestimation increases with T2 of the 
high-intensity reference tissue.  AutoRefFH is, therefore, in 
the simplified phantom experiment expected to give the 
most overestimated pseudo-T2, and  AutoRefPB is expected 
to provide the pseudo-T2s closest to the real T2. However, 
 AutoRefFH pseudo-T2s came closest to measured T2 in vol-
unteers, which substantiates the assumption that the MESE 
sequence can overestimate T2.

As the pseudo-T2 variation between the three AutoRef 
methods is somewhat systematic, it could potentially be 
adjusted for by modelling an expected pseudo-T2 based on 
reference tissues and scanner parameters such as TE and 
TR. The pseudo-T2 modelling in the phantom experiments 
in Online Resource 2 was based on the simple spin echo 
sequence, and thus only an approximation to the accelerated 
T2W sequences used to acquire prostate MRI in a clinical 
setting. In the multicenter evaluation set, an accurate adjust-
ment would require detailed knowledge on how T2WI signal 
intensities depend on variations in protocols and scanner 
parameters. These dependencies were not investigated in 
this work.

Multicenter evaluation

The reference tissue object detectors succeeded in stably 
detecting all reference tissues across the multicenter cohort. 
The pelvic bone detector succeeded in all cases, while the 
highest proportion of failed cases were seen for the fat and 
femoral head detectors, with only 1.5% failed cases. AutoRef 
is, therefore, expected to work for most T2WI. When includ-
ing cases from the CGMH cohort, however, only cases with 
an accepted automated prostate segmentation were included. 
This led to an exclusion of 28% of the available cases, which 
may have led to a loss of heterogeneity in the multicenter 
dataset. Including poor segmentations would, on the other 
hand, give inaccurate prostate intensities and prohibit inter-
patient comparisons.

Based on this study, it cannot be concluded which 
AutoRef version provided prostate pseudo-T2s closest to the 
ground truth for the multicenter dataset, as the prostate T2s 
in this cohort were not measured. Based on the results from 
the volunteers,  AutoRefFH is expected to provide pseudo-T2 
closest to MESE T2, and thus appeared to be the best choice 

of reference method with median histogram intersections on 
par with the best performing  AutoRefF.

When comparing overall mean multicenter pseudo-T2s to 
the volunteer pseudo-T2s,  AutoRefF and  AutoRefFH yielded 
higher mean pseudo-T2s in the multicenter cohort than for 
volunteers, even for the Skyra MR system, which was also 
used for the volunteer study.  AutoRefPB, however, yielded 
similar mean pseudo-T2 in both cohorts. The variation in 
pseudo-T2 could originate from biological variations that 
should be expected, or be due to the age difference between 
volunteers and patients, as both the prostate and reference 
tissues undergo changes with age that can affect MRI signal 
intensity [2, 45].

Limitations

There are other potential reference tissues available than the 
ones chosen for this work. Using the urinary bladder as ref-
erence tissue has been shown to improve the performance 
of T2WI signal intensity for differentiation between prostate 
cancer and normal tissue [49], but the bladder was not a 
suitable reference tissue in this study as the T2 relaxation 
time of urine was too long to measure with our MESE pulse 
sequence. In addition, the various shapes and sizes of the 
bladder made it challenging to detect automatically. Other 
promising reference tissues are the pubic symphysis, gluteus 
maximus muscle, obturator externus muscle and the body of 
the pubis. However, these tissues are of similar T2WI inten-
sity as the four reference tissues already under investigation. 
As AutoRef with these four tissues performed well, it was 
not deemed necessary to investigate more tissues.

A vast number of parameters could be fine-tuned in 
AutoRef to enhance performance. In this work, most param-
eters were the same as, or close to, those reported in [20]. 
The parameters for training the reference tissue detectors 
(such as number of training stages) and extraction of ROIs 
(morphological opening structure, number of evaluated 
slices) were identical for all reference tissues, apart from 
focus regions for the reference tissue detectors. It is likely 
that the various tissues would benefit from varying AutoRef 
parameter settings, and a systematic optimization of the pre- 
and post-processing settings on a validation set could be 
attempted to further enhance performance.

The diagnostic potential of image normalization with 
AutoRef has not been investigated in this study. The differ-
ence in T2 between prostatic carcinoma and healthy tissue 
has in other studies been reported to be between 30 and 
49 ms in the peripheral zone [14, 15, 50] and 9–11 ms in 
the transitional zone [15]. This indicates that the AutoRef 
pseudo-T2s might be used for separation of cancer tissue, 
as the reported T2 variation between healthy and malignant 
tissue is larger than the mean absolute difference between 
MESE T2 and pseudo-T2s. In [20], it was in addition shown 
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that applying  AutoRefF resulted in a significantly higher area 
under the receiver operating characteristic curve (AUC) for 
classification of histologically verified malignant lesions 
versus healthy prostate tissue, compared to the original un-
normalized T2WI. A similar assessment of  AutoRefFH and 
 AutoRefPB could be subject for further research.

Conclusion

In conclusion, reference tissue and prostate T2 relaxation 
times were measured in asymptomatic volunteers with sat-
isfactory accuracy. All reference tissues under investiga-
tion were successfully detected automatically in most cases 
(96.5%) of the multicenter T2W MRI, and all AutoRef ver-
sions succeeded in reducing inter-patient variability. In the 
volunteer study, only  AutoRefFH provided pseudo-T2s show-
ing no significant difference to the MESE T2s. Its ability to 
standardize multicenter data was comparable to  AutoRefF, 
the best performing method in this study.  AutoRefFH can, 
therefore, be considered the best choice for normalization 
of T2W images of the prostate.
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