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Abstract: Remotely sensed LiDAR data has allowed for more accurate flood map generation through
hydraulic simulations. Topographic and bathymetric LiDARs are the two types of LiDAR used,
of which the former cannot penetrate water bodies while the latter can. Usually, the topographic
LiDAR is more available than bathymetric LiDAR, and it is, therefore, a very interesting data source
for flood mapping. In this study, we made comparisons between flood inundation maps from
several flood scenarios generated by the HEC-RAS 2D model for 11 sites in Norway using both
bathymetric and topographic terrain models. The main objective is to investigate the accuracy of the
flood inundations generated from the plain topographic LiDAR, the links of the inaccuracies with
geomorphic features, and the potential of using corrections for missing underwater geometry in the
topographic LiDAR data to improve accuracy. The results show that the difference in inundation
between topographic and bathymetric LiDAR models decreases with increasing the flood size, and
this trend was found to be correlated with the amount of protection embankments in the reach. In
reaches where considerable embankments are constructed, the difference between the inundations
increases until the embankments are overtopped and then returns to the general trend. In addition,
the magnitude of the inundation error was found to correlate positively with the sinuosity and
embankment coverage and negatively with the angle of the bank. Corrections were conducted
by modifying the flood discharge based on the flight discharge of the topographic LiDAR or by
correcting the topographic LiDAR terrain based on the volume of the flight discharge, where the
latter method generally gave better improvements.

Keywords: LiDAR; topographic; bathymetric; flood inundation; HEC-RAS; hydraulic modeling

1. Introduction

Floods are one of the most adverse natural disasters that threaten human settlements
and activities. In Europe, river floods are the most common natural catastrophe, resulting
in significant economic loss through direct damages to properties, infrastructures, and
agricultural lands and through indirect losses within the affected areas [1]. Moreover, the
situation is projected to worsen as recent scenarios of global warming are expected to
increase the frequency and the intensity of extreme precipitation events in addition to flood
levels [2–5].

Floods can be categorized into two forms: pluvial floods, which are generated mainly
by excess rainfall, and topography, where the exceedance of the infiltration capacity creates
inundation [6–8], and fluvial floods, where an overflowing water body rises and inundates
the adjacent floodplains. The causes of this rise can be a result of excess rainfall in the
upstream part, snowmelt, landslides in the lake or reservoir, or river blockages [9]. The
simulation of fluvial floods is maintained by hydraulic simulations at which the terrain
model, or the digital elevation model, is one of the backbone inputs.

The U.S. Geological Survey (USGS) [10] defined digital elevation models (DEMs) as
regularly spaced arrays of elevation values that are referenced horizontally to a specific geo-
graphic or projected coordinate system. DEMs can be generated from many sources such as
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ground-based surveys, digitizing hard copies of existing topographic maps, or by utilizing
remote sensing. Remotely sensed DEMs have been the most used type of terrain models for
flood studies recently, and the Shuttle Radar Topography Mission (SRTM) is the most used
DEM type, thanks to its availability, acceptable resolution, and accuracy [11]. Accurate
DEMs have vital importance in supporting the modeling of environmental processes [12],
and especially for flood simulation, they have contributed positively to flood studies due
to their detailed topographic information [13,14]. The availability of the SRTM DEMs even
in sparse data regions has contributed to its widespread use for flood modeling. However,
the inability of SRTM to represent complex city’s landscapes with coarse resolution (30 m
or 90 m), in addition to the failure of the originator radar to penetrate vegetation, hinders
its ultimate use in flood applications [11]. Therefore, advancement in remote sensing
technology was required to tackle the SRTM deficiencies, and one of the most interesting
emerging technology is Light Detection And Ranging (LiDAR).

LiDAR is a remote sensing technology that enables rapid and accurate development
of actual 3-dimensional terrain models. The technology measures the distance to a target
by detecting the time between the emission of a pulse of laser light from a sensor and
the time of detection of light reflected from the target [15]. The generated DEMs from
LiDAR has many advantages over other remote sensing technologies. For instance, LiDAR
data could be acquired in the day, at night, and even during cloudy conditions [16,17].
It can penetrate vegetative areas and go in between urban structures more easily, and it
can reach centimeters of DEM’s accuracy. The studies of Bhuyian and Kalyanapu [18],
McClean et al. [19], and Muthusamy et al. [20] compared the flood inundations generated
by LiDAR DEMs against other remote sensed DEMs. They found that the flood extent
generated by LiDAR produced the closest inundations to reality, while the other remote
sensing DEMs were associated with larger overestimation of the inundations. This was
found to be linked with the horizontal resolution where the finer the resolution results in
more accurate inundations and provide more clearer definition of the river channel.

However, even with the powerful horizontal resolution capabilities of the LiDAR,
topographic LiDAR is responsible for generating erroneous inundations attributed to its
misrepresentation of the river bathymetry. The topographic (Red) LiDAR (RL) is obtained
by infrared laser of a wavelength that is unable to penetrate the water and, hence, captures
the underwater [21]. Many studies have inspected this type of error by implementing
measured field bathymetry to the RL DEM [22–25] and concluded that omitting the bathy-
metric data will result in an overestimation of the simulated inundations. However, recent
advances in LiDAR technology have led to the development of bathymetric (Green) Li-
DAR (GL), which, unlike the RL, can penetrate the water since it uses blue/green laser
beams [26–29]. However, no studies have conducted an explicit comparison between GL
and RL DEMs regarding flood estimation. Presently, 80% of Norway is covered with the RL,
and full coverage is expected by 2023 [30]. GL, on the other hand, is still only available for
a few rivers. Since the RL currently is far more available than the GL, it has been used for
simulating large floods with the assumption that the sub-surface storage is less important
when the total discharge is very high. It is, therefore, useful to compare a pure RL DEM
and a combined RL and GL DEM in terms of estimating flood inundations. Moreover, in
all the studies that have addressed the error associated with the missing or inadequate
bathymetry, no study has linked the error in inundation to the geomorphic features of the
river, which could be a method to pre-determine the potential errors in a project. This
paper seeks to answer the following research questions by comparing DEMs made by both
bathymetric and topographic LiDAR:

Can we use the topographic LiDAR DEM directly for flood studies? How does the
inundation error vary with different flood sizes?

What is the relationship between the inundation error and the geomorphic features of
the rivers’ channel? Can those features be employed to estimate if topographic DEMs can
be used and the potential errors this will lead to?
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Can the correction methods that are suggested in the literature help to reduce the
inundation error when the topographic LiDAR is used? To what extent can it improve
having the various rivers’ features?

2. Data
2.1. Study Sites

A total of 11 sites in Norway were selected in this study based on the availability of
both bathymetric and topographic LiDAR data in each reach. The sites are in five counties
(three sites in Trøndelag, four sites in Møre og Romsdal, two sites in Vestland, and one site
each in Viken and Vestfold og Telemark). All the reaches drain mountainous areas and
pass-through rural landscapes. The locations of the sites are shown in Figure 1, together
with information on reaches’ length and the flood regime.
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Figure 1. The location of the reaches in Norway, their lengths calculated from NVE’s geodatabase,
and flood regimes as reported by Gottschalk et al. [31]. Spring flood is predominantly a snowmelt
flood, while the autumn flood is mainly driven by rainfall.

2.2. LiDAR Data

General descriptions for the tested sites and their LiDAR data are shown in Table 1. The
sites cover a wide range of river sizes from Gaula reach having the largest catchment area
of 3086 km2 to Gaua, a tributary to Gaula, with the smallest catchment area of 85 km2. All
the sites have good quality LiDAR data with a maximum horizontal resolution of 0.5 m and
0.25 m in most of the sites. The topographic LiDAR DEM was generated by the Norwegian
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Mapping Authority and made available through the website www.xn--hydedata-54a.no
(accessed on 15 February 2021).

Table 1. General descriptions of the sites’ sizes and the LiDAR data properties.

Site
Catchment

Area
(km2)

Mean
Discharge

(m3/s)

RL
Resolution

(m)

RL Point
Density

(Points/m2)

RL
Flow

(m3/s)

GL
Resolution

(m)

GL Point
Density

(Points/m2)

GL Laser
Scanner

Driva 2436 63.6 0.5 2 74 0.25 4 Optech Titan
Eidselva 386 23.4 0.25 5 17.6 0.25 4 Optech Titan

Gaula 3086 83.3 0.25 6 146 0.25 5 Optech Titan
Lower
Lærdal 994 30.7 0.5 2 14 0.25 5 VQ880-G

(RIEGL)
Lower
Surna 910 40.6 0.5 2 20 0.5 NA VQ880-G

(RIEGL)

Storåne 1 770 24.5 0.25 5
6.8

0.2 20
VQ880-G
(RIEGL)35.9

Tokke 2332 89.5 0.25 5 22.9 0.25 20 VQ880-G
(RIEGL)

Upper
Lærdal 2 750 23.0

0.25 5 26 0.25 5 VQ880-G
(RIEGL)0.5 2 13 0.25 5

Upper
Surna 445 17.4 0.5 2 NA 0.5 NA VQ880-G

(RIEGL)
Sokna 564 13.0 0.25 5 15 0.25 5 Optech Titan
Gaua 84.6 2.0 0.25 6 1.5 0.25 5 Optech Titan

1 has two LiDAR flow values because of the powerplant outlet in the mid of the reach. 2 has two different RL
DEMs cover the reach. RL and GL denotes Red LiDAR and Green LiDAR, respectively.

2.3. Flood Data

The flood discharges for the sites used in the simulation are shown in Table 2. For eight
sites, the simulated discharges were found in flood reports published by the Norwegian
Water Resources and Energy Directorate (NVE). The discharges for the rest were taken
from the NVE website, www.nevina.no (accessed on 15 February 2021), which provides
unregulated flood discharges for the Norwegian rivers based on a regional flood frequency
analysis [32].

Table 2. Flood scenarios discharges for the sites (in m3/s).

Site Q M Q 10 Q 20 Q 50 Q 100 Q 200 Q 500

Driva 545 725 795 885 960 1025 1115
Eidselva 66 86 93 101 107 112 118

Gaula 1041 1551 1800 2144 2404 2685 3070
Lower
Lærdal 235 380 470 570 700 800 890

Lower Surna 229 342 391 454 501 549 613
Storåne * 196 290 327 374 410 446 493

Tokke 204 289 323 366 406 443 492
Upper
Lærdal 215 310 350 398 452 495 538

Upper Surna 171 230 254 284 306 328 355
Sokna * 125 194 221 257 284 311 347
Gaua * 21.9 34.5 39.5 46.1 51.1 56.2 63.1

* Unregulated flood scenarios retrieved from www.nevina.no (accessed on 15 February 2021).

3. Methodology

To study the differences in inundations between the different LiDAR data, a method-
ology of many steps was followed and summarized in the flow diagram in Figure A1 in
Appendix A.

www.xn--hydedata-54a.no
www.nevina.no
www.nevina.no
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3.1. DEM Generation for the LiDAR Models

Two different terrain models for each site were constructed using the LiDAR data.
The RL terrain model was constructed using topographic LiDAR data covering the main
channel and the floodplains. The GL data, on the other hand, are limited to the river
bathymetry in most cases. Therefore, the GL terrain models were constructed by merging
the GL data of the main river channel and the RL data of the floodplains. Figure 2 shows an
example of the two terrain models for the Driva site.

Remote Sens. 2022, 13, x FOR PEER REVIEW 6 of 19 
 

 

 
Figure 2. Visual comparison of the LiDAR terrain models for Driva site. 

3.2. Hydraulic Simulation 
The Hydrologic Engineering Center’s River Analysis System two-dimensional hy-

draulic software (HEC-RAS 6.0) was employed to simulate the flood inundations for the 
sites. The software has been developed by the US Army Corps of Engineers [33], and has 
been utilized in many studies focusing upon the influence of the topographic inputs on 

Figure 2. Visual comparison of the LiDAR terrain models for Driva site.



Remote Sens. 2022, 14, 227 6 of 17

3.2. Hydraulic Simulation

The Hydrologic Engineering Center’s River Analysis System two-dimensional hy-
draulic software (HEC-RAS 6.0) was employed to simulate the flood inundations for the
sites. The software has been developed by the US Army Corps of Engineers [33], and has
been utilized in many studies focusing upon the influence of the topographic inputs on
the flood inundation models [22,25,34]. The simplified Saint-Venant equation, the diffusive
wave, was used as the flow representation [35].

To ensure a common base of comparison, the two models of each site differed only in
the terrain models while the rest of the model setups were identical. A computational mesh
of 5 m was used for all the sites. The Manning’s coefficients were assigned according to the
literature, 0.03 and 0.06 s/m1/3 for the mainstream and the floodplains, respectively [36].
A constant flow hydrograph of the flood discharge as an upstream boundary condition
and the normal depth as a downstream boundary condition was used. It is important to
mention that this study aims to check the variation in flood inundations resulting from
using the various LiDAR terrains. Therefore, the results cannot be taken as referenced flood
inundations directly for the sites.

3.3. Terrain Analysis

One of the objectives of the study is to investigate the link between the difference
in inundation and geomorphic parameters of the river. The investigated parameters are
described below.

3.3.1. Longitudinal Slope, Sinuosity, and Flood Wall Coverage of the Reach

The longitudinal slope of the river is one of the key parameters that define the flow
in the open channel flow systems [36], and therefore it has been considered in the investi-
gations as one of the parameters that could define how the inundation error progresses.
For each reach, the parameter was estimated by the ratio between the elevation difference
of the starting and ending points and the reach length. The sinuosity was also taken into
consideration and has been estimated by the ratio of the actual meandered length of the
reach and the straight line connecting the starting and ending points of the reach. The
coverage of the reach with flood protection embankments will to a great extent, affect the
inundation of the reach. Embankment coverage was computed based on data provided
by NVE on the website www.nedlasting.nve.no/gis (accessed on 15 April 2021). The per-
centage of the embankment coverage was computed by the ratio between the length of the
embankment on the reach and twice the reach’s length to consider the floodplain on both
sides of the river.

3.3.2. Missed LiDAR Volume

The subsurface volume left uncaptured by the RL measurement for each reach was
estimated using the Raster Calculator and Zonal Statistic tools in ArcGIS. The total volume
was summed and divided by the length of the reach to make it comparable between rivers.

3.3.3. Bank Slope

The shape of the riverbank is a factor that is expected to explain the difference in
inundation between RL and GL models. Unlike the previous parameters, this parameter
was computed at a cross-sectional level along the reach and extracted by automating a
series of tools in ArcGIS Pro. To capture the shape variability of the slope, 10 layers were
created in the confined region between the bottom of the river and the maximum water
level resulting from the 500-years scenario. The side slopes between each layer were found
by calculating the horizontal distance (Z) of the sloped surface with respect to a unit
elevation difference. The normal distance between the river centerline and the bank is the
horizontal length (L). Z is calculated by the ratio between the difference in the horizontal

www.nedlasting.nve.no/gis
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distances where the successive layers meet the bank and the difference in the elevations of
the two layers (M). Z could be calculated by the following equation:

Z =
Li+1 − Li

Mi+1 − Mi
(1)

where (i) and (i + 1) are the lower and the upper layers, respectively. The bank’s slopes
between the 10 layers were found for the left and the right sides of the reach. The selection
of which bank slopes to include in a cross-section for each flood scenario was based on the
Water Surface Elevation (WSE) of that scenario and the WSE at the mean-flood of the GL
model. The first layer that has an elevation immediately below the WSE of the GL at the
mean-flood scenario was specified as the lowest layer, and the layer that has an elevation
right higher than the 500-years scenario on the RL was set as the highest layer. From the
selected layers, the mean and the standard deviation of the bank slope were computed.
The horizontal distance of the slope (Z) was finally converted into degrees.

3.4. Evaluation of the Flood Extents

The evaluation of the variations in inundation was carried out on both reach and tran-
sect scales. For the reach scale, the error was computed based on the total inundation area
of a certain flood scenario. Then the Normalized Error was implemented as a measurement
to quantify the overestimation in inundation from the GL DEM that was created by RL
DEM and was calculated as follows:

Normalized Error =
RL Inundation
GL Inundation

(2)

where RL Inundation is the flood extent for a flood scenario produced by the RL model and
GL Inundation is the flood extent for the same flood scenario produced by the GL model.
Therefore, the closer this parameter to 1, the closer the resulting inundation to the actual
flood extent, which is assumed here to be the GL Inundation.

For the transect scale, the percentage of deviation of the RL Inundation from the GL
Inundation was calculated on the Inundation Error as follows:

Inundation Error (%) =
RL Inundation Length − GL Inundation Length

GL Inundation Length
× 100 (3)

where RL Inundation Length is the length of the inundated transect on the RL model (m) and
GL Inundation Length is the length of the inundated transect on the GL model (m).

3.5. Statistical Tests

A correlation test was performed to investigate the levels of the inundation error for
the different site and its relationship with the extracted terrain parameters. The expectation
of the inundation error (mean) from all the scenarios was set as a representative for the level
the inundation error for each site. The correlation test was conducted using the R Corrplot
package [37]. The Pearson correlation coefficient (r2) was computed, and parameters were
evaluated using a significance level of α < 0.05.

To test the dependency of the inundation error’s shape on the embankment coverage
percentage, a one-way analysis of variance (ANOVA) test was conducted. The test was
conducted using Anova function of the Car package in R [38]. The shapes of the inundation
were coded as 0 and 1, and the significance of the embankment percentage was evaluated
by F-statistics corresponding to a significance level of α < 0.05. Based on the analysis, the
amount of the embankment percentage that corresponds to the change in the error shape
was estimated.
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3.6. Correction Methods

Some corrections of flood inundation models were proposed [22,35] in situations
where no bathymetry data were available. The two correction techniques for the RL flood
models tested in this study were the Discharge Correction Technique (DCT) and the Terrain
Correction Technique (TCT). DCT is a correction technique that is based on correcting
the discharge of the flood scenario and compensates the missing river bathymetry by
subtracting the discharge at the RL acquisition from the flood discharge. TCT, on the other
hand, is a correction on the RL terrain model itself in which it carves out the flow area from
the terrain model before using it for simulations. This correction was applied by burning
the depth layer resulting from simulating the RL acquisition discharge in the HEC-RAS
2D model into the RL DEM. The performance of the proposed corrections was evaluated
by computing the reduction in the RL error that resulted from applying the correction
as follows:

Error Reduction (%) =

(
RL Inundation − Correction Inundation

RL Inundation − GL Inundation

)
× 100 (4)

where Correction Inundation is the inundated area resulted from either DCT or TCT for each
flood scenario. These corrections were tested on Guala and Lower Lærdal reaches.

4. Results
4.1. Terrain Analysis Outputs

Table 3 shows a summary of the terrain analysis parameters that were extracted from
the two DEMs of the LiDAR. Gaula had the largest missed LiDAR volume with 141 m3

subsurface volume missed per meter length, while Storåne showed the lowest missed
volume with 4 m3 per meter length. Gaula had the mildest longitudinal slope with 0.12%,
while the highest slope was found in Upper Lærdal with 1.9%. For the sinuosity, Eidselva
showed the highest sinuosity with 1.83, while Gaua and Upper Surna showed the lowest
among the reaches with 1.14. Lower Lærdal and Gaula showed to be the most flood-
protected reaches with coverages of 72 and 62%, respectively, while Storåne and Upper
Lærdal showed the least protection with 0 and 3% coverages, respectively.

Table 3. Terrain analysis outputs for the 11 sites.

Site
Missed LiDAR

Volume
(m3/m)

Slope (%) Sinuosity
Flood

Protection
Coverage (%)

Mean Bank’s
Slope

(Degrees)

Driva 17 0.29 1.37 24 2.97
Eidselva 26 0.49 1.84 11 9.88

Gaula 141 0.12 1.33 62 1.66
Lower
Lærdal 8 0.42 1.63 72 2.15

Lower Surna 36 0.14 1.27 25 2.41
Storåne 4 0.57 1.25 0 3.25
Tokke 27 0.51 1.29 15 11.24
Upper
Lærdal 5 1.90 1.35 3 19.54

Upper Surna 5 0.36 1.14 20 5.82
Sokna 15 0.92 1.15 39 15.01
Gaua 5 0.46 1.14 15 4.76

Figure 3a shows the longitudinal profiles for the sites. Upper Lærdal showed to be the
steepest site, while Lower Surna and Gaula were the sites with the mildest running slope.

Figure 3b shows density plots of the variations of the bank slope for each site. Lower
Lærdal showed the largest proportions of the reach with bank slopes less than 3 degrees,
followed by Gaula and Lower Surna. Storåne, Driva, and Gaua have their peaks densities at
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values less than 3 degrees but at least one-third of the slopes greater. Upper Lærdal, Sokna,
and Tokke, on the other hand, appeared as the largest percentage of bank slopes greater
than 10 degrees. Two sites fell outside the above categories, Eidselva and Upper Surna,
which both showed almost symmetrical bank slope distributions. Upper Surna appeared
with a narrow peak distribution while Eidselva showed broad peak ranges between 3 and
30 degrees.
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4.2. Inundation Error Development

Figure 4 shows an example of the obtained flood inundations from HEC-RAS for
Gaula reach. It was noticeable that the inundation obtained by the RL model not only
resulted in a larger inundation than the GL, but the overestimation also differed spatially.
In some places, the two extents almost matched with minor differences, while in others, the
variations were substantial.
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Figure 5 shows the inundation errors for all the sites with respect to the flood’s return
period (T). The pattern of the error can be categorized into two types. The first was the
continuous descending pattern in which the higher the flood size, the smaller was the
Normalized Error, and that was seen in Gaua, Tokke, Storåne, and Upper Lærdal. The
second category appears in Driva, Eidselva, Gaula, Upper Surna, Lower Surna, and Lower
Lærdal, where the error peaks at a certain return period before it descends and follows the
first trend. Lower Lærdal stands out as the reach with the highest error in general with
two peaks.

The relationship between the error in inundation at a cross-sectional scale and the
bank slope of the corresponding cross-section for different flood scenarios are shown in
Figure 6. The sites Eidselva, Gaula, and Upper Lærdal covered the different ranges of the
longitudinal slope and the bank slope among the tested sites, as shown in Figure 3a,b. In
general, the cross-sections that have a lower mean bank slope’s angle produced higher
inundation errors. Meanwhile, the cross-sections that were associated with low standard
deviation angles resulted in higher inundation’s error too. Maintaining this relationship
was found to diminish with the flood sizes increasing, and for Gaula sites, this relationship
completely disappeared for the highest flood.
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4.3. Statistical Tests’ Outputs

A statistical analysis ANOVA was conducted to predict the error shape by the flood
protection coverage. The continuous decreasing trend was coded as 0 and the peaking
trend as 1. The flood protection coverage was found to produce an F-statistic of 6.27 for a
p-value less than 0.05. In addition, the analysis showed that for the sites that have flood
protection coverage of 24% or more, they followed the peaking error trend.

For the error level investigation, a correlation test was carried out for the terrain
parameters in Table 3 against the expectation of the inundation errors (the mean) of all
the scenarios. The mean error was found to have positive correlations with the sinuosity
(r2 = 0.72) and the flood embankment coverage (r2 = 0.5), and negative correlation with the
mean bank slope (r2 = 0.44).

4.4. Correction Techniques Outputs

The changes in the inundation errors that followed the application of the correction
methods DCT and TCT on the Gaula and Lower Lærdal sites are shown in Figure 7. In
general, both techniques resulted in reducing the error that stems from using the RL DEM.
In all the scenarios, the reductions obtained by the TCT method were larger than using the
DCT method, and for the 500-years scenario in Gaula, the reduction obtained by the TCT
led to an underestimation of the GL Inundation, as can be seen in Figure 7a. The reduction
in the error from the RL model for the two sites is presented in Figure 7c,d. The reductions
obtained by the DCT and the TCT in the Gaula site were greater than in Lower Lærdal. The
Error Reduction value for the 500-years flood scenario for Gaula is not shown due to the
underestimation.
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and the discharge correction (DCT) techniques were applied (a,b) with the corresponding reduc-
tion in error for each scenario (c,d). The Error Reduction value in (c) for Gaula is omitted due to
underestimation.
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5. Discussion
5.1. Shape of the Inundation Error’s Curve

An overestimation of the flood inundation for the sites was detected when the RL
model was used compared to the GL model, and this can be seen in the example pre-
sented in Figure 4. Such an overestimation was also reported in previous studies that
tested RL DEMs against referenced DEMs obtained by field measurements [21,22]. The
magnitude of the overestimation varies with the flood scenario, as also seen in the study of
Bures et al. [22]. Figure 5 shows that the inundation error’s shape follows two trends, the
continuous decreasing shape and the peaking shape. One of the links between the sites
that have the peaking error shape is the amount of the flood embankment in the reach.
The ANOVA analysis has shown that this parameter to be significant in predicting the
peaking trend (F = 6.27, p < 0.05). In addition, the analysis showed that for the sites that
have flood protection coverage of 24% or more, they follow the peaking error trend with
Lower Lærdal and Gaula appearing as the most prominent sites, which confirms the results
shown in Figure 5. This effect could be explained by Figure 8 as it illustrates an example of
the embankment effect. Since the bottom of the river is elevated in the RL model, the flood
walls will be overtopped in the RL model at a lower flood discharge than in the GL model
and, therefore, creates larger deviation in inundation. As long as a larger flood scenario
overtops the embankment in the GL model, the deviation will start to shrink and follow the
normal decreasing trend. The study of Bradbrook et al. [39] also noted this deviation in
such reaches.
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5.2. Level of the Inundation Error

In addition to the error’s shape, the level of the inundation error differs from one site
to another, as shown in Figure 5. The overall level of the inundation error is different, for
example, in Lower Lærdal than in Driva, even though they are both categorized as peaking
error sites. The correlation test has shown that these levels have a tendency to increase
where the sinuosity and the flood protection of the reach are higher, while increasing the
bank slope angle, more steep cross-section, will decrease this level. However, this test is
very rough to find a concrete conclusion on the error level as it hides the significance of
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each parameter behind its unique value. For instance, the importance of the bank slope
will diminish when the mean slope is only considered rather than the distribution or its
standard deviation. Therefore, the bank slope is expected to have higher significance as
it could be interpreted from Figure 6. Lower Lærdal appears to have the highest overall
error levels among the other sites, and it is also featured with the highest percentage of
flat cross-sections, as shown in Figure 3b. On the contrary, the sites that produce the least
overall error levels, such as Sokna, Tokke, and Upper Lærdal, were associated with higher
percentages of steep slopes than flat banks in their reach. However, some sites were not
following the proposed trend. For instance, Storåne, even though it is among the sites with
low error levels, has a high percentage of flat banks. However, the Storåne site is a steep
reach and has zero coverage of flood protections, which could explain why it has a low
error level.

5.3. Inundation’s Error at Cross-Sectional Scales

The effect of the valley shape in various fluvial applications was investigated by
many studies such as Rosgen [40], who investigated the relation of the valley shape to
the channel formation and morphology, and Hassan and Reid [41], and Płaczkowska and
Krzemień [42] who investigated the relation between river shape and sediment transport
processes. Both of these studies show a relationship between river shape and fluvial
processes, a relationship that we investigated for inundation error.

The total error that develops at the reach scale is an aggregation of the error’s behavior
at the cross-sectional level, and therefore, understanding the error at this level is equally
important. As shown in Figure 6, the cross-sections with low mean bank slopes (flat cross-
sections) are associated with high inundation errors, while cross-sections that have a low
standard deviation in bank slope also produce high errors. This is in line with the fact that
the flatter the bank’s slope, the larger chance of higher inundation errors. The reason for
that is because, for flat banks, a small overestimation of the flood level will inundate larger
areas compared to a section with steep banks. Therefore, since the use of RL will create an
overestimation of the flood levels, the errors in flat cross-sections will be more pronounced
than the steep banks’ rivers. Similarly, a bank slope with a low standard deviation implies
a wide cross-section with considerable flat regions. In such cross-sections, the wider the
cross-section, the lower the standard deviation, the higher is the inundation error. However,
the dependency of the cross-sectional inundation error on the bank’s slope diminishes with
an increase in flood magnitude. This is shown in Figure 8 where the flood levels for both
LiDAR models almost coincide, resulting in the same floodplain inundation.

5.4. Flood Model Correction

Generally, the correction methods have shown improvements on the RL inundations
as they reduced the error to some extent. However, the TCT has shown to be more efficient
in reducing the error in inundations since the reduction of the RL’s overestimation was
higher than what was obtained by the DCT, as can be seen in Figure 7. A similar finding
was reported by Choné et al. [23], where the flood levels were obtained for two sites using
these correction methods. One of the conclusions was that the DCT is associated with an
underestimation of the flow velocity resulting from the assumption that the flow is divided
into two components, and that will eventually result in an overestimation of the flood
levels. However, both correction methods worked better in Gaula than in Lower Lærdal.
The ratio of the LiDAR discharge to the mean discharge of Gaula is approximately four
times larger than Lower Lærdal, and that, to a large extent, explains why reducing the
LiDAR discharge from the flood discharge in Gaula is more efficient than in Lower Lærdal.
Similarly, the amount of the missed LiDAR volume in Gaula was found to be much larger
than in Lower Lærdal, as shown in Table 3 (141 and 8 m3/m, respectively). The fact that
the TCT method worked better in Gaula is well explained by this finding since the TCT is
based on carving out this excess subsurface volume occupied by the LiDAR discharge. It
should also be noted that in the case of small inundation errors, applying the correction
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methods might result in an underestimation of the inundation as is encountered in the
500-years scenario in Gaula shown in Figure 7a,c which was also was found in the study of
Choné et al. [23].

6. Conclusions

A comparison was conducted between the RL and GL terrain models in producing
flood inundation extent for 11 sites in Norway. The use of the RL to produce flood inunda-
tion is associated with deviations from the actual inundation, and this deviation follows
two trends: a continuously decreasing deviation in inundation with the flood size increase
and an increasing pattern of the deviation with the flood size increase to a certain peak
before it starts to decrease again. These trends were found to be associated with flood
embankment coverage of the reach of which the ones with less than 25% coverage follow
the first trend. In addition, the level of the inundation error was found to positively corre-
late with the sinuosity and the embankment coverage and negatively with the bank slope
angle of the reach. Possible corrections for the RL inundations could be achieved by using
the TCT and the DCT, of which the former resulted in better improvements. However,
both corrections were found to work better in sites where the accompanying effects of the
LiDAR’s acquisition have more impact on the RL data, while in sites where the error is
more attributed to the reach’s configuration, the corrections were less efficient. Therefore,
the use of the pure RL DEMs for flood map generation should be handled with caution and
particularly for small flood sizes and, even more caution, in reaches with a large number of
embankments, as this could lead to high inundation errors even at high flood scenarios.
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Appendix A

Flow diagram of the main steps of the methodology.
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