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ABSTRACT
A modern ship is fitted with numerous sensors and Data Ac-

quisition Systems (DAQs) each of which can be viewed as a data
collection source node. These source nodes transfer data to one
another and to one or many centralized systems. The central-
ized systems or data interpreter nodes can be physically located
onboard the vessel or onshore at the shipping data control cen-
ter. The main purpose of a data interpreter node is to assimilate
the collected data and present or relay it in a concise manner.
The interpreted data can further be visualized and used as an
integral part of a monitoring and decision support system. This
paper presents a simple data processing framework based on big
data analytics. The framework uses Principal Component Anal-
ysis (PCA) as a tool to process data gathered through in-service
measurements onboard a ship during various operational con-
ditions. Weather hindcast data is obtained from various sources
to account for environmental loads on the ship. The proposed
framework reduces the dimensionality of high dimensional data
and determines the correlation between data variables. The ac-
curacy of the model is evaluated based on the data recorded dur-
ing the voyage of a ship.

Keywords: Big Data, Ship Hydrodynamics, Principal Com-
ponent Analysis.
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INTRODUCTION
The influence of environment on the hydrodynamic perfor-

mance of a ship is a long studied subject. Estimation of added
wave resistance for a ship has always been a topic of research.
Moreover, the introduction of Energy Efficiency Design Index
(EEDI) and Energy Efficiency Operation Index (EEOI) proposed
during 58th MEPC conference is an additional push towards im-
proving the energy efficiency and reducing emissions from ship-
ping industry. The performance of a ship in the absence of any
environmental loads can be simply evaluated based on the calm
water speed-power relation for the ship. As proposed by Boom
& Hout (2008) [1], the speed-power relation or curve, for near
calm water condition, can be established by means of speed tri-
als. Alternatively, it is possible to establish such a curve by ana-
lyzing the in-service data collected on-board a newly built ship.
Based on this curve a simple one-to-one mathematical relation
can be formulated between the speed and power consumption of
the ship.

As the environment becomes significant, large deviations
are observed from the well-known parabolic calm water speed-
power curve. In order to explain or predict these deviations, a lot
of research has been done, for example, to create prediction mod-
els for speed loss of a ship. Prpić-Oršić & Faltinsen (2012) [2]
estimated the speed loss of a ship due to ship motions and pro-
peller ventilation. Feng et al. (2010) [3] presented a procedure to
predict the speed reduction of a ship accounting only for added
resistance in waves. Lu et al. (2018) [4] computed the speed
loss of a ship using simulations based on different numerical and
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mechanical approaches. Some researchers, on the other hand,
predicted these deviations in terms of increased power or fuel
consumption by the ship. Seo et al. (2013) [5] presented three
different numerical approaches to predict the added resistance in
waves and therefore, increased power consumption. Kim et al.
(2017) [6] carried out the assessment of ship operating perfor-
mance for a LNG ship using a power prediction model based on
wave basin model test results, numerical computations and em-
pirical formulations to account for environmental loads.

It can be clearly observed that all the above proposed pro-
cedures are either using simplified or approximated models of
much more complex environmental loads or uses various differ-
ent components, each one calculating an approximate correction
for an individual environmental factor. Moreover, most of these
methods neglect smaller influencing factors like engine-propeller
degradation and fouling. The biggest advantage of a data-driven
model is that it can be developed as a single component model
which would be capable of including the effect of even the small-
est influencing factor. The challenge here would be to correctly
identify the variables which would appropriately quantify all the
influencing factors which are responsible for the deviation from
the basic speed-power characteristic of the ship.

With the advancement of technology, data-driven ap-
proaches have become nearly ubiquitous. Some researchers used
this opportunity to develop ship performance evaluation or speed
prediction models based on pure statistical or mathematical ap-
proach. Mao et al. (2016) [7] tested three different statistics
based regression models, using limited/indirect information, for
predicting the speed of a small size containership. Pedersen
(2014) [8] illustrated the possibility of using purely data-driven
method, based on Artificial Neural Networks (ANN) or Gausian
Process Regression (GPR), for predicting power consumption
of a ship. Gjølme (2017) [9] developed a data-driven machine
learning model to predict the speed loss of a ship due to cur-
rent, wind and waves. Bal Beşikçi et al. (2016) [10] presented
an ANN based model to predict fuel consumption of a ship and
based on that, developed a Decision Support System (DSS) for
energy efficient ship operations. Perera (2017) [11] presented a
study to illustrate the use of big data analytics as a data handling
framework to process the large volume of data recorded onboard
a ship.

The aim of this publication is to develop a data-driven
mathematical model which can be used to monitor and assess
the hydrodynamic performance of a ship during a sea voyage.
The mathematical model is based on a selected set of variables
obtained directly or indirectly via onboard measurements and
weather hindcast data. The variable selection process is based
on the engineering knowledge available to us as well as the re-
sults obtained from a preliminary Principal Component Analysis
(PCA) model1. The preliminary PCA model is also used to de-

1Further explained in Results section.

tect and understand potential outlier sample data points. Finally,
a better fit PCA model is developed with minimum number of
Principal Components to statistically explain the variance in the
dataset.

BIG DATA ANALYTICS
Big data analytics is a data handling framework which can

be used to extract meaningful information from large datasets,
often termed as big data [12]. It can be used to perform tasks like
data exploration, feature selection, pattern recognition, etc. Big
data analytics can be implemented using various Machine Learn-
ing (ML) based methods to perform data analysis. As in the case
of ML, big data analysis methodologies can also be classified as:
supervised, unsupervised and semi-supervised learning.

With the advent of modern technology and automation, Ma-
chine Learning (ML) methods are becoming increasingly popu-
lar in the field of data science. ML can be said to be a subfield of
Artificial Intelligence (AI), which itself is a subfield of computer
science. The primary concern about such methods is that they are
becoming increasingly opaque and difficult to explain. Holzinger
(2018) [13] presented a discussion about the increasing need for
explainable AI (XAI) instead. It is well known that a complex
Artificial Neural Network (ANN) can be challenging to compre-
hend. The methodology used in the current work uses a simple
Principal Component Analysis (PCA) model which can be quite
explainable as demonstrated by Brinton (2017) [14]. The PCA
model presented here is developed using a commercial applica-
tion, The Unscrambler X2.

Principal Component Analysis (PCA)
An analysis involving more than one variable, often known

as multivariate analysis, is generally characterized by a number
of correlated variables. Principal Component Analysis (PCA)
[15] is an unsupervised machine learning or big data analysis
method based on statistics that transforms the correlated multi-
variate data into a small number of independent and uncorrelated
variables, known as Principal Components (PCs). These PCs
accounts for variability in the dataset. In general, the first PC ac-
counts for maximum variability and the succeeding PCs accounts
for as much of the remaining variability as possible. PCA is also
viewed as a method to reduce the dimensionality of a high di-
mensional dataset that retains most of the information contained
in the large dataset. PCA splits the dataset matrix (X) into a
modelled part (XM) and a residual error part (E), with XM and E
having the same dimensions as X :

Xm×n = Xm×n
M +Em×n (1)

2https://en.wikipedia.org/wiki/The_Unscrambler
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Here, superscript m× n is the dimension of the original
dataset X , i.e., X has m rows and n columns. Generally, in case of
a time series data, m is the number of samples and n is the num-
ber of variables in the recorded dataset. The modelled part, XM ,
is expressed as a subspace with a certain complexity or dimen-
sionality. The model dimensionality (A) represents the number of
PCs used to create the model. It should be noted that the residual
error E changes with varying model dimensionality. Thus, the
primary aim of a PCA model is to, ideally, retain all the informa-
tion in XM, A and discard the remaining noise in EA.

Pre-processing. Before establishing the model XM, A,
it is customary to pre-process the original dataset. The pre-
processing involves two main steps: scaling and mean-centering
the data. If variables are recorded on different scales, for exam-
ple, they have different units of measurement, it is mathemat-
ically advantageous to scale these variables to the same scale.
This is usually done by multiplying the recorded data matrix
(Xrec) with a diagonal matrix (S0) containing one scaling factor
for each variable. This scaling factor is, in general, the inverse
of the total standard deviation of the corresponding variable, i.e.,
diag(S0)k = 1/std(Xrec, k) where std(Xrec, k) is the standard de-
viation of the kth column of Xrec. The scaled matrix is, thus,
defined as:

Xm×n
S = Xm×n

rec . Sn×n
0 (2)

Further, it is mathematically convenient to mean-center the
recorded data such that the modelled part (XM, A) may be viewed
as a Tylor’s series expansion around a working point X0. This
working point (X0) is, in general, the mean-center of the cloud
formed by the data points in the given high dimensional space.
If X0 is a row matrix containing the mean of each column (or
variable) in XS and IC is a column matrix of ones, then the mean-
centered data matrix is calculated as:

Xm×n = Xm×n
S − Im×1

C . X1×n
0 (3)

It should be noted that scaling and mean-centering the data
would not affect the final outcome of the model but, in some
cases, unscaled data might introduce the rounding-off error dur-
ing matrix operations [16].

Bilinear Modelling. In PCA, the data-driven mathemat-
ical model is regarded as a sum of contributions from different
functions of rows and columns. Each of these functions is sim-
ply approximated as a linear model. Thus, resulting in a bilinear
model as follows:

Xm×n = Xm×n
M, A +Em×n

A = T m×A
A . P′ A×n

A +Em×n
A (4)

Here, matrix TA contains the so-called scores and matrix PA
contains the so-called loadings with each column corresponding
to a Principal Component (PC). P′A represents the transpose of PA
matrix. The above expression can also be written as summation
of A PCs:

Xm×n =
A

∑
i=1

tm×1
i × p′ 1×n

i +Em×n
A (5)

Where ti and pi are column matrices or vectors contain-
ing scores and loadings of ith PC, respectively. Scores shows
the patterns of co-variation among m samples whereas loadings
shows the corresponding patterns of co-variation among n vari-
ables. It should be noted that the model dimensionality (A) is
user-specified but is limited by the maximum number of linearly
independent rows or columns in X , commonly known as the rank
of the matrix, i.e., Amax = rank(X).

Conventionally, in PCA, the score vectors (columns in TA)
are orthogonal3 to each other and the loading vectors (columns
in PA or rows in P′A) are orthonormal4. The scores and load-
ing can be estimated in many different ways. Two of the most
popular methods are: Singular Value Decomposition (SVD) [17]
and Nonlinear Iterative Partial Least Squares (NIPALS) algo-
rithm [18]. SVD is a direct method which calculates the maxi-
mum number of PCs (determined by the rank of the data matrix)
whereas NIPALS is an iterative method which calculates 1 PC
at a time. NIPALS algorithm can be further modified to accom-
modate missing values in the dataset using a method given by
Martens & Martens (2001) [19].

Singular Value Decomposition (SVD). SVD is a gen-
eralization of eigen-decomposition5 for any m×n matrix. The
data matrix (X), having dimensions m×n with m ≥ n, can be
decomposed using SVD as follows:

Xm×n =Um×n. Σ
n×n. V ′ n×n (6)

Where U consists of n orthonormalized eigenvectors of
(X . X ′), V consists of orthonormalized eigenvectors of (X ′. X)

3T ′A. TA = λ , where λ is a diagonal matrix and diag(λ )i is proportional to the
eigenvalue associated with the ith PC.

4P′A. PA = I where I is an identity or unit matrix.
5Factorizing a diagonalizable square matrix into eigenvalues and eigenvec-

tors.
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and Σ is a diagonal matrix containing non-negative square roots
of the scaled eigenvalues of (X ′. X), also known as singular val-
ues. The columns of U and V are also known as left-singular
eigenvectors and right-singular eigenvectors of X , respectively.

Comparing Equations (5) and (6), the loading vectors (pi)
corresponds to columns in V and score vectors (ti) corresponds
to columns in (U. Σ). Moreover, for the model with maximum
dimensionality, i.e., A = Amax, P =V and T = (U. Σ).

Covariance & Correlation
Variance of a data variable is an absolute measure of vari-

ability which quantifies the “spread" of the observations from the
expected or mean value of the variable. It can also be interpreted
as the mean of the squares of the deviations. Covariance quan-
tifies the relation between the variability of two variables, i.e., it
measures the deviation from mean for these two variables with
respect to each other. The covariance between a variable and
itself is the variance. Covariance is mathematically formulated
as:

Cov(α,β ) = E
(
(α−α)(β −β )

)
(7)

Where α and β are data variables. A high positive or neg-
ative value of covariance indicate a strong relationship between
variables whereas zero covariance indicate that the variables may
be independent of each other.

For more than two variables, the statistical relationship be-
tween variables can be quantified as the covariance between two
variables at a time and can be presented in the form of a covari-
ance matrix as:

Cov(X) =


Cov(X1,X1) Cov(X1,X2) Cov(X1,X3)

Cov(X2,X1) Cov(X2,X2) Cov(X2,X3)

Cov(X3,X1) Cov(X3,X2) Cov(X3,X3)

 (8)

Where X1, X2 and X3 are data variables. It should be
noted that the above matrix is symmetric about the diagonal as
Cov(X1,X2) = Cov(X2,X1) and the diagonal of the matrix con-
tains the variance of the corresponding variable. If X is a mean-
centered vector containing n elements or variables (X1, X2,..., Xn),
the above equation can also be written as:

Cov(X) =
1

n−1
X ′. X (9)

For a better interpretation of covariance matrix, it is sensi-
ble to scale the covariance matrix. This is, generally, done by

dividing each element of matrix by the product of standard de-
viation of the corresponding variables. The scaled covariance is
also known as the correlation between the variables, calculated
as:

r(X1,X2) =
Cov(X1,X2)

std(X1). std(X2)
(10)

In case of already scaled variables, the covariance matrix is
the correlation matrix. Also, the diagonal of the correlation ma-
trix will contain 1 indicating 100% correlation between a variable
and itself.

Correlation Loadings. Correlation loadings are de-
fined as the correlation between data variables and a Principal
Component (PC). The correlation loadings, thus, can be used to
interpret the physical meaning of a PC and it is also useful in
visualizing the relationship between individual variables. Two
variables which are strongly correlated (∼ ±1 correlation) with
a PC will also be strongly correlated with each other. Addition-
ally, the correlation loadings reflects the contribution of individ-
ual variable to a PC and quantifies the amount of variability, con-
tained in that variable, which is accounted for or absorbed by the
PC.

The correlation loading matrix can be calculated as the
cross-correlation between standardized data variables and stan-
dardized PCs. Using Equations (6) and (9), the correlation load-
ing matrix can be calculated as:

L =
1

n−1
X ′.
√

n−1 U =
1√

n−1
V. Σ (11)

Thus, the correlation loading vectors are, simply, loading
vectors scaled by the square root of the respective eigenvalues.

Explained Variance
Each Principal Component (PC) is characterized by three

main parameters: scores, loadings and explained variance. Ex-
plained variance is a measure of the amount of variability or in-
formation, contained in all the variables, taken into account (or
absorbed) by a PC. It is often quantified as the percentage of total
variance in the data which is accounted for by the current PC.

The variance explained by a PC is the variance contained in
the corresponding PC score vector. The total explained variance
is obtained as the cumulative sum of the variance explained by
consecutive PCs accepted in the model. Thus, the total explained
variance represents how well the data fits the model, i.e., it mea-
sures the accuracy of the model. The explained variance and total
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explained variance are, in general, presented as the percentage of
the total variance contained in the original dataset.

DATA
Two main datasets are used for the current work: ship in-

service measurement data and weather hindcast data. These two
datasets were acquired from different sources. The in-service
measurement ship data contains the measurements recorded by
various sensors onboard a ship whereas the weather hindcast data
represents the external environmental loads that the ship was as-
sumed to be experiencing.

Data Description
The ship data used in the analysis was recorded onboard an

approximately 200m long general cargo ship. The ship has a in-
stalled propulsion capacity of approximately 10,000KW in MCR
condition. The vessel is equipped with a comprehensive energy
management web application, Marorka Online6. Marorka On-
line is a platform for visualizing fleet data, and it facilitates col-
laboration between the ship and shore, i.e., the data recorded on-
board the ship is transmitted to the shore control center in real-
time. The system records parameters which are relevant as per-
formance indicators for the vessel.

Ship Data. The input ship data is about a month-long
continuously recorded time series, sampled and stored at every
15 minutes. Figure 1 shows the trajectory of the ship during the
voyage. The recorded data contains 26 variables. These vari-
ables are classified into different categories with each category
representing the nature of the information conveyed by the vari-
ables. These categories are: ship identity, navigation, auxiliary
power system, propulsion system, and environment. In addition
to these categories, time is defined as an independent variable.
Table 1 presents the list of categorized ship data variables.

Propulsion system variables are primarily related to the hy-
drodynamic performance of the ship. But some of these vari-
ables, like State, Draft Fore, and Draft Aft, do not directly cor-
relate with ship performance. State variable indicates the opera-
tional state of the vessel. It has one of the following four values
for each time step: ‘At Berth’, ‘Manoeuvring’, ‘Sea Passage’, or
‘Anchor/Waiting’. This is used to further discretize the data and
only ‘Sea Passage’ data is used for the analysis. Draft Fore and
Draft Aft are used to introduce two additional variables: mean
draft and trim-by-aft. They are more relevant from the hydrody-
namics point of view. The cargo weight remained constant dur-
ing the whole duration of the journey, thus, it cannot be included
in the analysis.

6www.marorka.com
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FIGURE 1: SHIP’S TRAJECTORY FOR THE MONTH LONG
RECORDED VOYAGE DATA.

Environment variables represent wind loads and sea depth.
Incident wind loads strongly influence the hydrodynamic perfor-
mance of the ship due to air drag. From relative wind speed
and direction, longitudinal and transverse incident relative wind
speeds are calculated. It is quite obvious that longitudinal and
transverse wind speeds would be more correlated to vessel per-
formance. It was observed that the sea depth values were not
continuously recorded probably due to the limitation of the depth
sensor, so it is not included in the analysis. Navigation variables
are used to interpolate hindcast weather data variables, represent-
ing environmental loads on the ship.

Ship identity and auxiliary power system variables are not
used in the current analysis. As the ship is propelled by a diesel
engine, auxiliary power systems hardly influence the hydrody-
namic performance of the vessel. In case of an electric propul-
sion system this might not be the case. Also, in case of a very
detailed analysis, say using a numerical model of the ship to de-
termine its hydrodynamic properties, ship identity variables can
be used to fetch the building specifications and designs of the
ship. This can be very useful to theoretically or empirically pre-
dict the calm water hydrodynamic performance of the hull with
varying mean draft and trim of the vessel.

Weather Data. The weather data is acquired from two
sources: European Centre for Medium-Range Weather Fore-
cast (ECMWF) [20] and Hybrid Coordinate Ocean Model (HY-
COM) [21]. The ECMWF data is the ERA-Interim reanalysis
data. ERA-Interim is a global atmospheric reanalysis from 1979,
which is continuously updated in real time. The spatial resolution
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TABLE 1: CATEGORIZED LIST OF VARIABLES RECORDED ONBOARD THE SHIP. ‘NAVIGATION’, ‘PROPULSION SYSTEM’
& ‘ENVIRONMENT’ ARE IMPORTANT CATEGORIES FOR THE CURRENT ANALYSIS.

Ship Identity Navigation Auxiliary Power System Propulsion System Environment

Ship Name
IMO Number

Latitude
Longitude
Gyro Heading
COG Heading

Aux. Consumed
Aux. Electrical Power Output
DG1 Power
DG2 Power
DG3 Power

State
ME Load Measured
Shaft Power
Shaft rpm
Shaft Torque
ME Consumed
Draft Fore
Draft Aft
GPS Speed
Log Speed
Cargo Weight

Relative Wind Speed
Relative Wind Direction
Sea Depth

for ECMWF data, used here, is 0.75◦, i.e., approximately 80km.
It provides wave data variables every 6 hours and wind data vari-
ables every 3 hours. The data variables obtained from ECMWF
includes northward and eastward wind speed 10m above the sea
surface, significant wave height, mean wave period and mean
wave direction. The data obtained from HYCOM has a spatial
resolution of 1/12◦ with a sampling frequency of 1 measure-
ment per day. The data variables obtained from HYCOM in-
cludes northward and eastward sea water speed.

The weather data variables are linearly interpolated in space
and time to ship’s location using the ship’s navigation data. The
weather data variables obtained from ECMWF and HYCOM are,
further, transformed to ship’s reference frame, i.e., northward
and eastward wind and current speeds are transformed to lon-
gitudinal and transverse wind and current speeds using ship’s
gyro heading. Since the wave data variables cannot be directly
transformed to ship’s reference frame as in the case of wind and
current, only a new variable, relative mean wave direction, is in-
troduced using the mean wave direction and ship’s gyro heading.

Data Exploration & Validation
The hydrodynamic performance of a ship is, in general,

quantified as the maximum speed achievable for a given propul-
sive power output. The propulsive power output is, here, mea-
sured as the percentage of Maximum Continuous Rating (MCR)
load and recorded as the variable ME Load Measured. The
propulsive power output will be correlated with the measured
shaft power. The measured shaft power will differ from the total
propulsive power output of the main engine due to transmission
losses, which may or may not vary with varying engine power
output. The shaft power can be calculated from shaft torque (τ)
and rpm (n) as:

P = τ.ω =
2πn
60

.τ (12)

The acquired data includes shaft power, torque and rpm
readings, but the shaft power can also be calculated from mea-
sured shaft torque and rpm (Equation (12)). Figure 2 presents
the measured and calculated shaft power vs main engine load. A
minor difference for a few values is noticeable but otherwise the
values are in good agreement.

The main engine power output will be correlated with its
fuel oil consumption. ME Consumed variable contains the value
of fuel consumed by the main engine between the two recorded
samples. The correlation between ship speed and propulsive
power output will be strongly influenced by environmental loads
like wind, waves and current. Figure 3 shows the correlation be-
tween ship’s speed through water, i.e., log speed and main engine
power output for ‘Sea Passage’ state only. A substantial variation
of ship’s speed through water for a given main engine load is ob-
served which indicates the influence of environmental loads.

Figure 4 shows the fuel oil consumed by main engine for
a measured instantaneous load output. It should be noted that
the fuel oil consumption values are recorded as the total fuel
consumed between two sampling instants, i.e., fuel consumed
in past 15 minutes. Thus, it will include the dynamic effects be-
tween these sampling instants as well as the variation of engine
performance with environmental loads. Minor variations in fuel
oil consumption for the same engine load indicate these effects
but the large deviations from the mean trend-line observed be-
tween 20% and 50% ME load cannot be explained by this. A
deeper analysis into the data shows that the ME fuel consump-
tion readings taken during the initial 24 hours shows abnormally
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FIGURE 2: COMPARISON OF MEASURED AND CALCU-
LATED SHAFT POWER. CALCULATED SHAFT POWER
IS OBTAINED FROM MEASURED SHAFT TORQUE AND
RMP.

high values due to unknown reasons. Keeping this in mind, all
the data recorded for first two days are removed from the analy-
sis.

Log speed is the measured speed of ship through water
whereas GPS speed is the speed of the ship relative to the ground.
In the absence of sea current, log speed will coincide with GPS
speed. Thus, the difference between log speed and GPS speed is
correlated with sea current speed. The difference between these
two measured speeds can be considered as an estimate of sea
current speed in longitudinal direction of the ship. Thus, it is
possible to validate this difference with the sea current speed
obtained from HYCOM data. Figure 5 shows the comparison
of longitudinal current speed obtained from HYCOM data and
the estimated value obtained as the difference between log speed
and GPS speed of the ship for ‘Sea Passage’ state (the gap in the
time-series is due to removal of data points when the ship was
‘Manoeuvring’ across Panama Canal). The two values shows
quite good agreement. It should be noted here that high current
speeds are well estimated by the difference between log and GPS
speeds.

In the current analysis, the wind speed data is obtained from
two sources: ship’s data and ECMWF. It is, therefore, possi-
ble to validate these two sources by comparison. As mentioned
above, the relative wind speed and direction obtained from on-
board measurements are used to calculate relative longitudinal
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FIGURE 3: MEASURED MAIN ENGINE LOAD (ME LOAD)
AS A FUNCTION OF MEASURED LOG SPEED (OR SPEED
THROUGH WATER).
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FIGURE 4: MEASURED ME FUEL CONSUMED (BETWEEN
2 SAMPLING INTERVALS) AS A FUNCTION OF MEA-
SURED ME LOAD.

and transverse wind speeds. Also, the northward and eastward
wind speeds obtained from ECMWF are transformed to longi-
tudinal and transverse wind speeds. Assuming negligible speed
of ship in transverse direction (i.e., no sway motion), the relative
transverse wind speed should match with transverse wind speed.
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FIGURE 5: COMPARISON OF LONGITUDINAL SEA CUR-
RENT SPEED ESTIMATED FROM SHIP DATA AND HIND-
CAST (HYCOM) MODEL FOR ‘SEA PASSAGE’ STATE.
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FIGURE 6: COMPARISON OF TRANSVERSE WIND SPEED
OBTAINED FROM SHIP DATA AND HINDCAST (ECMWF)
MODEL FOR ‘SEA PASSAGE’ STATE.

Similarly, it is possible to compare the longitudinal wind speed
(from ECMWF) with the difference between relative longitudi-
nal wind speed and GPS speed (from ship’s data).

Figure 6 and 7 shows the comparison for transverse and
longitudinal wind speeds from the two data sources. The two
sources of data are seen to be in quite good agreement but the
values obtained from ship’s data seems to be unreliable, spe-
cially in case of longitudinal wind speed as the wind speed is
changing sign or direction without any probable cause. Thus, the
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FIGURE 7: COMPARISON OF LONGITUDINAL WIND
SPEED OBTAINED FROM SHIP DATA AND HINDCAST
(ECMWF) MODEL FOR ‘SEA PASSAGE’ STATE.

FIGURE 8: PRELIMINARY PCA MODEL: GRAPHICAL
REPRESENTATION OF CORRELATION LOADINGS FOR
INPUT VARIABLES (TABLE 2) IN PC-1 VS. PC-2 SPACE.

wind speed data obtained from ship’s data is not included in the
analysis any further.
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TABLE 2: PRELIMINARY PCA MODEL: CORRELATION
LOADINGS. SHOWING THE CORRELATION BETWEEN
PRINCIPAL COMPONENTS AND INPUT VARIABLES.
RED COLOR INDICATES STRONG CORRELATION WHILE
YELLOW INDICATES NIL CORRELATION.

Sl. No. Variables PC-1 PC-2
1 ME consumed 0.9017 -0.3826
2 Shaft power 0.9121 -0.3727
3 Shaft rpm 0.8280 -0.4792
4 Draft fore -0.2879 -0.5690
5 Draft aft 0.4425 0.8232
6 GPS speed 0.4075 -0.7195
7 Log speed 0.4939 -0.7568
8 ME Load measured 0.9121 -0.3727
9 Shaft Torque 0.9239 -0.3403

10 Mean draft 0.4380 0.7883
11 Trim-by-aft 0.4087 0.7724
12 Long. wind speed 0.5769 0.1749
13 Trans. wind speed 0.5277 -0.2213
14 Relative mean wave direction -0.7242 -0.4460
15 Significant wave height 0.6416 0.5118
16 Mean wave direction 0.7243 0.3832
17 Mean wave period 0.7653 0.3862
18 Long. current speed 0.0437 0.0957
19 Trans. current speed 0.3393 0.0034

RESULTS
Based on the available dataset and observations made dur-

ing data exploration, a preliminary Principal Component Anal-
ysis (PCA) model was created including 19 variables and 1688
samples from ‘Sea Passage’ state only. Table 2 presents the list
of variables included in the preliminary PCA model and the ob-
tained correlation loadings for each variable with PC-1 and PC-2.
Figure 8 shows the correlation loadings in graphical format. The
purpose of the preliminary PCA model is to do the following: (a)
Check the correlation between variables and perform variable se-
lection for final model; (b) Detect and investigate potential out-
liers.

Variable Selection
From the correlation loadings (Figure 8), it can be observed

that longitudinal and transverse current speeds are very loosely
correlated with the PCs as well as with other variables. In other
words, longitudinal and transverse current speeds do not con-
tribute much to the model. Thus, it is better to remove these

FIGURE 9: PRELIMINARY PCA MODEL: GRAPHICAL
REPRESENTATION OF CORRELATION LOADINGS FOR
INPUT VARIABLES (TABLE 2) IN PC-1 VS. PC-4 SPACE.

variables from the analysis to get a better fitting and compact
model.

A consequence of not removing an uncorrelated variable can
be understood as follows. The primary aim of a PCA model
is to explain the variance in the complete dataset via minimum
number of Principal Components (PCs). Therefore, the variance
in any uncorrelated variable must also be explained. So as to
achieve this, the model will create an extra PC just to explain the
variance in this uncorrelated variable. Figure 9 shows that PC-4
is the undesirable extra PC created by the model to explain the
variance in longitudinal current speed.

Outliers
Figure 10 shows the influence plot for PC-1 with 5% confi-

dence limits. The samples marked by circles are potential out-
liers as they have high residuals and high influence on the model.
The residuals are calculated as Q-residuals and the influence is
calculated as Hotelling’s T2 values. Further investigation re-
vealed that these potential outlier are different from the rest of
the sample set. They have either too low or too high shaft rpm
than the rest of the samples, as shown in Figure 11. Thus, these
samples are not erroneous values, rather they are very rare sam-
ples which are entirely different from the rest of the sample set.

The best way to deal with this type of problem is to gather
additional samples which are similar to such rare samples. Since
this is not possible here, it is better to remove these samples so
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FIGURE 10: PRELIMINARY PCA MODEL: PC-1 INFLU-
ENCE PLOT WITH 5% CONFIDENCE LIMITS SHOWING
POTENTIAL OUTLIERS (MARKED BY CIRCLES TO THE
TOP-RIGHT OF RED LINES).

FIGURE 11: SCALED AND MEAN-CENTERED SHAFT
RMP. SAMPLES MARKED BY CIRCLE ARE RARE AS
THEY LIE FAR AWAY FROM THE MEAN (ZERO) LINE AS
COMPARED TO REST OF THE SAMPLE SET.

that the model fits better to the remaining sample set. In view
of this, all such rare samples were removed from the final PCA
model.

PCA Model
Scores & Loadings. Based on the results from the pre-

liminary PCA model, only 17 variables are included in the final
PCA model. Table 3 shows the correlation loadings for first 7
Principal Components (PCs) calculated by the model. Figure 12

FIGURE 12: FINAL PCA MODEL: GRAPHICAL REPRESEN-
TATION OF CORRELATION LOADINGS FOR INPUT VARI-
ABLES (TABLE 3) IN PC-1 VS. PC-2 SPACE.

presents the correlation loadings for PC-1 and PC-2 in graphical
format. It is observed that the 17 input variables are separated
into 4 main groups of strongly correlated variable: Power pa-
rameters (1-3,8,9), wave parameters (14-17), draft parameters
(4,5,10,11) and speed parameters (6,7). Each of these groups
are oriented along a different direction in PC-1 vs. PC-2 space
but none of these groups are completely aligned with either PC-1
or PC-2.

Similar observations can drawn in case of PC-3. This makes
it difficult to interpret the physical meaning of these PCs. Ad-
ditionally, it should be observed that PC-5 to PC-7 do not show
good correlation with any of the variables, indicating that they
are mostly representing noise in the given dataset. Thus, it is
possible to retain only first 4 Principal Components and discard
the remaining.

From Figure 12, it is surprising to observe that transverse
wind speed (13) is correlated with PC-1 and PC-2 almost as
much as longitudinal wind speed (12). It even shows higher cor-
relation with PC-3 (refer Table 3), indicating that it is an impor-
tant parameter for this model.

Explained Variance & Validation. Figure 13 presents
the explained variance for the PCA model. The model can ex-
plain about 90% variance with just 4 PCs and further PCs do not
really contribute to the model. Thus, the model with only first 4
PCs is a very good fit for the given dataset. Figure 13 also shows
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TABLE 3: FINAL PCA MODEL: CORRELATION LOADINGS. SHOWING THE CORRELATION BETWEEN PRINCIPAL COM-
PONENTS AND INPUT VARIABLES. RED COLOR INDICATES STRONG CORRELATION WHILE YELLOW INDICATES NIL
CORRELATION.

Sl. No. Variables PC-1 PC-2 PC-3 PC-4 PC-5 PC-6 PC-7
1 ME consumed 0.9016 -0.3893 0.1181 -0.0774 0.0127 -0.0149 0.0784
2 Shaft power 0.9126 -0.3792 0.0633 -0.0636 0.0102 -0.0245 0.0760
3 Shaft rpm 0.8247 -0.4927 0.2330 -0.0609 0.0462 -0.0039 0.0816
4 Draft fore -0.2544 -0.6107 -0.6950 -0.0257 0.0512 -0.2620 0.0098
5 Draft aft 0.4427 0.8281 0.2983 -0.0109 -0.1109 -0.0999 0.0270
6 GPS speed 0.3706 -0.7254 0.2980 0.1898 -0.1275 -0.0730 -0.4044
7 Log speed 0.4608 -0.7770 0.3185 0.1361 0.0353 -0.0497 0.0418
8 ME Load measured 0.9126 -0.3792 0.0633 -0.0636 0.0102 -0.0245 0.0760
9 Shaft Torque 0.9226 -0.3468 0.0182 -0.0675 0.0028 -0.0304 0.0761

10 Mean draft 0.4721 0.7781 -0.0890 -0.0364 -0.1279 -0.3548 0.0484
11 Trim-by-aft 0.3965 0.7897 0.4532 0.0016 -0.0949 0.0240 0.0152
12 Long. wind speed 0.5750 0.1699 -0.2688 -0.7265 -0.0422 0.0865 -0.1020
13 Trans. wind speed 0.5333 -0.2347 -0.5990 0.2794 -0.3868 0.1609 0.0988
14 Relative mean wave direction -0.7482 -0.4300 0.2344 0.0012 0.2447 -0.0698 0.1753
15 Significant wave height 0.6418 0.5128 -0.1387 0.4909 0.0795 -0.0085 0.0217
16 Mean wave direction 0.7295 0.3732 -0.3334 0.0717 0.3372 -0.0637 -0.1637
17 Mean wave period 0.7556 0.3947 -0.2025 0.1089 0.3138 0.1840 -0.0158

the explained variance for validation dataset. Model validation is
done using cross-validation technique with 20 segments of ran-
domly picked nonconsecutive samples, each segment containing
about 145 samples. The validation dataset presents similar re-
sults as the calibration dataset.

Interpreting PCs. The simplest way to interpret Princi-
pal Components (PCs) is by looking at the correlation loadings
or observing trends in sample score space, say, by means of sam-
ple grouping the scores. Sample grouping could not be used in
the given case due to the complexity of PCs but by looking at
correlation loadings (Table 3), it can said that PC-4 is mainly
a combination of longitudinal wind speed (12) and significant
wave height (15), i.e., it signifies the severity of environmental
loads. Thus, a sample with high score for PC-4 would represent
high environmental loads. PC-1, PC-2 and PC-3 are a combi-
nation of many variables as clearly observed from Table 3 and
Figure 12.

It is also possible to understand the physical meaning of PCs
from variable contributions point of view, i.e., by looking at vari-
able residuals for all the PCs. Figure 14 shows that shaft power
contributes to PC-1 and PC-2 only whereas Figure 15 shows that

trim-by-aft contributes to PC-1, PC-2 and PC-3.

CONCLUSION
A data-driven mathematical approach was used to process

the high dimensional sensor data recorded onboard a ship during
a sea voyage. Principal Component Analysis (PCA) was used
to perform variable selection and detect potential outliers. The
high dimensional dataset obtained from the sensors onboard the
ship and weather hindcast, representing the hydrodynamic per-
formance of the ship, was greatly reduced in dimensions by PCA.
The PCA model achieved upto 90% explained variance with only
4 Principal Components (PCs).

Wind and sea current hindcast data, obtained from ECMWF
and HYCOM respectively, was found to be in good agreement
and, in some cases, more reliable than the in-service measure-
ments recorded onboard the ship. The sea current speed vari-
ables were eliminated during the variable selection process as
they did not contribute to the PCA model for the given dataset.
Transverse wind speed was observed to be an important param-
eter for the given dataset. Investigation needs to be done on a
larger dataset in order to draw any further conclusions.
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FIGURE 13: FINAL PCA MODEL: EXPLAINED VARIANCE.
SHOWING THE VARIANCE IN DATASET ABSORBED BY
CONSECUTIVE PCS. FIRST 4 PCS EXPLAINING ABOUT
90% VARIANCE.

FUTURE WORK
The PCA model presented in the current work is developed

using the data recorded onboard a ship for about a month long
period. A similar model can be easily developed on a larger set
of data and for a different vessel. It would be interesting to cor-
roborate the current findings for new and variant sets of such
data.

Based on the current model, it is possible to quantify the
performance of the vessel using the location of a sample in Prin-
cipal Component Analysis (PCA) score space. But, in order to
do so, a benchmark or standard basis needs to be established in
PCA score space to mark, say, 100% performance. Alternatively,
it is possible to develop a regression model based on the current
analysis model, as demonstrated by Massy (1965) [22]. The re-
gression model would be able to predict the speed or fuel con-
sumption for a given state of the ship. Thus, it would be possible
to quantify the performance of the ship in terms of speed loss or
excess fuel consumption.

ACKNOWLEDGMENT
The authors would like to acknowledge using The Unscram-

bler X, a very useful commercial application developed by Prof.
Harald Martens and CAMO Software.

FIGURE 14: FINAL PCA MODEL: SHAFT POWER RESID-
UALS. SHOWING THE VARIANCE IN SHAFT POWER AB-
SORBED BY CONSECUTIVE PCS. FIRST 2 PCS EXPLAIN-
ING MOST OF THE VARIANCE IN SHAFT POWER.

FIGURE 15: FINAL PCA MODEL: TRIM-BY-AFT RESID-
UALS. SHOWING THE VARIANCE IN TRIM-BY-AFT AB-
SORBED BY CONSECUTIVE PCS. FIRST 3 PCS EXPLAIN-
ING MOST OF THE VARIANCE IN TRIM-BY-AFT.
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