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A B S T R A C T   

A fast and robust stress-integration algorithm is the key to full exploitation of advanced anisotropic yield 
functions in computational mechanics. Poor global convergence of a direct application of the Newton-Raphson 
scheme has been rectified by applying line search strategies during the Newton iterations. In this work the line- 
search approach is further improved by a better first guess. The new algorithm is implemented into a user- 
defined material subroutine (UMAT) in a finite-element (FE) software and tested. The implementation is made 
easier and more efficient by a new advantageous vector/matrix notation for symmetric second- and fourth-order 
tensors, which is the second result of this work. Benefits of this notation are discussed with respect to formulation 
of continuum-plasticity models as well as their implementations. FE simulations were run to demonstrate the 
performance of the new implementation, which is available as open-source software via GitLab repository (see 
Appendix). The new return-mapping algorithm implementation runs equally fast and robust as the simple von 
Mises and Hill standard implementations in the Abaqus/Standard software. This enables full exploitation of 
advanced yield functions as the new standard in industrial FE applications.   

1. Introduction 

In order to solve boundary value problems for an elasto-plastic body 
by computational solid mechanics codes, constitutive equations need to 
be numerically integrated. As stated by Hughes (1984), the local inte-
gration of constitutive equations is the central problem of computational 
plasticity. Due to the large difference between the elastic and plastic 
behavior, there is an inherent lack of smoothness, requiring a robust 
algorithm. Many different methodologies have been developed to 
numerically integrate the constitutive equations over an increment. In 
finite element codes the most used method for stress integration is the 
predictor-corrector method commonly referred as the return-mapping 
algorithm, introduced by (Wilkins, 1969). For the simplest and mathe-
matically most convenient von Mises yield surface, the simple radial 
return-map can be used. Many extensions of the original algorithm have 
been made to account for more complex plasticity models, see e.g. 
Nagtegaal (1982), Simo and Ortiz (1985), Ortiz and Popov (1985), Ortiz 
and Simo (1986), Simo et al. (1988). 

The quadratic nature of the anisotropic Hill48 model (Hill, 1948) 
allows for specific return-mapping algorithms to be employed (De Borst 
and Feenstra, 1990; Maudlin et al., 1999; Versino and Bennett, 2018). 
Due to its simplicity, Hill48 is the most used yield surface for orthotropic 

metals, especially steels. However, it has limitations for highly aniso-
tropic metals, such as aluminium alloys. When more advanced, 
non-quadratic yield functions are used, no simple algorithm exists for 
obtaining the implicit time stepping. The semi-implicit return-map 
(Moran et al., 1990), the cutting-plane method (Ortiz and Simo, 1986), a 
quasi-implicit or the fully implicit backward-Euler algorithm are 
commonly used. Description of the principal methods is given in text-
books e.g. by Simo and Hughes (1998) and Dunne and Petrinic (2006). 
Extensive literature review of integration procedures used in a finite 
element method is given by (Kojić, 2002). See a comparison study of 
distinct algorithms for complex non-quadratic models by Grilo et al. 
(2014). Other examples of more recent approaches are works by Mosler 
and Bruhns (2010), Becker (2011), Scherzinger (2017), Lester and 
Scherzinger (2017) and Choi and Yoon (2019), among others. 

The stability and accuracy of the return-mapping algorithm may 
limit the time step which, consequently, affect the computational effi-
ciency of simulations. The unconditionally stable fully implicit 
backward-Euler return-mapping algorithm is typically combined with a 
Newton-Raphson iterative process (Simo and Hughes, 1998). However, 
when applied to Hosford (1972) or Yld2004-18p yield surface (Barlat 
et al., 2005), this algorithm is shown to diverge for large number of trial 
stresses (Scherzinger, 2017). When a line-search is added to the 
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Newton-Raphson iterations, the return-mapping algorithm is shown to 
gain excellent effectiveness and robustness (Pérez-Foguet and Armero, 
2002; Scherzinger, 2017; Soare and Barlat, 2011). Good convergence 
was achieved even for very large trial stress states. Besides the 
line-search, another strategies e.g. a multi-step Newton Raphson has 
been applied to enhance the convergence of the implicit backward Euler 
return-mapping algorithm (Lee et al., 2012). 

In each Newton iteration, both the gradient and the Hessian of the 
yield function, being second- and fourth-order tensors, respectively, 
need to be computed. Several algebraic operations involving inversions, 
outer and inner products of second- and fourth-order tensors need to be 
performed. The return-mapping algorithm for complex plasticity models 
easily becomes a computationally expensive part of the simulation. For 
this reason, a reduced vector/matrix representation of symmetric ten-
sorial quantities is commonly utilized in the return-mapping algorithms 
as it considerably reduces the computational cost. 

The numerical solution of equations involving higher order tensors, 
in practice requires a conversion into solving a linear algebra problem. 
Symmetric second-order tensors and fourth-order tensors with minor 
symmetry can be mapped into a vector and matrix representation, 
respectively. Voigt and Mandel representations (or notations) are the 
most widely used. Such compressed representation exploits the tensor 
symmetries and thus significantly reduces number of operations and the 
computation cost. This is taken advantage of in implementations of 
computational mechanics. 

The Voigt notation suffers from that its tensor components corre-
spond to a non-normalized basis, making distinction of covariant and 
contravariant coordinates necessary (Helnwein, 2001). Hence, the Voigt 
notation is different for stress-like and strain-like tensors, which are 
stored in contravariant and covariant Voigt forms, respectively. This has 
consequences for manipulations with minor-symmetric fourth-order 
tensors in Voigt form. For example, the inverse of the Voigt contra-
variant matrix does not lead to a contravariant Voigt matrix, but to a 
covariant matrix and vice versa. Thus, obtaining the inverse of a matrix 
in a Voigt notation requires pre- or post-multiplications or divisions of 
some components of the matrices with factors of 2 and 4 (Brannon, 
2018). This can make calculations using Voigt notation error prone. 

The Mandel notation does not have this inconvenience associated 
with the Voigt notation. Applying an orthonormal basis, there is no 
distinction between covariant and contravariant components, hence 
stress- and strain-like tensors transform equally. For instance, Mandel 
components of the inverse fourth-order tensor A− 1 are found simply by 
inverting the Mandel 6x6 matrix A. 

The plastic response of metallic materials is classically considered as 
independent of the hydrostatic pressure. The yield function is thus a 
function of a deviatoric stress tensor, and its first and second derivatives 
with respect to the hydrostatic pressure equal zero. The latter is 
exploited neither when Voigt nor the Mandel notation is employed to 
calculate the yield function gradient ∂σf or Hessian ∂2

σσf , as 6x1 and 6x6 
arrays, respectively. Hence, for each iteration in the return-map, the 

Jacobian Ξ = (C− 1 + Δγ ∂2
σσf)− 1 (Simo and Hughes, 1998), needs to be 

computed by solving a linear system of 6 equations. However, since the 
plastic-corrector part of the return-map is independent on the hydro-
static pressure, the latter can entirely be omitted from the iterative 
process. This can be done by constructing an alternative vector/matrix 
representation that contains the volumetric and deviatoric parts of the 
second-order tensor explicitly in its mapping. This will reduce the 
dimension of equation system from 6 to 5, as the Jacobian in the Newton 
iterations as part of the return-map will become a 5x5 matrix. When 
reducing the system dimension from n = 6 to 5, the resulting linear 
equation system solved by the Cholesky decomposition involving 2

3n
3 

operations, will take about 60% of the time, and a matrix inversion 
about 43%, which will contribute to a lower computing time. 

An orthonormal basis that separates the hydrostatic pressure was 
found by Kocks et al. (1998), when studying elastic tensor properties of 
crystals with cubic symmetry. It was denoted as a natural basis for 
formulating crystal plasticity. However, only the deviatoric part was 
used in the self-consistent modelling of heterogeneous plasticity in the 
VPSC - Visco-plastic self-consistent) code (Lebensohn and Tomé, 1993). 

In this paper, application of the natural notation in continuum 
plasticity is presented. This notation has an orthonormal basis, so it has 
all the convenient properties of the Mandel notation. Moreover, due to 
explicit representation of the deviator, the natural notation is advanta-
geous for expressing symmetric second- and fourth-order tensors in 
continuum plasticity and suits both pressure-dependent and indepen-
dent yield criteria. 

The paper starts by reviewing the existing notations. Then, the nat-
ural notation and the associated transformation matrices are presented. 
Matrix representation of elastic and plastic fourth-order tensors, spe-
cifically elastic stiffness and compliance moduli as well as plastic von 
Mises, Hill and Barlat anisotropic tensors are shown. Finally, application 
of the natural notation in an efficient and robust return-mapping algo-
rithm with Yld2004-18p yield function recently developed by Scher-
zinger (2017) is presented. Significant convergence improvement by 
introducing a radial-return predictor instead of the elastic predictor is 
demonstrated with FE simulations of a uniaxial compression and tension 
using user-defined material subroutine (UMAT) in the Abaqus/Standard 
2020. 

2. Existing notations 

In order to describe physical phenomena related to mechanics of 
solids, use of scalar, vectoral and tensorial quantities of various order are 
required. Within the classical continuum and crystal plasticity theories, 
tensors of second order are necessary for description of stresses, 
displacement gradients, yield function gradients and various state- 
dependent variables, fourth-order tensors are needed for expressing 
the elastic stiffness tensor, the elasto-plastic tangent modulus, the 
acoustic tensor, plastic anisotropic tensors (Barlat et al., 2005) or 
various state-dependent tensors representing directional hardening of 
the material (Levkovitch and Svendsen, 2007). Third-, fifth- and 
sixth-order tensors are required in e.g. higher-order continuum theories 
(Auffray et al., 2013). 

Assume a real 3-dimensional vector space, where e1, e2 and e3 are 
orthonormal vectors defining an orthonormal basis {ei}i=1,…,3. Then a 
vector u, a second-order tensor A and a fourth-order tensor C can be 
represented as u = uiei, A = Aijei ⊗ ej, and C = Cijklei ⊗ ej ⊗ ek ⊗ el, 
where the scalars ui, Aij and Cijkl are the components of u, A and C, 
respectively, with respect to the basis {ei}i=1,…,3. The Einstein conven-
tion for repeated indices is employed throughout the paper. In addition, 
the orthonormal basis will solely be used and, accordingly, all the vec-
tors and tensors will be Cartesian. 

2.1. Voigt notation 

It is possible to represent second- and fourth-order tensors in a given 
vector space by a vector and second-order tensor, respectively, but in 
another vector space with higher dimension (Moakher, 2008). Such 
order reduction of a tensor allows more efficient tensor manipulation. 
The original reduced representation was suggested by Voigt (1910) and 
applied within the elasticity theory. For a symmetric tensor, Voigt has 
chosen to arrange first the normal components, followed by shear 
components. In order to preserve work conjugacy, a factor of 2 had to be 
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introduced for the shear strain components when written in vector Voigt 
form. Voigt notation thus makes distinction between a stress-like and a 
strain-like tensor as 

σ =

⎛

⎝
σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33

⎞

⎠→σV =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

σ11
σ22
σ33
σ23
σ13
σ12

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

and

ε =

⎛

⎝
ε11 ε12 ε13
ε12 ε22 ε23
ε13 ε23 ε33

⎞

⎠→εV =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ε11
ε22
ε33
2ε23
2ε13
2ε12

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(1) 

Note, that the order of the shear components varies in the literature, 
plasticity books and finite element codes. Throughout this paper, the 
order given in Eq. (1) will be used. This coincides with the order origi-
nally used by Voigt (1910) and further adopted e.g. by Barlat et al. 
(2005), Aretz et al. (2010) and Aretz and Barlat (2013) for defining the 
anisotropic transformation matrices as part of the yield functions 
Yld2004-18p, Yld2004-27p and Yld2011-18p. As an example, the 
sequence 12-13-23 is used by Abaqus/Standard, whereas the sequence 
12-23-13 is applied in Abaqus/Explicit, MSC. Marc, LS-DYNA and 
ANSYS. 

The Voigt notation preserves work conjugacy as the inner product 
between stress and strain tensors, which turns into a dot-product of their 
Voigt vector representations, e.g. W = σ : ε = (σV)

T εV . Note, however, 
that this equality does not hold for the inner product between two stress 
or strain tensors, as e.g. σ : σ ∕= (σV)

T σV or ε : ε ∕= (εV)
T εV. Adjustments 

by a factor of 2 in the multiplication of the shear components are 
required. 

Helnwein (2001) pointed out that the compressed vector represen-
tation can be, in general, identified as a mapping with covariant, con-
travariant or mixed-variant coordinates of a non-orthonormal basis in a 
six-dimensional vector space. The Voigt notation is a mapping with a 
non-orthonormal basis and has a covariant and a contravariant basis 
that do not coincide. More details can be found in Helnwein (2001) and 
Brannon (2018). A symmetric second-order stress tensor σ (contra-
variant) and strain tensor ε (covariant) are both represented by a 
6-dimensional vector but with a different basis. Written in the indicial 
notation, 

σ = σijei ⊗ ej = σV
i EV

σi

ε = εijei ⊗ ej = εV
i EV

εi

(2)  

where {EV
σi}i=1,…,6 and {EV

εi}i=1,…,6 are two orthogonal sets of the Voigt 
bases, listed as 

EV
σ1 = EV

ε1 = e1 ⊗ e1 EV
σ4 =

1
2
EV

ε4 = e2 ⊗ e3 + e3 ⊗ e2

EV
σ2 = EV

ε2 = e2 ⊗ e2 EV
σ5 =

1
2
EV

ε5 = e1 ⊗ e3 + e3 ⊗ e1

EV
σ3 = EV

ε3 = e3 ⊗ e3 EV
σ6 =

1
2
EV

ε6 = e1 ⊗ e2 + e2 ⊗ e1

(3) 

A fourth-order tensor, C, with minor symmetry, i.e. Cijkl = Cjikl =

Cijlk = Cjilk is represented in Voigt notation as a 6x6 matrix as 

CV =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

C1111 C1122 C1133 C1123 C1113 C1112
C2211 C2222 C2233 C2223 C2213 C2212
C3311 C3322 C3333 C3323 C3313 C3312
C2311 C2322 C2333 C2323 C2313 C2312
C1311 C1322 C1333 C1323 C1313 C1312
C1211 C1222 C1233 C1223 C1213 C1212

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4) 

In general, a fourth-order tensor C represents a linear map that as-
signs to each second-order tensor A the second-order tensor C : A, 
written in the indicial notation as CijklAkl. Due to the existence of dual 
bases and distinction between stress-like and strain-like tensors, the 
representation of a fourth-order tensor differs depending on whether it 
maps e.g. a strain tensor to a stress tensor, or a stress tensor to a strain 
tensor. Examples of the former and latter mapping are the elastic stiff-
ness tensor C and the compliance tensor S, respectively, which are 
expressed using the Voigt bases from Eq. (3) as 

C=CV
ij E

V
σi ⊗ EV

σj and S = SV
ij E

V
εi ⊗ EV

εj (5) 

Hence, caution must be taken when performing algebraic operations. 
An example is Hooke’s law, in which a product of a fourth-order elastic 
stiffness tensor and a second-order strain tensor, σ = C : ε, or σij =

Cijklεkl turns nicely into a matrix-vector multiplication σV = CV εV , where 
the matrix CV is the Voigt representation of C according to Eq. (4). 
However, the inverse Hooke’s law, ε = S : σ, or εij = Sijklσkl cannot 
straightforward be calculated in Voigt notation with coefficients of the 
matrix SV obtained by Eq. (4), i.e. εV ∕= SVσV . Post-adjustments by fac-
tors 2 and 4 of shear components in the matrix SVare required. Different 
adjustments are necessary for cases when a fourth-order tensor repre-
sents mapping between two stress-like tensors (e.g. plastic anisotropic 
Hill’s tensor, see Section 4.3, and between two strain-like tensors 
(needed during the Newton iterations in the return-mapping algorithm). 
An outer product between two stress-like tensors A and B as, C = A⊗ B, 
or Cijkl = AijBkl is in Voigt notation simply calculated as the outer product 
of two Voigt vectors as, CV = aV(bV)

T, where CV is the Voigt represen-
tation of C according to Eq. (4). However, post-adjustments of shear 
components in matrix CV are required if A or B is a strain-like tensor. 
Citing Brannon (2018): “Deducing how to properly perform these ad-
justments is difficult, tedious and error-prone.” 

The Voigt notation is considered as the standard, as it is used for 
expressing the anisotropic elastic and plastic tensors for general material 
symmetries and it is utilized in implementations of numerical software 
for computational mechanics. 

2.2. Mandel (or Voigt-Mandel) notation 

The inconveniences with the Voigt notation do not exist in the 
Mandel (sometimes denoted as Voigt-Mandel) notation, which has an 
orthonormal basis and maps any symmetric second-order tensor equally 
as 

A =

⎛

⎝
A11 A12 A13
A12 A22 A23
A13 A23 A33

⎞

⎠→aM =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

A11
A22
A33̅̅̅
2

√
A23̅̅̅

2
√

A13̅̅̅
2

√
A12

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(6) 

This notation was applied and extensively used by Mandel (1965), 
however, it must be noted that the multiplication of the shear stress 
components by the 

̅̅̅
2

√
factors was already suggested by Voigt (1910) 

(page 139). The Mandel representation is based on an orthonormal basis 
{EM

i }i=1,…,6 constructed as 

EM
1 = e1 ⊗ e1 EM

4 =
1̅
̅̅
2

√ (e2 ⊗ e3 + e3 ⊗ e2)

EM
2 = e2 ⊗ e2 EM

5 =
1̅
̅̅
2

√ (e1 ⊗ e3 + e3 ⊗ e1)

EM
3 = e3 ⊗ e3 EM

6 =
1̅
̅̅
2

√ (e1 ⊗ e2 + e2 ⊗ e1)

(7) 

A symmetric second-order tensor A and a fourth-order tensor C with 
minor symmetry are then expressed as A = aM

i EM
i and C = CM

ij EM
i ⊗ EM

j , 
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respectively. 
Transformation of stress and strain from Voigt to Mandel notation 

can be done simply as 

σM = TV→M
σ σV and εM = TV→M

ε εV , (8)  

respectively, in which TV→M
σ and TV→M

ε are 6x6 transformation matrices 
with the non-zero elements (Tσ)11 = (Tσ)22 = (Tσ)33 = 1 and (Tσ)44 =

(Tσ)55 = (Tσ)66 =
̅̅̅
2

√
, and TV→M

ε = (TV→M
σ )

− 1. The Mandel notation also 
preserves the work conjugacy as the L2-norm is preserved as, A : A =

(aM)
T aM. 

Transformation of a fourth-order elastic stiffness tensor C from Voigt 
to Mandel notation is 

CM =TV→M
σ CV ( TV→M

ε
)− 1

= TV→M
σ CV TV→M

σ (9) 

The inverse of the fourth-order tensor C in the Mandel notation is 
simply the inverse of the Mandel matrix (CM)

− 1. Any product as C : A 
equals in Mandel notation to a matrix-vector product CMaM, and an 
outer product A ⊗ A is in Mandel notation simply the outer product 
aM(aM)

T. 

2.3. The 5-dimensional deviatoric notations 

Vector representations for both stress and strain were introduced in 
crystal plasticity models without elasticity, originating from the Sachs 
and the Taylor-Bishop-Hill model (Bishop and Hill, 1951; Taylor, 1938) 
the further developed self-consistent models, and grain-cluster models 
as Lamel (Van Houtte et al., 1999), Alamel (Van Houtte et al., 2005), 
Alamel with an additional relaxation (Mánik and Holmedal, 2013) and 
GIA (Crumbach et al., 2001). Since only the deviatoric part of both the 
stress and plastic strain rate tensors enters the constitutive equations, 
the second- and fourth-order tensors can be represented, instead of 6-, by 
a 5-dimensional vector and a 5x5 matrix, respectively. The first 5-dimen-
sional notation was suggested by Kocks et al. (1983) who, similarly to 
Voigt, used different vector representations for the deviatoric stress 
tensor σ ′ and the plastic strain-rate, reading 

σK =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(
σ′

11 − σ′

22

)/
2

3
/

2σ′

33

σ′

23

σ′

13

σ′

12

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, ε̇pK
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ε̇p
11 − ε̇p

22

ε̇p
33

2ε̇p
23

2ε̇p
13

2ε̇p
12

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(10) 

This notation is implemented in the LApp v6.8 - Los Alamos poly-
crystal plasticity code (Kocks et al., 1995), which operates on the 
deviatoric components only. A slightly different notation was chosen by 
Tomé and Kocks (1985), as it was more suitable for the study of the yield 
surface of HCP crystals, reading 

σTK =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

3
(
σ′

11 + σ′

22

)

σ′

11 − σ′

22

σ′

23

σ′

13

σ′

12

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, ε̇pTK
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(
ε̇p

11 + ε̇p
22

)/
2

(
ε̇p

11 − ε̇p
22

)/
2

2ε̇p
23

2ε̇p
13

2ε̇p
12

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(11) 

Canova et al. (1985) concluded, that with respect to symmetries 
associated with hexagonal crystals, the five independent stress compo-
nents should be defined as 

σTK =
( σ′

11 + σ′

22

2
σ′

11 − σ′

22

2
σ23 σ13 σ12

)
(12) 

The first deviatoric notation that is common for any symmetric 
deviatoric second-order tensor A, was suggested by Lequeu (1986). It 
reads 

aL =

⎛

⎜
⎜
⎜
⎜
⎝

(A22 − A11)
/ ̅̅̅

2
√

̅̅̅̅̅̅̅̅
3/2

√
(A11 + A22)̅̅̅
2

√
A23̅̅̅

2
√

A13̅̅̅
2

√
A12

⎞

⎟
⎟
⎟
⎟
⎠

(13) 

Lequeu derived this notation in order to simplify the plotting pro-
cedure, as the first two vector-components in this representation directly 
lead to the π-plane projection and other stress space cross-sections of 
suitable shape. The plastic work conjugacy came to his surprise as a 
bonus, as he mentions it as “an interesting consequence”. The same 
notation, although independently obtained, is used in the VPSC code 
(Tome and Lebensohn, 2009). 

Later, Van Houtte (1988) has chosen similar vector representation as 
by Lequeu (1986), reading 

aH =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

( ̅̅̅
3

√
+ 1
)
A22 +

( ̅̅̅
3

√
− 1
)

A33

2
( ̅̅̅

3
√

− 1
)
A22 +

( ̅̅̅
3

√
+ 1
)

A33

2
̅̅̅
2

√
A23
̅̅̅
2

√
A13
̅̅̅
2

√
A12

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(14)  

3. The natural basis applied to elasto-plastic problems 

Note, that all the deviatoric, i.e. 5-dimensional vector notations, as 
introduced by Kocks et al. (1983), Tomé and Kocks (1985), Lequeu 
(1986) and Van Houtte (1988), preserve the plastic work-rate con-
jugacy, but only the latter two preserve the L2-norm in general as A : A =

(aL)
TaL = (aH)

TaH. The reason for that is, that both Lequeu’s and Van 
Houtte’s notations have an orthonormal basis of five symmetric 
second-order deviatoric tensors. Adding the normalized hydrostatic 
tensor completes the orthonormal basis {Ei}i=1,…,6 in the R 3×3 vector 
space, reading 

E1 =
1̅
̅̅
3

√ (e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3) E4 =
1̅
̅̅
2

√ (e2 ⊗ e3 + e3 ⊗ e2)

E2 =
1̅
̅̅
6

√ ( − e1 ⊗ e1 − e2 ⊗ e2 + 2e3 ⊗ e3) E5 =
1̅
̅̅
2

√ (e1 ⊗ e3 + e3 ⊗ e1)

E3 =
1̅
̅̅
2

√ ( − e1 ⊗ e1 + e2 ⊗ e2) E6 =
1̅
̅̅
2

√ (e1 ⊗ e2 + e2 ⊗ e1)

(15) 

This basis is an alternative to the Mandel orthonormal basis, with the 
first three basis tensors related to the Mandel ones, as shown in Fig. 1. 
The tensor E2 is equal to the projected and normalized Mandel tensor EM

2 
onto the π-plane, E3 lies in the π-plane and is orthonormal to E2, and E1 

is normal to the π-plane. For the rest of the basis tensors, Ei = EM
i for i =

4,5, 6. 
Interestingly, the basis {Ei} carries tensor properties of crystals with 

cubic symmetry. Kocks et al. (1998) showed that the eigentensors of the 
elastic stiffness fourth-order tensor with cubic symmetry are the tensors 
belonging to the basis {Ei}. Moreover, it can be shown that this basis 
also diagonalizes fourth-order compliance tensors of incompressible 
hexagonal crystals. Because of the uncoupling the deviatoric and the 
hydrostatic components, Kocks et al. (1998) denoted this basis as a 
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natural basis. Consequently, in the following, the vector/matrix notation 
associated with the natural basis will be denoted as the natural notation. 

A symmetric second order tensor A is expressed in the natural no-
tation as A = aiEi, where 

a =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a1
a2
a3
a4
a5
a6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1̅
̅̅
3

√ (A11 + A22 + A33)

1̅
̅̅
6

√ (2A33 − A11 − A22)

1̅
̅̅
2

√ (A22 − A11)

̅̅̅
2

√
A23

̅̅̅
2

√
A13

̅̅̅
2

√
A12

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(16) 

Note, that another orthonormal bases can be constructed by rotating 
basis tensors E2 and E3 around the E1 by an arbitrary angle θ (Fig. 1). 
The components of A then can be expressed as a function of angle θ as 

a =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1̅
̅̅
3

√ (A11 + A22 + A33)

sin θ
̅̅̅
2

√ (A11 − A22) +
cos θ
̅̅̅
6

√ (2A33 − A11 − A22)

cos θ
̅̅̅
2

√ (A22 − A11) +
sin θ
̅̅̅
6

√ (2A33 − A11 − A22)

̅̅̅
2

√
A23

̅̅̅
2

√
A13

̅̅̅
2

√
A12

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(17) 

For the case of a deviatoric tensor A′ in which A33 = − A11 − A22, 
the five deviatoric components in the natural notation degenerate in 
Lequeu and Van Houtte notations, for θ = − π

2 and θ = − π
12, respectively. 

4. The natural notation applied to continuum elasto-plasticity 

For modelling of plastic deformation in metals by the continuum 
plasticity theory, the classical assumption is that the plastic flow in 
metals is unaffected by the hydrostatic stress p = σii/3. Pressure-inde-
pendent yield functions, either isotropic or anisotropic, are typically 
employed when modelling plastic behavior of metals. Such a yield 
function is a function of the deviatoric stress, and so is the gradient, ∂σf , 
and the Hessian, ∂2

σσf . On the other hand, the hydrostatic stress is 
important when modelling plasticity of soil, clay, foams or any porous 
media, or for modelling of ductile fracture. Both, for computations 
involving pressure-dependent or independent plasticity calculations, it 
is beneficial to employ a vector/matrix notation, which not only takes 
advantage of the symmetry of the tensor but, in addition, explicitly 
contains the split of the deviatoric part and the spherical part in its 
components. In pressure-dependent models, the hydrostatic stress then 
does not need to be recomputed and becomes an explicit part of the 
notation. More importantly, in pressure-independent plasticity models, 
the yield function gradient and the Hessian are simplified, as the zero 
terms does not need to enter the computation. This directly results in 
dimension reduction of the linear or nonlinear systems to be solved. In 
the following, firstly transformation relations from the reference Voigt 
notation will be established. Those are further applied for expressing 
both elastic and plastic fourth-order tensorial properties in the natural 
notation. Eventually, application of the natural notation in an implicit 
backward Euler return-mapping algorithm is given in section 5. 

4.1. Transformation relations with the Voigt notation 

The natural basis uniquely defines the transformations matrices Tσ 
and Tε, which transform stress and strain written in Voigt notation to the 
natural notation, as 

σ = TσσV and ε = TεεV , (18)  

where σ and ε are vector representations of stress and strain in the 
natural notation, respectively. These transformation tensors are related, 

Fig. 1. Transformation of the Mandel basis.  
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as Tσ = T− T
ε . The transformation matrices Tσ , Tε, and their inverse T− 1

σ , 
T− 1

ε read 

Tσ =
1̅
̅̅
6

√

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

̅̅̅
2

√ ̅̅̅
2

√ ̅̅̅
2

√
0 0 0

− 1 − 1 2 0 0 0

−
̅̅̅
3

√ ̅̅̅
3

√
0 0 0 0

0 0 0 2
̅̅̅
3

√
0 0

0 0 0 0 2
̅̅̅
3

√
0

0 0 0 0 0 2
̅̅̅
3

√

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

Tε =
1̅
̅̅
6

√

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

̅̅̅
2

√ ̅̅̅
2

√ ̅̅̅
2

√
0 0 0

− 1 − 1 2 0 0 0

−
̅̅̅
3

√ ̅̅̅
3

√
0 0 0 0

0 0 0
̅̅̅
3

√
0 0

0 0 0 0
̅̅̅
3

√
0

0 0 0 0 0
̅̅̅
3

√

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

T− 1
σ =

1̅
̅̅
6

√

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

̅̅̅
2

√
− 1 −

̅̅̅
3

√
0 0 0

̅̅̅
2

√
− 1

̅̅̅
3

√
0 0 0

̅̅̅
2

√
2 0 0 0 0

0 0 0
̅̅̅
3

√
0 0

0 0 0 0
̅̅̅
3

√
0

0 0 0 0 0
̅̅̅
3

√

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

T− 1
ε =

1̅
̅̅
6

√

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

̅̅̅
2

√
− 1 −

̅̅̅
3

√
0 0 0

̅̅̅
2

√
− 1

̅̅̅
3

√
0 0 0

̅̅̅
2

√
2 0 0 0 0

0 0 0 2
̅̅̅
3

√
0 0

0 0 0 0 2
̅̅̅
3

√
0

0 0 0 0 0 2
̅̅̅
3

√

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(19) 

It is advantageous to formally write the volumetric part of a in Eq. 
(16) separately, as 

a =

( ̅̅̅
3

√
avol

a′

)

(20)  

where avol = 1
3aiiand a′ denotes a 5-dimensional deviatoric vector with 

components given in Eq. (16). The volumetric part of a stress tensor, i.e. 
the hydrostatic stress, will be denoted as p.

4.2. Fourth-order elasticity tensors 

A fourth-order tensor is written in the natural basis as C = CijEi ⊗

Ej, where its coefficients Cij can be written in a 6x6 matrix. The fourth- 
order tensors, e.g. elastic stiffness and compliance tensors, plastic 
anisotropy tensors etc., are originally in the literature expressed in the 
Voigt notation. Due to the distinction of contravariant and covariant 
Voigt bases, care must be taken when transforming a second or fourth- 

order tensor from Voigt to the natural (or also Mandel) notation. Since 
elasticity stiffness tensors are linear mappings of a strain (covariant) 
tensor to a stress (contravariant) tensor, it transforms as 

C=TσCV T− 1
ε . (21) 

An interesting consequence of using the natural notation, also 
pointed by Kocks et al. (1998), is that the elastic stiffness matrix for both 
isotropic and cubic symmetry transforms into a diagonal matrix as 

CV
iso =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2μ + λ λ λ 0 0 0
λ 2μ + λ λ 0 0 0
λ λ 2μ + λ 0 0 0
0 0 0 μ 0 0
0 0 0 0 μ 0
0 0 0 0 0 μ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Ciso =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

3K 0 0 0 0 0
0 2μ 0 0 0 0
0 0 2μ 0 0 0
0 0 0 2μ 0 0
0 0 0 0 2μ 0
0 0 0 0 0 2μ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(22)  

where λ is the Lamé’s first parameter, μ the shear modulus and K = λ +
2
3 μ is the bulk modulus. For the case of cubic symmetry, 

CV
cub =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Ccub =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C11 + 2C12 0 0 0 0 0
0 C11 − C12 0 0 0 0
0 0 C11 − C12 0 0 0
0 0 0 2C44 0 0
0 0 0 0 2C44 0
0 0 0 0 0 2C44

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(23) 

This is practical for numerical computation, e.g. computing of the 
matrix inversion and for a matrix storage. Note, that Ciso and Ccub have 
the diagonal form for any angle θ in the general transformation Eq. (17). 
The elastic stiffness matrix with orthotropic symmetry in the natural 
notation is given in Appendix C. 

4.3. The natural notation applied to quadratic yield functions 

In the continuum plasticity computational codes, the most common 
isotropic yield function is the von Mises yield function. It can be 
expressed as a more general anisotropic quadratic yield function as 

φ(σ)=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ : M : σ

√
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(σV)
TMV σV

√

=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σTM σ

√
(24) 

The fourth-order tensor M represents a linear mapping from a stress 
tensor to stress tensor. Its matrix in Voigt representation, MV , thus 
transforms into the natural notation according to 

M=T− T
σ MV T− 1

σ , (25) 
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which results in 

MV =
1
2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 − 1 − 1 0 0 0

− 1 2 − 1 0 0 0

− 1 − 1 2 0 0 0

0 0 0 6 0 0

0 0 0 0 6 0

0 0 0 0 0 6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

M =
3
2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(26) 

The diagonal form of M simplifies the expression of the von Mises 

criterion into φ(σ′

) =

̅̅̅̅̅̅̅̅̅̅̅̅
3
2σ′Tσ′

√

. 
The Hill48 yield criterion (Hill, 1948) is the earliest version of an 

anisotropic criterion. It is a straightforward extension of the von Mises 
yield criterion and has a quadratic form. It is extensively used for 
modelling of plastic anisotropy in steels and is implemented in most of 
the commercial FE software. It has the same form as von Mises in Eq. 
(24), with the anisotropic matrix M in the Voigt and the natural notation 
as 

MV =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

G + H − H − G 0 0 0

− H F + H − F 0 0 0

− G − F F + G 0 0 0

0 0 0 2L 0 0

0 0 0 0 2M 0

0 0 0 0 0 2N

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

M =
1
2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0

0 3(G + F)
̅̅̅
3

√
(G − F) 0 0 0

0
̅̅̅
3

√
(G − F) F + G + 4H 0 0 0

0 0 0 2L 0 0

0 0 0 0 2M 0

0 0 0 0 0 2N

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(27) 

The gradient, g′ , and Hessian, H′ , of the von Mises and Hill48 yield 
function are in the natural notation calculated as 5x1 and 5x5 matrix, 
respectively, reading 

g′

=
M′σ′

φ
, H′

=
1
φ
(
M′

− g′ g′T) (28)  

where M′ denotes the deviatoric 5x5 submatrix of M (omitting first 
zeros-valued row and column). 

4.4. The natural notation applied to linear transformation-based yield 
functions 

Anisotropic yield functions based on the concept of linear trans-
formation of the stress tensor, were first introduced by Sobotka (1969), 
Boehler and Sawczuk (1970). The concept was further generalized by 
Karafillis and Boyce (1993). The most recent examples of anisotropic 
yield functions constructed by linear transformation are Yld91 (Barlat 
et al., 1991), Yld2000-2d (Barlat et al., 2003), Yld2004-18p (Barlat 
et al., 2005) and more recent Yld2004-27p (Aretz et al., 2010), 
Yld2011-18p and Yld2011-27p (Aretz and Barlat, 2013). The main idea 

is the linear transformation of the Cauchy stress tensor as 

σ̂ =L : σ (29)  

where σ̂ is the transformed stress tensor and L is a fourth-order trans-
formation tensor, representing the plastic anisotropy. Yld91 contains 
only one such transformation, whereas Yld2004-18p and Yld2011-18p 

are based on two transformations, by adding ̂̂σ =
̂̂
L : σ. Yld2004-27p 

and Yld2011-27p have three linear transformations, by including ̂̂σ̂ =

̂̂
L̂ : σ. Regardless of the number of transformations, the generic form 

(Eq. (29)) is in the literature expressed in the Voigt notation as 

σ̂V
=LV σV = CV DV σV (30)  

where LV usually is decomposed into the anisotropic matrix CV and the 
symmetric deviatoric projection matrix DV that transforms the Cauchy 
stress σV to its deviator. The matrices CV and DV are 

CV =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 − C12 − C13 0 0 0

− C21 0 − C23 0 0 0

− C31 − C32 0 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

DV =
1
3

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 − 1 − 1 0 0 0

− 1 2 − 1 0 0 0

− 1 − 1 2 0 0 0

0 0 0 3 0 0

0 0 0 0 3 0

0 0 0 0 0 3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(31) 

The transformation of a stress vector in the natural notation is 
( ̅̅̅

3
√

p̂
σ̂

′

)

= L
( ̅̅̅

3
√

p
σ′

)

= CD
( ̅̅̅

3
√

p
σ′

)

(32)  

where L (and similarly C and D) are obtained by the transformation 

L = TσLV T− 1
σ . (33) 

The properties of the natural notation make D = I, i.e. being equal to 
the identity matrix. Consequently, 

L=C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 L12 L13 0 0 0
0 L22 L23 0 0 0
0 L32 L33 0 0 0
0 0 0 L44 0 0
0 0 0 0 L55 0
0 0 0 0 0 L66

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(34)  

where 

L12 =
1

3
̅̅̅
2

√ (C12 − 2C13 + C21 − 2C23 + C31 + C32)

L13 =
1̅
̅̅
6

√ ( − C12 + C21 + C31 − C32)

L22 =
1
6
( − C12 + 2C13 − C21 + 2C23 + 2C31 + 2C32)

L23 =
1

2
̅̅̅
3

√ (C12 − C21 + 2C31 − 2C32)
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L32 =
1

2
̅̅̅
3

√ ( − C12 + 2C13 + C21 − 2C23)

L33 =
1
2
(C12 + C21)

(35)  

and 

L44 =C44  

L55 =C55  

L66 =C66 

Note that for the case of isotropic plasticity, L obtains a simple di-
agonal form in the natural notation, as 

Liso =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(36) 

In the definition of “YldXXX” yield functions, each linear trans-
formation is defined by a matrix L, which in general is not a deviatoric 
transformation, i.e. the transformed stress σ̂ is usually not deviatoric. 
The exception is Yld91, which is constructed so that the transformed 
stress is deviatoric. This constraint reduces the number of independent 
coefficients in L from eight to six. The form of L in both Voigt and 
natural notation is similar to the Hill’s anisotropy matrix (Eq. (27), as 

LV
Yld91 =

1
3

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b + c − c − b 0 0 0

− c c + a − a 0 0 0

− b − a a + b 0 0 0

0 0 0 3f 0 0

0 0 0 0 3g 0

0 0 0 0 0 3h

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

LYld91 =
1
6

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0

0 3
(

a + b
) ̅̅̅

3
√ (

b − a
)

0 0 0

0
̅̅̅
3

√ (
b − a

)
a + b + 4c 0 0 0

0 0 0 3f 0 0

0 0 0 0 3g 0

0 0 0 0 0 3h

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(37) 

All the linear transformation-based “YldXXX” yield functions are 
formulated as functions of the eigenvalues of the transformed stress 
tensors. Examples, with one and two linear transformations applied, are 

Yld91 = φ
(

Ŝ1, Ŝ2, Ŝ3

)

=

(
1
2

(⃒
⃒
⃒
⃒Ŝ1 − Ŝ2

⃒
⃒
⃒
⃒

a

+

⃒
⃒
⃒
⃒Ŝ2 − Ŝ3

⃒
⃒
⃒
⃒

a

+

⃒
⃒
⃒
⃒Ŝ1 − Ŝ3

⃒
⃒
⃒
⃒

a ))1
a

Yld2004-18p = φ
(

Ŝ1, Ŝ2, Ŝ3,
̂̂S 1,
̂̂S 2,
̂̂S 3

)

=

(
1
4
∑3

i,j=1

⃒
⃒
⃒
⃒Ŝi −

̂̂S j

⃒
⃒
⃒
⃒

a
)1

a

Yld2011-18p = φ
(

Ŝ1, Ŝ2, Ŝ3,
̂̂S 1,
̂̂S 2,
̂̂S 3

)

=

(
1
ξ

∑3

i,j=1

⃒
⃒
⃒
⃒Ŝi +

̂̂S j

⃒
⃒
⃒
⃒

a
)1

a

,

ξ =

(
4
3

)a

+ 4
(

2
3

)a

+ 4
(

1
3

)a

(38) 

Recently, Cazacu (2019) derived explicit expressions of Yld91 for 
a = 6 and 8 in terms of the second and third invariants of the trans-
formed deviatoric stress σ̂. However, for yield functions involving two 
and three transformations, the eigenvalues of the transformed stress 
tensors need to be calculated. The analytical methods presented e.g. by 
Malvern (1969), Simo and Hughes (1998), Barlat et al. (2005), and later 
the robust method by Scherzinger and Dohrmann (2008), require 
calculation of the first, second and third invariant, I1, I2 and I3 of the 
stress tensor. The analytical calculation of the gradient of Yld2004 given 
by Barlat et al. (2005) and Soare and Barlat (2011) requires the partial 
derivatives ∂Ik

∂p and ∂Ik
∂σ′i 

for k = 1, 2,3 and i = 1,…,5. For the newly derived 

expressions for the Lankford coefficients of Yld91 (Cazacu, 2019), the 
derivatives ∂Jk

∂p and ∂Jk
∂σ′i
, for k = 2, 3 and i = 1,…,5 are needed, where J2 

and J3 are the invariants of the deviatoric stress tensor. All calculated in 
the natural notation are given in Appendix A. 

4.5. Orthogonal transformation in the natural notation 

Assume R being an orthonormal transformation tensor which 
transforms the orthonormal basis {ei}i=1,…,3 into another orthonormal 
basis {êi}i=1,…,3 as êi = RT⋅ei. A second-order tensor A then transforms 

as Â = RT⋅A⋅R or in the indicial notation as Âkl = RikRjlAij. A fourth- 
order tensor C transforms as Ĉmnop = RimRjnRkoRlpCijkl. In a reduced 
vector/matrix representation, a transformation of tensors A and C reads 

â =RT a and Ĉ = RT C R (39) 

The vectors a, â and matrices C, Ĉ are representations of tensors A 
and C in the given notation, before and after transformation, respec-
tively. R and its transpose, RT, are 6x6 matrices and represent the 
transformation in the given notation. In the Voigt notation, due to the its 
dual basis, the transformation matrix for transforming a stress-like 
tensor, RV

σ , differs from the transformation matrix for a strain-like 
tensor, RV

ε . Great care must be taken when transforming fourth-order 
tensors, as those can be of covariant, contravariant or of a mixed na-
ture. This is avoided in both the Mandel and the natural notation which 
have one unique transformation matrix. The explicit forms of the 6x6 
transformation matrix in the Voigt, Mandel and natural notation are 
given in Appendix B. 

5. Application of the natural notation in a highly efficient and 
robust return-mapping algorithm 

An extremely robust, implicit backward-Euler return-mapping al-
gorithm with line-search was developed by Pérez-Foguet and Armero 
(2002). Recently, Scherzinger (2017) applied this algorithm to the 
non-quadratic, isotropic Hosford yield surface (Hosford, 1972) and to 
the anisotropic Yld2004-18p yield surface (Barlat et al., 2005). He 
showed excellent convergence, even for very large trial stress states. In 
addition, Scherzinger (2017) provided analytical expressions for the 
gradient and Hessian of the Hosford and of the Yld2004-18p yield sur-
faces. This algorithm with line-search is followed in this paper and 
further improved by applying the radial return as an initial guess for the 
Cauchy stress. Typically, return-mapping algorithms are in the literature 
formulated in their tensorial form, while numerical implementations 
employ either Voigt or Mandel vector/matrix notation. In the following, 
the return-mapping algorithm used by Scherzinger (2017) will be 
written directly in the natural notation. 

The gradient and Hessian of a yield function, ∂σf and ∂2
σσf , are sec-

ond- and fourth-order tensors, respectively. In the numerical software 
they are typically computed and stored as a 6x1 vector, gV, and a 6x6 
matrix, HV, respectively. As mentioned before, when written in the 
natural notation, because of the pressure-independence, the first 
component of g and the first row and column of H are zeros. Hence, only 
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the deviatoric non-zero 5x1 vector g′ and 5x5 non-zero matrix H′ are 
needed in the return-map. Using the transformation matrices given in 
Eq. (19), gV and HV can be transformed into the natural notation as 

g=T− T
σ gV and H = T− T

σ HV T− 1
σ . (40) 

Transformation of the Hessian in the explicit form is given in Ap-
pendix D. In the following, the implicit backward-Euler return-mapping 
algorithm with line-search (Pérez-Foguet and Armero, 2002; Scher-
zinger, 2017) will be given in the natural notation. 

Given a strain increment Δε =
( ̅̅̅

3
√

Δεvol Δε′
)T and the stress σ(n) =

( ̅̅̅
3

√
p(n) σ′ (n))T at time tn, the trial stress is obtained by applying the 

elastic predictor, as 

σtr =
( ̅̅̅

3
√

ptr σtr ′
)T

= σ(n) + CΔε (41) 

Note, that no plastic corrector is required for updating the hydro-
static part of the stress, i.e. ptr = p(n+1) = p(n) + 3KΔεvol. Thus, only the 
deviators σtr ′ ,Δεp ′

, g′ and H′ enter the plastic corrector part of the return- 
map, which was the aim for the new notation. 

The plastic corrector part of the implicit backward-Euler return-map 
algorithm finds, in a iterative manner, the deviatoric stress σ′ (n+1) and 
the incremental plastic multiplier, Δγ, at time tn+1 = tn + Δt, by solving 
the system of equations 

r= − Δεp ′

+ Δγ g′

= 0 (42)  

and 

f =φ(σ′

) − σY = 0. (43) 

The plastic strain increment Δεp ′ is, due to the simple diagonal form 
of the isotropic elastic modulus in the natural notation (Eq. (22), a 
simple function of σ′ as 

Δεp ′

=
1

2μ (σtr ′ − σ′

). (44) 

Iteratively, the stress σ′ and the plastic multiplier Δγ are updated as 

σ′ (k+1) = σ′(k) + Δσ′

Δγ(k+1) = Δγ(k) + Δ(Δγ)
(45)  

where (k) is the iteration, Δσ′ and Δ(Δγ) are the increment of the 
deviatoric stress and the plastic multiplier, respectively. 

Following Simo and Hughes (1998) or Scherzinger (2017), the Ja-
cobian of the Newton-Raphson algorithm, a 5x5 matrix Ξ(k), is needed 
for each iteration, in order to perform a Newton-Raphson increment. Its 

inverse, Ξ− 1(k) is calculated directly as 

Ξ− 1(k) =
1

2μ I + Δγ(k)H′ (k) (46) 

A Newton-Raphson increment of Δ(Δγ) and the stress increment Δσ′

are computed as 

Δ(Δγ) =
f (k) − r(k)T Ξ(k) g′(k)

g′ (k)T Ξ(k) g′ (k) + h(k)

Δσ′

= − Ξ(k) r(k) − Δ(Δγ) Ξ(k) g′ (k)

(47) 

Here, h(k) is the plastic isotropic hardening modulus. However, the 
Jacobian Ξ(k) itself does not need to be computed explicitly by rather 
expensive matrix inversion of Ξ− 1(k). Due to the symmetry of Ξ− 1(k), the 
effective Cholesky decomposition (Krishnamoorthy and Menon, 2013) 
can be applied to solve the linear systems 

Ξ− 1(k) x1 = g′ (k)

Ξ− 1(k) x2 = r(k)
(48) 

Having the solution vectors x1 and x2, Eq. (47) can be rewritten as 

Δ(Δγ) =
f (k) − r(k)Tx1

g′ (k)Tx1 + h(k)

Δσ′

= − x2 − Δ(Δγ) x1

(49) 

After each Newton-Raphson step, the convergence is measured by 
calculating a non-dimensional scalar residual function as 

ψ (k) =
1
2

(

r(k)Tr(k) +
(

f (k)

2μ

)2)

(50) 

If for an iteration (k + 1), ψ (k+1) < ε, then the algorithm has 
converged. If not, the k+ 1-th Newton-Raphson step is accepted only if 
the ψ (k+1) is lower than some fraction of ψ (k), which is the residual 
achieved in the previous Newton-Raphson iteration. Explicitly written, 
when 

ψ (k+1) < (1 − 2β)ψ (k) (51) 

The parameter β = 10− 4, as recommended by Pérez-Foguet and 
Armero (2002). 

If the condition in Eq. (51) is not satisfied, i.e. the Newton step is 
unfavorable, the updates for σ′ (k+1) and Δγ(k+1) in Eq. (45) are modified 
to an under-relaxed form as 

σ′(k+1) = σ′ (k) + α(k)Δσ′

Δγ(k+1) = Δγ(k) + α(k)Δ(Δγ)
(52)  

where α(k) is a positive number less than 1 and controls the magnitude of 
the Newton-Raphson increments, Δσ′ and Δ(Δγ). The value of α(k) is 
found by a second iterative procedure, inside the Newton-Raphson 
(k)-th iteration, called the line-search, and reads 

α(k)
(j+1) =max

(

ηα(k)
(j) ,

(
α(k)
(j)

)2
ψ (k)

ψ (k+1)
(j) −

(
1 − 2α(k)

(j)

)
ψ (k)

)

. (53) 

The index (j) indicates iterations within the line search. The starting 
point is α(k)

(0) = 1. The parameter η = 0.1 (Pérez-Foguet and Armero, 

2002; Scherzinger, 2017) controls the minimum value of α(k)
(j+1). For each 

line search iteration (j), the merit function ψ (k+1)
(j) is calculated according 

to Eq. (50) using the updates of σ
′ (k+1)
(j) and Δγ(k+1)

(j) calculated by using the 

step α(k)
(j) as 

σ
′(k+1)
(j) = σ′ (k) + α(k)

(j) Δσ′

Δγ(k+1)
(j) = Δγ(k) + α(k)

(j) Δ(Δγ)
(54)  

Within the line search iterations, the residual ψ (k+1)
(j) has to satisfy the 

Goldstein’s condition (Goldstein, 1965; Pérez-Foguet and Armero, 
2002). 

ψ (k+1)
(j) <

(
1 − 2βα(k)

(j)

)
ψ (k) (55) 

If Eq. (55) is not satisfied, the line-search iterations continue by 
calculating new α(k)

(j+1) using Eq. (53). On the other hand, if Eq. (55) is 
satisfied, then both the line search (j) and the Newton-Raphson (k)
iteration are terminated by setting α(k) = α(k)

(j) , and performing the up-
dates for σ′ (k+1) and Δγ(k+1) by Eq. (52). If the convergence is not reached, 
i.e. if ψ (k+1) ≥ ε, then the algorithm continues with next Newton- 
Raphson iteration. 
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Note, two mistakes have been introduced in the formulation of the 
return-map algorithm given by Scherzinger (2017), namely Eqs. (50) 
and (51), which in this paper are correctly written as Eqs. (53) and (55), 
respectively. 

5.1. The radial-return initial guess – the radial-return predictor 

In elastic predictor – plastic corrector type of return-mapping algo-
rithms, the trial stress is normally considered as the initial guess, i.e. 
σ(0) = σtr, where σtr = σ(n) + C Δε is a result of the elastic predictor part. 
Correspondingly, Δγ(0) = 0. The convergence can be improved when 
radial return of the trial stress onto the yield surface is used as the 
starting point for iterations. The initial guess for the stress, σ′(0) reads 

σ′(0)=σtr ′ σy

φ(σtr ′ )
(56)  

where σy is the yield stress. 
The initial guess for the plastic multiplier increment, Δγ, is calculated 

accordingly as 

Δγ(0) =
Δεp ′ Tσ′ (0)

σy
=

|σtr ′ |
2

2μφ(σtr ′ )

(
1 −

σy

φ(σtr ′ )

)
(57) 

The initial guesses σ′(0) and Δγ(0) will be denoted the radial-return 
predictor. 

Without any hardening, the initial guess, σ′(0), will lie on the yield 
surface, i.e. f(σ′(0)) = 0. In the case of isotropic hardening, due to the 
non-zero initial Δγ(0), the yield surface will slightly expand and σ′(0) will 
be inside of the yield locus. As the consistency is not assured, at least one 
more Newton iteration is needed to find the solution. The initial guess 
can be improved for the case of von Mises yield surface with the 
isotropic hardening and calculated as 

σ′(0)=σtr ′
(

1 −
3μ

3μ + h

(
1 −

σy

φ(σtr ′ )

))

(58)  

where h is the hardening modulus at the beginning of the time step. Such 
initial guess often satisfies the convergency criterion. Note, that for h =

0, Eq. (56) is recovered. For other yield functions than von Mises, the 
radial-return initial guess for stress given by Eq. (56) is to be used. 

6. Results and discussion 

6.1. Material models and model parameters 

The implicit backward-Euler return-mapping algorithm described in 
Section 5, is implemented in a UMAT (user-defined material subroutine) 
for Abaqus/Standard 2020 and made freely available via GitLab re-
pository (see Appendix). Isotropic elasticity was used. In the examples 
here, the Young’s modulus E and Poisson’s ratio ν are given in Table 1. 
Two plasticity models were implemented, the Hill48 and Yld2004-18p. 
For the implementation of the Yld2004-18p yield function, involving its 
gradient and Hessian, the recent analytical formulation by Scherzinger 

(2017) is followed but expressed in the natural notation. The robust 
solver by Scherzinger and Dohrmann (2008) was employed for 
computing eigenvalues and eigenvectors of symmetric 3x3 stress 
matrices. 

In order to compare the performance of Yld2004-18p to Hill48, 
anisotropy coefficients of the Yld2004-18p were chosen so that Yld2004- 
18p reduces into Yld91 (Barlat et al., 1991, 2005), since Yld91 further 
coincides with Hill48, for an exponent a = 2, as shown in the Appendix 
of Barlat et al. (2007). The explicit link between the six Hill48 co-
efficients and the six independent Yld2004-18p coefficients are given in 
Appendix E. 

The isotropic hardening is provided by the Voce law as 

R=Rsat

(

1 − exp
(

−
ε

Δεsat

))

(59)  

with the analytical hardening modulus 

h=
dR
dε =

Rsat − R
Δεsat

(60) 

The saturation stress Rsat and the strain scale Δεsat as well as the 
initial yield stress σy, are given in Table 1. For the chosen values, the 
uniform strain is approximately 0.5. 

6.2. Performance of the return-mapping algorithm implemented in the 
natural and Voigt notation 

In both pressure-dependent and pressure-independent plasticity 
models, the constitutive equations require a split of a stress and strain- 
rate tensor into deviatoric and volumetric parts. Since the natural no-
tation inherently contains the deviatoric and volumetric part of the 
tensor, it is beneficial to use it for formulating the constitutive relations, 
as well as the numerical algorithm for solving them. As shown in section 
4, utilization of the natural notation is advantageous when expressing 
both elastic as well as plastic tensorial quantities, as this leads to more 
concise expressions. Examples are the diagonalization of isotropic as 
well as cubic-symmetry elastic moduli, and the reduction from six to five 
dimensions for both the gradient and Hessian of a yield function, further 
resulting in the reduced system of equations to solve in a fully implicit 
return-mapping algorithm. 

In this section, the computational performance of the backward Euler 
return-mapping algorithm implemented in the natural and Voigt nota-
tion, described in section 5, is tested. For this, 10 000 uniformly 
distributed strain increments were used in the return-mapping algo-
rithm, and one time step was computed for each, using Δt = 0.01. Both 
Hill48 and Yld2004-18p yield functions were tested, with parameters 
given in Table 1. For Yld2004-18p, exponents of 2, 4, 6, 8, 12 and 20 
were used in this comparison. The relative reduction in the computa-
tional time when using the natural notation, as compared to the Voigt 
notation, is shown in Fig. 2. The largest relative speedup is achieved for 
the Hill48 yield function, ∼ 23%, while this reduces down to ∼ 5% for 
Yld2004-18p. The part of the algorithm with the highest relative 
computational time reduction is the linear system solver by Cholesky 

Table 1 
Material parameters. The anisotropic C-coefficients are related to Yld2004-18p yield surface and Eq. (31), the coefficients F, G, H, L, M and N 
are related to Hill48 yield surface and Eq. (27).  

E  ν  σy  Rsat  Δεsat  

70 GPa  0.3  20 MPa  150 MPa  0.5   

C12  C13  C21  C23  C31  C32  C44  C55  C66  

0.813  0.880  0.658  0.578  0.808  0.653  0.922  0.637  0.901   

F G H L M N 

0.105  0.446  0.281  1.275  0.609  1.218   
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decomposition, which needs about ∼ 60% less time to solve a 5-dimen-
sional system as compared to 6-dimensions. Other time-saving parts are 
the construction of and manipulation with the Hessian and elastic 
modulus, as both implicitly contain more zero components in the natural 
notation as compared to the Voigt notation. However, these time 
reducing parts of the algorithm play a smaller role for the case of 
Yld2004-18p than for Hill48, as the computation of Yld2004-18p, its 
gradient and the Hessian are computationally more complex. 

6.3. Effect of the radial return initial guess 

In a predictor-corrector return-mapping algorithm, trial stress ob-
tained by the elastic predictor given in Eq. (41) is normally used as the 
initial guess for stress in the plastic corrector iteration process. The 
plastic multiplicator increment, Δγ, is initially equal to 0. However, for a 
large time step, the trial stress lies relatively far from the yield surface. 
Some Newton iterations need to be spent to bring it onto the yield 

surface. Alternatively, a radial projection of the trial stress directly on 
the yield surface can be calculated according to Eq. (56), and such a 
radially returned stress can instead serve as the initial guess. 

In order to test the effect of the radial return initial guess, 200 000 
trial stress states, evenly distributed outside of the yield surface with 
effective stress magnitudes up to 40 times the yield stress, were chosen. 
This is a large set that effectively covers the range of trial stress states 
that can be seen in a numerical simulation. The material parameters 
applied are given in Table 1. Note, that the use of an even distribution of 
trial stress states in the 5-dimensional deviatoric stress space makes the 
convergence statistics very little dependent on the choice of the specific 
anisotropy coefficients applied in the test. The exponents of Yld2004- 
18p that was tested were 6, 8, 12, 20 and 100. 

Fig. 3 shows convergence statistics for cases with the trial stress as 
the initial guess (top row) and for cases with the radial return initial 
guess (bottom row). Statistical distributions, based on the 200 000 stress 
states tested, are made for the number of Newton-iterations and for the 

Fig. 2. Relative computational time reduction for the implementation of the return-mapping algorithm in the natural notation as compared to the Voigt notation 
implementation. Yld2004-18p yield function with exponent a between 2 and 20 was tested. 

Fig. 3. Distributions of the number of Newton iterations (a), (c) and line-search iterations (b), (d) until the convergence as a function of the exponent a in Yld2004- 
18p. Subplots in the upper row represent cases with trial stress used as a starting point, the lower row applies for cases with radial return initial guess. Results are 
based on 200 000 trial stress states evenly distributed outside of the yield surface with effective stress magnitudes up to 40 times the yield stress. 
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number of line-search iterations. The radial return initial guess greatly 
reduces the number of Newton iterations for all the exponents tested. 
When the elastic predictor is used, the largest number of iterations 
recorded was 55 for the case with an exponent of 100 (out of the plotted 
range in Fig. 3a). For the exponent 6, which is an important case for 
modelling of BCC metals, some trial stress states may need up to 23 N 
iterations to converge. By using the radial return initial guess, none of 
the stress states requires more than 5 N iterations. In addition, the line- 

search part of the algorithm was not required. For an exponent 8, i.e. the 
important case relevant for FCC metals, the number of Newton iterations 
for the slowest converging case is 28. However, this drops down to 8 
applying the radial return guess, and the number of cases that needs to 
activate a line-search is greatly reduced. 

Fig. 4. Number of Newton iterations needed for the return-mapping algorithm to converge when (a) using the radial return initial guess and (b) using the trial stress 
state as the initial guess. Yld2004-18p yield function with parameters given in Table 1 and exponents of 6, 8 and 20 was used. Results are taken at approximately 15% 
of compression. 
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6.4. FE simulation of a compression test of a bulk cylinder 

A uniaxial compression of a cylindrical bar was simulated by Aba-
qus/Standard 2020, using the implicit direct FE solver. Both the height 
and diameter of the bar were 100 mm. Only one quarter of the bar was 
modelled, due to orthotropic symmetry of both Hill48 and Yld2004-18p. 
The bar geometry was meshed by ∼30 000 elements of type C3D8R. A 
25% high reduction by uniaxial compression was performed by a rigid 
tool with a Coulomb friction of 0.1 between the tool and the bar. The 
model parameters applied are listed in Table 1. The anisotropy x-axis 
coincides with the compression direction. 

Results of FE simulations at ∼ 15% compression are shown in Fig. 4. 
The number of Newton iterations needed for the return-mapping algo-
rithm to converge is presented for each element. Examples with expo-
nents 6,8 and 20 of the Yld2004-18p are shown. When the radial return 
initial guess was used, 8 N iterations at most were needed for exponents 
6 and 8, while at least 15 and as many as 32 iterations were spent for the 
return-map to converge when the trial stress was used as the initial 
guess. The results with an exponent equal 20 show somewhat clearer an 
onset of localization, i.e. barreling, which is promoted by a more faceted 
Tresca-like yield surface with sharper corners than with exponents 6 and 
8. The localization region involve sharper strain-path changes, which 
normally requires an increased number of iterations by the return-map. 

6.5. FE simulation of a uniaxial tension 

A quasi-static FE simulation of a uniaxial tension of a flat specimen 
was performed. The thickness of the sample is 3 mm, the length and 
width of the gauge area is 50 mm and 15 mm, respectively. The tensile 
specimen was meshed by ∼17 000 elements of type C3D8R. The model 
parameters used were the same as for the compression case, given in 
Table 1. The anisotropy x-axis coincides with the tensile direction. 

Results of FE simulations at ∼ 25% plastic strain for different initial 
guess at the beginning of the return-mapping algorithm are shown in 
Fig. 6. The number of Newton iterations needed for the return-mapping 
algorithm to converge, is presented for each element. Examples with 
exponents 6, 8 and 20 of the Yld2004-18p are shown. When the radial 
return initial guess was used, 4 N iterations were needed for exponents 6 
and 8, while up to 16 iterations were needed when the trial stress was 
used as the initial guess. 

The chosen initial yield stress and the isotropic hardening allow the 
material to harden until the uniform strain, which is ∼ 50%. During the 
FE simulation, a stable return-mapping algorithm allows Abaqus to 
automatically increase the time increment during the simulation. The 
time increment as well as the strain increment enter the UMAT as an 
input. As an example, Fig. 5 shows the total equivalent strain together 
with the equivalent strain increments per time step during the FE 
simulation of a uniaxial tension, using Yld2004-18p with an exponent of 
6. As the material hardens, the equivalent strain increment increases and 

reaches ∼0.075. For the given Young’s modulus, the elastic predictor 
results in trial stress above 5 GPa, which for the equivalent stress of 
∼100 MPa makes the yield function 50 times larger than the equivalent 
stress. Using the radial return predictor instead of the elastic predictor, 
avoids the large jump of the stress into the plastic region and hence 
improves the convergence of the return-mapping algorithm. However, a 
more effective return-mapping algorithm will not affect the global 
convergence behavior of the FE solver. 

6.6. FE simulation of a compression of a thin-walled tube 

Compression of a thin-walled tube was run in an implicit quasi-static 
FE simulation with contact. The dimensions of the tube were 200 mm 
(height) x 100 mm (width) x 100 mm (length), and the wall thickness 
was 4 mm. A Coulomb friction coefficient of 0.1 was used for the friction 
between the rigid circular plates and the tube. Plastic buckling of the 
tube occurred early after the beginning of the test. The FE model con-
sisted of ∼44 000 solid elements with reduced integration (type C3D8R) 
and hourglass control. The model parameters, except for the isotropic 
hardening, were the same as for the previous analyses. The isotropic 
hardening for this case was chosen to reflect a T6 condition for an 
AA6082 aluminium alloys, which has typically little work hardening 
potential and a uniform strain below 0.1. The Voce law as in Eq. (59), 
was applied with parameters Rsat = 40 MPa, Δεsat = 0.05. The initial 
yield stress was 300 MPa. The anisotropy x-axis coincides with the 
compression direction. 

Results of FE simulations at 18% global strain, obtained using the 
Yld2004-18p yield criterion with exponent 8, are shown in Fig. 7, for 
both radial-return and elastic predictor. The number of Newton itera-
tions needed for the return-mapping algorithm to converge, is presented 
by the color code for each element. In this case, the average number of 
iterations is much smaller as compared to the bulk cylinder compression 
in Section 6.4. This is due to smaller time steps chosen by Abaqus in the 
current simulation. Hence, for lower trial stresses, the gain by applying 
the radial return predictor is smaller. 

6.7. Overall performance of the FE simulations with UMAT, using the new 
return-mapping algorithm 

The performance of the new return-mapping algorithm was tested by 
running FE simulations of uniaxial tension and compression of both bulk 
cylinder and thin-walled tube. The quadratic von Mises and Hill48 yield 
criteria and the Yld2004-18p yield criterion with various yield-surface 
exponents were tested. The total time of each simulation was recor-
ded. All simulations were run by Abaqus/Standard 2020 using the direct 
solver on a Windows 10 system on Intel Core i7-7700 CPU 3.6 GHz. The 
simulations of the uniaxial tensile test and the compression test of a 
cylinder were run on a single cpu without any parallelization. The tube 
compression was run on four cpus. Automatic time incrementation was 

Fig. 5. Equivalent strain and strain increment during increment in a FE simulation of uniaxial tensile test by implicit FE solver Abaqus/Standard using Yld2004-18p 
yield function with exponent of 6 and material parameters from Table 1. 
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Fig. 6. Number of Newton iterations needed for the return-mapping algorithm to converge, when (a) using the radial return initial guess, and (b) using the trial stress 
state as the initial guess. The Yld2004-18p yield function with parameters given in Table 1 and exponents a = 6, 8 and 20 was used. Results are taken at 
approximately 30% deformation. 

Fig. 7. Number of Newton iterations needed for the return-mapping algorithm to converge, when (a) using the radial return initial guess, and (b) using the trial stress 
state as the initial guess. The Yld2004-18p yield function with parameters given in Table 1 and exponent of 8 was used. Results are taken at 18% of compression. 

Fig. 8. Comparison of the overall computational performance of FE simulations of the uniaxial compression using von Mises, Hill48 and Yld2004-18p yield 
functions. The effect of elastic predictor and radial return predictor in the return-mapping algorithm are compared. Simulations were run up to a compression strain 
of 25%. 
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chosen, so that Abaqus could increase the time increments when global 
convergence was easy to achieve. As shown earlier, the new return- 
mapping algorithm will efficiently provide well-converged solution of 
the material model in a robust manner. On the other hand, when global 
convergence is difficult to establish, Abaqus applies cutbacks and re-
duces the time increment to reach convergence. An initial time incre-
ment of 0.01 was chosen, and the total time was 1. 

As mentioned earlier, the anisotropy parameters of Yld2004-18p and 
Hill48 are related by Eq. (78), so that the model using Yld2004-18p with 
exponent a = 2 is equivalent to the model employing the Hill48 yield 
criterion. 

Timing results of the FE simulations of three tests, i.e. the compres-
sion of a bulk cylinder, the uniaxial tension of a flat specimen and the 
compression of a thin-walled tube, are presented in Fig. 8, Fig. 9 and 
Fig. 10, respectively. For benchmarking purposes, the Abaqus’ built-in 
von Mises and Hill48 plasticity models were run (vertical-stripe 
patterned bars). Results of the first two tests show improvement in the 
performance, when the radial-return predictor is used together with the 
Yld2004-18p model. This is due to relatively large time steps during the 
FE analysis. It is found for the cases tested, that with the largest expo-
nents, the effect of the radial-return predictor is strongest. In the thin- 
walled tube compression test, significant plastic buckling takes place, 
which causes reduction of the time steps. Smaller time steps result in 
smaller trial stresses, and the gain by applying the radial-return pre-
dictor is limited for this case. 

Fig. 9 shows that the Hill48 model in UMAT ran slightly faster than 
the von Mises model in UMAT for the uniaxial tension. However, it must 
be noted that the von Mises model in UMAT here is computed as a 
special case of Yld2004-18p, which is more complex than computing 
Hill48. On the other hand, the von Mises model reaches convergence 
directly by the radial-return predictor, while the Hill48 model typically 
needs up to 4 iterations to converge. 

The von Mises model ran from UMAT, performs very close to the 
Abaqus’ built-in von Mises model. This is expected, as the radial return 
direction is actually equal to the Euler backward direction. For all three 
tests, the Hill48 model from UMAT performed better than the Abaqus’ 
built-in Hill48 model, regardless of the predictor type used. For the case 
of bulk compression, the difference is surprisingly large. More time step 
cutbacks were needed in order to achieve the convergence. The less 
stable behavior of the Abaqus’ built-in Hill48 model was not observed 
when running any of the new models in UMAT. 

Perhaps the most important result from Figs. 8, Figs. 9 and 10, is that 
the overall computational performance for models employing Yld2004- 
18p with a = 6 and 8 are comparable to the simplest von Mises or Hill48 
models. In all three tests, using the radial-return predictor, the 

performance of Yld2004-18p with exponent up to 8 matches the per-
formance of the built-in Hill48 Abaqus model within 20%. Note that the 
stability and efficiency of the algorithm enable the Yld2004-18p yield 
function for use in FE simulations. Note also, the comparable perfor-
mance of an implicit FE simulation when using Yld2004-18p and Hill48 
model, makes the Yld2004-18p eligible to become a natural part of any 
commercial FE software package suited for nonlinear structural me-
chanics of continua. 

The relatively high number of anisotropy coefficients to be calibrated 
(16 independent ones, as proved by van den Boogaard et al. (2016)) can 
in simplified applications be reduced to the same number as for Hill48 
(Yld2004-18p reduces to Yld91), so that standard mechanical testing 
procedures, already established, for identification of the Hill48’s co-
efficients, can be applied also for high-exponent yield criteria. The 
possibility to adjust the yield-surface exponent to reflect the crystal-
lography of the metal tested, comes at a very small extra cost. 

On the other hand, the number of adjustable parameters can also be 
further extended, as in Yld2004-27p (Aretz et al., 2010) or Yld2011-27p 
(Aretz and Barlat, 2013), which might be necessary for the concept of a 
“virtual testing laboratory”, in which no restrictions exist on the type 
and number of mechanical tests applicable to determine these 
parameters. 

7. Conclusions 

A natural notation has been introduced, which is adequate for for-
mulations and implementations of continuum plasticity models. 
Applying this formalism, efficient and robust implicit backward Euler 
return-mapping algorithm with radial return predictor was imple-
mented. Due to the explicit representation of a deviatoric and volu-
metric part, the natural notation was shown to be advantageous for 
expressing symmetric second- and fourth-order tensors in continuum 
plasticity. Its application in a return-mapping algorithm for pressure- 
independent yield functions led to dimensionality reduction of the sys-
tem of equations to be solved. The natural notation lowered the 
computational cost of the return-mapping algorithm compared to the 
traditional Voigt notation, for Hill48 plasticity model by almost 25%. 

The elastic predictor in the return-mapping algorithm was replaced 
by the radial return predictor, which uses radial projection of the trial 
stress onto the yield surface as the initial guess. This starting guess 
considerably improved the convergence of the return-map, particularly 
for large strain increments. 

The presented return-mapping algorithm was implemented for 
Hill48 and Yld2004-18p yield functions in the user-defined material 
subroutine (UMAT) for Abaqus/Standard. FE simulations of a uniaxial 

Fig. 9. Comparison of the overall computational performance of FE simulation of the uniaxial tension using von Mises, Hill48 and Yld2004-18p yield functions. The 
effect of elastic predictor and radial return predictor in the return-mapping algorithm are compared. Simulations were run up to an equivalent strain of ∼50%. 
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tension test and a uniaxial compression test with contact were run, 
testing several exponents up to 20 of Yld2004-18p. The main conclusion 
is that for some cases the overall computational cost of simulations 
employing Yld2004-18p is comparable to the simplest von Mises and 
Hill48 models. When contact is involved and causing reduction of the 
time increment, the higher cost of the more complex Yld2004-18p be-
comes more dominant. 

The results show that the new return-mapping algorithm employing 
Yld2004-18p is equally fast and robust as the simple von Mises and Hill 
implementations in the Abaqus/Standard software. This demonstrates 
the competitiveness of Yld2004-18p for applications using implicit FE 
simulations. By now, only very few commercial FE software contain the 
Yld2004-18p as the built-in material model. The author hopes that the 
presented return-mapping algorithm and the provided numerical 
implementation enable the full exploitation of advanced yield functions 
in industrial FE software. This will lower the threshold for their use and 
may set the new standard for the metal forming industry. 
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Appendix 

The UMAT developed in this work can be freely downloaded from the following link: 
https://gitlab.com/ntnu-physmet/continuum-plasticity 

A. Stress Invariants and their derivatives in the natural notation 

Using the natural notation of a stress tensor σ in the form given by Eq. (20) as σ = (
̅̅̅
3

√
p σ′

)
T, where σ′

= (σ′

1, σ
′

2, σ
′

3, σ
′

4, σ
′

5)
T
,the invariants I1,I2, I3 

of σ as well as the invariants J1,J2, J3 of the deviator σ′ are calculated as 

Fig. 10. Comparison of the overall computational performance of FE simulation of the compression of a thin-walled tube using von Mises, Hill48 and Yld2004-18p 
yield functions. The effect of elastic predictor and radial return predictor in the return-mapping algorithm are compared. Simulations were run up to a global 
compression of 18%. 
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The derivatives of the invariants are as follows: 
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B. Rotation matrices 

A second-order tensor A transforms by an orthonormal transformation tensor R as 

Â =RT⋅A⋅R or Âkl = RikRjlAij. (63) 

In the cartesian orthonormal basis, R = Rijei ⊗ ej, and coefficients Rij can be arranged in a 3x3 matrix R as 

R=

⎛

⎝
R11 R12 R13
R21 R22 R23
R31 R32 R33

⎞

⎠ (64) 

The tensors A and Â are expressed in the Voigt notation as a and â, and then â = R
Ta, where R is a 6x6 matrix. Due to the existence of dual bases 

in the Voigt notation, it follows that if a is a stress-like (contravariant) tensor, then R = R
V
σ 
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If a represents a strain-like (covariant) tensor, then R = R
V
ε and 
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In the Mandel notation, R = R
M for both type of tensors and reads 
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In the natural notation, R reads 
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Given a 6x6 matrix R , the proper 3x3 rotation matrix R can be inversely calculated as 
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R21 =
1

R31
(R22R32 − R 43) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3

2R 22 + 1

√ (

R 44 −
R 24R 42

2R 22 + 1

)
R 24

R 25
−

R 43

R 25

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2R 22 + 1

√

For the sake of completeness, some important remarks on the update of the rotation matrix are given in the following. 
Given a spin tensor represented as a skew-symmetric matrix 

W=

⎛

⎝
0 − w3 w2
w3 0 − w1
− w2 w1 0

⎞

⎠, (70)  

in which w1,w2,w3 are components of spin vector w, the update of the rotation matrix R is given by the differential equation 

Ṙ=W R. (71) 

Analytical solution exists for the case of constant W and can be written using Euler-Rodriguez formula as 

R(t) =
(

I + sin(wt)
w

W +
(1 − cos(wt) )

w2 WW
)

R0 (72)  

where R0 = R(0) and w =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

w2
1 + w2

2 + w2
3

√

. In general, the spin W is a function of time. Eq (71) is then applied per time increment Δt as 

Rn+1 = ΔR Rn =

(

I +
sin(wnΔt)

wn
Wn +

(1 − cos(wnΔt) )
w2

n
WnWn

)

Rn (73) 

The symmetric numerical second-order update scheme by Hughes and Winget (1980) is often employed (e.g. DROT rotation increment matrix in 
UMAT in Abaqus/Standard), which assumes that the spin W is known at time tn+1/2 = tn + 1

2 Δt. It reads (using Cayley’s formula (Cayley, 1846) in order 
to avoid solving the matrix inverse) 

Rn+1 =

⎛

⎜
⎝I −

Δt
2

Wn+1 /

2

⎞

⎟
⎠

− 1⎛

⎜
⎝I +

Δt
2

Wn+1 /

2

⎞

⎟
⎠Rn =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

I +
Δt

1 +
Δt2

4
Wn+1 /

2 : Wn+1 /

2

⎛

⎜
⎝Wn+1 /

2 +
Δt
2

Wn+1 /

2 Wn+1 /

2

⎞

⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Rn (74) 

The 6x6 matrix R n+1 needs then to be built by using Eq. (68). 

C. Elastic stiffness tensor for orthotropic symmetry 

The elastic stiffness matrix for orthotropic symmetry is written in Voigt notation as 

CV
orth =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(75) 

It transforms using the new notation into Corth with the non-zero components (the super-script “V” denoting the Voigt notation in Cij coefficients are 
omitted) as 

C11∶ =
1
3
(C11 + C22 + C33 + 2C23 + 2C13 + 2C12)

C12∶ =
1

3
̅̅̅
2

√ ( − C11 − C22 + 2C33 + C23 + C13 − 2C12)

C13∶ =
1̅
̅̅
6

√ ( − C11 + C22 + C23 − C13)

C22∶ =
1
6
(C11 + C22 + 4C33 − 4C23 − 4C13 + 2C12)

C23∶ =
1

2
̅̅̅
3

√ (C11 − C22 + 2C23 − 2C13)

C33∶ =
1
2
(C11 + C22 − 2C12)

(76)  

and 

C44∶ = 2C44 C55∶ = 2C55 C66∶ = 2C66 
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D. Transformation of the Hessian 

The Hessian expressed in the natural notation reads 

H=
1
2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0
3(H1111 + 2H1122 + H2222)

̅̅̅
3

√
(H1111 − H2222) −

̅̅̅
3

√
(H1123 + H2223) −

̅̅̅
3

√
(H1113 + H2213) −

̅̅̅
3

√
(H1112 + H2212)

H1111 − 2H1122 + H2222 − H1123 + H2223 − H1113 + H2213 − H1112 + H2212
H2323 H2313 H2312

symmetric H1313 H1312
H1212

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(77)  

E. Relations of anisotropy coefficients between Yld2004, Yld91 and Hill48 

As can be seen from Eq. (37), Yld2004 reduces into Yld91 when relations apply as 

L22 =
(

a + b
)/

2,

L23 = L32 =

̅̅̅
3

√

6

(
b − a

)
,

L33 =
(

a + b + 4c
)/

6,

L12 = L13 = 0

L44 = f
/

2, L55 = g
/

2, L66 = h
/

2

(78) 

The inverse relations read 

a = L22 −
̅̅̅
3

√
L23,

b = L22 +
̅̅̅
3

√
L23,

c = (3L33 − L22)/2,
f = 2L44, g = 2L55, h = 2L66

(79) 

For exponent a = 2, Yld91 equals to Hill48 and the link between their coefficients is as 

F =
1
6

(
2a2 + ab + ac − bc

)
=

1
2
L2

23 +
1
2
L2

22 −

̅̅̅
3

√

2
(L22 + L33)L23

G =
1
6

(
2b2

+ ab − ac + bc
)
=

1
2
L2

23 +
1
2
L2

22 +

̅̅̅
3

√

2
(L22 + L33)L23

H =
1
6

(
2c2 − ab + ac + bc

)
=

1
4
(
2L2

23 + 3L2
33 − L2

22

)

L =
3
8

f 2
=

3
2
L2

44, M =
3
8
g2 =

3
2
L2

55, N =
3
8
h2

=
3
2
L2

66

(80) 

To be reminded, Lij − coefficients are anisotropy coefficients of Yld2004-18p when the natural vector notation is employed for the stress. For 
completeness, if the Voigt notation is used, the relations in Eq. (78) become 

F =
1

18
(
− 2C2

12 − C12C23 − 7C31C12 + 10C2
23 + 5C31C23 + 4C2

31

)

G =
1
18
(
4C2

12 − 7C12C23 + 5C31C12 − 2C2
23 − C31C23 + 10C2

31

)

H =
1
18
(
10C2

12 + 5C12C23 − C31C12 + 4C2
23 − 7C31C23 − 2C2

31

)

L =
3
2

C2
44, M =

3
2
C2

55, N =
3
2

C2
66

(81) 

The remaining coefficients C21, C13 and C32 must obey 

C13 = (2C31 + 2C12 − C23)/3
C32 = (2C23 + 2C31 − C12)/3
C21 = (2C12 + 2C23 − C31)/3

(82)  
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