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Abstract

Riverscapes are under pressure from anthropogenic development, and this challenges

the conservation of biodiversity, hydromorphology and land types. To assess changes

and restoration potential, an understanding of alteration to rivers overtime is necessary.

This can be challenging due to lack of data, shortcomings in methods and data formats

that are not easily incorporated into the assessment process. Historical aerial imagery

exists for rivers prior to modification, but the manual classification is time-consuming.

Deep learning is increasingly used in image processing, and here we outline how a con-

volutional neural network can be used to automatically classify black and white aerial

imagery from the database of the Norwegian mapping authority into habitat types. It is

demonstrated how historical imagery can be used to develop maps that can be

processed further in a GIS to evaluate natural versus anthropogenic changes over time.
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1 | INTRODUCTION

Pressures on rivers and adjacent landscapes due to increasing anthro-

pogenic development alters rivers and the river environment and

influences riverine and riparian habitat along rivers (Grill et al., 2019;

Grizzetti et al., 2017; Wohl, 2019). Multiple stressors are currently

influencing rivers such as altering flow patterns and creating barriers

through hydropower development, restricting river channels by

dredging and the development of flood management structures,

gravel mining, road and railroad development and urbanization. These

developments lead to habitat loss, fragmentation of ecosystems, a

reduction in biodiversity and have impacts on the ecosystem services

provided by rivers, therefore mitigation and restoration are proposed

(Wohl, 2019). The need for restoration is further emphasised by the

United Nations (UN) declaring the coming decade as the decade of

ecosystem restoration (UN, 2020).

The EU Water Framework Directive (WFD) has been

implemented to ensure sustainable use of river basin ecosystems and

address restoration and mitigation measures where necessary to

ensure healthy riverine ecosystems. Asa valuable basis for ecosystem-

based management of water bodies in Norway and assessment of the

restoration potential, historic aerial photos prior to land-use alter-

ations are considered a valuable baseline. This is crucial to the design

of relevant mitigation measures and ensures sustainable management

in line with the best available management practise as proposed in the

Norwegian white paper on biodiversity (Anon, 2016).

Understanding of the development and the importance of dynam-

ics within a river landscape over time rely on the availability of data on

historical states of the river. Such data can be difficult to utilise, and

methods for pre-processing historical data into a format that is suitable

for geographical analysis are therefore needed. Gurnell, Downward,

and Jones (1994) investigated spatial and temporal planform changes in
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the River Dee using historical maps in a GIS. Garcia, Dunesme, and

Piegay (2019) used historical topographic maps and a map classification

toolbox to extract river features from four different countries and

assessed changes to the rivers over time. Using historical aerial imagery

which in many cases is available from before the satellite age, is an

interesting source for both spatial and temporal changes in river and

floodplain features. Gurnell (1997) used aerial photographs to investi-

gate channel changes over a period of 115 years from the River Dee

using a GIS to analyse pictures. Zanoni, Gurnell, Drake, and

Surian (2008) used a combination of topographic maps and a series of

aerial photographs to study the development of a braided river in Italy.

They georeferenced and then digitized river features for further hydro-

morphological analysis. For shorter rivers or small spatial scale studies,

a manual approach may be feasible. However, for larger rivers or

regional analysis, an automated procedure will be required to manage

the large amounts of data in a realistic time scale.

Archives of historical aerial photos are available in many countries

and for large parts of Norwegian river basins. However, they are

rarely used as the basis for the assessment of rivers, and it can be

time-consuming if manual segmentation and GIS-analysis are needed

(Åström, Ødegaard, Hanssen, & Åstrøm, 2017; Bergan &

Solem, 2018). The potential for a multitude of assessments related to

changes in river structure both on a temporal and spatial scale is pos-

sible if automated classification methods could be applied.

The recent advancement of artificial intelligence has been attrib-

uted to the advances of deep learning (LeCun, Bengio, & Hinton, 2015),

the rapid increase in computational power and the availability of large

datasets. Deep learning has been shown to be powerful for perception

tasks, and especially for image analysis. Krizhevsky, Sutskever, and

Hinton (2017) used deep convolutional neural networks for classifying

images and reduced the top-5 error rate of the ImageNet challenge

from 26.1 to 15.3% (IMAGENET, 2012). Deep convolutional neural net-

works have also been used for image segmentation (Ronneberger,

Fischer, & Brox, 2015). In the past, several image regional segmentation

methods have been proposed including clustering, the Watershed algo-

rithm, and graph-based algorithms. These methods find consistent

regions or region boundaries. However, our goal is not only to subdivide

images into different segments but also to determine the class of each

segment. From which it follows that each pixel in an image is assigned a

class label. In other words, our task is semantic segmentation (Zhang

et al., 2018). We have investigated the use of traditional methods for

solving the task, these methods were not able to provide an intuitive

segmentation for the examples. While several methods to address the

problems we encounter exist (Couprie, Najman, & Lecun, 2013;

Pinheiro & Collobert, 2014; Ronneberger et al., 2015), these

approaches required a considerable amount of fine-tuning. In addition,

given that the deep convolutional networks are state-of-the-art in

semantic segmentation (Long, Shelhamer, & Darrell, 2015) and out-

perform traditional models, we decide to proceed with deep learning

approaches.

In this paper, we demonstrate the applicability of deep learning to

determine river and riparian classes from historical aerial imagery. We

present the network structure, training process, output data and their

potential for analysis of changes in riverscapes. The method is suitable

for processing large datasets, and since it operates on black and white

images it can handle historical pictures taken prior to many of the

most significant land-use changes. This is important for understanding

the long historical development of river systems and how they should

be managed in the future.

2 | MATERIALS AND METHODS

2.1 | Data

The Norwegian mapping authority provided a database of aerial imag-

ery of the mainland of Norway (www.norgeibilder.no) covering both

recent and historic pictures. Most historical datasets are in black and

white, and we converted newer colour pictures to black and white to

utilise the same algorithm for all datasets. All images are

georeferenced in the database and we used images projected into

EUREF89-UTM33N for all analysis.

2.2 | Data sets and study sites

The datasets used are shown in Table 1. Each source image down-

loaded from the Norwegian mapping authority has a size of

6,000 � 8,000 pixels. To prepare the images for the deep learning

algorithms, they were subdivided into smaller images with a size of

512 � 512 pixels. Small images with more than 10% of unknown clas-

ses or only one single class were filtered out. As deep neural networks

belong to supervised learning methods, they need labelled examples

to learn. Hence, a subset of all images was manually annotated in a

GIS system to form the initial training and the test datasets. Regions

of the images were annotated as six different classes (Table 2). As

there are differences in the intensity value of the source images, we

normalized the intensity value with regards to average intensity value

of all images in the training dataset. The test set was also normalized

based on the average intensity of the training dataset. The pixels of

class “unknown” was changed to the class of the nearest neighbour

pixel. Data augmentation methods such as rotation with 90�, 180�

and 270� as well as vertical and horizontal flips were applied and

resulted in 11 additional images for each training image. Enhancing a

TABLE 1 Dataset used in training and testing of the developed
model

Dataset

Number of
images
(512 � 512) Augmented Rivers

Initial 1,694 20,328 Gaula 1963, Lærdal

1976

Expanded 6,307 75,684 Surna 1963

Test 927 N/A Selected images from

Gaula 1963, Gaula

1998, Nea 1962
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dataset in this way is common as it helps machine learning models to

generalize.

The test set was designed to test how well the model was able to

generalize. We selected three rivers. Nea 1962 was selected to test if

the model was able to segment an unseen river, Gaula 1998 was selected

to test if the model was able to segment the same river at different

points in time, and then we used some different parts of Gaula 1963 that

were not part of the initial dataset. The test set had been manually anno-

tated by the same non-domain experts that annotated the initial dataset.

2.3 | Neural network architecture

For the purpose of this work, the deep convolutional neural network

we use was a U-net model (Ronneberger et al., 2015) which has

encoder-decoder architecture illustrated in Figure 1. The encoder

section extracts features and downsamples the images. Then the

decoder upsamples the results of the encoder and generates a seg-

mentation mask of the same size as the input image.

A pre-trained VGG16 model (Simonyan & Zisserman, 2015) was

used as the encoder. VGG16 contains 5 convolutional blocks that

extract features of the input images. Encoder blocks down-sample the

input which means decreasing the resolution of input and increasing the

depth of it. This helps the blocks that receive more processed data

(blocks that are further away from the input image) to extract more

abstract information out of the input image. The decoder has five con-

volutional blocks to up-sample the output of the encoder. It means they

decrease the depth of input and increase the resolution of it. This is

because we need to classify each pixel, accordingly, the output should

have the same resolution as input. However, the output of each encoder

block is concatenated to the input of the corresponding decoder. It helps

to recover the fine details when constructing the segmentation map in

the decoder (Drozdzal, Vorontsov, Chartrand, Kadoury, & Pal, 2016).

Since the VGG16 is pre-trained on RGB images which have 3 channels,

in order to benefit from the pre-trained encoder, our one channel black

and white images are copied to each of the 3 channels.

2.4 | Training procedure

The training of a deep convolutional neural network segmentation

model was done in five steps: (a) train model, CNNi, on a manually

annotated dataset (initial), (b) use CNNi to segment a new dataset,

(c) manually correct errors made by CNNi on the new dataset, (d) train

CNNe on the combined dataset (expanded) and (e) evaluate CNNe on

the test dataset (test).

Initially, large images (8000 � 6000 pixels) from the River Gaula

in 1963 and the River Lærdal in 1976 were manually annotated. This

was done by individuals supervised by domain experts. The annota-

tion covered areas within 200 m of the river. The large images were

then divided into 512 � 512 images. Small images containing only

one class along with those images containing more than 10%

“unknown” class were filtered out. At this stage, 1,694 small images

remained, but as deep learning methods are excessively hungry for

data, we augmented the data so that we ended up with 20,328

images. This dataset, called initial in Table 1, was used for training an

initial model, CNNi, using 80% as training data and 20% for testing.

After training the CNNi model, it was used to segment the Sur-

naRiver from 1963. The SurnaRiver dataset was then manually

F IGURE 1 The model architecture. Light blue boxes are transpose convolution layers, dark blue boxes are concatenation between the skip
connection from the encoder and the previous transpose convolution (right side of bottleneck), light orangeboxes are convolution layers and dark
orangeboxes are max pooling layers (left side of bottleneck). The number under each box gives the number of channels for the output feature
map. The tilted number at the end of each block is the image size for that block [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Classes used for semantic segmentation of landscapes

Class Description

W Water covered areas

G Gravel bars and point bars in the river—Vegetation free.

V Forest and other vegetated areas in the riparian corridor

F Farmland and cultivated land in the river corridor

H Anthropogenic structures like houses and roads

U Unknown
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corrected by non-domain experts so that this manually corrected

dataset could be added to the initial dataset to form an expanded

dataset containing 6,307 annotated images. This expanded dataset

was augmented into 75,684 images and was used to train the second

model, CNNe. In order to determine how many blocks of the encoder

should be trained, we trained the model with different numbers of

trainable blocks as a hyper-parameter using 80% of the expanded

dataset as training data. We named each of the experiments using

“freeze” as a prefix. Freeze 1 means the parameters of the first block

of encoder will not change during the training and keep the initial

value. Similarly, in freeze 2, the parameters of the first two blocks of

encoder will remain constant at the training phase. Afterwards, valida-

tion data (the remaining 20% of the expanded dataset) was used to

test and select the best number of trainable blocks as illustrated in

Table 3. Mean Intersection over Union (MIoU, Equation 1) is used to

measure the performance of each model.

MIoU¼ 1
Cj j

X
c � C

predc\ truec
predc\ truec

����
���� ð1Þ

where C is the set of all the classes, predc is the predictions of the net-

work on class c and truec is the true label of class c.

The test datasets were evaluated using row and column normal-

ized confusion matrices in addition to converting the predicted areas

to polygons and doing a comparison between predicted types and the

underlying aerial images using ArcMap GIS. The comparison of images

was primarily done using visual inspection.

3 | RESULTS

The model predictions on the test set for Gaula in 1963 are shown in

the confusion matrix in Table 4, and a similar matrix for the test set from

the River Nea is shown in Table 5. The model displays a consistent pre-

diction of classes over all categories, except for gravel bars on the River

Nea where the model predicts a large fraction of gravel as water or

farmland. This is most likely due to difficult light conditions in the black

and white photos making a distinction between the groups difficult.

The ability of the model to predict the river types is shown in

Figure 2. There were minor errors in the prediction, for example, a

small part of the inner part of the large gravel bar at the centre of the

TABLE 3 Results of testing different configurations of the neural
network on the validation set

Configuration Valmiou Valacc Val loss

Freeze all 0.7006 0.8919 0.3102

Freeze first 0.7414 0.9064 0.2765

Freeze 3 0.7463 0.9078 0.2726

Freeze 2 0.7627 0.9107 0.2653

Freeze 1 0.7510 0.9076 0.2625

Freeze none 0.7513 0.9073 0.2661

Note: Different configurations are evaluated to select the best model.

TABLE 4 Row normalized confusion matrix for model predictions on test datasets for river Gaula in 1963

GAULA 1963

Predicted class

Water (%) Gravel (%) Vegetation (%) Farmland (%) Human (%)

True class Water 91.31 0.38 1.38 6.93 0.00

Gravel 7.84 76.73 6.72 6.10 2.60

Vegetation 2.10 1.75 88.96 2.30 4.90

Farmland 0.60 2.49 8.37 88.12 0.42

Human 2.85 2.19 7.34 9.15 78.47

Note: Values on the diagonal represent the recall for that class.

TABLE 5 Row normalized confusion matrix for model predictions on test datasets for river Nea in 1962

NEA 1962

Predicted class

Water (%) Gravel (%) Vegetation (%) Farmland (%) Human (%)

True class Water 95.36 0.14 1.83 2.39 0.28

Gravel 22.68 53.15 8.04 10.07 6.05

Vegetation 3.14 0.11 90.51 4.59 1.64

Farmland 1.78 0.03 1.12 96.79 0.27

Human 0.09 0.00 2.80 14.15 82.96

Note: Values on the diagonal represent the recall for that class.
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image was predicted as farmland, but in general, the predictions fit

the image very well. Such errors were also easy to reclassify in the

post-processing step. An example of a classification error is shown in

Figure 3 where the model predicts farmland in the middle of the river.

As an example of an application of the method, we applied the neu-

ral network to the River Surnawhich was developed for hydropower in

1968. The images in Figure 4 show a section of the river that was

bypassed by the water abstraction from the reservoir to the power plant.

In Figure 4a the river was classified based on images from 1963, and

Panel b) shows the same classification with overlaid aerial imagery from

2017. The loss of side channels through sedimentation and vegetation

and a significant increase of vegetation on gravel bars which was clean

before the regulation can be observed in Figure 4. This is a known effect

of hydropower regulation and can be quantified through image analysis.

4 | DISCUSSION

In this paper, we have demonstrated how a deep convolutional neural

network can be trained and used to assess the long-term alteration of

riverscapes by automatic delineation of habitats from historical aerial

black and white images. Black and white images pose an extra chal-

lenge since the segmentation is based on one channel of pixel inten-

sity values. The proposed network was trained on aerial imagery

manually annotated, and then applied to imagery from different years

to create a database of habitats for each year. This database was the

foundation for change analysis and can be combined with data on

floods, ice runs and anthropogenic forcing's which forms the drivers

behind changes in the structure of the river and the adjacent

landscapes.

F IGURE 2 Predicted river types for a
reach of Gaula in 1963. Panel a show the
aerial imagery, panel b shows the image
with overlaid classification. Blue—water,
orange—man made, dark green—forest,
light green—farmland and light brown—
gravel. Flow direction is right to left [Color
figure can be viewed at
wileyonlinelibrary.com]

F IGURE 3 Predicted river types for a
reach in Gaula in 1963. Panel a show the
aerial image, panel b the image overlaid
classification. Legend as for Figure 2. Flow
direction is right to left [Color figure can
be viewed at wileyonlinelibrary.com]
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We found the model to largely provide good predictions on the

test datasets. The main exception was for gravel bars in the River Nea

which we attribute to difficult contrasts in the images. An issue when

the trained model was transferred to a new dataset was errors in clas-

sifications due to differences in light intensity between images in dif-

ferent datasets. In these cases, a light intensity adjustment was made

to the images before training was carried out to improve the predic-

tion. The model errors encountered were easy to correct during a GIS

post-processing step. The combination of processing images with the

neural network followed by post-processing was both simpler and

faster than the time-consuming process of manual delineation of riv-

erine characteristics. Since deep Learning approaches require a rela-

tively large set of training data, datasets of annotated images were

needed. Developing this dataset required significant manual effort,

but we tried to reduce this effort by also utilizing enhanced data from

model runs.

Reference conditions prior to major impacts are crucial for

assessing ecological degradation, to classifying ecological status

(Nybø & Evju, 2017), and designing ecologically well-functioning res-

toration measures (Guzelj, Hauer, & Egger, 2020) or identifying endan-

gered riverscapes for ecosystem-based management (Aas, Indset,

Prip, Platjouw, & Singsaas, 2020). Our methods enabled us to quantify

river habitat development and to identify significant alterations by

comparing pre- versus post-impact aerial photos. We found this

method to be an efficient way to automatically classify large sets of

images for evaluation of changes in river structure going back in time

where only black and white images were available. We believe this

approach also has a great potential for cost-efficient habitat assess-

ment of larger areas and for refined classification for other habitat

types, as archives of aerial photos are widespread as a basis for map-

productions.
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